[go: up one dir, main page]

CN107001455A - 利用hnl的诊断方法 - Google Patents

利用hnl的诊断方法 Download PDF

Info

Publication number
CN107001455A
CN107001455A CN201580063084.6A CN201580063084A CN107001455A CN 107001455 A CN107001455 A CN 107001455A CN 201580063084 A CN201580063084 A CN 201580063084A CN 107001455 A CN107001455 A CN 107001455A
Authority
CN
China
Prior art keywords
hnl
subject
sample
polypeptide
binding agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580063084.6A
Other languages
English (en)
Other versions
CN107001455B (zh
Inventor
M.H.范鲁斯马伦
V.塞姆乔诺
J.H.尼尤文修伊斯
P.文吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swedish Diagnostic Development Co.,Ltd.
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN107001455A publication Critical patent/CN107001455A/zh
Application granted granted Critical
Publication of CN107001455B publication Critical patent/CN107001455B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4703Regulators; Modulating activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/26Infectious diseases, e.g. generalised sepsis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/56Staging of a disease; Further complications associated with the disease
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及用于检测细菌感染的方式和方法,区分病毒和细菌感染的方法,分层患者用于后续治疗和进一步诊断目的的方法以及监测抗生素疗法的方法。本发明基于使用特异性结合剂检测人嗜中性粒细胞脂质运载蛋白(HNL)的特异性表位。

Description

利用HNL的诊断方法
发明领域
本发明涉及用于检测细菌感染的手段和方法,区分病毒和细菌感染的方法,分层患者用于后续治疗和进一步诊断目的的方法以及监测抗生素疗法的方法。本发明基于使用特异性结合剂检测人嗜中性粒细胞脂质运载蛋白(HNL)的特异性表位。
发明背景
新的抗生素耐受性机制在全球出现并传播,其威胁治疗常见传染病的能力,导致直到最近才可以继续正常生活过程的个体的死亡和残疾。没有有效的抗感染治疗,许多标准的医疗治疗将失败或变成非常高的风险程序(http://www.who.int/mediacentre/factsheets/fs194/en/; Antimicrobial resistance - Fact sheet N°194,2014年4月更新)。
在2012年,存在约45万个多药耐药结核病(MDR-TB)的新病例。已经在92个国家鉴定了广泛耐药结核病(XDR-TB)。MDR-TB需要的疗程比不耐药TB的疗程长得多且效率更差。在世界所有地区引起常见感染(例如尿路感染、肺炎、血液感染)的细菌中,存在高比例的抗生素耐受性(ABR)。高百分比的医院获得性感染由高耐药细菌诸如耐甲氧西林金黄色葡萄球菌(MRSA)或多重耐药性革兰氏阴性细菌引起。现在已从10个国家报告了由于对淋病的最后治疗手段(第三代头孢菌素)导致的治疗失败。淋病可能很快变得不可接受,因为没有疫苗或新药物在开发中。由耐药细菌引起的感染的患者通常处于临床结果恶化和死亡的增加风险中,并且比被没有耐受的相同细菌的感染的患者消耗更多的医疗资源。
作为实例,在医院中治疗的具有由普通耐受性细菌引起的严重感染的患者的死亡率可以是相同非耐受性细菌感染的患者的死亡率的约两倍。例如,估计具有MRSA(社区和医院中严重感染的另一常见来源)的人比具有感染的非耐受性形式的人高64%更可能死亡。
各种行为模式有利于AMR的发展。例如,抗生素广泛用于动物饲养和畜牧业中的预防,例如,以增加体重增加。这导致这些动物中耐受性细菌的发展,它们传播至与这些动物一起工作的人或购买和使用受影响动物或农场的产品的消费者。另一个问题是动物农场周围环境的污染。此外,AMR的发展也可由以下导致:将抗微生物药物、例如抗生素不小心处方和分配给不需要这些药物的患者,例如因为疾病的严重程度没有证明使用抗生素是合理的,或者该疾病不是由于细菌感染。此外,抗生素在几个国家可作为OTC免费获得。患者经常不使用这些抗生素持续足够长的时间,他们不使用正确的抗生素用于其各自的疾病,或者他们不能正确地丢弃剩余的抗生素,但将其释放至环境中,例如,通过把它们冲下厕所。
在该领域越来越需要区分细菌和病毒感染,并且仅向具有证实的细菌感染的患者施用抗生素。本发明的一个目标是提供用于该目的的手段和方法。
人嗜中性粒细胞脂质运载蛋白(HNL)(也命名为嗜中性粒细胞明胶酶相关脂质运载蛋白(NGAL))是一种普遍存在的糖蛋白,其最初从人嗜中性粒细胞分离并定位于其特定颗粒中。HNL/NGAL作为25-kD单体或作为45-kD二硫键连接的同源二聚体存在,并且其经由分子间二硫桥作为135-kD异源二聚体形式与明胶酶(基质金属蛋白酶9)共价缀合(Cai等人., Clin J Am Soc Nephrol. Dec 2010; 5(12): 2229–2235). HNL的氨基酸序列显示于SEQ ID NO:1,其对应于在www.uniprot.org/uniprot/P80188找到的蛋白序列,具体地是指同种型1。
HNL在区分急性病毒和急性细菌感染中的区分能力显示75-94%之间的灵敏度和特异性的变化。较低数字在临床环境中显然不令人满意,并且发展目标应当是HNL测定,其可靠地排除细菌作为急性感染的原因,以减少用抗生素治疗感染的需求。第二个目标应当是可靠鉴定需要抗生素治疗的那些急性感染。
血清或血浆中的HNL(人嗜中性粒细胞脂质运载蛋白)的测量可用于区分病毒引起的急性感染与由细菌引起的那些,如EP 0 756 708 B1中所公开。
本发明的一个目标是提供特异性识别HNL的新的结合剂,且提供此类结合剂例如在检测细菌感染、选择患者的适当治疗等中的方法和用途。
本发明的另一个目标是监测经历抗生素疗法的败血症患者,例如,通过在不同时间点重复测试患者样品来帮助确定治疗效力和停止抗生素的时间。
发明概述
本发明提供了检测样品中的HNL的手段和方法。这些手段是特征在于其结合区域(例如CDR区域)以及其与HNL特异性结合的能力的结合剂,例如抗体或其衍生物。本发明的结合剂可以用于HNL的特异性检测,并且允许区分细菌和病毒感染。在一些实施方案中,作为参数的HNL的量适合于鉴定细菌感染和/或区分细菌与病毒感染,并且可用于诊断疾病、预后临床结果或监测抗细菌治疗的过程。急性细菌感染的正确诊断允许对主体适当地开抗生素处方,将来自所述主体的样品进行(例如,血液样品或尿液样品中)HNL的存在或不存在或量的分析。
在本发明的实施方案中,生物样品可以用嗜中性粒细胞活化剂预处理以改善HNL的检测并进一步改善本文公开的方法。在优选的实施方案中,嗜中性粒细胞活化剂是N-甲酰基肽,更优选三肽fMLP。在进一步实施方案中,嗜中性粒细胞活化剂是蛋白A,或可以是fMLP和蛋白A的组合。本发明进一步设想嗜中性粒细胞活化剂是脂多糖(LPS)、血小板活化因子、未甲基化的CpG寡核苷酸或肿瘤坏死因子(TNF)。因此,根据本发明的具体实施方案,嗜中性粒细胞活化剂可以是选自fMLP、蛋白A、脂多糖(LPS)、血小板活化因子、未甲基化的CpG寡核苷酸和肿瘤坏死因子(TNF)的两种或更多种要素的任何组合。
在本发明的一个实施方案中,包含对应于HNL的氨基酸83至154的氨基酸序列的多肽,例如重组产生的多肽,或纯化自人血浆/血清的单体或二聚体HNL,可用于产生特异性识别HNL的结合剂。该多肽可用于免疫动物,获得产生抗体的细胞,产生杂交瘤细胞,收获抗体,任选地阐明其序列,并进一步任选地产生重组抗体,表征这些抗体的特异性结合HNL的能力,和使用这些抗体来通过测定样品中的HNL水平来诊断细菌感染。所述抗体可以如下文所述进行修饰。
在本发明的实施方案中,提供了用于检测或诊断细菌和/或病毒感染或允许区分病毒和细菌感染的方法,其特征在于样品中的HNL-水平使用特异性结合HNL表位的氨基酸的结合剂测量,所述HNL表位暴露在内缘和外缘表面上,如图1中所示,其中这些表位优选包含SEQ ID NO. 1所示的HNL的氨基酸83至88(优选氨基酸82至102)和/或141至156。在额外实施方案中,这些表位还包含SEQ ID NO:1所示的HNL的氨基酸51至76和/或113至132。
因此,在一些实施方案中,本文公开的结合剂和其中使用所述结合剂的方法特异性识别由HNL (SEQ ID NO:1)的氨基酸51至76和/或82至102和/或113至132和/或141至156包含的氨基酸。在一个特别优选实施方案中,结合剂能够特异性结合HNL的多肽表位,其中所述多肽表位包含如SEQ ID NO:1中所定义的HNL的氨基酸141至156,或其中所述多肽表位是由SEQ ID No:26中的肽包含的构象表位。
在本发明的优选实施方案中,所述结合剂结合至少主要由嗜中性粒细胞产生的HNL。
在本发明的一些实施方案中,本文公开和使用的结合剂结合由SEQ ID NO:26所示的序列包含的HNL区域。
在本发明的一些实施方案中,所述结合剂包含HNL表位特异性结合区域,其包含SEQ ID No:8至13、14至19和20至25所示的至少一个、两个、三个、四个、五个或六个氨基酸序列或其功能性衍生物。
在本发明的另一个实施方案中,提供了用于诊断感染(例如细菌感染)或重新测试细菌感染(例如,在用抗生素治疗的过程中)或区分细菌感染与病毒感染的方法,其特征在于分析样品,例如,获得自疑似具有细菌或病毒感染的主体的样品,使用特异性结合SEQ IDNO:26所示的序列或如上文所定义的结合剂来分析HNL-水平的存在。所述方法可以包括以下步骤:
a) 在所述结合剂存在的情况下孵育样品;
b) 任选地洗掉未结合的样品材料;
c) 测量疑似具有细菌或病毒感染的主体的样品中HNL的水平;
d) 将步骤c)中测量的HNL水平与一种或多种对照样品进行比较,所述对照样品任选地获得自
(i) 健康主体,
(i) 已知具有细菌感染的主体,和
(iii) 已知具有病毒感染的主体,和/或
任选地将步骤c)中测量的HNL水平与指示健康主体、具有病毒感染的主体和/或具有细菌感染的主体的一个或多个均一化对照值进行比较。
在一个具体实施方案中,所述方法包括进一步步骤:当步骤c)中的HNL水平显著高于(i)健康主体和(iii)已知具有病毒感染的患者的对照样品中检测到的水平时,诊断细菌感染。
在另一个方面,本发明涉及排除主体中的细菌感染的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度低于预定的第一阈值,则对于主体排除细菌感染。
在一个进一步方面,本发明提供了排除主体中的病毒感染的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定的第一阈值,则对于主体排除病毒感染。
在又另一个方面,本发明涉及划入主体中的细菌感染的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定的第一阈值,则对于主体划入细菌感染。
在又另一个方面,本发明提供了划入主体中的病毒感染的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的TRAIL的多肽浓度低于预定的第一阈值,则对于主体划入病毒感染。
在一个实施方案中,上述排除细菌感染或划入病毒感染的方法进一步包括:
a) 测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的TRAIL的多肽浓度高于预定的第一阈值,则对于主体排除细菌感染或划入病毒感染。
在另一个实施方案中,上述排除病毒感染的方法或划入细菌感染的方法进一步包括:
a) 测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的TRAIL的多肽浓度低于预定的第一阈值,则对于主体划入细菌感染或排除病毒感染。
在一个进一步方面,本发明涉及区分主体中的细菌感染和病毒感染的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL和CRP、任选地TRAIL的多肽浓度;
b) 对HNL和CRP以及任选TRAIL的浓度应用预定的数学函数来计算评分;
c) 将评分与预定参考值进行比较。
在又另一个方面,本发明提供了区分主体中的细菌或混合感染和病毒感染的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL和CRP、任选地TRAIL的多肽浓度;
b) 对HNL和CRP以及任选TRAIL的浓度应用预定的数学函数来计算评分;
c) 将评分与预定参考值进行比较。
根据一个进一步方面,本发明提供了为主体提供治疗推荐的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值,则推荐主体接受抗生素治疗;
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值,则推荐患者不接受抗生素治疗;或
d) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值,则推荐患者接受抗病毒治疗。
在一个实施方案中,为主体提供治疗推荐的方法进一步包括在步骤a)中额外测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值且如果步骤(a)中测定的TRAIL的浓度低于预定阈值,则推荐主体接受抗生素治疗;
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值且如果步骤(a)中测定的TRAIL的多肽浓度高于预定阈值,则推荐患者不接受抗生素治疗;或者
d) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值且如果步骤(a)中测定的TRAIL的多肽浓度高于预定阈值,则推荐患者接受抗生素治疗。
根据另一个方面,本发明涉及为主体提供诊断测试推荐的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值,则推荐测试样品中细菌的存在;或者
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值,则推荐测试样品中病毒的存在。
根据一个实施方案,为主体提供诊断测试推荐的方法进一步包括在步骤a)中额外测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值且如果步骤(a)中测定的TRAIL的浓度低于预定阈值,则推荐测试样品中细菌的存在;
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值且如果步骤(a)中测定的TRAIL的多肽浓度高于预定阈值,则推荐测试样品中病毒的存在。
在另一个方面,本发明进一步提供了排除主体中的传染病、优选细菌或病毒疾病的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度和选自TRAIL、IP10、ILIRa或Mac-2BP的一种或多种多肽的多肽浓度;
b) 对测量的多肽的浓度应用预定的数学函数来计算评分
c) 将评分与预定参考值进行比较。
在又另一个方面,本发明涉及鉴定主体中的感染类型、优选细菌或病毒感染的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度和选自TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性结合分子、IL1、I-TAC和TNFR1的第一多肽决定因素的水平;和
b) 测量选自以下的第二决定因素的水平:
(i) 多肽决定因素TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性结合分子、IL1、I-TAC和TNFR1;
(ii) 多肽决定因素IFITM3、IFIT3、EIF4B、IFIT1、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1和IL7;
(iii) 多肽决定因素CRP、SAA、TREM-1、PCT、IL-8、TREM-1和IL6;或
(iv) 非多肽决定因素年龄、绝对嗜中性粒细胞计数(ANC)、绝对淋巴细胞计数(ALC)、嗜中性粒细胞% (Neu(%))、淋巴细胞% (Lym (%))、单核细胞% (Mono (%))、最高温度、自症状起的时间、肌酸酐(Cr)、钾(K)、脉冲和尿素;
c) 将HNL、第一和第二决定因素的水平与参考值进行比较,由此鉴定主体中的感染类型,
其中第一和/或第二决定因素的测量增加了在测量HNL中鉴定感染类型的精确度。
在一个进一步方面,本发明涉及鉴定主体中的感染类型、优选细菌或病毒感染的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度和选自ABTB1、ADIPOR1、ARHGDIB、ARPC2、ATP6V0B、Clorf83、CD15、CES1、CORO1A、CSDA、EIF4B、EPSTI1、GAS 7、HERC5、IFI6、KIAA0082、IFIT1、IFIT3、IFITM1、IFITM3、LIPT1、IL7R、ISG20、LOC26010、LY6E、LRDD、LTA4H、MAN1C1、MBOAT2、NPM1、OAS2、PARP12、PARP9、QARS、RAB13、RAB31、RAC2、RPL34、PDIA6、PTEN、RSAD2、SART3、SDCBP、SMAD9、SOCS3、TRIM22、SART3、UBE2N、XAF1、ZBP1、CRP和MX1的一种或多种多肽决定因素的水平;和
b) 将HNL和一种或多种多肽决定因素的水平与参考值进行比较,由此鉴定主体中的感染类型。
在一个实施方案中,鉴定感染类型的方法进一步包括测量一种或多种选自以下的非多肽决定因素:年龄、绝对嗜中性粒细胞计数(ANC)、绝对淋巴细胞计数(ALC)、嗜中性粒细胞% (Neu(%))、淋巴细胞% (Lym (%))、单核细胞% (Mono (%))、最高温度、自症状起的时间、肌酸酐(Cr)、钾(K)、脉冲和尿素。
在另一个实施方案中,使用决定因素绝对嗜中性粒细胞计数(ANC)和嗜中性粒细胞% (NEU(%))的水平来均一化HNL的水平。
在本发明的另一个实施方案中,提供了将主体分层为具有细菌性疾病的那些和不具有细菌性疾病的那些的方法,其包括上述步骤,且任选地包括将抗生素治疗性施用于被鉴定为被细菌感染的主体的步骤。
在本发明的一些实施方案中,所述样品选自血液(即全血)或其级分,例如血清、血浆和/或尿液、脑脊髓液(CSF)、骨髓、唾液和痰液。
其中可以使用本文公开的测试且可以进行描述的方法的地点是重症监护病房(ICU)、医院,特别是急诊部、新生儿部门、GP /医师场所、药房、社区医院以及1级和2级设置。
在另一个实施方案中,本发明提供了用于诊断细菌感染的装置,所述装置包含至少一个隔室,例如接触区域,其包含本文所述的结合剂。所述装置可以是在其表面的至少(一部分)上具有固定的结合剂的测试条,在其表面的至少(一部分)上携带固定的结合剂的颗粒等。所述表面可以是三维的,例如具有部分多孔表面(层)的颗粒可以携带上述结合剂。重要的是,所述装置包含可以暴露于被分析的样品(例如,疑似含有HNL的样品)的接触区域。在本发明的装置的实施方案中,可以测定HNL的水平。在进一步实施方案中,所述装置可以连接至其他装置,例如,适合于疑似具有细菌感染的主体取血液样品的那些,或者其可以连接至允许分析和测量本文公开的结合剂和存在于样品中的HNL之间的相互作用的计算机或装置。可以使用在HNL和本文所述的结合剂结合后特异性产生的物理、化学或生物信号来测量相互作用。当与其中没有发生相互作用的对照相比时,相互作用可以产生可测量的信号,例如,显色信号、荧光信号、光谱可测量信号、电离变化、导电性变化等。
在一个具体实施方案中,如上所述的装置额外包含用于上述额外多肽决定因素中的一种或多种的结合剂,其中所述反应指示多肽决定因素的相互作用,并且其进一步任选地允许测定所述样品中的所述多肽决定因素的水平。
在一个具体实施方案中,本发明涉及上文定义的方法,其进一步包括测量C反应蛋白和/或TRAIL和/或原降钙素和/或CD64的水平,和/或测定白血细胞的数目和/或测定嗜中性粒细胞的数目。
在另一个实施方案中,本发明提供了生产抗体的方法,其包括以下步骤:培养从先前暴露于包含SEQ ID NO:26中的序列的抗原的动物获得的产生抗体的细胞,和提供所述抗体,任选地进一步修饰获得的抗体。优选地,所述抗体包含结合区域,其包含SEQ ID No:1至6、7至12和13至18所示的至少一个、两个、三个、四个、五个或六个氨基酸序列或其功能性衍生物。
以上概述并不意欲限定本发明的每个方面,并在其他部分(诸如发明详述)中描述其他方面。旨在整个文件作为统一公开内容而相关,且应理解即使在该文件的同一句子或段落或部分中并未发现本文中所描述的特征一起的组合,也涵盖所述特征的所有组合。
除上述以外,作为额外方面,本发明可包括在任何情况下在范围上比由本文中特定段落所定义的变型更窄的本发明的所有实施方案。例如,本发明的某些方面被描述为属,且应理解属的各成员单独地为本发明的方面。还应理解被描述为属或对属的成员进行选择的方面涵盖该属的两个或更多个成员的组合。
应理解,尽管在各种情况下使用"包含"语言来呈现说明书中的各个实施方案,但也可使用"由...组成"或"基本上由...组成"语言来描述相关实施方案。
附图简述
图1是HNL-分子的图示。
图2显示使用fMLP的用从患者和健康对照的血液纯化的嗜中性粒细胞的活化实验的结果。将嗜中性粒细胞暴露于各种浓度的fMLP,并在37℃下孵育15分钟,随后离心,并测定上清液中HNL的存在。发现fMLP释放的最佳浓度为5x10-8 mol/L。为了研究释放HNL的动力学,将纯化的细胞孵育不同长度的时间。显著的释放在孵育5分钟后看到,并通过延长的孵育进一步增加。
图3显示关于与fMLP孵育后通过嗜中性粒细胞的HNL的释放倾向的测试。在凝血后的全血中,将来自从具有急性感染的XX患者和YY健康主体纯化的嗜中性粒细胞的HNL释放与各主体的血清HNL浓度进行比较。在HNL的上清液和血清浓度之间获得显著和线性关联性(r=0.743,p=0.002)。
图4 a和b显示在37℃和EDTA-血浆中fMLP活化20分钟后全血中的HNL浓度。健康主体的fMLP活化全血中的HNL浓度(几何平均值98 µg/L,95% CI 90-107,µg/L)显著低于具有细菌感染的患者(几何平均值337 µg/L,95% CI 300-379 µg/L) (p<0.0001)和具有病毒感染的患者(几何平均值为117 µg/L,95% CI 101-136 µg/L) (p<0.05)中测量的浓度。
图5a和b显示两种HNL测定法即在fMLP活化的全血和EDTA-血浆中的诊断性能。通过接受者操作特征(ROC)曲线显示健康非感染主体和具有证实的细菌感染的那些之间的区别。HNL测试对fMLP活化全血的曲线下面积(AUC)为0.95 (95% 0.91-0.97),相比之下,HNL测试对EDTA-血浆的曲线下面积(AUC)为0.88 (95% CI 0.84-0.91),p=0.0003。对于fMLP活化的全血,125 µg/L HNL的阴性预测值(NPV)为90% (95% CI 82-96%),阳性值为83% (95%CI 77-89%)。对于HNL浓度为40 µg/L的EDTA-血浆,NPV为86% (95% CI72-95%),PPV为63%(95% CI 57-69%)。在细菌和病毒感染的区别中,fMLP活化的全血的AUC为0.92 (95% CI0.87-0.96),对于EDTA-血浆为0.79 (95% CI 0.71-0.85),p=0.0006。在110 µg/L的浓度,对于fMLP活化的全血,NPV为93% (95% CI 68-100%),且PPV为85% (77-90%)。EDTA血浆中浓度为40 µg/L的HNL的相应数字为NPV 52% (95% CI 37-67%)和PPV 85% (95% CI 78-90%)。在EDTA-血浆中的任何HNL浓度下,NPV都不超过60%。因此,在健康主体和细菌感染之间的区别以及细菌和病毒感染之间的区别中,HNL在fMLP活化的全血中的临床性能优于EDTA-血浆中的HNL。
图6 a-d显示研究的群体中生物标志物CRP、血液嗜中性粒细胞计数、血液嗜中性粒细胞上的CD64表达和原降钙素的分布。除嗜中性粒细胞计数外,所有其他生物标志物在细菌和病毒感染中与健康主体相比都显著升高(p<0.0001)。
图7显示HNL二聚体。HNL二聚体在两个HNL单体结构之间经由以黑色表示的半胱氨酸桥进行稳定。参与抗体抗原结合的区域以黑色表示(图的左和右侧)。
实施方案的详述
尽管将关于具体实施方案描述本发明,但该描述不应以限制性的意义进行解释。在详细描述本发明的示例性实施方案之前,给出对于理解本发明而言重要的定义。
如在本说明书和所附的权利要求书中所使用,单数形式“一个/种(a)”和“一个/种(an)”也包括各自的复数形式,除非上下文另有清楚指示。
在本发明的上下文中,术语“约”和“大约”表示本领域技术人员会理解的准确度区间,其仍然确保目标特征的技术效果。该术语通常表示,从指示的数值偏离±20%、优选±15%、更优选±10%、甚至更优选±5%。
应当理解,术语“包含”不是限制性的。为了本发明的目的,术语“由…组成”被视作术语“包含……”的一个优选实施方案。如果在下文中将一个集合定义为至少包含特定数目的实施方案,这是表示,也包括优选地仅由这些实施方案组成的集合。
此外,术语“第一”、“第二”、“第三”或“(a)”、“(b)”、“(c)”、“(d)”等在说明书和权利要求书中用于区分类似的要素,不一定用于描述先后顺序或时间顺序。应当理解,这样使用的术语在适当的情况下是可互换的,且本文描述的本发明的实施方案能够以不同于本文描述或例证的顺序来运行。
在术语“第一”、“第二”、“第三”或“(a)”、“(b)”、“(c)”、“(d)”等涉及方法或使用步骤的情况下,在步骤之间没有时间或时间间隔相干性,即所述步骤可以同时进行,或在这样的步骤之间可以存在数秒、数分钟、数小时、数天、数周、数月或甚至数年的时间间隔,除非在本文上面或下面阐述的说明书中另有指示。应当理解,本发明不限于本文描述的特定的方法学、方案、蛋白、细菌、载体、试剂等,因为它们可以变化。还应当理解,本文使用的术语仅用于描述特定实施方案的目的,无意限制仅由所附权利要求书来限定的本发明的范围。除非另有定义,在本文中使用的所有技术和科学术语具有与本领域普通技术人员通常理解相同的含义。
在本发明的上下文中,术语“结合剂”表示任何分子,例如包含天然和/或修饰的氨基酸的肽,其允许它们特异性结合本文描述的HNL的区域或表位的序列,例如,结合暴露在如图1(3D图像的暗色部分)中所示的所述分子的内缘和/或外缘表面上的HNL区域的结合剂。所述结合剂特异性识别由如SEQ ID NO:1所示的HNL的氨基酸51至76和/或82至102和/或113至132和/或141至156包含的氨基酸,特别是由SEQ ID NO:26中的肽包含的不连续的、优选非线性的构象表位。优选的结合剂是抗体或其功能片段或衍生物。
在本申请的上下文中,所述表位可以稍微不同,例如,具有约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%同一性,条件是所述表位被如上所定义的特异性结合HNL的结合剂识别。优选地,所识别的结合剂是由嗜中性粒细胞产生的HNL。
在本发明的上下文中,所述结合剂的结合特异性可以是如上所定义的结合HNL的结合剂的结合亲和力的特异性的至少约80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%,或者甚至更高。
在本发明的含义内,“显著地”结合还意味着,从作为潜在的结合配偶体的多种等同可及的不同抗原的合并物中,HNL被结合的频率是任何其他不同于HNL的抗原的至少10倍,例如50倍,例如100倍(在动力学意义上)。此类动力学测量可以在Biacore装置上进行。
如本文所用的术语“水平”是指在样品中检测到的HNL的量或浓度。
“多核苷酸”是任何长度的核苷酸的聚合形式,为核糖核苷酸或脱氧核糖核苷酸。该术语仅指该分子的一级结构。因此,该术语包括双链和单链DNA和RNA。其还包括已知类型的修饰,包括本领域已知的标记,甲基化,“帽”,用类似物取代一个或多个天然存在的核苷酸,以及核苷酸修饰诸如不带电的连接(例如硫代磷酸酯,二硫代磷酸酯等),以及未修饰形式的多核苷酸。
根据本发明,单克隆抗体或其功能片段可以衍生化,例如用荧光部分、放射性部分、显色底物等衍生化。
已知典型的免疫球蛋白(抗体)结构单元包含四聚体。每个四聚体由两对相同的多肽链组成,各对具有一条"轻"链(约25 kD)和一条"重"链(约50-70 kD)。各链的N-末端定义具有约100至110或更多个主要负责抗原识别的氨基酸的可变区。术语可变轻链(VL)和可变重链(VH)分别是指这些轻链和重链。各链的羧基末端部分定义主要负责效应功能的恒定区。免疫球蛋白可根据其重链的恒定结构域的氨基酸序列而被分成不同种类。重链被分类为mu (µ)、delta (δ)、gamma (γ)、alpha (α)和epsilon (ε)并将抗体的同种型分别定义为IgM、IgD、IgG、IgA和IgE。这些中的几种可被进一步分成子类或同种型,例如IgG1、IgG2、IgG3、IgG4、IgA1和IgA2。不同同种型具有不同的效应功能;例如,IgG1和IgG3同种型具有抗体依赖性细胞毒性(ADCC)活性。人类轻链被分类为kappa (K)和lambda ([λ])轻链。在轻链和重链内,可变区和恒定区由具有约12或更多个氨基酸的"J"区域接合,其中重链也包括具有约10或更多个氨基酸的"D"区域。通常参见Fundamental Immunology, 第7章(Paul, W.,编辑,第二版,Raven Press, N.Y. (1989))。
异型是可具有免疫原性并在人类中由特定等位基因编码的抗体序列中(通常为恒定区中)的变体。已鉴定了五种人类IGHC基因(IGHG1、IGHG2、IGHG3、IGHA2和IGHE基因)的异型且分别将其指定为G1m、G2m、G3m、A2m和Em异型。对于抗体的结构和产生的详述,参见Roth, D. B.,和Craig, N. L., Cell, 94:41 1-414 (1998),其以其整体通过引用并入本文。简言之,产生编码重链和轻链免疫球蛋白序列的DNA的过程主要发生于正在发育的B细胞中。在重排和接合各种免疫球蛋白基因区段之前,通常发现V、D、J和恒定(C)基因区段在单个染色体上相对地紧密接近。在B细胞分化期间,V、D、J(或在轻链基因的情况下仅V和J)基因区段的各适当家族成员中之一被重组以形成重链和轻链免疫球蛋白基因的功能重排可变区。该基因区段重排过程似乎是连续的。首先,使得重链D与J接合,随后重链V与DJ接合且轻链V与J接合。除V、D和J区段重排之外,经由在轻链中的V和J区段接合且重链中的D和J区段接合的位置处的可变重组在免疫球蛋白重链和轻链的初级谱(repertoire)中产生其他多变性。轻链中的此变化通常发生于V基因区段的最后密码子和J区段的首个密码子内。在D和JH 区段之间的重链染色体上出现接合的相似不精确性且可能经多达10个核苷酸延伸。此外,可将几个核苷酸插入并非由基因组DNA所编码的D和JH 基因区段之间和VH 与D基因区段之间。这些核苷酸的添加被称为N区多样性。可变区基因区段中的此类重排和可在此接合期间出现的可变重组的净效应是产生初级抗体谱。
术语"抗体"以最广泛意义使用且包括完全组装的抗体、单克隆抗体、多克隆抗体、多特异性抗体(包括双特异性抗体)、可结合抗原的抗体片段(包括Fab'、F'(ab)2、Fv、单链抗体、双功能抗体)和包含上述的重组肽(只要它们表现出所需生物活性)。考虑完整分子和/或片段的多聚体或聚集体,包括化学衍生的抗体。考虑任何同种型类或子类(包括IgG、IgM、IgD、IgA和IgE、IgG1、IgG2、IgG3、IgG4、IgA1和IgA2)或任何异型的抗体。
术语"高变"区是指来自互补决定区或CDR的氨基酸残基(即轻链可变结构域中的残基24-34(L1)、50-56(L2)和89-97(L3)以及重链可变结构域中的残基31-35(H1)、50-65(H2)和95-102(H3),如由Kabat等人,Sequences of Proteins of ImmunologicalInterest,第五版,Public Health Service, National Institutes of Health,Bethesda, Md. (1991) 所述)。甚至单个CDR,尽管具有比含有所有CDR的完整抗原结合位点更低的亲和力,但仍可识别且结合抗原。
来自高变"环"的残基的替代定义由Chothia等人, J. Mol.BioL, 196: 901-917(1987)描述为轻链可变结构域中的残基26-32(L1)、50-52(L2)和91-96(L3)以及重链可变结构域中的残基26-32(H1)、53-55(H2)和96-101(H3)。
"框架"或FR残基是除高变区残基以外的那些可变区残基。
"抗体片段"包含完整免疫球蛋白的一部分(例如完整抗体的抗原结合或可变区)且包括由抗体片段形成的多特异性(双特异性、三特异性等)抗体。可通过重组DNA技术或通过酶促或化学切割完整抗体来产生免疫球蛋白的片段。抗体片段的非限制性实例包括Fab、Fab'、F(ab') 2 、Fv(可变区)、结构域抗体(dAb,其含有VH结构域;Ward等人,Nature, 341,544-546, 1989)、互补决定区(CDR)片段、单链抗体(scFv,在单个多肽链上含有VH和VL结构域)(Bird等人,Science, 242:423-426, 1988和Huston等人, Proc. Natl. Acad. Sci.,USA 85:5879-5883, 1988,其任选地包括多肽接头;且任选地具有多特异性,Gruber等人,J. Immunol., 152: 5368 (1994))、单链抗体片段、双功能抗体(在单个多肽链上与另一链的互补VL和VH结构域配对的VH和VL结构域)(EP 404,097;WO 93/11161;和Holliger等人,Proc. Natl. Acad. Sci., USA, 90:6444-6448 (1993))、三功能抗体、四功能抗体、微型抗体(scFv经由肽接头(无铰链)或经由IgG铰链与CH3融合)、线性抗体(串联Fd区段(VH –CH1-VH –CH1)(Zapata等人,Protein Eng., 8(10): 1057-1062 (1995));螯合重组抗体(crAb,其可结合同一抗原上的两个相邻表位)、双抗体(bibody)(双特异性Fab-scFv)或三抗体(tribody)(三特异性Fab-(scFv)(2))(Schoonjans等人,J Immunol. 165:7050-57,2000; Willems等人, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 786:161-76, 2003)、纳米抗体(重链的约15 kDa可变结构域)(Cortez-Retamozo等人,CancerResearch 64:2853-57, 2004)、抗原结合结构域免疫球蛋白融合蛋白、骆驼化抗体(camelized antibody)(其中VH与含有铰链、CH1、CH2和CH3结构域的恒定区重组)(Desmyter等人, J. Biol. Chem., 276:26285-90, 2001;Ewert等人, Biochemistry, 41:3628-36, 2002;美国专利申请公开号2005/0136049和2005/0037421)、含有VHH的抗体、重链抗体(HCAb,两条具有H2L2结构的重链的同源二聚体)或其变体或衍生物以及含有足以赋予多肽特异性抗原结合的免疫球蛋白的至少一部分(诸如CDR序列)的多肽,只要抗体保留所需生物活性。
术语"变体"是指在可变区或等效于可变区的部分中含有至少一个氨基酸取代、缺失或插入的抗体的多肽序列,条件是变体保留所需结合亲和力或生物活性。
术语"修饰"包括但不限于一个或多个氨基酸变化(包括取代、插入或缺失);不干扰HNL结合活性的化学修饰;通过与诊断剂缀合进行的共价修饰;标记(例如使用放射性核素或各种酶);共价聚合物连接,诸如聚乙二醇化(用聚乙二醇衍生化);和通过化学合成非天然氨基酸进行的插入或取代。在一些实施方案中,修饰的多肽(包括抗体)将保留未修饰分子的结合特性。
术语"衍生物"是指通过与诊断剂缀合、标记(例如用放射性核素或各种酶)、共价聚合物连接(诸如聚乙二醇化)(用聚乙二醇衍生化)和通过化学合成非天然氨基酸进行的插入或取代而被共价修饰的抗体或多肽。在一些实施方案中,衍生物将保留未衍生化分子的结合特性。
如本文所用的术语"单克隆抗体"是指获得自实质上均质抗体的群体的抗体(如该术语在本文中所定义),即无论由杂交瘤产生还是由重组DNA技术产生,构成该群体的个别抗体除可以微量存在的可能天然存在的突变或可选的翻译后修饰以外是相同的。单克隆抗体的非限制性实例包括鼠、兔、大鼠、鸡、嵌合、人源化或人类抗体、完全组装的抗体、多特异性抗体(包括双特异性抗体)、可结合抗原的抗体片段(包括Fab'、F'(ab)2、Fv、单链抗体、双功能抗体)、最大抗体、纳米抗体和包含上述的重组肽(只要它们表现出所需生物活性)或其变体或衍生物。人源化或修饰抗体序列以更人样描述于例如Jones等人,Nature 321 :522525 (1986);Morrison等人,Proc. Natl. Acad. ScL1 U.S.A., 81 :6851 6855 (1984);Morrison和 Oi, Adv. Immunol., 44:65 92 (1988);Verhoeyer等人,Science 239:15341536 (1988); Padlan, Molec. Immun., 28:489 498 (1991); Padlan, Molec.Immunol, 31(3): 169 217 (1994);和Kettleborough, CA.等人, ProteinEngineering., 4(7):773 83 (1991); Co, M. S.,等人 (1994), J. Immunol 152,2968- 2976); Srudnicka等人, Protein Engineering 7: 805-814 (1994);其各自通过引用并入本文。一种分离人类单克隆抗体的方法是使用噬菌体展示技术。噬菌体展示描述于例如Dower等人,WO 91/17271、McCafferty等人,WO 92/01047和Caton和Koprowski,Proc. Natl. Acad. Sci. USA, 87:6450-6454 (1990),其各自以其整体通过引用并入本文。另一种分离人类单克隆抗体的方法使用不产生内源性免疫球蛋白且被工程改造以含有人类免疫球蛋白基因座的转基因动物。参见例如Jakobovits等人,Proc. Natl. Acad.Sci. USA, 90:2551 (1993);Jakobovits等人,Nature, 362:255-258 (1993);Bruggermann等人, Year in Immuno., 7:33 (1993);WO 91/10741、WO 96/34096、WO 98/24893或美国专利申请公开号2003/0194404、2003/0031667或2002/0199213;其各自以其整体通过引用并入本文。
本发明的抗体也包括重链二聚体,诸如来自骆驼科动物(camelids)的抗体。因为骆驼科动物抗体中的重链二聚体IgG的VH区不必与轻链形成疏水相互作用,将正常接触轻链的重链的区域改变为骆驼科动物抗体中的亲水氨基酸残基。重链二聚体IgG的VH结构域被称为VHH结构域。用于本发明中的抗体包括单结构域抗体(dAbs)和纳米抗体(参见,例如,Cortez-Retamozo,等人, Cancer Res. 64:2853-2857, 2004)。
如本文所用,“V-区”是指抗体可变区结构域,其包含框架1、CDR1、框架2、CDR2、框架3(包括CDR3和框架4)的区段,所述区段作为重链和轻链V-区基因在B-细胞分化期间重排的结果被添加至V-区段。如本文所用的“V-区段”是指由V基因编码的V-区(重链或轻链)的区域。
如本文所用,“互补决定区(CDR)”是指每条链中的三个高变区,其中断由轻链和重链可变区确立的四个“框架”区。CDR主要负责与抗原表位的结合。每条链的CDR通常被称为CDR1、CDR2和CDR3,从N-末端开始相继编号,且通常也通过特定CDR定位的链来鉴定。因此,例如,VH CDR3位于其所存在的抗体的重链的可变结构域,而VL CDR1是来自其所存在的抗体的轻链的可变结构域的CDR1。不同轻链或重链的框架区的序列在物种内相对保守。抗体的框架区,其组成性轻链和重链的组合的框架区,用于定位和排列三维空间内的CDR。
CDR和框架区的氨基酸序列可以使用本领域各种众所周知的定义来确定,例如Kabat,Chothia,国际ImMunoGeneTics数据库(IMGT)和AbM(参见,例如,Johnson等人,同上;Chothia & Lesk, 1987, Canonical structures for the hypervariable regions ofimmunoglobulins. J. Mol. Biol. 196, 901- 917; Chothia C.等人., 1989,Conformations of immunoglobulin hypervariable regions. Nature 342, 877- 883;Chothia C.等人., 1992, structural repertoire of the human VH segments J. Mol.Biol. 227, 799- 817; Al- Lazikani等人., J.Mol.Biol 1997, 273 (4) )。抗原结合位点的定义也描述于以下:Ruiz等人., IMGT, the international ImMunoGeneTicsdatabase. Nucleic Acids Res., 28, 219- 221 (2000) ;和Lefranc, M.- P. IMGT,the international ImMunoGeneTics database. Nucleic Acids Res. Jan 1; 29 (1) :207- 9 (2001) ; MacCallum等人, Antibody antigen interactions: Contactanalysis and binding site topography, J. Mol. Biol., 262 (5), 732- 745 (1996);和Martin等人, Proc. Natl Acad. Sci. USA, 86, 9268- 9272 (1989) ; Martin,等人, Methods Enzymol., 203, 121- 153, (1991); Pedersen等人, Immunomethods, 1,126, (1992) ;和Rees等人, In Sternberg M.J.E. (编辑), Protein StructurePrediction.Oxford University Press, Oxford, 141- 172 1996)。
“表位”或“抗原决定簇”是指抗原上与抗体结合的位点。表位可以由连续的氨基酸或通过蛋白的三级折叠紧靠的非连续的氨基酸形成。从连续的氨基酸形成的表位通常在暴露于变性溶剂后保留,而通过三级折叠(也被称为不连续表位)形成的表位通常在用变性溶剂处理后丢失。表位在独特的空间构象中通常包括至少3个,且通常更多个,至少5个或8-10个氨基酸。确定表位的空间构象的方法包括,例如,x-射线晶体学和2-维核磁共振。参见,例如Epitope Mapping Protocols in Methods in Molecular Biology, Vol. 66, GlennE. Morris, 编辑(1996)。
术语“重组的”当用来提及例如细胞、核酸、蛋白或载体时,表明所述细胞、核酸、蛋白或载体已经通过引入异源核酸或蛋白或改变天然核酸或蛋白而修饰,或者所述细胞源自如此修饰的细胞。因此,例如,重组细胞表达不在所述细胞的天然形式(非重组的)内存在的基因或表达否则异常表达、低表达或根本不表达的天然基因。本文的术语“重组核酸”意指正常不在自然界存在的形式的核酸,其最初通常通过例如利用聚合酶和核酸内切酶操纵核酸在体外形成。以这种方式,实现不同序列的可操作连接。因此出于本发明的目的,线性形式的分离的核酸,或者通过连接正常不接合的DNA分子在体外形成的表达载体都被认为是重组的。应理解,一旦重组的核酸被制备并重新引入宿主细胞或生物体,其将非重组复制,即,使用宿主细胞的体内细胞机制而不是体外操纵;然而,出于本发明的目的,此类核酸,一旦重组产生,尽管随后非重组复制,仍然被认为是重组的。类似地,“重组蛋白”是使用重组技术(即,通过上文所述的重组核酸的表达)制备的蛋白。
可通过本领域已知的技术产生多种包含抗体的重链可变区或轻链可变区的一个、两个和/或三个CDR的组合物。
还提供任选地可操作连接至宿主细胞识别的控制序列的编码本文所述的单克隆抗体的分离核酸、包含所述核酸的载体和宿主细胞以及产生所述抗体的重组技术,所述技术可包括培养宿主细胞,使得表达核酸且任选地从宿主细胞培养物或培养基回收抗体。
可通过蛋白直接测序来测定目标免疫球蛋白的相关氨基酸序列且可根据通用密码子表设计适当编码核苷酸序列。或者,可使用常规程序(例如通过使用能够与编码单克隆抗体的重链和轻链的基因特异性结合的寡核苷酸探针)从产生单克隆抗体的细胞分离编码单克隆抗体的基因组或cDNA且进行测序。使用标准技术进行克隆(参见例如Sambrook等人(1989) Molecular Cloning: A Laboratory Guide,卷1-3,Cold Spring Harbor Press,其通过引用并入本文)。例如,可通过逆转录聚A+mRNA(例如膜相关mRNA)来构建cDNA文库并使用对人类免疫球蛋白多肽基因序列特异性的探针筛选该库。然而,在一个实施方案中,使用聚合酶链式反应(PCR)来扩增编码目标免疫球蛋白基因区段(例如轻链或重链可变区段)的cDNA(或全长cDNA的部分)。可容易地将扩增序列克隆入任何适当载体(例如表达载体、小基因载体或噬菌体展示载体)中。应理解,所用的特定克隆方法不是关键的,只要可能测定目标免疫球蛋白多肽的某些部分的序列。
短语“特异性(或选择性)结合”抗体或“与…特异性(或选择性)免疫反应”,当指蛋白或肽时,是指在蛋白和其他生物剂的异质群体中确定蛋白的存在的结合反应。因此,在指定的免疫测定条件下,指定的抗体以背景的至少两倍、更通常背景的多于10至100倍结合特定蛋白序列。该术语还指结合剂、抗体或其功能片段或衍生物结合HNL、特别是由SEQ IDNO:26中的肽包含的不连续表位的能力。
在一些实施方案中,提供了以约10-6 M至10-8 M的亲和力KD结合HNL的分离的抗体或衍生物或片段。
如本文所用的术语“结合亲和力”或“亲和力”是指与每种抗原 - 抗体相互作用相关的平衡解离常数(KD)。在一些实施方案中,本文所述的抗体表现出所需特性,诸如如通过在约pH 7.4下对于HNL的KD所测量的在1 x 10-6 M或更小范围内或范围低至10-16 M或更低(例如,约10-6、10-7、10-8、10-9、10-10、10-11、10-12、10-13、10-14、10-15、10-16 M或更低)的结合亲和力,其中较低的KD表明更好的亲和力。平衡解离常数可以在使用例如BIAcore的溶液平衡测定中测定。
结合亲和力与动力学解离速率(通常以反时单位报告,例如秒-1)除以动力学结合速率(通常以单位时间的浓度单位报告,例如M/s)的比率直接相关。解离速率分析可以估计体内发生的相互作用,因为慢解离速率可以预测长时间段内更大程度的相互作用。
在其他实施方案中,本文所述的抗体表现出对HNL的特异性或与HNL特异性结合。如本文所用,当抗体与不同家族中的其他无关蛋白相比具有对HNL显著更高的结合亲和力并且因此能够区分HNL时,其对于HNL“特异性”或“特异性结合”HNL。在一些实施方案中,此类抗体还可以与其他物种(诸如鼠、大鼠或灵长类HNL)的HNL交叉反应;而在其他实施方案中,所述抗体仅结合人HNL。任何上述抗体可以是单克隆抗体,或嵌合、人源化或人抗体。在一些实施方案中,所述抗体是IgG同种型,诸如IgG1、IgG2、IgG3或IgG4同种型。
在另一个方面,本发明的实施方案包括包含编码任何前述抗体的核苷酸序列的分离的核酸分子,包含与调节控制序列可操作连接的任何分离的核酸分子的表达载体,包含此类分离的核酸分子或载体的宿主细胞,以及使用此类宿主细胞产生抗体的方法。此类生产方法包括在合适的条件下培养宿主细胞,使得表达所述核酸以产生抗体,并任选地从宿主细胞或培养基回收抗体。在一个相关实施方案中,提供了通过上述方法生产的分离的抗体或试剂。
本文描述的实施方案包括组合物,例如诊断组合物,其含有任何前述结合剂,例如,抗体。
在一些实施方案中,本发明涉及:
1) 结合剂,例如保留No:8至13、14至19和20至25中所示的CDRH1、CDRH2、CDRH3、CDRL1、CDRL2或CDRL3中的任何一个、两个、三个、四个、五个或六个的抗体或其衍生物;
2) 结合剂,例如抗体,其保留CDRH1、CDRH2、CDRH3的全部,其任选地在此类CDR中包括一个或两个突变,其中所述抗体表现出与SEQ ID NO:26中包含的HNL表位的特异性结合;
3) 结合剂,例如抗体,其保留CDRL1、CDRL2、CDRL3的全部,其任选地在此类CDR中包括一个或两个突变,任选地在此类CDR中包括一个或两个突变,其中所述抗体表现出与SEQ IDNO:26中包含的HNL表位的特异性结合;
4) 结合剂,例如抗体,其结合与本文所述的抗体相同的HNL表位,例如,如通过X射线晶体学所测定,或包含SEQ ID NO:26中包含的氨基酸的构象表位,其与(人)HNL的结合大于约75%、大于约80%或大于约81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%或95%(例如,通过竞争ELISA或Biacore或通过本领域已知的其他方法所评价)。
在另一个方面,提供了用于突变根据本发明的抗体的方法,其保留对于HNL、特别是对于由SEQ ID NO:26包含的表位的特异性结合亲和力。所述抗体可以是通过此类方法产生的抗HNL抗体。用于突变的候选残基包括作为与抗原的定向接触位点的残基或有助于沿着抗体-抗原结合界面形成电荷-电荷相互作用的位点。其他候选残基包括抗体的保守区内的残基。还有其他候选残基包括至少10%的表面暴露并且在CDR残基的4.5 Å内的框架残基。额外的候选残基包括通过目视检查靠近CDR或所选框架残基的氨基酸的3维结构模型选择的残基。所需氨基酸可以在氨基酸序列内的单个或多个位置突变。例如,作为单一突变产生一些差异结合效应的突变可以组合为双重、三重或更多个多重突变。然后筛选以此方式突变的抗体的差异的(例如,改进的)结合,然后可以进一步筛选其他特性。
在一个方面,所述抗体的重链可变区中的至少一个、两个、三个、四个、五个、六个或更多个残基被缺失并被另一个残基替代。在另一个方面,所述抗体的轻链可变区中的至少一个、两个、三个、四个、五个、六个或更多个残基被缺失并被不同的残基替代。在一些方面,所述抗体的轻链可变区的至少一个残基和所述抗体的重链可变区的至少一个残基被不同的残基替代,条件是所述抗体的特异性结合活性得到维持。
在一个实施方案中,所述抗体包含选自No:8至13、14至19和20至25的氨基酸序列中的至少一个、两个、三个、四个、五个或全部。在一些实施方案中,所述抗体包含所有三个轻链CDR、所有三个重链CDR或所有六个CDR。在一些实施方案中,来自抗体的两个轻链CDR可以与来自不同抗体的第三轻链CDR组合。或者,来自一种抗体的CDRL1可以与来自不同抗体的CDRL2和来自又另一种抗体的CDRL3组合,特别是在CDR高度同源的情况下。类似地,来自抗体的两个重链CDR可以与来自不同抗体的第三重链CDR组合;或者来自一种抗体的CDRH1可以与来自不同抗体的CDRH2和来自又另一种抗体的CDRH3组合,特别是在CDR高度同源的情况下。
抗体核酸的一种来源是通过从用目标抗原免疫的动物获得B细胞且使其与永生化细胞融合而产生的杂交瘤。或者,可从免疫的动物的B细胞(或整个脾)分离核酸。编码抗体的核酸的又另一种来源是例如通过噬菌体展示技术产生的此类核酸的文库。可通过标准技术(诸如淘选)来鉴定编码目标肽(例如具有所需结合特征的可变区肽)的多核苷酸。
可测定编码免疫球蛋白多肽的整个可变区的序列;然而有时将仅测序可变区的一部分(例如编码CDR的部分)是足够的。使用标准技术进行测序(参见例如Sambrook等人(1989) Molecular Cloning: A Laboratory Guide,卷1-3,Cold Spring Harbor Press和Sanger, F.等人, (1977) Proc. Natl. Acad. Sci. USA, 74: 5463-5467,其通过引用并入本文)。通过比较克隆的核酸的序列与免疫球蛋白基因和cDNA的公开序列,本领域技术人员将能够容易地根据所测序的区域而确定(i)杂交瘤免疫球蛋白多肽(包括重链的同种型)的种系区段使用和(ii)重链和轻链可变区的序列,包括由N-区域添加和体细胞突变过程所产生的序列。免疫球蛋白基因序列信息的一种来源是National Center forBiotechnology Information, National Library of Medicine, National Institutesof Health, Bethesda, Md。
如本文所用,"分离的"核酸分子或"分离的"核酸序列是(1)从核酸的天然来源中通常与核酸分子缔合的至少一种污染物核酸分子鉴定且分离或(2)被克隆、扩增、标记或以其他方式与背景核酸区分、使得可测定目标核酸的序列的核酸分子。分离的核酸分子在形式或背景方面不同于存在于自然界中的核酸分子。然而,分离的核酸分子包括含于通常表达抗体的细胞中的核酸分子,其中例如核酸分子在不同于天然细胞的染色体位置中。
一旦分离,可将DNA可操作连接至表达控制序列或置于表达载体中,随后将其转染于不另外产生免疫球蛋白的宿主细胞中以指导单克隆抗体在重组寄主细胞中的合成。抗体的重组产生在本领域中是众所周知的。表达控制序列是指对于可操作连接的编码序列在特定宿主生物体中的表达所必需的DNA序列。适合于原核生物的控制序列例如包括启动子、任选操纵子序列和核糖体结合位点。已知真核细胞利用启动子、多聚腺苷酸化信号和增强子。核酸当与另一核酸序列处于功能关系时是可操作连接的。例如,如果前序列或分泌前导序列的DNA被表达为参与多肽的分泌的前蛋白,则其与多肽的DNA可操作连接;如果启动子或增强子影响序列转录,则其与编码序列可操作连接;或如果核糖体结合位点被定位以有助于翻译,则其与编码序列可操作连接。通常,"可操作连接"意味着所连接的DNA序列是连续的,并且在分泌前导序列的情况下是连续的且处于阅读相(reading phase)中。然而,增强子不必是连续的。通过在适当限制性位点处的连接来实现连接。如果此类位点不存在,则根据常规惯例使用合成寡核苷酸衔接子或接头。
许多载体在本领域中是已知的。载体组分可包括以下中的一种或多种:信号序列(其可例如指导抗体的分泌)、复制起点、一个或多个选择性标记基因(其可例如赋予抗生素或其他药物耐受性,互补营养缺陷型缺陷或提供不可在培养基中获得的关键营养素)、增强子元件、启动子和转录终止序列,其中所有都是本领域众所周知的。
在转染或转化后表达载体中包含的遗传信息的示例性宿主细胞包括原核生物、酵母或高等真核生物细胞(即多细胞生物体)。原核宿主细胞包括真细菌,诸如革兰氏阴性或革兰氏阳性生物体,例如肠杆菌科(Enterobacteriaceae),诸如埃希氏菌属(Escherichia)(例如大肠杆菌(E. coli))、肠杆菌属(Enterobacter)、欧文氏菌属(Erwinia)、克雷伯氏菌属(Klebsiella)、变形杆菌属(Proteus)、沙门氏菌属(Salmonella)(例如鼠伤寒沙门氏菌(Salmonella typhimurium))、沙雷氏菌属(Serratia)(例如粘质沙雷氏菌(Serratiamarcescans))和志贺氏菌属(Shigella)以及芽孢杆菌属(Bacilli)(诸如枯草芽孢杆菌(B.subtilis)和地衣芽孢杆菌(B. licheniformis))、假单胞菌属(Pseudomonas)和链霉菌属(Streptomyces)。真核微生物(诸如丝状真菌或酵母)是重组多肽或抗体的合适克隆或表达宿主。在低等真核宿主微生物中最常使用酿酒酵母(Saccharomyces cerevisiae)或常见烘焙酵母。然而,许多其他菌属、菌种和菌株在本文中通常可得且可用,诸如毕赤酵母属(Pichia)(例如巴斯德毕赤酵母(P. pastoris))、粟酒裂殖酵母(Schizosaccharomycespombe);克鲁维酵母菌属(Kluyveromyces),耶氏酵母属(Yarrowia);念珠菌属(Candida);里氏木霉(Trichoderma reesia);粗糙脉孢菌(Neurospora crassa);许旺酵母属(Schwanniomyces),诸如西方许旺酵母(Schwanniomyces occidentalis);和丝状真菌,诸如例如脉孢菌属(Neurospora)、青霉菌属(Penicillium)、弯颈霉属(Tolypocladium)和曲霉属(Aspergillus)宿主(诸如构巢曲霉(A. nidulans)和黑曲霉(A. niger))。
表达糖基化多肽或抗体的宿主细胞可源自多细胞生物体。无脊椎动物细胞的实例包括植物和昆虫细胞。已鉴定了许多杆状病毒菌株和变体以及来自诸如以下的宿主的相应容许性昆虫宿主细胞:草地贪夜蛾(Spodoptera frugiperda)(毛虫)、埃和伊蚊(Aedesaegypy)(蚊子)、白纹伊蚊(Aedes albopictus)(蚊子)、黑腹果蝇(Drosophilamelanogaster)(果蝇)和中国家蚕(Bombyx mori)。各种用于转染此类细胞的病毒毒株可公开获得,例如苜蓿ㄚ纹夜蛾(Autographa californica)NPV的L-1变体和中国家蚕NPV的Bm-5毒株。脊椎动物宿主细胞也是合适的宿主且从此类细胞重组产生多肽或抗体已变为常规程序。有用的哺乳动物宿主细胞系的实例是中国仓鼠卵巢细胞,包括CHOK1细胞(ATCCCCL61)、DXB-1 1、DG-44和中国仓鼠卵巢细胞/-DHFR(CHO,Urlaub等人,Proc. Natl. Acad.Sci. USA, 77: 4216 (1980));通过SV40转化的猴肾CV1株系(COS-7,ATCC CRL 1651);人类胚肾株系(293细胞或经亚克隆用于在悬浮培养物中生长的293细胞,[Graham等人,J.Gen Virol. 36: 59 (1977)];幼仓鼠肾细胞(BHK,ATCC CCL 10);小鼠赛尔托利细胞(mouse sertoli cell)(TM4, Mather, Biol. Reprod., 23: 243-251 (1980));猴肾细胞(CV1 ATCC CCL 70);非洲绿猴肾细胞(VERO-76,ATCC CRL-1587);人类宫颈癌细胞(HELA,ATCC CCL 2);犬肾细胞(MDCK,ATCC CCL 34);布法罗大鼠肝细胞(BRL 3A,ATCC CRL1442);人类肺细胞(W138,ATCC CCL 75);人类肝癌细胞(Hep G2,HB 8065);小鼠乳腺肿瘤(MMT 060562,ATCC CCL 51);TRI细胞(Mather等人,Annals N. Y Acad. Sci, 383: 44-68(1982));MRC5细胞或FS4细胞;或哺乳动物骨髓瘤细胞。将宿主细胞用上述核酸或载体转化或转染用于产生抗体且培养于适当时改良的常规营养培养基中用于诱导启动子、选择转化子或扩增编码所需序列的基因。此外,具有多个通过选择性标记隔开的转录单位拷贝的新型载体和转染的细胞系尤其可用于表达抗体。
可以在多种培养基中培养用于产生本文所述的抗体的宿主细胞。市售培养基诸如Ham氏F10(Sigma)、最低必需培养基(MEM,Sigma)、RPMI-1640(Sigma)和Dulbecco氏改良的Eagle培养基(Dulbecco's Modified Eagle's Medium)(DMEM,Sigma)适用于培养宿主细胞。此外,在Ham等人,Meth. Enz., 58: 44 (1979)、Barnes等人,Anal. Biochem., 102:255 (1980)、美国专利号4,767,704;4,657,866;4,927,762;4,560,655;或5,122,469;WO90/03430;WO 87/00195或美国专利参考号30,985中所述的培养基中任一者可用作宿主细胞的培养基。这些培养基中的任一者可根据需要补充以激素和/或其他生长因子(诸如胰岛素、转铁蛋白或表皮生长因子)、盐(诸如氯化钠、钙盐、镁盐和磷酸盐)、缓冲液(诸如HEPES)、核苷酸(诸如腺苷和胸苷)、抗生素(诸如庆大霉素™药物)、痕量元素(其被定义为通常以微摩尔范围内的最终浓度存在的无机化合物)和葡萄糖或等价能源。还可包括本领域技术人员已知的适当浓度的任何其他必需补充。培养条件(诸如温度、pH值等)是先前对于选择用于表达的宿主细胞所用的那些且将是本领域普通技术人员显而易见的。
培养宿主细胞后,可在细胞内在周质空间中产生抗体或抗体可被直接分泌于培养基中。如果在细胞内产生抗体,则作为第一步骤,例如通过离心或超滤移除微粒碎片(宿主细胞或溶解片段)。
可使用例如羟基磷灰石色谱、阳离子或阴离子交换色谱或亲和色谱,使用目标抗原或蛋白A或蛋白G作为亲和配体,来纯化抗体。蛋白A可用于纯化基于人类γ1、γ2或γ4重链的抗体(Lindmark等人,J. Immunol. Meth. 62: 1-13 (1983))。对于所有小鼠同种型和人类γ3推荐蛋白G(Guss等人,EMBO J. 5: 15671575 (1986))。连接亲和配体的基质大多数通常为琼脂糖,但也其他基质也可用。机械稳定的基质(诸如受控多孔玻璃或聚(苯乙烯二乙烯基)苯)相比于使用琼脂糖可实现的而言允许较快的流动速率和较短的处理时间。当抗体包含C H 3结构域时,Bakerbond ABX™树脂(J. T. Baker, Phillipsburg, NJ.)可用于纯化。根据待回收的抗体,其他蛋白纯化技术,诸如乙醇沉淀、反相HPLC、色谱聚焦、SDS-PAGE和硫酸铵沉淀也是可能的。
其他HNL特异性结合剂可以例如基于来自抗体的CDR或通过各种肽或有机化合物的文库中筛选展现所需对于人类HNL的结合特性的肽或化合物来制备。HNL特异性结合剂包括含有与一个或多个本文公开的CDR具有至少80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或99%更高同一性的氨基酸序列的肽。HNL特异性结合剂还包括肽体(peptibody)。术语"肽体"是指包含连接至至少一个肽的抗体Fc结构域的分子。肽体的产生通常描述于2000年5月4日公开的PCT公开WO 00/24782中。这些肽中的任一种可在有或无接头的情况下串联(即相继)连接。含有半胱氨酰基残基的肽可与另一含有Cys的肽交联,其中任一者或两者可与媒介物连接。具有多于一个Cys残基的任何肽同样可形成肽内二硫键。可使这些肽中的任一种衍生化,例如可将羧基末端用氨基加帽,可将半胱氨酸加帽,或氨基酸残基可被除氨基酸残基以外的部分取代(参见例如Bhatnagar等人,J. Med. Chem., 39: 3814-9 (1996)和Cuthbertson等人, J. Med.Chem., 40: 2876-82 (1997),其以其整体通过引用并入本文)。可类似于抗体的亲和力成熟来优化肽序列,或者另外通过丙氨酸扫描或随机突变或定点突变,随后筛选以鉴定最佳结合物来改变肽序列。Lowman, Ann. Rev. Biophys. Biomol. Struct., 26: 401-24(1997)。可将各种分子插入特异性结合剂结构中,例如插入特异性结合剂的肽部分本身内或特异性结合剂的肽和媒介物部分之间,同时保留特异性结合剂的所需活性。可容易地插入例如分子,诸如Fc结构域或其片段;聚乙二醇或其他相关分子,诸如葡聚糖;脂肪酸、脂质、胆固醇基团、小碳水化合物、肽、如本文中所述的可检测部分(包括荧光剂、放射性标记,诸如放射性同位素)、寡糖、寡核苷酸、多核苷酸、干扰(或其他)RNA、酶、激素等。本领域技术人员将理解适合于以该方式插入的其他分子,且其涵盖于本发明的范围内。这包括将例如所需分子插入两个连续氨基酸之间,其任选地通过适当接头连接。
还提供鉴定结合HNL和/或交叉阻断本文所述的示例性抗体和/或抑制HNL活性的抗体或特异性结合剂的方法。可针对结合亲和力通过本领域已知的方法筛选抗体或特异性结合剂。例如,可使用凝胶迁移测定、Western印迹、放射性标记竞争测定、通过色谱共分级、共沉淀、交联、ELISA等,其描述于例如Current Protocols in Molecular Biology (1999)John Wiley & Sons, NY,其以其整体通过引用并入本文。在一个实施方案中,采用针对对CDR内的氨基酸具有1、2、3或更多个修饰的抗体片段或CDR(其对靶抗原多肽具有合适的结合亲和力)的高通量筛选。可容易地通过本领域普通技术人员众所周知的技术修饰本文公开的抗HNL抗体。潜在突变包括一个或多个残基的插入、缺失或取代。在一些实施方案中,插入或缺失在约1至5个氨基酸的范围内、约1至3个氨基酸的范围内或约1或2个氨基酸的范围内。缺失变体是其中任何氨基酸序列的至少一个氨基酸残基被移除的多肽。可在蛋白的一个或两个末端处实现缺失或通过移除多肽内(内部)的一个或多个残基来实现缺失。制备缺失变体的方法是本领域中常规的。参见例如Sambrook等人,(1989) Molecular Cloning: ALaboratory Guide,卷1-3,Cold Spring Harbor Press,其公开内容以其整体通过引用并入本文。
氨基酸序列插入包括长度范围为一个残基至含有数百或更多个残基的多肽之间的氨基和/或羧基末端融合以及一个或多个氨基酸的内部序列插入。如同本文所述的不同变体类型中任一种一样,可设计插入型变体,使得所得多肽保留与其来源的亲本多肽相同的生物学特性或展现与其来源的亲本多肽无关的新的物理、化学和/或生物学特性。制备插入变体的方法也是本领域中常规且众所周知的(Sambrook等人,同上)。
包含含有本文所述的抗HNL抗体的多肽和异源多肽的融合蛋白是本文考虑的特定类型的插入变体。可与目标多肽融合的异源多肽的非限制性实例包括具有长循环半衰期的蛋白,诸如但不限于免疫球蛋白恒定区(例如Fc区域);允许鉴定目标多肽的标记序列;有助于纯化目标多肽的序列;和促进多亚基蛋白的形成的序列。制备抗体融合蛋白的方法是本领域众所周知的。参见例如美国专利号6,306,393,其公开内容以其整体通过引用并入本文。在某些实施方案中,产生可包括使嵌合scFv抗体与异源蛋白部分连接的柔性接头的融合蛋白。适当的接头序列是不影响待识别的所得融合蛋白的能力且结合由蛋白的V结构域特异性结合的表位的序列(参见例如WO 98/25965,其公开内容以其整体通过引用并入本文)。
取代变体是其中多肽氨基酸序列中的至少一个残基被移除并在其位置插入不同残基的那些。通过选择取代来实现抗体的生物特性的修饰,所述取代在其对以下的效果中明显不同:(a)维持取代区域内多肽骨架的结构,例如维持为折叠或螺旋构型;(b)维持靶位点处的分子的电荷或疏水性;或(c)维持大部分侧链。在某些实施方案中,设计取代变体,即一个或多个特定(与随机相反)氨基酸残基被特定氨基酸残基取代。这些类型的典型变化包括保守取代和/或基于天然和取代残基的相似特性用一个残基取代另一个残基。
下面显示保守取代。在"优选的取代"标题下可见最保守的取代。如果此类取代未导致生物活性的变化,则可引入更多实质性变化且筛选产物。
共享共有侧链特性的氨基酸残基通常分组如下:
(1)疏水性:正亮氨酸、met、ala、val、leu、ile;
(2)中性亲水性:cys、ser、thr;
(3)酸性:asp、glu;
(4)碱性:asn、gln、his、lys、arg;
(5)影响链取向的残基:gly、pro;和
(6)芳族的:trp、tyr、phe。
在某些情况下,制备抗体变体,其旨在修饰直接参与表位结合的那些氨基酸残基。在其他实施方案中,出于本文讨论的目的,期望修饰不直接参与表位结合的残基或在任何情况下不参与表位结合的残基。考虑CDR区和/或框架区中的任一者内的突变。
为了确定哪些抗体氨基酸残基对于表位识别和结合是重要的,可进行丙氨酸扫描突变以产生取代变体。参见例如Cunningham等人,Science, 244:1081-1085 (1989),其公开内容以其整体通过引用并入本文。在该方法中,用丙氨酸残基一次一个地替代个别氨基酸残基且相对于未修饰抗体针对其结合特异性表位的能力筛选所得抗HNL抗体。将结合能力降低的修饰抗体测序以确定哪个残基发生改变,表明其在结合或生物学特性中的重要性。
可通过其中将随机氨基酸变化引入亲本抗体序列中的亲和力成熟来制备抗体的取代变体。参见例如Ouwehand等人,Vox Sang 74(增刊2) :223-232, 1998;Rader等人,Proc. Natl. Acad. Sci. USA 95:8910-8915, 1998; Dall'Acqua等人, Curr. Opin.Struct. Biol, 8:443-450, 1998,其公开内容以其整体通过引用并入本文。亲和力成熟涉及制备和筛选抗HNL抗体或其变体和从所得变体选择相对于亲本抗HNL抗体具有改善的生物学特性(诸如增加的结合亲和力)的那些变体。产生取代变体的一种适宜方式是使用噬菌体展示的亲和力成熟。简言之,使几种高变区位点突变以在各位点处产生所有可能的氨基取代。因此产生的变体以单价方式作为与包装于各颗粒内的M13的基因III产物的融合体表达于丝状噬菌体颗粒表面上。然后针对其生物活性(例如结合亲和力)筛选噬菌体展示的变体。参见例如WO 92/01047、WO 93/112366、WO 95/15388和WO 93/19172。
当前抗体亲和力成熟方法属于两种诱变类别:随机和非随机。易错PCR、增变细菌菌株(Low等人,J. MoI. Biol. 260, 359-68, 1996)和饱和突变(Nishimiya等人,J.Biol. Chem. 275: 12813-20, 2000; Chowdhury, P. S. Methods MoI. Biol. 178,269-85, 2002)是随机突变法(Rajpal等人,Proc Natl Acad Sci USA. 102:8466-71,2005)的典型实例。非随机技术经常使用丙氨酸扫描或定点诱变来产生特定突变蛋白的有限集合。以下进一步详细描述一些方法。通常在递减量的抗原存在的情况下通过对候选抗体的几轮淘选来进行重组抗体的亲和力成熟。递减每轮抗原的量选择对抗原具有最高亲和力的抗体,由此从起始物质的大合并物得到高亲和力抗体。经由淘选的亲和力成熟是本领域众所周知的且例如描述于Huls等人(Cancer Immunol Immunother. 50:163-71 , 2001)中。使用噬菌体展示技术的亲和力成熟法描述于本文别处且是本领域已知的(参见例如Daugherty等人,Proc Natl Acad Sci USA, 91:2029-34, 2000)。
浏览突变(Look-through mutagenesis , LTM)(Rajpal等人,Proc Natl AcadSci USA. 102:8466-71, 2005)提供一种迅速定位抗体-结合位点的方法。对于LTM,选择9个代表由20种天然氨基酸提供的主要侧链化学性质的氨基酸以剖析在抗体的所有六个CDR中的每一位置处对结合的功能性侧链贡献。LTM在CDR内产生单一突变的位置系列,其中各"野生型"残基被9个所选氨基酸之一系统地取代。将突变的CDR组合以产生复杂度和大小递增的组合性单链可变片段(scFv)文库,而不会阻止所有突变蛋白的定量展示。在阳性选择之后,将具有改善结合的克隆测序且定位有益突变。
易错PCR涉及核酸在不同选择轮次之间的随机化。随机化通过所用聚合酶的固有误差率而以低比率发生,但可通过使用在转录期间具有高固有误差率的聚合酶(Hawkins等人, J MoI Biol. 226:889-96, 1992)的易错PCR(Zaccolo等人,. J. MoI. Biol. 285:775-783, 1999)而增强。在突变周期之后,使用本领域中的常规方法选择对抗原具有改善亲和力的克隆。
利用基因改组和定向进化的技术也可用于制备抗HNL抗体或其变体且针对所需活性对其进行筛选。例如,Jermutus等人,Proc Natl Acad Sci U S A., 98(l):75-80(2001)显示将定制的基于核糖体展示的体外选择策略与通过DNA改组的体外多样化组合以衍变scFv的解离速率或热力学稳定性;Fermer等人,Tumour Biol. 2004年1月-4月;25(l-2):7-13报道了组合使用噬菌体展示与DNA改组使亲和力提高几乎三个数量级。Dougherty等人,Proc Natl Acad Sci USA. 2000 Feb. 29; 97(5):2029-2034报道了(i)功能性克隆以出人意料的高频率存在于超突变文库中;(ii)获得功能的突变体(gain-of-functionmutant)良好呈现于此类文库中;且(iii)导致较高亲和力的大多数scFv突变对应于远离结合位点的残基。
可选地或另外,分析抗原-抗体复合物的晶体结构以鉴定抗体和抗原之间的接触点或使用计算机软件建模此类接触点可以是有益的。根据本文详述的技术,此类接触残基和邻近残基是用于取代的候选者。一旦产生此类变体,如本文所述使其经受筛选且可选择在一个或多个相关测定中具有优异特性的抗体用于进一步开发。
在另一个方面,提供了检测样品中的人HNL的方法,其包括在允许抗体与人HNL结合的条件下使来自人的样品与任何上述抗体接触,且检测结合的抗体。在一个实施方案中,将HNL的第一抗体作为捕获试剂固定在固体支持物上,并且使用HNL的第二抗体作为检测试剂。在一个相关方面,通过测量结合的抗体的量来定量样品中HNL的量。检测方法可用于各种诊断、预后和监测方法,包括诊断HNL相关病症的方法、区分炎性疾病与非炎性疾病的方法以及用抗HNL抗体监测疗法的方法。在此类方法中,高于特定阈值的HNL的水平与HNL相关病症的存在相关,而低于所述阈值的水平表明患者不可能具有HNL相关病症。类似地,高于特定阈值的HNL的水平与细菌感染的存在相关,而低于所述阈值的水平表明患者不可能具有细菌感染。为了确定细菌感染的存在或不存在,在足以允许形成免疫复合物的条件下和时间内使来自患者的生物样品与一种或多种本文公开的抗HNL抗体接触。然后检测抗HNL抗体和生物样品中的HNL之间形成的免疫复合物。通过测量抗体和HNL之间形成的免疫复合物的量来定量样品中HNL的量。在某些方法内,生物样品分离自患者并与一种或多种本文公开的抗HNL抗体一起孵育,且高于特定阈值的抗体-HLL复合物的水平与细菌感染的存在相关,且低于所述阈值的水平表明患者不可能具有细菌感染。
对于旨在对抗细菌感染的包括在起始之后、在疗法期间或之后重新测试患者中HNL的存在的疗法的监测,低于特定阈值的HNL的水平表明疗法(药物和/或剂量)是有效的,且高于所述阈值的水平表明疗法是无效的。因此,本发明的实施方案提供了(重新)测试疑似患有细菌感染的主体(即在不同时间点测量HNL)的方法,其包括以下步骤:
- 在所述结合剂存在的情况下孵育样品;
- 任选地洗掉未结合的样品材料;
- 测量疑似具有细菌感染或具有证实的细菌感染且进行抗生素疗法的主体的样品中HNL的水平;
- 任选地将步骤c)中测量的HNL水平与一种或多种对照样品进行比较,所述对照样品任选地获得自
(i) 健康主体,
(ii) 已知具有细菌感染的主体,和
进一步任选地将步骤c)中测量的HNL水平与指示健康主体和/或具有细菌感染的主体的一个或多个均一化对照HNL值和/或在治疗前来自患者的样品中的HNL水平进行比较,且其中至少在开始抗细菌治疗后的一个另外时间点测定来自被诊断具有细菌性疾病的主体的样品中的HNL水平,任选地包括重复所述分析,且进一步任选地比较在抗细菌疗法之前、期间和/或之后的HNL-水平。
在另一个实施方案中,本发明提供了监测抗细菌治疗(例如,用特定抗生素)效率或无效性的方法,其中所述主体已被鉴定为引起败血症的细菌和/或抗生素耐受性细菌的携带者。
在任何本文公开的方法中,可以使用预活化剂物质来增加测试方法的灵敏度,其优选为N-甲酰基肽,更优选为三肽fMLP。还优选设想使用蛋白A。本发明进一步设想使用额外的替代嗜中性粒细胞活化剂,诸如脂多糖(LPS)、血小板活化因子、未甲基化的CpG寡核苷酸或肿瘤坏死因子(TNF)。这些活化剂可以单独使用或以任何组合使用,例如呈以下形式:fMLP和/或蛋白A和/或脂多糖(LPS)和/或血小板活化因子和/或未甲基化的CpG寡核苷酸和/或肿瘤坏死因子(TNF),诸如例如fMLP与蛋白A的组合,fMLP与LPS的组合,fMLP与血小板活化因子的组合,fMLP与非甲基化的CpG寡核苷酸的组合或与TNF的组合等。还设想以下进一步组合:活化剂诸如蛋白A与LPS的组合,蛋白A与血小板活化因子的组合,蛋白A与未甲基化的CpG寡核苷酸的组合或与TNF的组合;或LPS与任何上述其他活化剂的组合;或未甲基化的CpG寡核苷酸与任何上述其他活化剂的组合;或TNF与任何上述其他活化剂的组合。在一个优选实施方案中,所述活化剂是fMLP,或fMLP与一种或多种上述其他活化剂的组合。
还提供用于区分细菌感染与非细菌感染的方法。可使用本领域已知的各种免疫测定,包括但不限于:使用技术诸如放射免疫测定、ELISA(酶联免疫吸附测定)、"夹心"免疫测定、免疫放射测定、凝胶扩散沉淀反应、免疫扩散测定、原位免疫测定(例如使用胶体金、酶或放射性同位素标记)、Western印迹、沉淀反应、凝集测定(例如凝胶凝集测定、红细胞凝集测定)、免疫荧光测定、蛋白A测定和免疫电泳测定等的竞争性和非竞争性测定系统,以及例如涉及目标分析物的基于磁性的分离的用于检测分析物的装置(例如,公开于WO2008/072156、WO2008/102218、WO2010/035204和WO2011/036638(其以其整体并入本文)的装置)。在一个实施方案中,通过检测一抗上的标记来检测抗体结合。在另一个实施方案中,通过检测二抗或试剂与一抗的结合来检测一抗。在一个进一步实施方案中,标记二抗。许多用于检测免疫测定中的结合的方法是本领域已知的且在本发明的范围内。Harlow & Lane的Antibodies: A Laboratory Manual (1988)或最近版本;Immunoassays: A PracticalApproach, Oxford University Press, Gosling, J. P. (编) (2001)或最近版本;和/或Current Protocols in Molecular Biology(Ausubel等人),其定期更新。此类测定的实例通常涉及连接至表面或基质的抗体、所添加的患者血清和允许复合物形成所用的时间;用于去除未结合复合物的适当洗涤程序、随后为允许复合物的检测的二抗的添加(夹心ELISA)或检测抗体表面上的游离HNL结合位点的HNL的可检测版本(竞争ELISA)。如由上述方法所检测,高于特定阈值的HNL水平与炎性疾病的存在相关,且低于所述阈值的水平指示患者不可能具有炎性疾病。当HNL水平在正常范围内时患者不可能具有细菌性疾病。当HNL水平超过正常范围时,患者可能具有细菌性疾病。
在一些实施方案中,测试获得自患者的生物样品的HNL水平。用本文公开的抗HNL抗体中的一种或多种在足以允许形成免疫复合物的条件和时间下孵育生物样品。然后检测HNL与生物样品中特异性结合HNL的抗体之间形成的免疫复合物。用于此类方法中的生物样品可以是获得自患者的预期含有HNL的任何样品。合适的生物样品包括血液、血清、血浆、尿液、脑脊髓液(CSF)和骨髓。合适的抗体包括来自人类细胞、啮齿动物、兔、山羊、骆驼或任何其他物种的抗体。
将生物样品与抗体在反应混合物中在足以允许HNL和对HNL免疫特异性的抗体之间形成免疫复合物的条件和时间下进行孵育。孵育之后,测试反应混合物中免疫复合物的存在。可通过多种已知技术(诸如放射免疫测定(RIA)和酶联免疫吸附测定(ELISA))实现抗HNL抗体与生物样品存在中的HNL之间形成的免疫复合物的检测。合适的测定是本领域众所周知的且充分描述于科学和专利文献(Harlow和Lane, 1988)中。可使用的测定包括但不限于双单克隆抗体夹心免疫测定技术(美国专利号4,376,110);单克隆-多克隆抗体夹心测定(Wide L., "Solid Phase Antigen-Antibody Systems," Radioimmunoassay Methods:European Workshop September 15-17 1970 Edinburgh, Kirkham和Hunter,编辑,(Churchill Livingston, Edenburgh, (1971)) pp. 405-412);"Western印迹"方法(美国专利号4,452,901);标记配体的免疫沉淀(Brown等人, J. Biol. Chem. 4980-4983m1980);酶联免疫吸附测定;免疫细胞化学技术,包括使用荧光染料(Brooks等人, CHn.Exp. Immunol., 39: 477, 1980);和活性中和(Bowen- Pope等人, Science, 226:701-703,1984)。其他免疫测定包括但不限于描述于美国专利号3,850,752;3,901,654;3,935,074;3,984,533;3,996,345;4,034,074;和4,098,876中的那些。出于检测目的,抗HNL抗体可标记或未标记。未标记的抗体可用于凝集测定或与结合免疫复合物的标记检测试剂(例如抗免疫球蛋白、蛋白G、蛋白A或凝集素和二抗或其抗原结合片段,其能够结合与HNL特异性结合的抗体)组合使用。如果抗HNL抗体被标记,则报道基团(reporter group)可以是本领域中已知的任何合适的报道基团,包括放射性同位素、荧光基团(例如荧光素或罗丹明(rhodamine))、发光基团、酶、生物素和染料颗粒。本身可直接检测的标记包括荧光或发光染料、金属或金属螯合物、电化学标记、放射性核素(例如32P、14C、1251、3H或1311)、磁性标记或珠粒(例如DYNABEADS)、顺磁性标记或比色标记(例如胶体金、有色玻璃或塑性珠粒)。此类可检测标记可与抗HNL抗体或检测试剂直接缀合或可与连接至抗HNL抗体或检测试剂的珠粒或颗粒缔合。可通过结合标记的特异性结合配偶体而检测的标记包括生物素、异羟基洋地黄毒苷(digoxigenin)、麦芽糖、寡组氨酸、2,4-二硝基苯、砷酸苯酯、ssDNA或dsDNA。可通过其产生可检测反应产物而间接检测的间接标记包括本领域众所周知的各种酶,诸如碱性磷酸酶、辣根过氧化物酶、β-半乳糖苷酶、黄嘌呤氧化酶、葡萄糖氧化酶或其他糖氧化酶或可切割适当底物以形成有色或荧光反应产物的荧光素酶。
在某些测定内,将未标记的抗HNL抗体固定在固体支持物上以用作捕获生物样品内的HNL的"捕获试剂"(或试剂)。固体支持物可以是本领域普通技术人员已知的可连接抗体的任何材料。例如,固体支持物可以是微量滴定板中的测试孔或硝化纤维素或其他适当膜。或者,支持物可以是管、珠粒、颗粒或盘状物,诸如玻璃、玻璃纤维、乳胶或塑料材料(诸如聚乙烯、聚丙烯、聚苯乙烯或聚氯乙烯)或多孔基质。其他材料包括琼脂糖、葡聚糖、聚丙烯酰胺、尼龙、Sephadex、纤维素或多糖。支持物也可以是磁性颗粒或纤维光学传感器,诸如公开于例如美国专利号5,359,681中的那些。固定的抗HNL抗体可以是多克隆抗体或一种或多种单克隆抗体(诸如本文所述的那些)或多克隆抗体和一种或多种单克隆抗体的组合。可使用多种本领域技术人员已知的技术将抗体固定在固体支持物上,所述技术充分描述于专利和学术文献中。在本发明的上下文中,术语"固定"是指非共价缔合(诸如吸附)和共价连接(其可以是抗原和支持物上的官能团之间的直接键合或可以是经由交联剂的连接)。考虑通过吸附固定至微量滴定板中的孔上或吸附至膜上而固定。在此类情况下,可通过使抗HNL抗体与固体支持物在合适缓冲液中接触合适时间量来实现吸附。接触时间随温度而变化,但通常为约1小时和约1天之间。通常,使塑料微量滴定板(包括聚苯乙烯或聚氯乙烯)的孔与量的范围为约10 ng至约10 μg、约100 ng至约1 μg的肽接触足以固定足量的肽。固定之后,通常封闭支持物上的剩余蛋白结合位点。可使用本领域普通技术人员已知的任何合适封闭剂,包括牛血清白蛋白、Tween™ 20 (Sigma Chemical Co., St. Louis, Mo.)、热失活的正常山羊血清(NGS)或BLOTTO(还含有防腐剂、盐和消泡剂的脱脂奶粉缓冲溶液)。然后将支持物与怀疑含有HNL的生物样品孵育。可应用纯样品,或更通常,可将样品稀释,通常稀释于含有少量(0.1重量%-5.0重量%)蛋白(诸如BSA、NGS或BLOTTO)的缓冲溶液中。通常,适当接触时间(即孵育时间)是足以检测对于含有HNL的样品内的HNL免疫特异性的抗体或抗原结合片段的存在的时间段。在一些实施方案中,接触时间足以实现作为在结合和未结合抗体或抗体片段之间平衡时实现的结合水平的至少约95%的结合水平。本领域普通技术人员将认识到,可容易地通过测定在一段时间内发生的结合的水平来确定实现平衡所必需的时间。在室温下,约10至30分钟的孵育时间通常是足够的。
然后可通过用适当缓冲液(诸如含有0.1% Tween™ 20的PBS)洗涤固体支持物来去除未结合的样品。随后可添加结合免疫复合物(通过使捕获试剂与来自样品的HNL结合所形成)中的HNL的检测试剂。此类检测试剂可以是多克隆抗体或一种或多种单克隆抗体(诸如本文所述的那些)或多克隆抗体与一种或多种单克隆抗体(诸如本文所述的那些)或任何抗体的Fab部分的组合。检测试剂可进行直接标记,即包含至少一种第一可检测标记或"报道"分子。或者,检测试剂可以是未标记的抗HNL抗体。然后通过使标记的二抗或试剂与一抗结合来检测该未标记的抗HNL(一级)抗体。例如,如果一抗是鼠免疫球蛋白,则二抗可以是标记的抗鼠免疫球蛋白抗体。类似地,如果一抗是兔免疫球蛋白,则二抗可以是标记的抗兔免疫球蛋白抗体。
将检测试剂与免疫复合物一起孵育足以检测结合抗体或其抗原结合片段的时间量。可通常通过测定在一段时间内发生的结合的水平来确定适当的时间量。然后去除未结合的标记或检测试剂并使用合适的测定或分析仪器来检测结合的标记或检测试剂。用于检测报道基团的方法取决于报道基团的性质。对于放射性标记,闪烁计数或自动放射成像法通常是适当的。光谱法可用于检测染料、发光或化学发光部分和各种色原、荧光标记和此类类似物。可使用与不同报道基团(通常放射性或荧光基团或酶)偶联的抗生物素蛋白检测生物素。通常可通过添加底物(通常持续特定时间段),随后对反应产物进行光谱或其他分析来检测酶报道基团(包括辣根过氧化物酶、β-半乳糖苷酶、碱性磷酸酶和葡萄糖氧化酶)。与所用特定方法无关,背景(即对于获得自具有正常HNL水平的个体的生物样品所观察的水平)的至少两倍的结合检测试剂的水平指示与HNL的表达相关的病症的存在。
在替代实施方案中,样品和检测试剂可同时与捕获试剂接触,而非依次添加。在另一个替代实施方案中,可将样品和检测试剂一起预孵育,然后添加至捕获试剂。其他变化是本领域普通技术人员显而易见的。
在另一个实施方案中,通过竞争结合测定法测定样品中存在的HNL的量。竞争结合测定依赖于标记的标准品(例如HNL多肽或其免疫反应性部分)与测试样品分析物(HNL多肽)竞争结合有限量的抗HNL抗体的能力。在分离游离HNL和结合HNL之后,通过将结合/未结合的HNL与已知标准品的比率联系来定量HNL。测试样品中的HNL多肽的量与结合抗体的标准品的量成反比。为了便于测定结合的标准品的量,通常将抗体固定在固体支持物上,使得可便利地使结合抗体的标准品和分析物与保持未结合的标准品和分析物分离。因此,在此类实施方案中,还涵盖使生物样品与标记的成熟HNL(或其保留HNL的抗原性的标记片段)和结合成熟HNL的抗体接触且检测所形成的抗体标记HNL复合物的量。
制备与固体支持物或可检测标记的缀合物通常包含使用化学交联剂。交联试剂含有至少两个反应性基团且通常被分成同官能交联剂(含有相同反应性基团)与杂官能交联剂(含有不同反应性基团)。可通过胺、巯基偶联或非特异性反应的同双官能交联剂可获得自许多商业来源。马来酰亚胺、烷基和芳基卤化物、α-卤酰基和吡啶基二硫化物是硫醇反应性基团。马来酰亚胺、烷基和芳基卤化物和α-卤酰基与巯基反应以形成硫醇醚键,而吡啶基二硫化物与巯基反应以产生混合的二硫化物。吡啶基二硫化物产物是可切割的。
杂双官能交联剂具有两个或更多个允许依次与蛋白的特定基团缀合、使不期望的聚合或自缀合最小化的不同反应性基团。当胺的修饰成问题时也使用杂双官能试剂。胺有时可见于大分子的活性位点处且这些的修饰可导致活性的丧失。其他部分(诸如巯基、羧基、苯酚和碳水化合物)可以是更适当的靶标。两步策略允许偶联可容许使胺修饰成具有其他可及基团的蛋白的蛋白。多种杂双官能交联剂(对于成功缀合,各自组合不同属性)是市售的。在一端具有胺反应性且在另一端具有巯基反应性的交联剂是相当常用的。如果使用杂双官能试剂,则最不稳定的基团通常首先发生反应以确保有效的交联且避免不当的聚合。
在一些实施方案中,用于监测用抗生素的疗法的有效性的方法包括监测样品中或动物(例如哺乳动物,例如人类患者)中的HNL水平的变化。其中监测HNL水平的方法可包括(a)将疗法前获得自患者的第一生物样品与本文公开的抗HNL抗体中的一种或多种孵育,其中在足以允许免疫复合物形成的条件和时间下进行孵育;(b)检测生物样品中的HNL与特异性结合HNL的抗体或抗原结合片段之间形成的免疫复合物;和(c)在随后时间(诸如例如用一种或多种抗生素治疗之后)使用取自患者的第二生物样品重复步骤(a)和(b);和(d)比较第一和第二生物样品中检测到的免疫复合物的数目。用于此类方法内的生物样品可以是获得自患者的预期含有HNL的任何样品。示例性生物样品包括血液、血清、血浆、尿液、CSF、骨髓、唾液和痰液。可在开始疗法之前或在治疗方案的中途获得第一生物样品。应当以类似方式、但在额外疗法之后的时间获得第二生物样品。可在完成疗法时或中途获得第二生物样品,条件是至少一部分疗法在第一和第二生物样品的分离之间进行。通常可如上所述进行两种样品的孵育和检测程序。第二样品中的免疫复合物的数目相对于第一样品的减少指示HNL水平降低且反映治疗成功。
设定对于诊断本文所述的疾病状态的适当阈值和如本文所述的疗法监测的方法是本领域众所周知的。例如,使用相同方案相对于来自充分代表性数目的患病主体(例如经证实具有疾病或病况的群体)的HNL水平分析来自充分代表性数目的正常主体(例如未检测到病况的健康群体)的样品中的HNL水平。可确定区分大多数正常群体与大多数患病群体的阈值截止值。或者,可从数据确定阴性、不确定性和阳性结果的有用终点值。例如,可确定正常范围(指示阴性结果),其包括大多数正常群体的HNL,但排除几乎所有患病群体。相应地,可确定指示阳性结果的范围,其包括大多数患病群体的HNL,但排除几乎所有正常群体。可确定阈值的适当终点值以优化所需特异性或灵敏度且也可考虑全部医学和流行病学因素。待考虑的因素包括IVD测试的临床目标和是否有必要具有高阳性预测值或高阴性预测值以及疾病在测试群体中的流行率。
本发明进一步涉及在主体中排除细菌感染的方法、排除病毒感染的方法、划入细菌感染的方法和划入病毒感染的方法。通常,具有细菌感染的患者的样品中的HNL多肽浓度高于健康患者样品或具有病毒感染的患者的样品中。因此,“划入”感染意指主体具有该感染类型。“排除”感染意指主体不具有该感染类型。
例如,具有细菌感染的患者样品中的HNL多肽浓度,当其与健康患者群体相比超过浓度平均值的一个半标准偏差的阈值时,被认为高于健康患者样品中。优选地,当HNL浓度与健康患者群体相比超过浓度平均值的两个标准偏差的阈值时,患者样品中的HNL多肽浓度更高。更优选地,当HNL浓度与健康患者群体相比超过浓度平均值的三个标准偏差的阈值时,患者样品中的HNL多肽浓度更高。
因此,在某些实施方案中,本发明涉及通过将患者生物样品中的HNL多肽的总浓度与总HNL多肽的统计学验证阈值进行比较以及通过将患者生物样品中的决定因素浓度与每种特定决定因素的统计学验证阈值进行比较来诊断细菌感染(即划入细菌感染)。总HNL多肽的统计学验证阈值基于获得自对照群体(例如健康患者)或具有除细菌感染之外的疾病(例如,病毒感染)的患者的相当样品中的HNL多肽的总浓度。特定决定因素的决定因素浓度的统计学验证阈值基于来自对照群体(例如健康患者)或具有除细菌感染之外的疾病的患者的相当对照生物样品中的每种特定决定因素的决定因素浓度。本文另外描述了各种对照群体。
在某些实施方案中,本发明进一步涉及通过将患者生物样品中的HNL多肽的总浓度与总HNL多肽的统计学验证阈值进行比较以及通过将患者生物样品中的决定因素浓度与每种特定决定因素的统计学验证阈值进行比较来排除细菌感染。总HNL多肽的统计学验证阈值基于获得自对照群体(例如,具有细菌感染的患者)的相当样品中的HNL多肽的总浓度。特定决定因素的决定因素浓度的统计学验证阈值基于来自对照群体(例如,具有细菌感染的患者)的相当对照生物样品中的每种特定决定因素的决定因素浓度。本文另外描述了各种对照群体。
在主体中排除细菌感染的方法、排除病毒感染的方法、划入细菌感染的方法和划入病毒感染的方法可以基本上包括以下步骤:
a) 使用如上文所定义的结合剂或如上文所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) (i)如果步骤(a)中测定的HNL的多肽浓度低于预定的第一阈值,则对于主体排除细菌感染;或者
b) (ii)如果步骤(a)中测定的HNL的多肽浓度高于预定的第一阈值,则对于主体排除病毒感染;或者
b) (iii)如果步骤(a)中测定的HNL的多肽浓度高于预定的第一阈值,则对于主体划入细菌感染;或者
b) (iv)如果步骤(a)中测定的HNL的多肽浓度低于预定的第一阈值,则对于主体划入病毒感染。
在排除细菌感染的上下文中,预定的第一阈值可以是总HNL多肽的统计学验证阈值,其基于来自具有细菌感染的患者的相当对照生物样品中的HNL多肽的总浓度。
在排除病毒感染的上下文中,预定的第一阈值可以是总HNL多肽的统计学验证阈值,其基于来自具有病毒感染的患者的相当对照生物样品中的HNL多肽的总浓度。
在划入细菌感染的上下文中,预定的第一阈值可以是总HNL多肽的统计学验证阈值,其基于来自健康患者或具有病毒感染的患者的相当对照生物样品中的HNL多肽的总浓度。
在划入病毒感染的上下文中,预定的第一阈值可以是总HNL多肽的统计学验证阈值,其基于来自健康患者或具有细菌感染的患者的相当对照生物样品中的HNL多肽的总浓度。
根据一个进一步方面,本发明涉及为主体提供治疗推荐的方法,其包括:a)使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值,则推荐主体接受抗生素治疗;
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值,则推荐患者不接受抗生素治疗;或
d) 如果步骤(a)中测定的HNL的多肽浓度低于如上文所定义的预定阈值,则推荐患者接受抗病毒治疗。
此外,本发明涉及为主体提供诊断测试推荐的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值,则推荐测试样品中细菌的存在;或者
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值,则推荐测试样品中病毒的存在。
统计学验证阈值与用于表征获得自主体或患者的生物样品中的总HNL浓度和一种或多种特定其他决定因素的浓度两者的值相关。因此,如果总HNL浓度或决定因素浓度是绝对值,则对照值也基于绝对值。其他决定因素可以是任何标志物,例如,多肽标志物或二级标志物,其具有如本文所定义的确定感染的预测值。对于这些其他决定因素,上述提供的关于预定阈值的定义相应地适用。在本发明的上下文中,“决定因素”包括但不限于多肽、肽、蛋白、蛋白同种型(例如诱饵受体同种型)。决定因素还可以包括突变的蛋白。
因此,“(一种或多种)决定因素(Determinant或determinants)”可以涵盖其水平在具有感染的主体中变化的所有多肽中的一种或多种。示例性个别决定因素可以包括TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性结合分子、IL1、I-TAC、TNFR1、ABTBl、ADIPORl、ARHGDIB、ARPC2、ATP6V0B、Clorf83、CD15、CES1、COROIA、CRP、CSDA、EIF4B、EPSTI1、GAS 7、HERC5、IFI6、KIAA0082、IFIT1、IFIT3、IFITM1、IFITM3、LIPT1、IL7R、ISG20、LOC26010、LY6E、LRDD、LTA4H、MAN1C1、MBOAT2、MX1、NPM1、OAS2、PARP12、PARP9、QARS、RAB13、RAB31、RAC2、RPL34、PDIA6、PTEN、RSAD2、SART3、SDCBP、TRIM 22、SMAD9、SOCS3、UBE2N、XAFl或ZBPl;以及其任何组合,例如,所有这些决定因素中的多于1种,诸如2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或更多种或全部。本发明进一步设想提供和/或使用针对任何上述决定因素(具体而言如果作为多肽存在)的结合剂,但在某些实施方案中还包括核酸结合分子。此结合剂,优选抗体,可以根据技术人员已知或在HNL的上下文中概述的方法获得,或可从商业来源获得。进一步信息可以源自例如Kjeldsen等人, J Biol Chem.,1993 May 15; 268(14):10425-32,“Isolation and primary structure of NGAL, anovel protein associated with human neutrophil gelatinase”。
决定因素还可以涵盖非多肽因子、非血液传播因子或健康状态的非分析物生理学标志物,诸如本文定义的“临床参数”以及本文也定义的“传统实验室风险因素”。
例如,如本文所用,决定因素可以包括非多肽特征(即,非多肽决定因素),诸如嗜中性粒细胞%(缩写为Neu(%))、淋巴细胞%(缩写为Lym(%))、单核细胞%(缩写为Mon(%)、绝对嗜中性粒细胞计数(缩写为ANC)和绝对淋巴细胞计数(缩写为ALC)、白细胞计数(缩写为WBC)、年龄、性别和最高温度(即症状初始出现以来的最高核心体温)。
决定因素还可以包括数学产生的任何计算的指数或任何一种或多种前述测量值(包括时间趋势和差异)的组合。当适用时,且除非另有说明,作为基因产物的决定因素基于由国际人类基因组组织命名委员会(HGNC)指定且在美国国家生物技术信息中心(NCBI)网站该提交之日列出的官方字母缩写或基因符号(也称为Entrez基因)进行鉴定。在优选实施方案中,决定因素包括多肽和非多肽特征。
下面提供如上所提及和本发明设想的此类决定因素的实例:
ABTB1:该基因编码具有锚蛋白重复区和两个被认为参与蛋白-蛋白相互作用的BTB/POZ结构域的蛋白。该基因的表达被磷酸酶和张力蛋白同源物(肿瘤抑制物)活化。可变剪接产生三种转录物变体。其可以充当PTEN生长抑制信号途径的介体。其可在发育过程中发挥作用。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
ADIPORl:ADIPOR1是球状和全长脂连蛋白(APM1)的受体,所述APM1为脂肪细胞分泌的充当抗糖尿病药的必需激素。其可能涉及调节脂质代谢诸如脂肪酸氧化的代谢途径。其介导增加的AMPK、PPARA配体活性、脂肪酸氧化和通过脂连蛋白的葡萄糖摄取。ADIPOR1具有用于球状脂连蛋白的一些高亲和力受体和用于全长脂连蛋白的低亲和力受体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
ARHGDIB:通过抑制GDP从其中解离、随后使GTP与它们结合而调节Rho蛋白的GDP/GTP交换反应。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
ARPC2:作为参与肌动蛋白聚合的调节的Arp2/3复合物的肌动蛋白结合组分发挥功能,并且与活化成核促进因子(NPF)一起介导分枝肌动蛋白网络的形成。似乎接触母体肌动蛋白细丝。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
ATP6V0B:H<+>- ATP酶(液泡ATP酶、V- ATP酶)是酶转运蛋白,其发挥功能以酸化真核细胞中的细胞内隔室。其广泛表达并且存在于内膜细胞器诸如液泡、溶酶体、内体、高尔基体、嗜铬粒和有衣囊泡以及质膜中。H<+>- ATP酶是由两个结构域构成的多-亚基复合物。V1结构域负责ATP水解并且V0结构域负责蛋白易位。存在两种调节H<+>- ATP酶活性的主要机制;含H<+>- ATP酶的囊泡进出质膜的循环以及全酶复合物的葡萄糖-敏感性组装/去组装。这些转运蛋白在过程诸如受体-介导胞吞作用、蛋白降解和偶联转运中发挥重要作用。它们在骨骼再吸收中具有功能并且A3基因中的突变引起隐性骨硬化病。此外,H<+>-ATP酶已牵涉于肿瘤转移和精子运动性和成熟的调节。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
B2M:B2M的额外别名包括但不限于β-2-微球蛋白和CDABP0092。B2M是MHC I类分子的组分,其存在于所有有核细胞上。由该基因编码的蛋白也编码血清中存在的同种型。该蛋白具有占主导的β-折叠片状结构,其在一些病理条件下可形成淀粉样纤维。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
BCA1:BCA1是一种B淋巴细胞化学引诱物,其独立克隆并命名为Angie,是在脾脏、淋巴结和派耶尔斑的淋巴结中强烈表达的CXC趋化因子。其优先促进B淋巴细胞的迁移(与T细胞和巨噬细胞相比),其显然通过刺激钙流入表达Burkitt淋巴瘤受体1(BLR-1)的细胞和表达Burkitt淋巴瘤受体1(BLR-1)的细胞的趋化性。因此,其可以在B淋巴细胞归巢至淋巴结中发挥功能(由RefSeq提供)。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
Clorf83:功能未完全表征。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD112:该基因编码具有两个Ig样C2-型结构域和Ig样V-型结构域的单程I型膜糖蛋白。该蛋白是粘附连接的质膜组分之一。其还充当单纯疱疹病毒和伪狂犬病病毒的某些突变体毒株的入口,并且其涉及这些病毒的细胞至细胞扩散。该基因的变异与多发性硬化症的严重程度的差异相关。已表征了编码不同同种型的可变转录剪接变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD134:该基因编码的蛋白是TNF-受体超家族的成员。已显示该受体通过其与衔接蛋白TRAF2和TRAF5的相互作用来活化NF-κB。小鼠中的敲除研究表明,该受体促进细胞凋亡抑制剂BCL2和BCL21L1/BCL2-XL的表达, 并且因此抑制细胞凋亡。敲除研究还表明该受体在CD4+T细胞应答中以及在 T细胞依赖性B细胞增殖和分化中的作用。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD15 (FUT4):该基因的产物将岩藻糖转移至N-乙酰氨基乳糖多糖以产生岩藻糖基化碳水化合物结构。其催化非-唾液酸化抗原Lewis x (CD15)的合成。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD182:该基因编码的蛋白是G-蛋白偶联受体家族的成员。该蛋白是白介素8(IL8)的受体。其以高亲和力结合IL8,并且通过G-蛋白活化的第二信使系统转导信号。该受体还结合趋化因子(C-X-C基序)配体1(CXCL1/MGSA)(具有黑色素瘤生长刺激活性的蛋白),并且已显示为血清依赖性黑色素瘤细胞生长所需的主要组分。该受体介导嗜中性粒细胞至炎症部位的迁移。发现IL8在肠微脉管内皮细胞中的血管生成作用由该受体介导。小鼠中的敲除研究表明,该受体通过阻止其迁移而控制在正在发育的脊髓中少突胶质细胞前体的定位。该基因、IL8RA(编码另一高亲和力IL8受体的基因)以及IL8RBP(IL8RB的假基因)在定位至染色体2q33-q36的区域中形成基因簇。已鉴定了编码相同蛋白的可变剪接变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD231:该基因编码的蛋白是跨膜4超家族(也称为跨膜四蛋白家族)的成员。这些成员的大多数是特征在于存在四个疏水性结构域的细胞-表面蛋白。该蛋白介导在细胞发育、活化、生长和运动性的调节中发挥作用的信号转导事件。该编码的蛋白是细胞表面糖蛋白并且可以在神经突增生的控制中具有作用。已知其与整联蛋白复合。该基因与X连锁的智力迟钝和神经精神性疾病相关,所述疾病诸如亨廷顿氏舞蹈病、脆性X染色体综合征和肌强直性营养不良(由RefSeq提供)。
CD235a:CD235a是红细胞的主要内在膜蛋白。位于红细胞膜外部的N-端糖基化区段具有M血型受体。似乎对于SLC4A1的功能是重要的并且是SLC4A1的高活性所需的。可参与SLC4A1至质膜的易位。是流感病毒的受体。是恶性疟原虫红细胞-结合抗原175(EBA-175)的受体;EBA-175的结合取决于O-连接的聚糖的唾液酸残基。似乎是甲型肝炎病毒(HAV)的受体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD335:细胞毒性-活化受体,其可有助于增加活化天然杀伤(NK)细胞介导肿瘤细胞裂解的效率。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD337:该基因编码的蛋白是天然细胞毒性受体(NCR),其可在肿瘤细胞的裂解中辅助NK细胞。编码的蛋白与CD3-ζ(CD247)(T-细胞受体)相互作用。该基因的5'非翻译区中的单核苷酸多态性已与轻度疟疾易感性相关。已发现该基因的编码不同同种型的三种转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD45:该基因编码的蛋白是蛋白酪氨酸磷酸酶(PTP)家族的成员。已知PTP为信号转导分子,其调节多种细胞过程,包括细胞生长、分化、有丝分裂周期和致癌转化。该PTP含有细胞外结构域、单个跨膜区段和两个串联胞质内催化结构域,并且因此属于受体型PTP。该基因在造血细胞中特异性表达。已显示该PTP为T和B细胞抗原受体信号传导的必需调节物。其通过与抗原受体复合物的组分直接相互作用,或通过活化抗原受体信号传导所需的各种Src家族激酶来发挥功能。该PTP还抑制JAK激酶,并因此作为细胞因子受体信号传导的调节物发挥功能。已报道了编码不同同种型的该基因的几种可变剪接转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD49d:该基因的产物属于蛋白的整联蛋白α链家族。整联蛋白是由α链和β链构成的异源二聚体整合膜蛋白。该基因编码α4链。与其他整联蛋白α链不同,α4既不含有I-结构域,也不经历二硫化物连接的切割。α4链与β1链或β7链缔合。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD62L:该基因编码属于粘附/归巢(homing)受体的家族的细胞表面粘附分子。编码的蛋白含有C型凝集素样结构域、钙结合表皮生长因子样结构域和两个短补体样重复。需要基因产物用于在内皮细胞上白细胞的结合和后续滚动,有利于其迁移至二级淋巴器官和炎症位点中。该基因中的单核苷酸多态性已与各种疾病(包括免疫球蛋白A肾病)相关。已发现该基因的可变剪接转录物变体(由RefSeq提供)。该基因编码的蛋白具有表示为sCD62L的可溶形式。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD64:该基因编码被称为Fc受体的整合膜糖蛋白,其以高亲和力结合单体IgG型抗体。在结构上,CD64由允许其转运至细胞表面的信号肽、三个其用于结合抗体的C2型的胞外免疫球蛋白结构域、疏水性跨膜结构域和短胞质尾组成。CD64仅在巨噬细胞和单核细胞上组成型发现。用细胞因子如IFNγ和G-CSF处理多形核白细胞可以诱导这些细胞上的CD64表达。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD66a:该基因编码癌胚抗原(CEA)基因家族的成员,其属于免疫球蛋白超家族。CEA家族的两个亚组(CEA细胞粘附分子和妊娠特异性糖蛋白)位于染色体19的长臂上的1.2Mb簇内。该簇中还发现CEA细胞粘附分子亚组的11个假基因。编码的蛋白作为胆汁糖蛋白初始描述在肝脏的胆管中。随后,发现其为在白细胞、上皮和内皮上检测到的细胞-细胞间粘附分子。编码的蛋白经由与亚组的其他蛋白的同嗜性以及异嗜性结合来介导细胞粘附。多种细胞活性已归因于所述编码蛋白,包括在组织三维结构的分化和排列、血管生成、细胞凋亡、肿瘤抑制、转移以及先天和适应性免疫应答的调节中的作用。已报道了编码不同同种型的多种转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD66c:癌胚抗原(CEA;MIM 1 14890)是癌症的血清免疫测定法测定中最广泛使用的肿瘤标志物之一。CEA的绝对癌症特异性的明显缺乏可能部分是由于与CEA的180-kD形式共享抗原决定簇的抗原的正常和赘生性组织的存在(Barnett等人, 1988 (PubMed3220478))。对于基因的CEA家族的背景信息,参见CEACAM1 (MIM 109770)。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD66d:该基因编码癌胚抗原-相关细胞粘附分子(CEACAM)的家族的成员,其由几种细菌病原体用来结合和侵入宿主细胞。编码的跨膜蛋白引导几种细菌物种的吞噬作用,其依赖于小GTP酶Rac。认为其通过先天免疫系统在控制人类-特异性病原体中发挥重要作用。已描述了可变剪接转录物变体,但其生物有效性尚未确定。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD66e:CD66e(CEACAM亚家族的成员)充当在细胞粘附和细胞内信号转导中发挥作用的表面糖蛋白。CD66e也充当大肠杆菌Dr粘附素的受体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD73:该基因编码的蛋白是质膜蛋白,其催化细胞外核苷酸转化为膜可渗透的核苷。编码的蛋白用作淋巴细胞分化的决定因素。该基因中的缺陷可导致关节和动脉的钙化。已发现该基因的编码不同同种型的两种转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD84:CD84作为通过同嗜性相互作用且通过成簇发挥功能的粘附受体来发挥作用。招募含SH2结构域蛋白SH2D1 A SAP。增加活化的T-细胞的增生性应答并且发现该过程不需要SH2D1A SAP。同嗜性相互作用增强淋巴细胞中的干扰素γ/IFNG分泌并且经由SH2D1A/SAP依赖性途径诱导血小板刺激。CD84还可充当造血祖细胞的标志物。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CD8A:CD8抗原是在大多数细胞毒性T淋巴细胞上发现的细胞表面糖蛋白,其介导免疫系统内有效的细胞-细胞相互作用。CD8抗原与T淋巴细胞上的T细胞受体充当共阻遏物以识别在I类MHC分子的背景下由抗原呈递细胞(APC)展示的抗原。共受体作为由两个α链构成的同源二聚体或作为由一个α和一个β链构成的异源二聚体发挥功能。α和β链与免疫球蛋白可变轻链共享显著同源性。该基因编码CD8α链同种型。已发现该基因的编码不同同种型的多种转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CES1:参与生物异源物质的脱毒和酯和酰胺前药的活化。水解芳族和脂族酯,但对酰胺或脂肪酰-CoA酯无催化活性。水解可卡因的甲基酯基以形成苯甲酰芽子碱。催化可卡因酯交换作用以形成可卡乙碱。展现脂肪酸乙酯合酶活性,催化油酸至油酸乙酯的乙基酯化反应。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CHI3L1:几丁质酶3-样1(软骨糖蛋白-39);CHI3L1的额外别名包括但不限于ASRT7、CGP-39、GP-39、GP39、HC-gp39、HCGP-3P、YKL-40、YKL40、YYL-40和hCGP-39。几丁质酶催化甲壳质的水解,其为在昆虫外骨骼和真菌细胞壁中发现的丰富含糖聚合物。几丁质酶的糖苷水解酶18家族包括8种人类家族成员。该基因编码缺乏几丁质酶活性的糖基水解酶18家族的糖蛋白成员,其可由活化的巨噬细胞、软骨细胞、嗜中性粒细胞和滑液细胞分泌。CHI3L1抑制氧化剂诱导的肺损伤,增强获得性Th2免疫,调节细胞凋亡,刺激替代性巨噬细胞活化,并且有助于纤维化和伤口愈合。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CHP:该基因编码结合Na+/H+交换体NHE1的磷蛋白。该蛋白充当支持NHE家族成员的生理活性的必需辅因子并且可在NHE1的有丝分裂调节中发挥作用。该蛋白与钙调磷酸酶B和钙调蛋白共享相似性并且其还已知为钙调磷酸酶活性的内源性抑制剂(由RefSeq提供)。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CMPK2:该基因编码可以参与线粒体中的dUTP和dCTP合成的蛋白。能够用ATP作为磷酸根供体来磷酸化dUMP、dCMP、CMP、UMP和嘧啶核苷类似物ddC、dFdC、araC、BVDU和FdUrd的单磷酸盐。dUMP的效力最高,随后是dCMP;CMP和UMP是不良底物。可参与用ddC或其他嘧啶类似物的长期治疗引起的mtDNA耗竭。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CORO1A:可以是高度运动性细胞的细胞骨架的关键组分,在质膜的大片的内陷以及形成参与细胞移动的质膜的凸起中发挥功能。在分枝杆菌感染的细胞中,其在吞噬体膜上的保留阻止吞噬体和溶酶体之间的融合。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CRP:C-反应性蛋白。该基因编码的蛋白属于正五聚蛋白(pentaxin)家族。基于其识别外来病原体和宿主的受损细胞以及通过在血液中与体液和细胞效应系统相互作用来引发它们的消除的能力,其参与几种宿主防御相关的功能。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
CSDA:结合GM-CSF启动子,并且似乎充当阻遏物。还结合全长mRNA和含有一致位点5'-UCCAUCA-3'的短RNA序列。可在翻译阻遏中具有作用。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
EGFR:该基因编码的蛋白为跨膜糖蛋白,其为蛋白激酶超家族的成员。该蛋白是表皮生长因子家族的成员的受体。EGFR是结合表皮生长因子的细胞表面蛋白。蛋白与配体的结合诱导受体二聚化和酪氨酸自磷酸化并且导致细胞增殖。该基因中的突变与肺癌相关。对于该基因已发现编码不同蛋白同种型的多种可变剪接转录物变体。
GPR162:该基因在人类染色体12p 13处的基因致密区域的基因组学分析之后得到鉴定。似乎主要在大脑中表达;然而,其功能未知。已鉴定了编码不同同种型的可变剪接转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
EIF2AK2:EIF2AK2是蛋白丝氨酸/苏氨酸激酶,其在自磷酸化(双链RNA(dsR A)介导的过程)之后获得酶促活性。额外别名包括但不限于:PKR、PRKR、EIF2AK1、蛋白激酶、干扰素-可诱导的双链RNA依赖性p68激酶等。EIF2AK2的活化允许激酶磷酸化其天然底物,真核蛋白合成起始因子-2的α亚基(EIF2-α;MIM603907),导致蛋白合成的抑制。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
EIF4B:mRNA与核糖体结合所需。与EIF4-F和EIF4-A密切相关发挥功能。其在EIF-4F和ATP存在的情况下在mRNA的5'-端帽附近结合。其促进ATP酶活性和EIF4-A和EIF4-F的ATP依赖性RNA解旋活性。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
嗜酸性粒细胞趋化因子:该基因是染色体17的q-臂上成簇的几种Cys-Cys(CC)细胞因子基因之一。细胞因子是参与免疫调节和炎性过程的分泌蛋白的家族。CC细胞因子是特征在于两个相邻半胱氨酸的蛋白。该基因编码的细胞因子展现对于嗜酸性粒细胞、而非单核细胞或嗜中性粒细胞的趋化活性。该嗜酸性粒细胞特异性趋化因子被假定为参与嗜酸性炎性疾病诸如特应性皮炎、变应性鼻炎、哮喘和寄生感染。其响应于变应原的存在,该蛋白直接促进嗜酸性粒细胞的积聚,过敏炎性反应的突出特征。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
EPSTI1:功能尚未完全表征。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
GAS7: 生长停滞特异性7主要表达于终末分化的脑细胞中,并且占优势地表达于成熟小脑浦肯野神经元中。GAS7在神经元发育中发挥推定作用。已经描述了编码在N-末端变化的蛋白的几种转录物变体。其可能在促进小脑神经元的成熟和形态分化中发挥作用。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
HERC5:用于ISG15缀合的主要E3连接酶。在干扰素诱导的细胞中充当先天抗病毒应答的正调节物。成为以广泛和相对非特异性方式识别靶蛋白的ISG化机制的一部分。催化IRF3的ISG化,其导致持续活化。其减弱IRF3-PIN1相互作用,其拮抗IRF3泛素化和降解,并且加强抗病毒应答。催化流感A病毒NS1的ISG化,其减弱毒力;ISG化的NS1未能形成同源二聚体并因此不能与其RNA靶标相互作用。其催化乳头瘤病毒16型LI蛋白的ISG化,其导致对病毒感染性的主要负面的影响。与多核糖体物理缔合,以共易位方式广泛修饰新合成的蛋白。在干扰素刺激的细胞中,新翻译的病毒蛋白是ISG15的主要靶标。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
HLA-A:HLA-A属于HLA I类重链旁系同源物。该I类分子是由重链和轻链(β-2微球蛋白)组成的异源二聚体。重链锚定在膜中。I类分子通过呈递源自内质网腔的肽而在免疫系统中发挥中心作用。它们在几乎所有细胞中表达。重链为大约45kDa并且其基因含有8个外显子。外显子1编码前导肽,外显子2和3编码α1和α2结构域,其二者均结合所述肽,外显子4编码α3结构域,外显子5编码跨膜区域,并且外显子6和7编码胞质尾。外显子2和外显子3内的多态性负责各I类分子的肽结合特异性。针对骨髓和肾移植常规地进行这些多态性的分型。已描述了数百种HLA-A等位基因。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
HLA-B: HLA-B属于HLA I类重链旁系同源物。该I类分子是由重链和轻链(β-2微球蛋白)组成的异源二聚体。重链锚定在膜中。I类分子通过呈递源自内质网腔的肽而在免疫系统中发挥中心作用。它们在几乎所有细胞中表达。重链为大约45kDa并且其基因含有8个外显子。外显子1编码前导肽,外显子2和3编码α1和α2结构域,其二者均结合所述肽,外显子4编码α3结构域,外显子5编码跨膜区域,并且外显子6和7编码胞质尾。外显子2和外显子3内的多态性负责各I类分子的肽结合特异性。针对骨髓和肾移植常规地进行这些多态性的分型。已描述了数百种HLA-B等位基因。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
HLA-C:HLA-C属于HLA I类重链旁系同源物。该I类分子是由重链和轻链(β-2微球蛋白)组成的异源二聚体。重链锚定在膜中。I类分子通过呈递源自内质网腔的肽而在免疫系统中发挥中心作用。它们在几乎所有细胞中表达。重链为大约45kDa并且其基因含有8个外显子。外显子1编码前导肽,外显子2和3编码α1和α2结构域,其二者均结合所述肽,外显子4编码α3结构域,外显子5编码跨膜区域,并且外显子6和7编码胞质尾。外显子2和外显子3内的多态性负责各I类分子的肽结合特异性。针对骨髓和肾移植常规地进行这些多态性的分型。已描述了超过一百种HLA-C等位基因。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
IFI6: 该基因被首先鉴定为干扰素诱导的许多基因之一。编码蛋白可在细胞凋亡的调节中发挥关键作用。类似于哺乳动物剪接供体共有序列的由12个核苷酸重复元件的26个重复组成的微型随体在第二外显子的末端附近开始。已描述了通过使用两个下游重复单元作为剪接供体位点编码不同同种型的可变剪接转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
IFIT1:具有三角形四肽重复的干扰素-诱导蛋白。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
IFIT3:功能尚未完全表征。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
IFITM1:IFN-诱导的抗病毒蛋白,其通过抑制复制的早期步骤,介导针对至少三种主要人类病原体(即,流感A H1N1病毒、西尼罗病毒和登革热病毒)的细胞先天免疫。通过抑制ERK活化或通过以p53依赖性方式在G1期阻止细胞生长,在IFN-γ的抗增殖作用中发挥关键作用。牵涉于细胞生长的控制中。多聚体复合物的组分涉及抗增殖和同型粘附信号的转导。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
IFITM3 IFITM2:IFN-诱导的抗病毒蛋白,其通过抑制复制的早期步骤,介导针对至少三种主要人类病原体(即,流感A H1N1病毒、西尼罗病毒(WNV)和登革热病毒(WNV))的细胞先天免疫。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
IL1a:该基因编码的蛋白是白介素1细胞因子家族的成员。该细胞因子是参与各种免疫应答、炎性过程和血细胞生成的多效细胞因子。该细胞因子可作为前蛋白由单核细胞和巨噬细胞产生,其被蛋白水解加工且响应于细胞损伤而释放,并因此诱导细胞凋亡。该基因和8个其他白介素1家族基因形成染色体2上的细胞因子基因簇。IL-1蛋白参与炎性应答,被鉴定为内源性致热原,并且被报道刺激前列腺素和胶原酶从滑液细胞的释放。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
IL1RA:该基因编码的蛋白是属于白介素1受体家族的细胞因子受体。该蛋白是用于白介素α(IL1A)、白介素β(IL1B)和白介素1受体I型(IL1R1/IL1RA)的受体。其为参与许多细胞因子诱导的免疫和炎性应答的重要介体。该基因的其他名称包括但不限于:CD121A、IL-1RT1、p80、CD121a抗原、CD121A、IL1R和IL1ra。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
IL6:该基因编码在B细胞的炎症和成熟中发挥功能的细胞因子。另外,已显示编码的蛋白为能够在具有自身免疫疾病或感染的人中诱导发烧的内源性致热原。该蛋白主要在急性和慢性炎症的部位产生,其中其分泌至血清中并且通过白介素6受体α诱导转录炎性应答。该基因的发挥功能牵涉于多种多样的炎症相关的疾病状态,包括糖尿病和全身性幼年型类风湿性关节炎的易感性。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
IL7R:该基因编码的蛋白是白介素7(IL7)的受体。该受体的功能需要白介素2受体、γ链(IL2RG),其为由各种细胞因子(包括白介素2、4、7、9和15)的受体共享的共同γ链。已显示该蛋白在淋巴细胞发育期间在V(D)J重组中发挥关键作用。还发现该蛋白通过STAT5和组蛋白乙酰化控制TCRγ基因座的可及性。小鼠中的敲除研究表明,阻断细胞凋亡是该蛋白在T淋巴细胞的分化和活化期间的必需功能。该蛋白中的功能缺陷可能与重度联合免疫缺陷症(SCID)的发病机理相关。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
IL-8:该基因编码的蛋白是CXC趋化因子家族的成员。IL-8的额外别名包括但不限于:白介素8、K60、CXCL8、SCYB8、GCP-1、TSG-1、MDNCF、b-ENAP、MONAP、肺泡巨噬细胞趋化因子I、NAP-1、β内皮细胞-衍生的嗜中性粒细胞活化肽、GCP1、β-血小板球蛋白样蛋白、LECT、趋化因子(C-X-C基序)配体8、LUCT、依莫白介素、LYNAP、白介素-8、NAF、肺巨细胞癌-衍生的趋化蛋白、NAP1、淋巴细胞衍生的嗜中性粒细胞活化肽、IL-8、嗜中性粒细胞-活化肽1、粒细胞趋化蛋白1、小可诱导细胞因子亚家族B成员8、单核细胞-衍生的嗜中性粒细胞趋化因子、肿瘤坏死因子-诱导的基因1、单核细胞-衍生的嗜中性粒细胞-活化肽、依莫白介素、T-细胞趋化因子、C-X-C基序趋化因子8、3-10C、嗜中性粒细胞-活化蛋白1、AMCF-I和蛋白3-lOC。该趋化因子是炎性应答的主要介体之一。该趋化因子由几种细胞类型分泌。其作为化学引诱物发挥功能,并且也是有效血管生成因子。该基因据信在细支气管炎(病毒感染引起的普通呼吸道疾病)的发病机理中发挥作用。该基因和CXC趋化因子基因家族的其他10个成员在定位至染色体4q的区域中形成趋化因子基因簇。IL-8是趋化因子,其吸引嗜中性粒细胞、嗜碱性粒细胞和T-细胞,但不吸引单核细胞。其还参与嗜中性粒细胞活化。分别地,IL-8(6-77)对嗜中性粒细胞活化具有5-10倍更高的活性,IL-8(5-77)对嗜中性粒细胞活化具有增加的活性并且IL-8(7-77)与IL-8(1-77)相比对受体CXCR1和CXCR2具有更高亲和力。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
IP10:该基因编码CXC子家族的趋化因子和受体CXCR3的配体。该蛋白与CXCR3的结合导致多效效应,包括刺激单核细胞、自然杀伤细胞和T-细胞迁移和调节粘附分子表达。该基因的其他名称包括但不限于:CXCL10、γ-IP10、INP10和趋化因子(C-X-C基序)配体10。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
ISG15:ISG15泛素样修饰物;ISG15的额外别名包括但不限于G1P2、IFI15、IP17、UCRP和hUCRP。在IFN-α或IFN-β刺激之后,该泛素样蛋白缀合至细胞内靶蛋白。其酶促途径部分不同于泛素的酶促途径,不同之处为底物特异性和与连接酶的相互作用。ISG15缀合途径使用专用的E1酶,但似乎在特异性E2酶的水平上与Ub缀合途径会聚。靶标包括STATl、SERPINA3G/SPI2A、JAKl、MAPK3/ERK1 、PLCGl 、EIF2AK2/PKR、MXl/MxA和RIG-1。显示针对嗜中性粒细胞的特异性趋化活性并且将其活化以诱导嗜酸性粒细胞趋化因子的释放。可充当反式作用结合因子,其引导连接的靶蛋白缔合至中间体细丝。可能部分通过由单核细胞和巨噬细胞诱导IFN-γ分泌,还可参与自分泌、旁分泌和内分泌性机制,如在细胞至细胞信号转导中。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
ITGAM:该基因编码整联蛋白αM链。整联蛋白是由α链和β链构成的异源二聚体整合膜蛋白。含有该I-结构域的α整联蛋白与β2链(ITGB2)组合以形成称为巨噬细胞受体1('Mac-1')、或未活化的-C3b(iC3b)受体3('CR3')的白细胞-特异性整联蛋白。αMβ2整联蛋白在嗜中性粒细胞和单核细胞与刺激的内皮的粘附以及在补体包被的颗粒的吞噬中是重要的。已发现该基因的编码不同同种型的多种转录物变体。
Mac-2-BP:MAC-2-BP的额外别名包括但不限于:LGALS3BP、90K、血清蛋白90K、BTBD17B、M2BP和凝集素、半乳糖苷结合、可溶、3结合蛋白。半乳凝素是牵涉于调节细胞-细胞和细胞-基质相互作用的β-半乳糖苷-结合蛋白的家族。发现MAC-2-BP的水平在癌症患者的血清中升高。其似乎牵涉于与天然杀伤细胞(NK)和淋巴因子-活化的杀伤细胞(LAK)细胞细胞毒性相关的免疫应答中。天然蛋白可特异性结合称为Mac-2的人类巨噬细胞-相关的凝集素以及半乳凝素1。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
MCP:该基因编码的蛋白是I型膜蛋白并且是补体系统的调节部分。编码的蛋白具有用于通过血清因子I失活补体组分C3b和C4b的辅因子活性,其保护宿主细胞免于被补体损伤。此外,编码的蛋白可充当用于麻疹病毒的Edmonston毒株、人类疱疹病毒-6和病原性奈瑟氏球菌的IV型菌毛的受体。该基因编码的蛋白可以参与受精期间精子与卵母细胞的融合。该基因座处的突变与对溶血性尿毒综合征的易感性相关。已描述了编码不同同种型的可变剪接转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
ISG20:对单链RNA具有特异性、对DNA的程度较低的核酸外切酶。以其对于单链DNA的速率的约35倍的速率降解RNA。参与IFN针对RNA病毒的抗病毒功能。
KIAA0082 (FTSJD2):S-腺苷基-L-甲硫氨酸依赖性甲基转移酶,其介导mRNA帽l2'-0-核糖甲基化为mRNA的5'-帽结构。甲基化m(7)GpppG-加帽mRNA的第一核苷酸的核糖以产生m(7)GpppNmp (capl)。Cap1修饰与更高水平的翻译相关。可参与干扰素应答途径。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
LIPT1:转移硫辛酸至蛋白的过程是两步骤过程。第一步骤是通过硫辛酸酯-活化酶来活化硫辛酸以形成硫辛酰基-AMP。对于第二步骤,该基因编码的蛋白将硫辛酰基部分转移至脱辅基蛋白。该基因的5' UTR中的可变剪接产生5种转录物变体,其编码相同蛋白。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
LOC26010(SPATS2):功能尚未完全表征。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
LRDD:该基因编码的蛋白含有富含亮氨酸的重复和死亡结构域。已显示该蛋白与其他死亡结构域蛋白(诸如Fas(TNFRSF6)-相关死亡结构域(FADD)和含有MAP激酶活化死亡结构域的蛋白(MADD))相互作用,并且因此可以作为细胞死亡相关信号传导过程中的衔接蛋白发挥功能。已发现该基因的小鼠对应物的表达受肿瘤抑制物p53正性调节并且响应于DNA损伤诱导细胞细胞凋亡,其表明该基因作为p53依赖性细胞凋亡的效应物的作用。可变剪接产生多种转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
LTA4H: 水解白三烯A4(LTA-4)的环氧化物部分以形成白三烯B4(LTB-4)。该酶也具有一些肽酶活性。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
LY6E:功能尚未完全表征。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
MAN1C1:甘露糖苷酶被分为两种亚型;I和II(分别为EC编号3.2.1.113和3.2.1.114),其展现广泛的表达模式。甘露糖苷酶I水解寡甘露糖寡糖Man9(GlcNAc)2中的(1,2)连接的α-D-甘露糖残基,且甘露糖苷酶II水解Man5(GlcNAc)3中的(1,3)-和(1,6)-连接的α-D-甘露糖残基。两种亚型都需要二价阳离子辅因子。甘露糖苷酶中的突变可引起甘露糖苷贮积症(甘露糖苷酶I缺陷症)。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
MBOAT2:酰基转移酶,其介导溶血磷脂酰-乙醇胺(1-酰基-sn-丙三基-3-磷酸乙醇胺或LPE)转化为磷脂酰基-乙醇胺(1,2-二酰基-sn-丙三基-3-磷酸乙醇胺或PE)(LPEAT活性)。还催化溶血磷脂酸(LPA)酰化为磷脂酸(PA)(LPAAT活性)。还具有非常弱的溶血磷脂酰-胆碱酰基转移酶(LPCAT活性)。优选油酰基-CoA作为酰基供体。溶血磷脂酰基转移酶(LPLAT)催化磷脂重塑途径的再酰化步骤(也称为Lands循环)。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
MX1/MXA:在小鼠中,干扰素-可诱导的Mx蛋白负责针对流感病毒感染的特异性抗病毒状态。该基因编码的蛋白类似于小鼠蛋白,如通过其抗原关联性、诱导状况、物理化学特性和氨基酸分析所确定。该胞质蛋白是发动蛋白家族和大GTP酶的家族的成员。已发现该基因的编码相同蛋白的两种转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
NPM1:其参与多种细胞过程,诸如核糖体生物生成、中心体复制、蛋白分子伴侣、组蛋白组装、细胞增殖和肿瘤抑制物TP53/p53和ARF的调节。其据推测结合核糖体来驱动核糖体核输出。其与核仁核糖核蛋白结构缔合并结合单链核酸。充当核心组蛋白H3、H2B和H4的分子伴侣。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
NRG1:该基因编码的蛋白被初始鉴定为44-kD糖蛋白,其与NEU/ERBB2受体酪氨酸激酶相互作用以增加其在酪氨酸残基上的磷酸化。该蛋白是信号传导蛋白,其介导细胞-细胞相互作用并且在多个器官系统的生长和发育中发挥关键作用。已知通过选择性启动子使用和剪接,由该基因产生多种多样的不同同种型。这些同种型是组织特异性表达的并且其结构显著不同,并且由此这些同种型被分类为I型、II型、III型、IV型、V型和VI型。基因失调已与疾病诸如癌症、精神分裂症和双相性精神障碍(BPD)关联。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
OAS2:该基因编码2-5A合成酶家族的成员,是参与对病毒感染的先天免疫应答的必需蛋白。编码的蛋白通过干扰素诱导并且在2'-特异性核苷酸基转移反应中使用腺苷三磷酸来合成2',5'-寡腺苷酸酯(2-5A)。这些分子活化潜在性RNaseL,其导致病毒RNA降解和病毒复制的抑制。该基因家族的三个已知成员位于染色体12的簇中。已描述了编码不同同种型的可变剪接转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
PARP9:聚(ADP-核糖)聚合酶(PARP)通过添加多个ADP-核糖部分来催化蛋白的翻译后修饰。PARP从烟酰胺二核苷酸(NAD)转移ADP-核糖至在底物蛋白上的glu/asp残基,并且还聚合ADP-核糖以形成长/支链聚合物。正开发PARP抑制剂用于大量病理学,包括癌症、糖尿病、中风和心血管疾病。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
PARP12:聚(ADP-核糖)聚合酶(PARP)通过添加多个ADP-核糖部分来催化蛋白的翻译后修饰。PARP从烟酰胺二核苷酸(NAD)转移ADP-核糖至在底物蛋白上的glu/asp残基,并且还聚合ADP-核糖以形成长/支链聚合物。正开发PARP抑制剂用于大量病理学,包括癌症、糖尿病、中风和心血管疾病。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
PCT:原降钙素(PCT)是激素降钙素的肽前体,所述激素降钙素涉及钙体内平衡。原降钙素的水平响应于促炎刺激而上升。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
PDIA6:蛋白二硫化物异构酶(EC 5.3.4.1),诸如PDIA6,是内质网(ER)驻留的蛋白,其催化蛋白中二硫键的形成、还原和异构化,并被认为在二硫键键合的蛋白的折叠中发挥作用。其可能作为抑制错误折叠的蛋白聚集的分子伴侣发挥功能。在通过激动剂诸如convulxin、胶原和凝血酶的血小板聚集和血小板活化中发挥作用。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
原降钙素:是激素降钙素的肽前体,所述激素降钙素涉及钙体内平衡。原降钙素的水平响应于促炎刺激(特别是细菌来源的促炎刺激)而上升。在这种情况下,其主要由肺和肠的细胞产生。其不会随着病毒或非传染性炎症而显著升高。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
PTEN:肿瘤抑制物。充当双特异性蛋白磷酸酶,其磷酸化酪氨酸-、丝氨酸-和苏氨酸-磷酸化蛋白。还充当脂质磷酸酶,在肌醇基环的D3位中从磷脂酰肌醇(PI) 3,4,5-三磷酸酯、PI 3,4-二磷酸酯、PI3-磷酸酯和肌醇基1,3,4,5-四磷酸酯移除磷酸酯,体外底物优选顺序为PtdIns(3,4,5)P3 > PtdIns(3,4)P2 > PtdIns3P > Ins(l,3,4,5)P4。脂质磷酸酶活性对于其肿瘤抑制物功能是关键的。通过使磷酸肌醇脱磷酸并从而调节细胞周期进展和细胞存活,拮抗PI3K-AKT/PKB信号转导途径。非磷酸化形式与AIP1合作以抑制AKT1活化。使酪氨酸-磷酸化的粘着斑激酶脱磷酸并且抑制细胞迁移和整联蛋白-介导的细胞扩散和粘着斑形成。在成体神经形成(包括正确神经元定位、枝突发育和突触形成)期间作为控制新生神经元整合的过程的速度的AKT-mTOR信号转导途径的关键调节剂发挥作用。可以是脂肪组织中胰岛素信号传导和葡萄糖代谢的负调节物。细胞核单泛素化形式具有更大的细胞凋亡潜能,而胞质非泛素化形式诱导更少肿瘤抑制能力。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
RAB13:可参与极化转运,紧密连接的组装和/或活性。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
RAP1B:具有内在GTP酶活性的GTP-结合蛋白。在正确内皮细胞极性和脉管腔的建立和维持中有助于KRIT1和CDH5的极化活性。是将磷酸化的PRKCZ、PARD3和TIAM1定位至细胞连接所需的。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
RTN3:可参与早期分泌途径中的膜运输。抑制BACE1活性和淀粉样前体蛋白加工。可诱导胱天蛋白酶-8级联和细胞凋亡。可有助于BCL2在内质网应激之后易位至线粒体。在肠病毒感染的情况下,RTN3可参与病毒复制或发病机理。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
SAA:编码载脂蛋白的血清淀粉样蛋白A家族的成员。编码的蛋白是响应于炎症和组织损伤而高度表达的主要急性期蛋白。该蛋白还在HDL代谢和胆固醇体内平衡中发挥重要作用。该蛋白的高水平与慢性炎性疾病(包括动脉硬化症、类风湿性关节炎、阿尔茨海默病和克罗恩病)相关。该蛋白也可以是某些肿瘤的潜在生物标志物。可变剪接产生编码相同蛋白的多种转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
QARS:氨酰基-tRNA合成酶通过其同源氨基酸催化tRNA的氨酰化。因为其在连接氨基酸与tRNA中含有的核苷酸三联体中的中心作用,认为氨酰基-tRNA合成酶属于进化中出现的第一蛋白。在后生动物中,对于谷氨酰胺(gin)、谷氨酸(glu)和7种其他氨基酸特异性的9种氨酰基-tRNA合成酶与多酶复合物相关。尽管存在于真核生物中,但许多原核生物、线粒体和叶绿体缺乏谷氨酰胺基-tRNA合成酶(QARS),其中Gln-tRNA(Gln)通过错酰化的Glu-tRNA(Gln)的转酰胺作用来形成。谷氨酰胺基-tRNA合成酶属于I类氨酰基-tRNA合成酶家族。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
RAB13:可参与极化转运,紧密连接的组装和/或活性。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
RAB31:RAB家族的小GTP结合蛋白,诸如RAB31,在囊泡和颗粒靶向中发挥必不可少的作用。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
RAC2:小G蛋白(小GTP酶)与Galpha蛋白同源,并且通常被称为Ras原癌基因超家族。Ras超家族含有超过100种小GTP酶,其被分组为8个家族;Ras、Rho、Rab、Rap、Arf、Ran、Rheb和Rad。小GTP酶调节细胞中各种各样的过程,包括生长、分化、运动和脂质囊泡运输。如Galpha蛋白一样,小GTP酶在On状态(与GTP结合)和Off状态(与GDP结合)之间交替。该循环过程需要鸟嘌呤核苷酸交换因子(GEF)和GTP酶活化蛋白(GAP)。小GTP酶是大多数受体酪氨酸激酶(RTK)的下游效应物,并经由两种蛋白GRB2和SOS连接。它们通过与Raf激酶相互作用偶联至胞内信号传导级联,包括MAPK途径。通常,通过与RTK的配体结合诱导小GTP酶的活化。在许多转化的细胞中,活化GTP酶(通常是Ras)的突变,在配体不存在的情况下产生细胞应答,因此促进恶性进展。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
RPL34:核糖体(催化蛋白合成的细胞器)由小40S亚基和大60S亚基组成。这些亚基由4种RNA种类和大约80种结构不同蛋白一起构成。该基因编码作为60S亚基的组分的核糖体蛋白。该蛋白属于核糖体蛋白的L34E家族。其位于胞质内。初始认为该基因位于17q21,但其已定位至4q。源自可变剪接、选择性转录起始位点和/或选择性聚腺苷酸化的转录物变体存在;这些变体编码相同蛋白。如编码核糖体蛋白的基因通常所见,存在基因组中分散的该基因的多重加工的假基因。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
RSAD2:参与抗病毒防御。可通过破坏在质膜处的脂筏(其为许多病毒的出芽过程所必需的特征)而损害病毒出芽。通过与FPPS结合并且失活FPPS来作用,所述FPPS为参与合成胆固醇、法尼基化和香叶基化蛋白、泛醌长醇和血红素的酶。在由I型和II型干扰素诱导的细胞抗病毒状态中发挥作用。显示针对HIV-1病毒、丙型肝炎病毒、人类巨细胞病毒和甲病毒(aphaviruses)、而非水泡病毒的抗病毒效果。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
SART3:该基因编码的蛋白是RNA-结合细胞核蛋白,其为肿瘤-排斥抗原。该抗原具有能够在癌症患者中诱导HLA-A24-约束的和肿瘤-特异性的细胞毒性T淋巴细胞的肿瘤表位并且可用于特异性免疫疗法。发现该基因产物是HIV-1基因表达和病毒复制的重要细胞因子。其还在剪接体循环的再循环期期间与U6和U4/U6snRNPs瞬时缔合。认为该编码的蛋白参与mRNA剪接的调节。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
SDCBP:由该基因编码的蛋白被初始鉴定为连接黏结蛋白聚糖介导的信号传导与细胞骨架的分子。内居蛋白(syntenin)含有串联重复的PDZ结构域,其结合多种跨膜蛋白的胞质C末端结构域。该蛋白也可影响细胞骨架-膜组织、细胞粘附、蛋白运输和转录因子的活化。蛋白主要定位于膜相关的粘附连接和局灶性粘连,但也发现于内质网和细胞核。可变剪接产生编码不同同种型的多种转录物变体。其似乎将转录因子SOX4与IL-5受体(IL5RA)偶联。可在囊泡运输中具有作用,并且似乎是在早期分泌途径中将TGFA靶向至细胞表面所需的。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
SELI:该基因编码硒蛋白,其在其活性位点含有硒代半胱氨酸(Sec)残基。硒代半胱氨酸由正常传导翻译终止信号的UGA密码子编码。硒蛋白基因的3' UTR具有共同的茎-环结构,sec插入序列(SECIS),其为对于将UGA识别为Sec密码子而非终止信号所必需的。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
SPINT2:该基因编码具有抑制多种丝氨酸蛋白酶的两个细胞外Kunitz结构域的跨膜蛋白。该蛋白抑制HGF活化剂,其阻止活性肝细胞生长因子的形成。该基因是推定肿瘤抑制物,并且该基因中的突变导致先天性钠腹泻。已发现该基因的编码不同同种型的多种转录物变体。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
SMAD9:由该基因编码的蛋白是SMAD家族的成员,其转导来自TGF-β家族成员的信号。编码的蛋白被骨形态发生蛋白活化并与SMAD4相互作用。已发现该基因的编码不同同种型的两种转录物变体。由BMP(骨形态发生蛋白)1型受体激酶活化的转录调节子。SMAD9是受体调节的SMAD (R-SMAD)。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
SOCS3:SOCS家族蛋白形成调节细胞因子信号转导的经典负反馈系统的一部分。SOCS3参与通过JAK/STAT途径信号传导的细胞因子的负调节。通过结合酪氨酸激酶受体(包括gp130、LIF、促红细胞生成素、胰岛素、IL12、GCSF和瘦素受体)而抑制细胞因子信号转导。与JAK2的结合抑制其激酶活性。抑制胎儿肝脏红细胞生成。调节由T-辅助2型细胞介导的过敏反应的发作和维持。调节体内IL-6信号传导(通过相似性)。SCF样ECS(延伸蛋白BC-CUL2/5-SOCS-盒蛋白)E3泛素-蛋白连接酶复合物的可能底物识别组分,其介导靶蛋白的泛素化和随后的蛋白酶体降解。似乎识别IL6ST(通过相似性)。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
TRAIL:该基因编码的蛋白是属于肿瘤坏死因子(TNF)配体家族的细胞因子。该基因的额外名称包括但不限于APO2L、TNF-相关细胞凋亡诱导配体、TNFSF10和CD253。TRAIL以膜结合形式和可溶形式存在,这两者均可在不同细胞(诸如转化肿瘤细胞)中诱导细胞凋亡。该蛋白结合TNF受体超家族的几种成员诸如TNFRSF1 OA/TRAILRl、NFRSFl 0B/TRAILR2、NFRSF10C/TRAILR3、TNFRSF 10D/TRAILR4,并且可能还结合NFRSFl IB/OPG。可以通过结合无法诱导细胞凋亡的诱骗受体诸如NFRSF10C/TRAILR3、TNFRSF 10D/TRAILR4和NFRSFl IB/OPG而调节该蛋白的活性。已显示该蛋白与其受体的结合触发MAPK8/JNK、胱天蛋白酶8和胱天蛋白酶3的活化。已发现该基因的编码不同同种型的可变剪接转录物变体。TRAIL可从细胞表面蛋白水解切割以产生具有同源三聚体结构的可溶形式。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
TREM1:触发在骨髓细胞1上表达的受体;TREM1的额外别名为CD354和TREM-1。该基因编码属于在骨髓细胞上表达的Ig超家族的受体。通过刺激促炎性趋化因子和细胞因子的释放以及细胞活化标志物的增加的表面表达,该蛋白扩大由细菌和真菌感染触发的嗜中性粒细胞和单核细胞-介导的炎性应答。已注明该基因的编码不同同种型的可变剪接转录物变体。该基因编码的蛋白具有通过sTREM1表示的可溶形式。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
TRIM22:参与细胞先天免疫的干扰素-诱导的抗病毒蛋白。抗病毒活性可由病毒蛋白的TRIM22依赖性泛素化部分介导。在限制HIV-1、脑心肌炎病毒(EMCV)和乙型肝炎病毒(HBV)的复制中发挥作用。充当HBV核心启动子的转录阻遏物。可具有E3泛素-蛋白连接酶活性。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
UBE2N:UBE2V1 -UBE2N和UBE2V2-UBE2N异源二聚体催化非经典'Lys-63'-连接的多聚泛素链的合成。这种类型的多聚泛素化不导致蛋白被蛋白酶体降解。其介导靶基因的转录活化。其在通过细胞周期和分化对进程的控制中发挥作用。在无误DNA修复途径中发挥作用并且有助于在DNA损伤之后细胞的存活。与E3连接酶、HLTF和SHPRH一起在PCNA的'Lys-63'-连接的多聚泛素化中在基因毒性应激后起作用,这是DNA修复所需的。其似乎与E3连接酶RNF5一起在JKAMP的'Lys-63'-连接的多聚泛素化中起作用,从而通过减少其与蛋白酶体和ERAD的组分的缔合来调节JKAMP功能。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
VEGFR2:血管内皮生长因子(VEGF)是内皮细胞的主要生长因子。该基因编码VEGF的两种受体之一。该受体(称为激酶插入结构域受体)是III型受体酪氨酸激酶。其作为VEGF-诱导的内皮增殖、存活、迁移、肾小管形态发生和萌发的主要介体发挥功能。该受体的信号传导和运输通过多种因子(包括Rab GTP酶、P2Y嘌呤核苷酸受体、整联蛋白αVβ3、T-细胞蛋白酪氨酸磷酸酶等)调节。该基因的突变牵涉于幼儿毛细血管瘤(由RefSeq提供)。该基因编码的蛋白具有表示为sVEGFR2的可溶形式。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
XAF1: 似乎作为IAP(细胞凋亡蛋白的抑制因子)家族的成员的负调节物发挥功能。抑制BIRC4的抗胱天蛋白酶活性。诱导BIRC4的切割和失活,而不依赖于胱天蛋白酶活化。介导TNF-α-诱导的细胞凋亡并且参与滋养层细胞的细胞凋亡。可以通过活化线粒体细胞凋亡途径间接抑制BIRC4。易位至线粒体之后,促进BAX易位至线粒体并且从线粒体释放细胞色素c。似乎促进BIRC4从胞质重新分布至细胞核,可能不依赖于似乎在胞质中发生的BIRC4失活。BIRC4-XAF1复合物介导BIRC5/存活素的下调;该过程需要BIRC4的E3连接酶活性。似乎参与对TRAIL的促细胞凋亡作用的细胞灵敏度。可以是通过介导癌细胞的细胞凋亡抗性的肿瘤抑制物。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
ZBPl:DLM1编码Z-DNA结合蛋白。Z-DNA形成是动态过程,主要通过超螺旋的量控制。可在针对肿瘤和病原体的宿主防御中发挥作用。结合Z-DNA(通过相似性)。该决定因素的氨基酸和/或核苷酸序列将是技术人员已知的,或者可以源自合适的数据库条目,例如,在Genbank或Uniprot,日期为2015年11月11日。
本发明还设想使用非多肽决定因素形式的其他决定因素,诸如年龄、绝对嗜中性粒细胞计数(ANC)、绝对淋巴细胞计数(ALC)、嗜中性粒细胞% (Neu(%))、淋巴细胞% (Lym(%))、单核细胞% (Mono (%))、最高温度、自症状起的时间、肌酸酐(Cr)、钾(K)、脉冲和尿素。术语“嗜中性粒细胞% (Neu(%))”是指作为淋巴细胞的白血细胞的分数。术语“淋巴细胞% (Lym (%))”是指作为淋巴细胞的白血细胞的分数。术语“单核细胞% (Mono (%))”是指作为单核细胞的白血细胞的分数。
特别优选的其他决定因素是TRAIL和CRP。还优选的是决定因素诸如原降钙素、CD64、IP10、ILIRa或Mac-2BP。因此,本发明设想测量HNL与TRAIL的组合,测量HNL与CRP的组合,以及测量HNL与原降钙素的组合,测量HNL与CD64的组合,测量HNL与IP10的组合,测量HNL与ILIRa的组合,测量HNL与Mac-2BP的组合,或测量HNL与TRAIL、IP10、ILIRa和Mac-2BP中的一种或多种的组合。还优选的是非多肽决定因素绝对嗜中性粒细胞计数(ANC)和嗜中性粒细胞% (Neu(%))。
在另一个实施方案中,使用决定因素绝对嗜中性粒细胞计数(ANC)和嗜中性粒细胞% (NEU(%))的水平来均一化HNL的水平。此类均一化可以通过将嗜中性粒细胞(ANC)或Neu%与测量的HNL关联来进行。
因此,在上述排除细菌感染或划入病毒感染的方法的一个实施方案中,所述方法进一步包括:
a) 测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的TRAIL的多肽浓度高于预定的第一阈值,则对于主体排除细菌感染或划入病毒感染。
在上述排除病毒感染的方法或划入细菌感染的方法的另一个实施方案中,所述方法进一步包括:
a) 测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的TRAIL的多肽浓度低于预定的第一阈值,则对于主体划入细菌感染或排除病毒感染。
此外,在一个进一步实施方案中,为主体提供治疗推荐的方法进一步包括在步骤a)中额外测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值且如果步骤(a)中测定的TRAIL的浓度低于预定阈值,则推荐主体接受抗生素治疗;
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值且如果步骤(a)中测定的TRAIL的多肽浓度高于预定阈值,则推荐患者不接受抗生素治疗;或者
d) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值且如果步骤(a)中测定的TRAIL的多肽浓度高于预定阈值,则推荐患者接受抗生素治疗,如上文所定义。
根据另一个实施方案,为主体提供诊断测试推荐的方法进一步包括在步骤a)中额外测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值且如果步骤(a)中测定的TRAIL的浓度低于预定阈值,则推荐测试样品中细菌的存在;
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值且如果步骤(a)中测定的TRAIL的多肽浓度高于预定阈值,则推荐测试样品中病毒的存在。
还设想排除主体中的传染病、优选细菌或病毒疾病的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度和选自TRAIL、IP10、ILIRa或Mac-2BP的一种或多种多肽的多肽浓度;
b) 对测量的多肽的浓度应用预定的数学函数来计算评分
c) 将评分与预定参考值进行比较。
如本文所用的“参考值”可相对于源自群体研究的数目或值,包括但不限于,此类具有相同感染的主体,具有相同或类似年龄范围的主体,在相同或类似种族中的主体,或相对于经受感染治疗的主体的起始样品。此类参考值可源自从感染的数学算法和计算指数获得的群体的统计分析和/或风险预测数据。参考决定因素指数也可使用算法和其他统计和结构分类方法构建和使用。
在本发明的一个实施方案中,参考值是源自一个或多个没有感染的主体(即健康和或非感染个体)获得的对照样品中决定因素的量(即水平)。在一个进一步实施方案中,在此类测试后将所述主体监测和/或周期性重新测试诊断相关时间段(“纵向研究”),以验证感染的持续不存在。此时间段可以是从测定参考值的起始测试日期起的1天、2天、2至5天、5天、5至10天、10天、或10或更多天。
此外,在合适存档的历史主体样品中的决定因素的回顾性测量可以用于建立这些参考值,因此缩短所需的研究时间。
参考值也可包含源自显示作为感染的处理和/或治疗的结果的改善的主体的决定因素的量。参考值也可包含源自已通过已知技术证实感染的主体的决定因素的量。
在另一个实施方案中,参考值是指数值或基线值。指数值或基线值是没有感染的一个或多个主体的有效量的决定因素的复合样品。基线值也可包含源自已经对于感染显示处理和疗法的改善的主体的样品中决定因素的量。在该实施方案中,为了与源自主体的样品进行比较,类似地计算决定因素的量并与指数值进行比较。任选地,选择鉴定为具有感染的主体以接受治疗方案以减缓进展或消除感染。
此外,决定因素的量可在测试样品中测量并且与“正常对照水平”进行比较,其利用技术诸如参考限值、区分限值或定义风险的阈值以定义截止点和异常值。“正常对照水平”是指通常在没有遭受感染的主体中发现的一种或多种决定因素或组合决定因素指数的水平。此正常对照水平和截止点可以基于决定因素单独使用还是以与其他决定因素组合成指数的公式使用而不同。或者,正常对照水平可以是来自前面测试的主体的决定因素模式的数据库。
治疗方案的有效性可能通过检测随时间获得自主体的有效量(其可以是一种或多种)样品中的决定因素和比较所检测的决定因素的量来监测。例如,第一样品可在主体接受治疗前获得,而一种或多种后续样品在主体治疗之后或期间获得。
例如,本发明的方法可用于区分细菌、病毒和混合感染(即细菌和病毒共感染)。这允许将患者分层并且相应地治疗。
任何公式可用于将决定因素结果组合成可用于实施本发明的指数。如上所述且非限制地,在多个其他指示中,此类指数可以指示概率、可能性、绝对或相对风险、从一种疾病状态至另一种疾病状态的转化时间或速率,或进行感染的未来生物标志物测量的预测。这可以持续特定时间段或范围,或保持终身风险,或简单作为相对于另一个参考主体群体的指数提供。
尽管本文描述了多种优选的公式,超过本文描述和上面定义的几个其他模型和公式类型是本领域技术人员众所周知的。使用的实际模型类型或公式本身可选自基于训练群中其结果的性能和诊断精确度特征的可能模型领域。公式本身的特异性通常可源自相关训练群中的决定因素结果。在其他使用中,此类公式可意在将源自一种或多种决定因素输入的特性空间绘图成主体类型集合(例如可用于将主体的类型成员预测为正常、具有感染),以使用贝叶斯方法获得风险概率函数的估计,或估计类型条件概率,然后使用贝叶斯规则以产生如前面情况中的类型概率函数。
优选公式包括广泛类型的统计分类算法,和具体而言使用区分分析。区分分析的目标是从原先鉴定的特性集合预测类型成员。在线性区分分析(LDA)的情况下,鉴定特征的线性结合,其通过一些标准将组之间的区分最大化。可以使用用不同阈值的基于特征基因(eigengene)的方法(ELDA)或基于多元方差分析(MANOVA)的分步算法针对LDA鉴定特征。可进行向前、向后和逐步算法,其基于根据霍特林-劳利(Hotelling-Lawley)统计学使不分离的概率最小化。
基于特征基因(Eigengene)的线性区分分析(ELDA)是Shen等人(2006)开发的特征选择技术。所述公式在多变量框架中使用改良的特征分析(eigen analysis)选择特征(如生物标志物)以鉴定与最重要的特征向量相关的特征。“重要的”被定义为解释在尝试相对于一些阈值分类的样品中的最大差异方差的那些特征向量。
支持向量机(SVM)是尝试找到分离两种类型的超平面的分类公式。该超平面含有支持向量,远离超平面精确边际距离的数据点。在目前数据维度中不存在分离超平面的可能事件中,通过取初始变量的非线性函数通过将数据投射至更大维度而大幅扩展维度(Venables和Ripley,2002)。尽管不需要,但SVM特征的过滤经常改进预测。可以使用非参数Kruskal-Wallis(KW)检验选择最佳单变量特征来针对支持向量机鉴定特征(例如生物标志物)。随机森林法(RF,Breiman,2001)或递归分区(RPART,Breiman等,1984)也可单独或组合使用以鉴定最重要的生物标志物组合。KW和RF两者需要从总体选择许多特征。RPART使用可用的生物标志物亚组来创建单独分类树。可以使用其他公式以在其呈现预测公式前将单个决定因素测量的结果预处理成信息的更有价值形式。最值得注意的是,使用常见数学转化诸如对数或逻辑函数均一化生物标志物结果作为参考群平均值等的正常或其他分布位置,是本领域技术人员众所周知的。特别感兴趣的是基于临床-决定因素(诸如年龄、自症状起的时间、性别、种族或性别)的均一化集合,其中仅在类型内的主体上使用特定公式,或连续组合临床-决定因素作为输入。在其他情况下,基于分析物的生物标志物可以组合成后续呈现至公式的计算变量。
除了可能被均一化的一个主体的个别参数值以外,所有主体或任何已知类型的主体的总预测公式本身可以基于群体的期望流行率和平均生物标志物参数值的调整、根据D'Agostino等人,(2001) JAMA 286: 180-187中概述的技术或其他相似的均一化和重新校准技术进行重新校准或另外调节。此类流行病学调整统计可以通过呈现至模型的过往数据注册来捕获、证实、提高和持续更新,所述过往数据注册可以是机器可读或其他形式,或者偶然通过回顾查询存储样品或参照此类参数和统计学的历史研究。可以是公式重新校准或其他调整的主体的额外示例包括Pepe, M.S.等人,2004对优势比限定的研究;Cook, N.R.,2007关于ROC曲线的研究中使用的统计。最终,分类器(classifier)公式本身的数字结果可以通过其参考实际临床群体和研究结果和观察到的终点来处理后转化,以便校准绝对风险和对分类器或风险公式的可变数字结果提供置信区间。
一些决定因素可以表现出取决于患者年龄的趋势(例如群体基线可以作为年龄的函数上升或下降),其可以用作如上文所述的非多肽决定因素。因此可使用'年龄依赖性均一化或分层'方案来调整年龄相关的差异。进行年龄依赖性均一化或分层可用于改进区分不同类型感染的决定因素的精确度。例如,本领域技术人员可产生拟合作为年龄的函数的各决定因素的群体平均水平的函数并且使用其来均一化不同年龄的个体主体水平的决定因素。另一个实例是根据他们的年龄将主体分层并且为各年龄组独立地确定年龄特异性阈值或指数值。
本发明的性能和因此绝对和相对临床有用性以上述多种方式进行评价。在性能的多种评价中,本发明意在提供临床诊断和预后中的精确度。诊断或预后测试、测定或方法的精确度涉及所述测试、测定或方法区分具有感染的主体的能力,其基于主体是否具有决定因素的水平的“显著改变”(例如临床显著、诊断显著)。“有效量”意指测量适当数目的决定因素(可以是一种或多种)以产生与该决定因素的预定截止点(或阀值)不同的“显著改变”(例如决定因素的表达或活性水平),并且因此指示所述主体具有感染,其中所述决定因素是决定性的。决定因素水平的差异优选是统计学显著的。如下所述,并且不受本发明的任何限制,达到统计学显著性并且因此优选的分析、诊断和临床精确度,通常、但不是总是需要组合几种决定因素,所述决定因素在组中共同使用并且与数学算法组合以实现统计学显著的决定因素指数。
在疾病状态的分类诊断中,改变测试(或测定)的截止点或阈值通常改变灵敏度和特异性,但是呈定性反比关系。因此,在评价提出的医学测试、测定或方法的准确度和有用性用于评价主体的状况中,技术人员总是考虑灵敏度和特异性两者,并且因为灵敏度和特异性可在截止点范围内显著变化,应当注意在报告灵敏度和特异性处的截止点如何。实现这一点的一种方式是通过使用取决于灵敏度和特异性的MCC度量。使用统计学诸如包含所有潜在截止值的AUC,优选用于使用本发明的大部分分类风险量度,而对于持续风险量度,优选观察结果或其他黄金标准的拟合优度和校准的统计。
术语"MCC"意指Mathwes关联系数,并且如下计算:MCC = (TP * TN - FP * FN) /{(TP + FN) * (TP + FP) * (TN + FP) * (TN + FN)}<A>0.5,其中TP、FP、TN、FN分别为真阳性、假阳性、真阴性和假阴性。注意到MCC值范围为-1至+1,分别指示完全错误和完美分类。MCC为0表明随机分类。MCC已显示可用于将灵敏度和特异性组合成单一度量(Baldi,Brunak等人,2000)。其还可用于在不平衡的类型大小的情况下测量和优化分类精确度(Baldi,Brunak等人,2000)。
MCC值可范围在-1到+1之间,分别表示完全错误和完美分类。0的MCC表示随机分类。已经显示,MCC尤其可用于在不平衡类型大小的情况下测量和优化分类精确度(Baldi,Brunak等人2000)。可以使用线性分类方案来评估决定因素的区分诊断,其中计算使训练集上的MCC最大化的截止值,然后其用于对测试集中的患者进行分类。
术语“TP”意指“真阳性”,即精确反映测试的活性的阳性测试结果。例如,在本发明的上下文中,TP例如但不限于真实地原样分类细菌感染。
“TN”是真阴性,且意指精确反映测试的活性的阴性测试结果。例如,在本发明的上下文中,TN例如但不限于真实地原样分类病毒感染。
“FN”是假阴性,且意指看起来阴性、但未能反映情况的结果。例如,在本发明的上下文中,FN例如但不限于错误地将细菌感染分类为病毒感染。
“FP”是假阳性,且意指错误地分类在阳性类别中的测试结果。例如,在本发明的上下文中,FP例如但不限于错误地将病毒感染分类为细菌感染。
“灵敏度”通过TP/(TP+FN)或疾病主体的真阳性分数来计算。“特异性”通过TN/(TN+FP)或非疾病或正常主体的真阴性分数来计算。"总精确度"通过(TN+TP)/(TN+FP+TP+FN)来计算。“阳性预测值”或“PPV”通过TP/(TP+FP)或所有阳性测试结果的真阳性分数来计算。其固有地受到预期被测试的群体的疾病和测试前概率的流行率影响。“阴性预测值”或“NPV”通过TN/(TN+FN)或所有阴性测试结果的真阴性分数来计算。其也固有地受到预期被测试的群体的疾病和测试前概率的流行率影响。参见例如O'Marcaigh AS, Jacobson RM,"Estimating The Predictive Value Of A Diagnostic Test, How To PreventMisleading Or Confusing Results," Clin. Ped. 1993, 32(8): 485-491,其讨论测试(例如临床诊断测试)的特异性、灵敏度和阳性和阴性预测值。
术语“精确度”是指测量或计算的数量(测试报告值)与其实际(或真实)值的符合程度。临床精确度是指真实输出(真阳性(TP)或真阴性(TN)与错误分类的输出(假阳性(FP)或假阴性(FN))的比例,并且除了其他测量以外,可以表述为灵敏度、特异性、阳性预测值(PPV)或阴性预测值(NPV)、Matheus关联系数(MCC),或似然度、优势比、接受者操作特性(ROC)曲线、曲线下面积(AUC)。
经常,对于使用连续诊断测试测量的二元疾病状态分类方法,灵敏度和特异性通过根据Pepe等人 "Limitations of the Odds Ratio in Gauging the Performance of aDiagnostic, Prognostic, or Screening Marker," Am. J. Epidemiol 2004, 159 (9):882-890的接受者操作特性(ROC)曲线概述,并且通过曲线下面积(AUC)或c-统计学(允许在仅具有单个值的测试(或测定)切点的整个范围上表示测试、测定或方法的灵敏度和特异性的指标)概述。参见例如Shultz, "Clinical Interpretation Of LaboratoryProcedures," 第14章,Teitz, Fundamentals of Clinical Chemistry, Burtis andAshwood (编), 第4版 1996, W.B. Saunders Company, 第192- 199页; 和Zweig等人, "ROC Curve Analysis: An Example Showing The Relationships Among Serum LipidAnd Apolipoprotein Concentrations In Identifying Subjects With CoronoryArtery Disease," Clin. Chem., 1992, 38(8): 1425-1428。使用似然函数、优势比、信息理论、预测值、校准(包括拟合优度)和重新分类测量的替代方法根据Cook,Cook, "Use andMisuse of the Receiver Operating Characteristic Curve in Risk Prediction,"Circulation 2007, 115: 928- 935概述。
如本文所用的“公式”、“算法”或“模型”是任何数学公式、算法、分析或程序化过程、或统计技术,其采用一种或多种连续或类别输入(本文称为“参数”)并且计算输出值(有时称为“指数”或“指数值”)。“公式”的非限制性实例包括总和、比率和回归运算符(诸如系数或幂(exponent))、生物标志物值转化和均一化(包括但不限于基于临床-决定因素诸如性别、年龄或种族的那些均一化方案)、规则和准则、统计分类模型和在历史群体上训练的神经网。在组合决定因素中特别使用线性和非线性公式和统计分类分析以确定主体样品中检测的决定因素的水平与具有感染或特定类型的感染的主体的概率之间的关系。在组和组合构建中,特别感兴趣的是结构和句法统计分类算法,和指数构建、利用模式识别特征的方法,包括已确立的技术,诸如互相关联,主成分分析(PCA),因素轴转,逻辑回归(LogReg),线性区分分析(LDA),Eigengene线性区分分析法(ELDA),支持向量机(SVM),随机森林(RF),递归分区树(RPART)以及其他相关决定树分类技术,缩小重心(SC),StepAIC,Kth-NearestNeighbor,Boosting,决策树,神经网络,贝叶斯网络,和隐马尔可夫模型等等。其他技术可以在事件风险分析的存活和时间中使用,包括本领域技术人员众所周知的Cox、Weibull、Kaplan-Meier和Greenwood模型。许多这些技术可与决定因素选择技术(例如前向选择,向后选择,或逐步选择,给定大小的所有潜在组的全面调查,基因算法)组合使用,或它们可以自身包括在其自身技术内的生物标志物选择方法。这些可以与信息标准诸如Akaike信息标准(AIC)或Bayes信息标准(BIC)联合,以便定量其他生物标志物和模型改进之间的折衷,并且有助于最小化过度拟合。使用技术诸如Bootstrap、Leave-One-Out(LOO)和10-Fold交叉验证(10-FoldCV),所得预测模型可以在其他研究中验证,或在最初训练的研究中交叉验证。在各种步骤中,错误发现率可以根据本领域已知技术通过值置换来估计。“健康经济效用函数”是一种公式,其源自在护理标准中引入诊断或治疗干预之前和之后,理想化可适用患者群体中的一定范围的临床结果的期望概率的组合。其涵盖此干预的精确度、有效性和性能特性的估计值,和与各结果相关的成本和/或价值测算值(效用),其可源自护理的实际健康系统成本(服务、供应、装置和药物等)和/或作为导致各结果的每生活质量调整寿命年(QALY)的估算可接受值。结果的预测群体大小乘以各自的结果的预期效用之积的总和(所有预测结果)是给定护理标准的总健康经济效用。(i)对用干预的护理标准计算的总健康经济效用相比于(ii)对无干预的护理标准的总健康经济效用之间的差异导致干预的健康经济成本或价值的总体测量。这可以自身在所分析的整个患者组中(或单独在干预组中)分配以达成每单位干预的成本,并且指导决定诸如市场定位、定价和健康系统接受性的假设。此类健康经济效用函数通常用于比较干预的成本效益,但也可转化以估计保健系统愿意付出的每QALY可接受值,或新干预所需的可接受的成本有效的临床性能特性。
对于本发明的诊断性(或预后性)干预,由于各结果(其在疾病分类诊断测试中可以是TP、FP、TN、或FN)承担不同成本,健康经济效用函数可基于临床情况和个体结果成本和值,优选倾向灵敏度超过特异性,或PPV超过NPV,因此提供健康经济性能和值的另一个量度,所述量度可能不同于更直接临床或分析性能量度。这些不同测量和相对折衷通常将仅在具有零误差率的完美测试(也称零预测主体输出误分类或FP和FN)的情况下会聚,对于其所有性能测量将倾向不完美,但程度不同。
因此,在一个进一步方面,本发明涉及区分主体中的细菌感染和病毒感染的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL和CRP、任选地TRAIL的多肽浓度;
b) 对HNL和CRP以及任选TRAIL的浓度应用预定的数学函数来计算评分;
c) 将如上文所定义的评分与如上文所定义的预定参考值进行比较。
因此,在一个进一步方面,本发明提供了区分主体中的细菌或混合感染和病毒感染的方法,其包括:
a) 使用如上所定义的结合剂或如上所定义的诊断组合物或试剂盒测量获得自主体的样品中的HNL和CRP、任选地TRAIL的多肽浓度;
b) 对HNL和CRP以及任选TRAIL的浓度应用预定的数学函数来计算评分;
c) 将如上文所定义的评分与如上文所定义的预定参考值进行比较。
在又另一个方面,提供了鉴定主体中的感染类型、优选细菌或病毒感染的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或如权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度和如上文所定义的选自TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性结合分子、IL1、I-TAC和TNFR1的第一多肽决定因素的水平;和
b) 测量选自以下的第二决定因素的水平:
(i) 如上文所定义的多肽决定因素TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性结合分子、IL1、I-TAC和TNFR1;
(ii) 如上文所定义的多肽决定因素IFITM3、IFIT3、EIF4B、IFIT1、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1和IL7;
(iii) 如上文所定义的多肽决定因素CRP、SAA、TREM-1、PCT、IL-8、TREM-1和IL6;或
(iv) 如上文所定义的非多肽决定因素年龄、绝对嗜中性粒细胞计数(ANC)、绝对淋巴细胞计数(ALC)、嗜中性粒细胞% (Neu(%))、淋巴细胞% (Lym (%))、单核细胞% (Mono(%))、最高温度、自症状起的时间、肌酸酐(Cr)、钾(K)、脉冲和尿素;
c) 将HNL、第一和第二决定因素的水平与参考值进行比较,由此鉴定主体中的感染类型,其中第一和/或第二决定因素的测量增加了在测量HNL中鉴定感染类型的精确度。
如本文所用的“感染类型”意在包括细菌感染、病毒感染、混合感染、无感染(即非感染性)。更具体地,本发明的一些方法用于区分具有细菌感染、病毒感染、混合感染(即细菌和病毒共感染)的主体,具有非感染性疾病的患者和健康个体。
为了方便起见,本文公开的抗体可以在试剂盒(即预定量的试剂与用于进行诊断测定的说明书的包装组合)中提供。当抗体用酶标记时,试剂盒将包括酶所需的底物和辅因子(例如,提供可检测发色团或荧光团的底物前体)。此外,可以包括其他添加剂,诸如稳定剂、缓冲剂(例如封闭缓冲液或裂解缓冲液)等。各种试剂的相对量可以广泛变化以提供试剂溶液中的浓度,其基本上优化测定的灵敏度。具体地,试剂可以作为干燥粉末(通常是冻干的)提供,包括赋形剂,其在溶解后将提供具有适当浓度的试剂溶液。
还提供了包含用于多种诊断测定(包括例如免疫测定诸如ELISA(夹心型或竞争形式))中的一种或多种此类试剂的诊断试剂和试剂盒。在一些实施方案中,此类试剂盒可以包括至少第一肽(任选地如本文所述的适当折叠的成熟HNL标准品),或本文所述的第一抗体或抗原结合片段,其功能片段或其混合物,以及用于信号发生的装置。试剂盒的组分可以预先连接至固体支持物,或者可以当使用试剂盒时应用至固体支持物的表面。在一些实施方案中,信号产生装置可以与本文所述的抗体预先缔合,或者可以需要在使用前与一种或多种组分例如缓冲液、抗体 - 酶缀合物、酶底物等组合。试剂盒还可以包括额外的试剂,例如用于降低与固相表面的非特异性结合的封闭试剂,洗涤试剂,酶底物等。固相表面可以是管、珠粒、微量滴定板、微球或其他适用于固定蛋白、肽或多肽的材料的形式。在一些实施方案中,催化化学发光或显色产物的形成或化学发光或显色底物的减少的酶是信号产生装置的组分。此类酶是本领域众所周知的。试剂盒可以包含任何本文所述的捕获试剂和检测试剂。任选地,所述试剂盒还可以包含用于实施本文所述的方法的说明书。所述试剂盒可以进一步包含用于检测和测量其他生物学参数的试剂,例如,用于测量原降钙素、C-反应蛋白、CD64或上文提及的任何多肽决定因素的表达和量以及用于测定白血细胞(例如嗜中性粒细胞、T细胞、B细胞、单核细胞、嗜酸性粒细胞、嗜碱性粒细胞)的数目的试剂。
也可以制备本文公开的诊断试剂盒,其包含本文公开的抗体、肽、抗原结合片段或多核苷酸中的至少一种以及用于使用所述组合物作为诊断试剂或治疗剂的说明书。用于此类试剂盒的容器通常可以包含至少一个小瓶、试管、烧瓶、瓶、注射器或其他合适的容器,其中可以放置且适当地等分诊断和/或治疗组合物中的一种或多种。当还提供第二治疗剂时,所述试剂盒还可以含有第二不同的容器,其中可以放置该第二诊断和/或治疗组合物。或者,多种化合物可以在单一药物组合物中制备,并且可以包装在单一容器装置(诸如小瓶、烧瓶、注射器、瓶或其他合适的单一容器)中。本发明的试剂盒也将通常包括用于容纳紧密限制的小瓶用于商业销售的装置,诸如例如其中保留所需小瓶的注射或吹塑塑料容器。当在试剂盒内包括放射性标记、显色、荧光或其他类型的可检测标记或检测装置时,标记试剂可以提供在与诊断或治疗组合物本身相同的容器中,或者可替代地置于其中可以放置且适当地等分第二组合物的第二不同的容器装置中。或者,所述检测试剂和标签可以在单一容器装置中制备,并且在大多数情况下,所述试剂盒通常还将包括用于容纳紧密限制的小瓶用于商业销售和/或方便包装和递送的装置。
还提供了用于进行本文所述的诊断或监测方法的装置或设备。此类设备可以包括其中可以输入样品的隔室或管,任选地包括阀或泵以引导样品流过装置的流体处理系统,任选地从血液分离血浆或血清的过滤器,用于添加捕获试剂或检测试剂的混合室,以及任选地用于检测与捕获试剂免疫复合物结合的可检测标记的量的检测装置。样品的流动可能是被动的(例如,通过毛细管、流体静力学或一旦施加样品就不需要进一步操纵装置的其他力)或主动的(例如,通过施加经由机械泵、电渗泵、离心力或增加的空气压力产生的力),或通过主动和被动力的组合。涉及目标分析物的基于磁性分离的分析物检测装置(例如WO2008/072156、WO2008/102218、WO2010/035204和WO2011/036638中公开的装置)也可用于进行本文公开的测试和方法。
在相关实施方案中,还提供了处理器、计算机可读存储器和存储在计算机可读存储器上且适于在处理器上执行以进行本文所述的任何方法和/或产生作为输出的检测到的HNL的水平和被认为是“正常”(使得在“正常”范围之外的水平与如本文所述的一种或多种病况相关)的阈值或阈值范围的例程。在一些实施方案中,还提供了含有用于执行类似功能的程序或例程的计算机可读介质。合适的计算系统、环境和/或配置的实例包括个人计算机、服务器计算机、手持式或笔记本电脑设备、多处理器系统、基于微处理器的系统、机顶盒、可编程消费电子产品、网络PC、小型计算机、大型计算机、包括任何上述系统或装置的分布式计算环境或本领域已知的任何其他系统。
本文公开的抗体可用于靶抗原的诊断测定,例如检测其在特定细胞、组织或血清中的表达。所述抗体也可用于体内诊断测定。通常,为了这些目的,用放射性核素标记抗体,使得可以使用免疫闪烁扫描术定位位点。
本文公开的抗体可用于任何已知的测定方法,诸如竞争结合测定法、直接和间接夹心测定法,诸如ELISA和免疫沉淀测定法。Zola, Monoclonal Antibodies: A Manual ofTechniques, pp.147- 158 (CRC Press, Inc. 1987)。所述抗体也可以用于免疫组织化学,使用本领域已知的方法标记细胞样品。
实验
1. 抗体和HNL表位的表征
通过高质量MALDI质谱法进行表位作图
在开始表位作图之前,已对每个样品(抗体和抗原)进行高质量MALDI分析,以验证其完整性和聚集水平。对于完整性/聚集测试,使用配备有CovalX的HM3相互作用模块的Ultraflex III MALDI ToF质谱仪(Bruker)进行测量。CovalX的相互作用模块含有特殊的检测系统,其经设计以优化以纳摩尔灵敏度检测最高达2MDa。移取20μl各蛋白样品(抗-HLL克隆MAB1;克隆MAB2和克隆MAB3和HNL以制备8个稀释液,最终体积为10μl。这些稀释液中抗体的浓度为1.0 mg/ml、0.5 mg/ml、250 μg/ml、125 μg/ml、62.5 μg/ml、31.25 μg/ml、15.63 μg/ml、7.82 μg/ml。稀释HNL抗原以提供以下浓度:350 μg/ml、175 μg/ml、87.5 μg/ml、43.75 μg/ml、21.88 μg/ml、10.94 μg/ml、5.47 μg/ml和2.74 μg/ml。制备这8种样品稀释液以获得以下预期浓度:
将1μl获得的每种稀释液与1μl由乙腈/水(1:1, v/v)、TFA 0.1% (K200 MALDI 试剂盒)中的重结晶的芥子酸基质(10 mg/ml)构成的基质混合。混合后,将1μl各样品点样在MALDI板(SCOUT 384)上。在室温下结晶后,将板引入MALDI质谱仪中,并立即以高质量MALDI模式进行分析。分析已重复一式三份。
交联实验允许通过高质量MALDI质谱法直接分析非共价相互作用。通过将含有非共价相互作用的蛋白样品与专门开发的交联混合物混合(Bich, C.等人 Anal. Chem.,2010, 82 (1), pp 172–179),可以高灵敏度特异性检测非共价复合物。生成的共价结合允许相互作用物质在样品制备过程和MALDI电离后存留。特殊的高质量检测系统可以表征高质量范围内的相互作用。
将制备用于对照实验的每种混合物(留下9μl)送至使用CovalX的K200 MALDI MS分析试剂盒进行交联。将9μl混合物(1至1/128)与1μl K200稳定剂试剂(2mg/ml)混合并在室温下孵育。孵育时间(180分钟)后,如同对照实验一样制备样品用于MALDI分析。在结晶后立即通过高质量MALDI分析法分析样品。使用CovalX的HM3相互作用模块进行MALDI ToF MS分析,所述CovalX的HM3相互作用模块具有标准氮激光器并且聚焦于0至1500kDa的不同质量范围。对于分析,已应用以下参数:质谱仪:线性和正模式,离子源1:20 kV,离子源2:17kV,透镜:12 kV,脉冲离子提取:400 ns,HM3:增益电压:3.14 kV,加速电压:20 kV。
结果
抗体抗HNL MAB1
在对照实验中,检测到1至1/64的每个稀释度的一个主峰,其中MH+=146.935±0.098kDa。观察到的分子量(kDa)为146.935±0.098,抗HNL MAB1。
在交联实验中,检测到1至1/64的每个稀释度的一个主峰,其中MH+=148.717±0.112kDa。观察到的分子量(kDa)为148.717±0.112,抗HNL MAB1。在较高质量范围内没有检测到其他非共价复合物。此外,使用复杂的追踪软件,没有非共价复合物(被检测到)。
抗体抗HNL MAB2
在对照实验中,检测到1至1/64的每个稀释度的一个主峰,其中MH+=152.657±0.115kDa。观察到的分子量(kDa)为152.657±0.115,抗HNL MAB2。
在交联实验中,检测到1至1/64的每个稀释度的一个主峰,其中MH+=154.521±0.142kDa。观察到的分子量(kDa)为154.521±0.142,抗HNL MAB2。在较高质量范围内没有检测到其他非共价复合物。使用复杂的追踪软件,没有检测到非共价复合物。
抗体抗HNL MAB3
在对照实验中,检测到1至1/64的每个稀释度的一个主峰,其中MH+=147.717±0.133kDa。观察到的分子量(kDa)为147.717±0.133,抗HNL MAB3。
在交联实验中,检测到1至1/64的每个稀释度的一个主峰,其中MH+=149.134±0.089kDa。观察到的分子量(kDa)为149.134±0.089,抗HNL MAB3。在较高质量范围内没有检测到其他非共价复合物。使用复杂的追踪软件,没有检测到非共价复合物。
抗原HNL
在对照实验中,检测到1至1/32的每个稀释度的一个主峰,其中MH+=45.431±0.33kDa。观察到的分子量(kDa)为45.431±0.33。
在交联实验中,检测到1至1/32的每个稀释度的一个主峰,其中MH+=48.509±0.052 kDa。观察到的分子量(kDa)为48.509±0.052。在较高质量范围内没有检测到其他非共价复合物。使用复杂的追踪软件,没有检测到非共价复合物。
结论聚集测试
使用高质量MALDI质谱和化学交联,没有检测到抗体抗HNL的非共价聚集体和抗原HNL的多聚体。
表位性质的表征
为了确定表位的性质(即线性或构象),评估抗原蛋白和抗体之间的相互作用是否可以被抗原的蛋白水解产生的非结构肽所抑制。
- 如果通过抗原的完全蛋白水解产生的肽能够抑制抗体上的抗原的结合,则相互作用不是基于构象。在这种情况下,表位是线性的。用由抗原序列产生的重叠肽文库的简单竞争测定将足以测定表位的序列。
- 如果通过抗原的完全蛋白水解产生的肽不能抑制抗体上的抗原的结合,则构象对于相互作用是必需的。在这种情况下,表位可以继续(具有特殊构象,即环)或中断(由于三级结构)。在这种情况下,使用共价标记、肽作图和高分辨率质谱将是必要的。
为了表征表位的性质,使用配备有CovalX的HM3 High-Mass系统的Ultraflex IIIMALDI ToF质谱仪(Bruker)进行测量。
对照实验
制备mAb/Ag(抗HNL MAB1/HNL;抗HNL MAB2 / HNL和抗HNL MAB3/HNL)的混合物。将1μl获得的混合物与1μl由乙腈/水(1:1, v/v)、TFA 0.1% (K200 MALDI 试剂盒)中的重结晶的芥子酸基质(10 mg/ml)构成的基质混合。混合后,将1μl各样品点样在MALDI板(SCOUT 384)上。在室温下结晶后,将板引入MALDI质谱仪中,并立即进行分析。一式三份重复分析。
交联实验
将制备用于对照实验的混合物(留下9μl)送至使用CovalX的K200 MALDI MS分析试剂盒进行交联。将9μl混合物与1μl K200稳定剂试剂(2mg/ml)混合并在室温下孵育。孵育时间(180分钟)后,如同对照实验一样制备样品用于MALDI分析。在结晶后立即通过高质量MALDI分析法分析样品。
竞争测定
为了确定表位的性质,用固定化胃蛋白酶进行HNL抗原的蛋白水解。将25μl浓度为10μM的抗原与固定化的胃蛋白酶2.5μM混合,并在室温下孵育30分钟。孵育时间后,将样品离心并吸取上清液。通过高质量MALDI质谱法以线性模式和反射模式控制蛋白水解的完成。优化胃蛋白酶蛋白水解,以便获得1000-3500 Da范围内的大量肽。将5μl通过蛋白水解产生的抗原肽(7.6μM)与5μl抗HNL抗体(3.8μM)混合,并在37℃下孵育2小时。将抗体与抗原肽孵育后,将5μl混合物与5μl完整抗原(3.8μM)混合。
相互作用分析
对于竞争测定,用上述相同方案(对照和交联实验)进行抗体/抗原相互作用分析。
高质量MALDI MS分析
使用CovalX的HM3相互作用模块进行MALDI ToF MS分析,所述CovalX的HM3相互作用模块具有标准氮激光器并且聚焦于0至2000kDa的不同质量范围。对于分析,已应用以下参数:质谱仪:线性和正模式;离子源1:20 kV;离子源2:17 kV;透镜:12 kV;脉冲离子提取:400ns;HM3:增益电压:3.14 kV;加速电压:20 kV。为了校准仪器,应用以胰岛素、BSA和IgG的簇的外部校准。对于每种样品,分析3个点(每个点300个激光照射)。呈现的光谱对应于300个激光照射的总和。使用CovalX的Complex Tracker分析软件2.0版分析MS数据。
结果
抗HNL MAB1/HNL
在对照实验中,抗原和抗体具有MH+=45.862 kDa和MH+=148.577 kDa。观察到的分子量(kDa)为45.725 HNL;148.431 抗HNL MAB1。
在与交联试剂K200孵育180分钟时间后完成交联实验。交联后,检测到两个额外峰,其具有MH+=195.941 kDa和MH+=241.619 kDa。使用Complex Tracker软件,我们将对照和交联光谱叠加。检测到具有以下化学计量的两种非共价复合物。观察到的分子量(kDa)化学计量分别为194.865 [抗HNL MAB1/HNL]和241.287 [抗HNL MAB1/2HNL]。
在竞争实验中,没有检测到抗体抗HNL与抗原HNL的结合的抑制。抗原肽不抑制抗体与抗原的结合。
抗HNL MAB2/HNL
在对照实验中,抗原和抗体分别具有MH+=45.755 kDa和MH+=148.531 kDa。观察到的分子量(kDa)为45.755 HNL和148.531 抗HNL MAB2。
在与交联试剂K200孵育180分钟时间后完成交联实验。交联后,检测到两个额外峰,其具有MH+=201.793 kDa和MH+=248.696 kDa。使用Complex Tracker软件,将对照和交联光谱叠加。检测到具有以下化学计量的两种非共价复合物:观察到的分子量(kDa)化学计量为194.881 [抗HNL MAB2/HNL]和240.978 [抗HNL MAB2/2HNL]。
在竞争实验中,没有检测到抗体抗HNL与抗原HNL的结合的抑制。抗原肽不抑制抗体与抗原的结合。
抗HNL MAB3/HNL
在对照实验中,检测到抗原和抗体,其具有MH+=45.742 kDa和MH+=148.554 kDa。观察到的分子量(kDa)分别为45.742 HNL和148.554 抗HNL MAB3。
在与交联试剂K200孵育180分钟时间后完成交联实验。交联后,检测到两个额外峰,其具有MH+=196.482 kDa和MH+=243.468 kDa。使用Complex Tracker软件,我们将对照和交联光谱叠加。检测到具有以下化学计量的两种非共价复合物。观察到的分子量(kDa)化学计量分别为194.130 [抗HNL MAB3/HNL]和240.793 [抗HNL MAB3/2HNL]。
在竞争实验中,没有检测到抗体抗HNL与抗原HNL的结合的抑制。抗原肽不抑制抗体与抗原的结合。
结论竞争测定
竞争测定表明,抗原肽不抑制抗体与抗原的结合。HNL上的抗HNL的表位不是线性的。
抗原HNL的表征和肽质量指纹
为了表征HNL,将其样品进行ASP-N、胰蛋白酶、糜蛋白酶、弹性蛋白酶和嗜热菌蛋白酶蛋白水解,随后进行LC-LTQ Orbitrap MS/MS分析。为了表征抗原,使用与LTQ Orbitrap XL质谱仪(Thermo)一致的Ultimate 3000 (Dionex)系统处理纳米-LC色谱。将10μl抗原(0.35mg/mL)与40μl碳酸氢铵(25 mM, pH 8.3)混合。混合后,将2 μl DTT (500 mM)添加至溶液。然后将混合物在55℃下孵育1小时。孵育后,添加2μl碘乙酰胺(1M),然后在暗室中在室温下孵育1小时。孵育后,通过添加120μl 用于用胰蛋白酶、糜蛋白酶、ASP-N、弹性蛋白酶或嗜热菌蛋白酶蛋白水解的缓冲液1/5稀释溶液:
- 将145 μl还原/烷基化的抗原与0.7μl胰蛋白酶(Roche Diagnostic)以比率1/100混合。将蛋白水解混合物在37℃下孵育过夜。
- 将145 μl还原/烷基化的抗原与0.35μl糜蛋白酶(Roche Diagnostic)以比率1/200混合。将蛋白水解混合物在25℃下孵育过夜。
- 将145 μl还原/烷基化的抗原与0.35μl ASP-N (Roche Diagnostic)以比率1/200混合。将蛋白水解混合物在37℃下孵育过夜。
- 将145 μl还原/烷基化的抗原与0.70μl弹性蛋白酶(Roche Diagnostic)以比率1/100混合。将蛋白水解混合物在37℃下孵育过夜。
- 将145 μl还原/烷基化的抗原与1.40μl嗜热菌蛋白酶(Roche Diagnostic)以比率1/50混合。将蛋白水解混合物在70℃下孵育过夜。
蛋白水解后,将10μl通过蛋白水解产生的肽加载至纳米液相色谱系统(Ultimate3000, Dionex)上并进行分析。使用LTQ OrbiTrap进行DTA产生和过滤。
分子界面的表征
为了以高分辨率确定HNL抗原上的抗HNL MAB1;抗HNL MAB2和抗HNL MAB3的表位,将抗体/抗原复合物与氘代交联剂孵育并进行多酶切割。在富集交联肽后,通过高分辨率质谱仪(nLC-Orbitrap MS)分析样品,并使用XQuest和Stavrox软件分析产生的数据。
抗体/抗原复合物
将5μl抗原样品(浓度3.8μM)与5μl抗体样品(浓度1.9μM)混合,以获得最终浓度为0.95μM/1.9μM的抗体/抗原混合物。将混合物在37℃下孵育180分钟。
在第一步中,将1mg d0交联剂与1mg d12交联剂混合。将制备的2mg与1ml DMF混合,以获得DSS do/d12的2 mg/ml溶液。将10μl先前制备的抗体/抗原混合物与1μl制备的交联剂d0/d12的溶液(2 mg/ml)混合。将溶液在室温下孵育180分钟以实现交联反应。
将10μl抗原(0.35mg/mL)与40μl碳酸氢铵(25 mM, pH 8.3)混合。混合后,将2 μlDTT (500 mM)添加至溶液。然后将混合物在55℃下孵育1小时。孵育后,添加2μl碘乙酰胺(1M),然后在暗室中在室温下孵育1小时。孵育后,通过添加120μl 用于蛋白水解的缓冲液1/5稀释溶液。
将145 μl还原/烷基化的抗原与0.7μl胰蛋白酶(Roche Diagnostic)以比率1/100混合。将蛋白水解混合物在37℃下孵育过夜。
将145 μl还原/烷基化的抗原与0.35μl糜蛋白酶(Roche Diagnostic)以比率1/200混合。将蛋白水解混合物在25℃下孵育过夜。
将145 μl还原/烷基化的抗原与0.35μl ASP-N (Roche Diagnostic)以比率1/200混合。将蛋白水解混合物在37℃下孵育过夜。
将145 μl还原/烷基化的抗原与0.70μl弹性蛋白酶(Roche Diagnostic)以比率1/100混合。将蛋白水解混合物在37℃下孵育过夜。
将145 μl还原/烷基化的抗原与1.40μl嗜热菌蛋白酶(Roche Diagnostic)以比率1/50混合。将蛋白水解混合物在70℃下孵育过夜。
使用Xquest 2.0版和Stavrox 2.1.软件分析交联剂肽。
抗体抗HNL MAB1
在交联后,通过多酶促蛋白水解产生的肽覆盖总抗原序列的95%。
使用提供的抗HNL MAB1杂交瘤,已经进行了cDNA测序,结果如下:
轻链可变区域:
重链可变区域:
使用化学交联、高质量MALDI质谱法和nLC-Orbitrap质谱法,表征抗原HNL和单克隆抗体抗HNL MAB1之间的相互作用界面。该单克隆抗体的表位包括HNL抗原上的以下氨基酸:144;145;154。在抗体上,互补位包括以下氨基酸:重链:80;86。
抗体抗HNL MAB2
在交联后,通过多酶促蛋白水解产生的肽覆盖总抗原序列的95%。使用提供的抗HNLMAB2杂交瘤,已经进行了cDNA测序,结果如下:
轻链可变区域:
重链可变区域:
使用化学交联、高质量MALDI质谱法和nLC-Orbitrap质谱法,表征抗原HNL和单克隆抗体抗HNL MAB2之间的相互作用界面。分析表明,该单克隆抗体的表位包括HNL抗原上的以下氨基酸:83;88;145;154。在抗体上,互补位包括以下氨基酸:重链:76;轻链:114。
抗体抗HNL MAB3
在交联后,通过多酶促蛋白水解产生的肽覆盖总抗原序列的95%。使用提供的抗HNLMAB3杂交瘤,已经进行了cDNA测序,结果如下:
轻链可变区域:
重链可变区域:
使用化学交联、高质量MALDI质谱法和nLC-Orbitrap质谱法,表征抗原HNL和单克隆抗体抗HNL MAB3之间的相互作用界面。分析表明,该单克隆抗体的表位包括HNL抗原上的以下氨基酸:145;154。在抗体上,互补位包括以下氨基酸:轻链:74;76;85。
2. 使用抗HNL抗体分析临床样品
在血清中的测量最突出HNL的高区分能力,而EDTA-血浆中的测量则不是如此,这似乎表明试管中的嗜中性粒细胞在血清制备后继续离体释放其HNL。该释放活性反映由细菌攻击、而不是病毒引起的嗜中性粒细胞的活化状态。为了在急诊部门或医生办公室中有用,从血液抽取至任何生物标志物结果的总测定时间应当短,即<15-20分钟,这是现场(POC)测定的开发后的理念。此类需求对于HNL的血清测量结果相当困难,因为如上所述,这需要嗜中性粒细胞的相当长的预活化。测试良好确定的嗜中性粒细胞活化剂三肽fMLP对血液中的嗜中性粒细胞的活化规避该问题的可能性。嗜中性粒细胞活化剂用于模拟全血凝固期间发生的嗜中性粒细胞活化,并且替代在长时间孵育后测量血清中的HNL的需求。
在本实施例中,从具有急性感染体征的患者的大组群收集血液,以比较HNL浓度在用fMLP活化后全血中的诊断性能与HNL在非活化血浆中的诊断性能。此外,将使用该原理的HNL测试的诊断性能与当前测试(诸如血液嗜中性粒细胞计数、CRP、IgG1受体CD64在嗜中性粒细胞上的表达和原降钙素)的诊断性能进行比较。
fMLP对嗜中性粒细胞的活化
将从患者和正常人的血液纯化的嗜中性粒细胞暴露于各种浓度的fMLP,并在37℃下孵育15分钟,随后离心,并测定上清液中HNL的存在。发现fMLP释放的最佳浓度为5x10-8 mol/L。为了研究释放HNL的动力学,将纯化的细胞孵育不同长度的时间。显著的释放在孵育5分钟后看到,并通过延长的孵育进一步增加(图2)。
为了测试嗜中性粒细胞在与fMLP孵育后的释放倾向反映凝血后全血中HNL释放的可能性,将从23个具有急性感染的患者和20个健康主体纯化的嗜中性粒细胞的HNL释放与各个主体的血清HNL浓度进行比较。如图3中可见,在HNL的上清液和血清浓度之间获得显著和线性关联性(r=0.743,p=0.002)。
临床结果
从600个具有急性感染症状的患者和144个明显未感染的健康主体收集肝素化的全血和EDTA-血浆。不知道研究的生物标志物(血液嗜中性粒细胞上的HNL、PCT和CD64表达)结果,将感染的患者根据临床理由分类为具有疾病的细菌或病毒原因。该分类包括CRP和白血细胞的浓度和差异的知识。将240个患者分类为具有细菌或病毒作为其感染的可能原因,且325个患者被判断为具有其感染的可能或不确定的原因。35个患者具有支原体作为其感染原因。在具有其感染可能原因的患者中,通过客观测试诸如细菌培养和/或PCR和/或其他客观测试证实感染。诊断中还包括CRP和白血细胞计数。后一组患者(没有支原体感染的患者)一共构成384个主体(健康人:144,细菌感染:185,病毒感染:55),并且是该报告中用于检查生物标志物的诊断性能的组群。
HNL用于诊断急性细菌感染的诊断性能
在图4 a和b中,显示在37℃fMLP活化20分钟后全血中和在EDTA-血浆中的HNL浓度。与健康主体的fMLP活化全血中的HNL浓度(几何平均值98 µg/L,95% CI 90-107,µg/L)相比,具有细菌感染(几何平均值337 µg/L,95% CI 300-379 µg/L) (p<0.0001)和具有病毒感染(几何平均值为117 µg/L,95% CI 101-136 µg/L) (p<0.05)的患者中的浓度显著升高。
健康主体血浆中HNL浓度为35μg/L(几何平均值,95% CI 34-36 µg/L),而具有细菌感染的患者中的浓度显著更高,64μg/L(几何平均值,95% CI 60-69) (p<0.0001),具有病毒感染的患者中的浓度为43μg/L(几何平均值,95% CI 38-49) (p=0.0001)。显然,健康和细菌之间的重叠对于EDTA-血浆更大。平均来说,由fMLP活化的全血中的嗜中性粒细胞释放的HNL的额外量对于健康主体为2.8倍,对于具有细菌感染的患者为5.3倍,对于具有病毒感染的那些为2.7倍。因此,用fMLP活化的全血没有看到相对于健康主体的HNL额外释放。
图5a和b显示两种HNL测定法即在fMLP活化的全血和EDTA-血浆中的诊断性能。在图5a中,通过接受者操作特征(ROC)曲线显示健康非感染主体和具有证实的细菌感染的那些之间的区别。HNL测试对fMLP活化全血的曲线下面积(AUC)为0.95 (95% 0.91-0.97),相比之下,HNL测试对EDTA-血浆的曲线下面积(AUC)为0.88 (95% CI 0.84-0.91),p=0.0003。对于fMLP活化的全血,125 µg/L HNL的阴性预测值(NPV)为90% (95% CI 82-96%),阳性值为83% (95% CI 77-89%)。对于HNL浓度为40 µg/L的EDTA-血浆,NPV为86% (95% CI72-95%),PPV为63% (95% CI 57-69%)。在细菌和病毒感染的区别中,fMLP活化的全血的AUC为0.92 (95% CI 0.87-0.96),对于EDTA-血浆为(95% CI 0.71-0.85),p=0.0006。在110 µg/L的浓度,对于fMLP活化的全血,NPV为93% (95% CI 68-100%),且PPV为85% (77-90%)。EDTA血浆中浓度为40 µg/L的HNL的相应数字为NPV 52% (95% CI 37-67%)和PPV 85% (95% CI78-90%)。在EDTA-血浆中的任何HNL浓度下,NPV都不超过60%。因此,在健康主体和细菌感染之间的区别以及细菌和病毒感染之间的区别中,HNL在fMLP活化的全血中的临床性能优于EDTA-血浆中的HNL。
CRP、血液嗜中性粒细胞计数、嗜中性粒细胞上的CD64表达和原降钙素用于诊断急性细菌感染的诊断性能
图6 a-d显示研究的群体中生物标志物CRP、血液嗜中性粒细胞计数、血液嗜中性粒细胞上的CD64表达和原降钙素的分布。除嗜中性粒细胞计数外,所有其他生物标志物在细菌和病毒感染中与健康主体相比都显著升高(p<0.0001)。生物标志物在细菌 vs 病毒感染中均显著更高(p<0.0001)。平均浓度显示于表1中。
表1.四种生物标志物的浓度和表达。
AUC在表2中给出。在健康和细菌感染之间的区别中,四种生物标志物显示AUC>90,并且这些是CRP,fMLP活化的全血中的HNL,血液嗜中性粒细胞上的CD64表达和血液嗜中性粒细胞计数。fMLP活化的全血中的HNL的AUC显著高于EDTA-血浆中HNL(p <0.001)和原降钙素(p <0.05)的AUC,并且嗜中性粒细胞上的CD64表达的AUC高于EDTA-血浆HNL (p =0.002),但与PCT无显著性差异(p = 0.06)。CRP显示最高的AUC,但由于内在的偏差风险,未计算统计学。
在细菌和病毒感染之间的区别中,只有fMLP活化的全血的AUC为>90%。这与EDTA-血浆HNL(p = 0.003)、嗜中性粒细胞上的CD64表达和原降钙素(对于两种比较,p <0.0001)显著不同。EDTA-血浆HNL的AUC显著高于原降钙素的(p = 0.01)。
表2. 所有研究的生物标志物的ROC曲线下的面积。
序列表
<110> KONINKL PHILIPS ELECTRONICS NV
<120> 利用HNL的诊断方法
<130> 2014PF00930
<160> 26
<170> PatentIn 版本 3.5
<210> 1
<211> 198
<212> PRT
<213> 智人
<400> 1
Met Pro Leu Gly Leu Leu Trp Leu Gly Leu Ala Leu Leu Gly Ala Leu
1 5 10 15
His Ala Gln Ala Gln Asp Ser Thr Ser Asp Leu Ile Pro Ala Pro Pro
20 25 30
Leu Ser Lys Val Pro Leu Gln Gln Asn Phe Gln Asp Asn Gln Phe Gln
35 40 45
Gly Lys Trp Tyr Val Val Gly Leu Ala Gly Asn Ala Ile Leu Arg Glu
50 55 60
Asp Lys Asp Pro Gln Lys Met Tyr Ala Thr Ile Tyr Glu Leu Lys Glu
65 70 75 80
Asp Lys Ser Tyr Asn Val Thr Ser Val Leu Phe Arg Lys Lys Lys Cys
85 90 95
Asp Tyr Trp Ile Arg Thr Phe Val Pro Gly Cys Gln Pro Gly Glu Phe
100 105 110
Thr Leu Gly Asn Ile Lys Ser Tyr Pro Gly Leu Thr Ser Tyr Leu Val
115 120 125
Arg Val Val Ser Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys
130 135 140
Lys Val Ser Gln Asn Arg Glu Tyr Phe Lys Ile Thr Leu Tyr Gly Arg
145 150 155 160
Thr Lys Glu Leu Thr Ser Glu Leu Lys Glu Asn Phe Ile Arg Phe Ser
165 170 175
Lys Ser Leu Gly Leu Pro Glu Asn His Ile Val Phe Pro Val Pro Ile
180 185 190
Asp Gln Cys Ile Asp Gly
195
<210> 2
<211> 116
<212> PRT
<213> 小家鼠
<400> 2
Asp Ile Val Met Thr Gln Thr Pro Ala Thr Leu Ser Val Thr Pro Gly
1 5 10 15
Asp Ser Val Ser Leu Ser Cys Arg Ala Ser Gln Ser Ile Ile Thr Asp
20 25 30
Leu His Trp Tyr Gln Gln Arg Ser His Glu Ser Pro Arg Leu Leu Ile
35 40 45
Lys Ser Ala Ser Gln Ser Ile Ser Gly Ile Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Ser Val Glu Thr
65 70 75 80
Glu Asp Phe Gly Met Tyr Phe Cys Gln Gln Ser Asn Ser Trp Pro Leu
85 90 95
Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg Ala Asp Ala Ala
100 105 110
Pro Thr Val Ser
115
<210> 3
<211> 116
<212> PRT
<213> 小家鼠
<400> 3
Val Gln Leu Gln Glu Ser Gly Pro Asp Leu Val Ala Pro Ser Gln Ser
1 5 10 15
Leu Ser Ile Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Ser Tyr Gly
20 25 30
Val His Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Leu Ile
35 40 45
Val Met Trp Ser Asp Gly Ser Thr Thr Ser Asn Ser Ala Leu Lys Ser
50 55 60
Arg Leu Ser Ile Ser Lys Asp Asn Ser Lys Ser Gln Val Phe Leu Lys
65 70 75 80
Val Asn Ser Leu Gln Ser Asp Asp Thr Ala Ile Tyr Tyr Cys Ala Arg
85 90 95
His Tyr Gly Tyr Phe Thr Met Asp Tyr Trp Gly Gln Gly Thr Ser Val
100 105 110
Thr Val Ser Ser
115
<210> 4
<211> 115
<212> PRT
<213> 小家鼠
<400> 4
Asp Ile Val Leu Thr Gln Ser Thr Ser Ser Leu Ser Val Ser Leu Gly
1 5 10 15
Asp Arg Val Thr Ile Asn Cys Arg Ala Ser Gln Asp Ile Ser Asn Tyr
20 25 30
Leu Asn Trp Tyr Gln Glu Lys Pro Asp Gly Thr Val Lys Leu Leu Ile
35 40 45
Tyr Phe Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Thr Asn Leu Glu Gln
65 70 75 80
Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
85 90 95
Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala
100 105 110
Pro Thr Val
115
<210> 5
<211> 118
<212> PRT
<213> 小家鼠
<400> 5
Glu Val Gln Leu Glu Glu Ser Gly Pro Gly Leu Val Ala Pro Ser Gln
1 5 10 15
Ser Leu Ser Ile Thr Cys Thr Ile Ser Gly Phe Ser Leu Thr Ser Tyr
20 25 30
Gly Ile His Trp Leu Arg Gln Pro Pro Gly Lys Asp Leu Glu Trp Leu
35 40 45
Val Val Ile Trp Gly Asp Gly Ser Thr Thr Ser Asn Ser Ala Leu Lys
50 55 60
Ser Arg Leu Ser Ile Ser Lys Asp Asn Ser Lys Ser Gln Val Phe Phe
65 70 75 80
Lys Met Ser Gly Leu Gln Thr Asp Asp Thr Ala Ile Tyr Tyr Cys Ala
85 90 95
Arg His Arg Tyr Ser Asp Tyr His Ala Met Asp Tyr Trp Gly Pro Gly
100 105 110
Thr Ser Val Thr Val Ser
115
<210> 6
<211> 115
<212> PRT
<213> 小家鼠
<400> 6
Asp Ile Val Leu Thr Gln Thr Thr Ser Ser Leu Ser Val Ser Leu Gly
1 5 10 15
Asp Arg Val Thr Ile Asn Cys Arg Ala Ser Gln Asp Ile Ser Asn Tyr
20 25 30
Leu Asn Trp Tyr Gln Glu Lys Pro Asp Gly Thr Val Lys Leu Leu Ile
35 40 45
Tyr Phe Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Thr Asn Leu Glu Gln
65 70 75 80
Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
85 90 95
Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala
100 105 110
Pro Thr Val
115
<210> 7
<211> 119
<212> PRT
<213> 小家鼠
<400> 7
Glu Val Lys Leu Gln Glu Ser Gly Pro Gly Leu Val Ala Pro Ser Gln
1 5 10 15
Ser Leu Ser Ile Thr Cys Thr Ile Ser Gly Phe Ser Leu Thr Ser Tyr
20 25 30
Gly Ile His Trp Leu Arg Gln Pro Pro Gly Lys Asp Leu Glu Trp Leu
35 40 45
Val Val Ile Trp Gly Asp Gly Ser Thr Thr Ser Asn Ser Ala Leu Lys
50 55 60
Ser Arg Leu Ser Ile Ser Lys Asp Asn Ser Lys Ser Gln Val Phe Phe
65 70 75 80
Lys Met Ser Gly Leu Gln Thr Asp Asp Thr Ala Ile Tyr Tyr Cys Ala
85 90 95
Arg His Arg Tyr Ser Asp Tyr His Ala Met Asp Tyr Trp Gly Pro Gly
100 105 110
Thr Ser Val Thr Val Ser Ser
115
<210> 8
<211> 11
<212> PRT
<213> 小家鼠
<400> 8
Arg Ala Ser Gln Ser Ile Ile Thr Asp Leu His
1 5 10
<210> 9
<211> 7
<212> PRT
<213> 小家鼠
<400> 9
Ser Ala Ser Gln Ser Ile Ser
1 5
<210> 10
<211> 9
<212> PRT
<213> 小家鼠
<400> 10
Gln Gln Ser Asn Ser Trp Pro Leu Thr
1 5
<210> 11
<211> 10
<212> PRT
<213> 小家鼠
<400> 11
Gly Phe Ser Leu Ser Ser Tyr Gly Val His
1 5 10
<210> 12
<211> 16
<212> PRT
<213> 小家鼠
<400> 12
Val Met Trp Ser Asp Gly Ser Thr Thr Ser Asn Ser Ala Leu Lys Ser
1 5 10 15
<210> 13
<211> 9
<212> PRT
<213> 小家鼠
<400> 13
His Tyr Gly Tyr Phe Thr Met Asp Tyr
1 5
<210> 14
<211> 11
<212> PRT
<213> 小家鼠
<400> 14
Arg Ala Ser Gln Asp Ile Ser Asn Tyr Leu Asn
1 5 10
<210> 15
<211> 7
<212> PRT
<213> 小家鼠
<400> 15
Phe Thr Ser Arg Leu His Ser
1 5
<210> 16
<211> 11
<212> PRT
<213> 小家鼠
<400> 16
His Arg Tyr Ser Asp Tyr His Ala Met Asp Tyr
1 5 10
<210> 17
<211> 10
<212> PRT
<213> 小家鼠
<400> 17
Gly Phe Ser Leu Thr Ser Tyr Gly Ile His
1 5 10
<210> 18
<211> 16
<212> PRT
<213> 小家鼠
<400> 18
Val Ile Trp Gly Asp Gly Ser Thr Thr Ser Asn Ser Ala Leu Lys Ser
1 5 10 15
<210> 19
<211> 11
<212> PRT
<213> 小家鼠
<400> 19
His Arg Tyr Ser Asp Tyr His Ala Met Asp Tyr
1 5 10
<210> 20
<211> 11
<212> PRT
<213> 小家鼠
<400> 20
Arg Ala Ser Gln Asp Ile Ser Asn Tyr Leu Asn
1 5 10
<210> 21
<211> 7
<212> PRT
<213> 小家鼠
<400> 21
Phe Thr Ser Arg Leu His Ser
1 5
<210> 22
<211> 9
<212> PRT
<213> 小家鼠
<400> 22
Gln Gln Gly Asn Thr Leu Pro Trp Thr
1 5
<210> 23
<211> 10
<212> PRT
<213> 小家鼠
<400> 23
Gly Phe Ser Leu Thr Ser Tyr Gly Ile His
1 5 10
<210> 24
<211> 16
<212> PRT
<213> 小家鼠
<400> 24
Val Ile Trp Gly Asp Gly Ser Thr Thr Ser Asn Ser Ala Leu Lys Ser
1 5 10 15
<210> 25
<211> 11
<212> PRT
<213> 小家鼠
<400> 25
His Arg Tyr Ser Asp Tyr His Ala Met Asp Tyr
1 5 10
<210> 26
<211> 72
<212> PRT
<213> 智人
<400> 26
Ser Tyr Asn Val Thr Ser Val Leu Phe Arg Lys Lys Lys Cys Asp Tyr
1 5 10 15
Trp Ile Arg Thr Phe Val Pro Gly Cys Gln Pro Gly Glu Phe Thr Leu
20 25 30
Gly Asn Ile Lys Ser Tyr Pro Gly Leu Thr Ser Tyr Leu Val Arg Val
35 40 45
Val Ser Thr Asn Tyr Asn Gln His Ala Met Val Phe Phe Lys Lys Val
50 55 60
Ser Gln Asn Arg Glu Tyr Phe Lys
65 70

Claims (43)

1.能够特异性结合HNL的多肽表位的结合剂,其中所述多肽表位包含如SEQ ID NO:1中所定义的HNL的氨基酸141至156,或其中所述多肽表位是由SEQ ID NO:26中的肽包含的构象表位。
2.根据权利要求1所述的结合剂,其中所述结合剂选自抗体、其片段或衍生物。
3.根据权利要求1或2所述的结合剂,其包含SEQ ID No:8至13、14至19和20至25所示的至少一个、两个、三个、四个、五个、六个表位结合氨基酸序列区域,或所述表位结合氨基酸序列区域的衍生物,条件是特异性结合HNL表位,
并且其中所述结合亲和力与用SEQ ID No:8至13、14至19和20至25所示的表位结合氨基酸序列区域实现的结合特异性相比为至少75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、100%或更高。
4.根据权利要求1至3中任一项所述的结合剂,其中所述结合剂选自抗体、其片段或衍生物。
5.根据权利要求4所述的结合剂,其中所述重链具有选自SEQ ID No:3、5和7所示的序列的序列,
且所述轻链具有选自SEQ ID No:2、4和6所示的序列的序列,
或其衍生物,条件是所述衍生物特异性结合前述权利要求中任一项所述的HNL的多肽表位。
6.诊断组合物,其包含前述权利要求中任一项中所定义的结合剂。
7.诊断试剂盒,其包含含有前述权利要求中任一项中所述的结合剂的容器,任选地包含使用说明书、用于样品分析的缓冲液和装置。
8.根据权利要求7所述的诊断试剂盒,其进一步包含用于检测C反应蛋白和任选TRAIL、原降钙素和/或CD64的抗体,和/或用于测定白血细胞和/或嗜中性粒细胞的数目的装置。
9.根据权利要求1至5中任一项所述的结合剂,其用于诊断装置中。
10.根据权利要求9所述的结合剂,其中所述装置是免疫测定,任选地免疫测定的表面。
11.诊断细菌感染或区分细菌感染与病毒感染的方法,其特征在于使用如权利要求1至5中任一项中所定义的结合剂或根据权利要求6和7或8所述的诊断组合物或试剂盒分析获得自疑似具有细菌或病毒感染的主体的样品中的HNL-水平,所述方法包括:
a) 在所述结合剂存在的情况下孵育样品;
b) 任选地洗掉未结合的样品材料;
c) 测量疑似具有细菌或病毒感染的主体的样品中HNL的水平;
d) 将步骤c)中测量的HNL水平与对照水平进行比较;
e) 当步骤c)中的HNL水平显著高于(i)健康主体和(iii)已知具有病毒感染的患者的对照样品中检测到的水平时,诊断细菌感染。
12.权利要求11的方法,其进一步包括将步骤c)中测量的HNL水平与一种或多种对照样品进行比较,所述对照样品获得自
i 健康主体,
ii 已知具有细菌感染的主体,和
iii 已知具有病毒感染的主体。
13.权利要求11或12的方法,其进一步包括将步骤c)中测量的HNL水平与指示健康主体、具有病毒感染的主体和/或具有细菌感染的主体的一个或多个均一化对照值进行比较。
14.排除主体中的细菌感染的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或根据权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度低于预定的第一阈值,则对于主体排除细菌感染。
15.排除主体中的病毒感染的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或根据权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定的第一阈值,则对于主体排除病毒感染。
16.划入主体中的细菌感染的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或根据权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定的第一阈值,则对于主体划入细菌感染。
17.划入主体中的病毒感染的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或根据权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度低于预定的第一阈值,则对于主体划入病毒感染。
18.权利要求14或17的方法,其进一步包括:
a) 测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的TRAIL的多肽浓度高于预定的第一阈值,则对于主体排除细菌感染或划入病毒感染。
19.权利要求15或16的方法,其进一步包括:
a) 测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的TRAIL的多肽浓度低于预定的第一阈值,则对于主体划入细菌感染或排除病毒感染。
20.区分主体中的细菌感染和病毒感染的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或根据权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL以及CRP、任选TRAIL 的多肽浓度;
b) 对HNL和CRP以及任选TRAIL的浓度应用预定的数学函数来计算评分;
c) 将评分与预定参考值进行比较。
21.区分主体中的细菌或混合感染和病毒感染的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或根据权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL以及CRP、任选TRAIL 的多肽浓度;
b) 对HNL和CRP以及任选TRAIL的浓度应用预定的数学函数来计算评分;
c) 将评分与预定参考值进行比较。
22.为主体提供治疗推荐的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或根据权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值,则推荐主体接受抗生素治疗;
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值,则推荐患者不接受抗生素治疗;或
d) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值,则推荐患者接受抗病毒治疗。
23.权利要求22的方法,其进一步包括在步骤a)中额外测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值且如果步骤(a)中测定的TRAIL的浓度低于预定阈值,则推荐主体接受抗生素治疗;
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值且如果步骤(a)中测定的TRAIL的多肽浓度高于预定阈值,则推荐患者不接受抗生素治疗;或者
d) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值且如果步骤(a)中测定的TRAIL的多肽浓度高于预定阈值,则推荐患者接受抗病毒治疗。
24.为主体提供诊断测试推荐的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或根据权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值,则推荐测试样品中细菌的存在;或者
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值,则推荐测试样品中病毒的存在。
25.权利要求24的方法,其进一步包括在步骤a)中额外测量获得自主体的样品中TRAIL的多肽浓度;和
b) 如果步骤(a)中测定的HNL的多肽浓度高于预定阈值且如果步骤(a)中测定的TRAIL的浓度低于预定阈值,则推荐测试样品中细菌的存在;
c) 如果步骤(a)中测定的HNL的多肽浓度低于预定阈值且如果步骤(a)中测定的TRAIL的多肽浓度高于预定阈值,则推荐测试样品中病毒的存在。
26.排除主体中的传染病、优选细菌或病毒疾病的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或根据权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度和选自TRAIL、IP10、ILIRa或Mac-2BP的一种或多种多肽的多肽浓度;
b) 对测量的多肽的浓度应用预定的数学函数来计算评分
c) 将评分与预定参考值进行比较。
27.鉴定主体中的感染类型、优选细菌或病毒感染的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或如权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度和选自TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性结合分子、IL1、I-TAC和TNFR1的第一多肽决定因素的水平;和
b) 测量选自以下的第二决定因素的水平:
(i) 多肽决定因素TRAIL、IL1RA、IP10、Mac-2BP、B2M、BCA-1、CHI3L1、嗜酸性粒细胞趋化因子、IL1a、MCP、CD62L、VEGFR2、CHP、CMPK2、CORO1C、EIF2AK2、ISG15、RPL22L1、RTN3、CD112、CD134、CD182、CD231、CD235A、CD335、CD337、CD45、CD49D、CD66A/C/D/E、CD73、CD84、EGFR、GPR162、HLA-A/B/C、ITGAM、NRG1、RAP1B、SELI、SPINT2、SSEA1、IgG非特异性结合分子、IL1、I-TAC和TNFR1;
(ii) 多肽决定因素IFITM3、IFIT3、EIF4B、IFIT1、LOC26010、MBOAT2、MX1、OAS2、RSAD2、ADIPOR1、CD15、CD8A、IFITM1和IL7;
(iii) 多肽决定因素CRP、SAA、TREM-1、PCT、IL-8、TREM-1和IL6;或
(iv) 非多肽决定因素年龄、绝对嗜中性粒细胞计数(ANC)、绝对淋巴细胞计数(ALC)、嗜中性粒细胞% (Neu(%))、淋巴细胞% (Lym (%))、单核细胞% (Mono (%))、最高温度、自症状起的时间、肌酸酐(Cr)、钾(K)、脉冲和尿素;
c) 将HNL、第一和第二决定因素的水平与参考值进行比较,由此鉴定主体中的感染类型,其中第一和/或第二决定因素的测量增加了在测量HNL中鉴定感染类型的精确度。
28.鉴定主体中的感染类型、优选细菌或病毒感染的方法,其包括:
a) 使用如权利要求1至5中任一项中所定义的结合剂或根据权利要求6或7所述的诊断组合物或试剂盒测量获得自主体的样品中的HNL的多肽浓度和选自ABTB1、ADIPOR1、ARHGDIB、ARPC2、ATP6V0B、Clorf83、CD15、CES1、CORO1A、CSDA、EIF4B、EPSTI1、GAS 7、HERC5、IFI6、KIAA0082、IFIT1、IFIT3、IFITM1、IFITM3、LIPT1、IL7R、ISG20、LOC26010、LY6E、LRDD、LTA4H、MAN1C1、MBOAT2、NPM1、OAS2、PARP12、PARP9、QARS、RAB13、RAB31、RAC2、RPL34、PDIA6、PTEN、RSAD2、SART3、SDCBP、SMAD9、SOCS3、TRIM22、SART3、UBE2N、XAF1、ZBP1、CRP和MX1的一种或多种多肽决定因素的水平;和
b) 将HNL和一种或多种多肽决定因素的水平与参考值进行比较,由此鉴定主体中的感染类型。
29.权利要求28的方法,其进一步包括测量一种或多种非多肽决定因素,所述非多肽决定因素选自年龄、绝对嗜中性粒细胞计数(ANC)、绝对淋巴细胞计数(ALC)、嗜中性粒细胞%(Neu(%))、淋巴细胞% (Lym (%))、单核细胞% (Mono (%))、最高温度、自症状起的时间、肌酸酐(Cr)、钾(K)、脉冲和尿素。
30.权利要求29的方法,其中使用决定因素绝对嗜中性粒细胞计数(ANC)和嗜中性粒细胞% (NEU(%))的水平来均一化HNL的水平。
31.根据权利要求11至30中任一项所述的方法,其进一步包括在进行步骤a)之前将样品暴露于刺激嗜中性粒细胞以分泌HNL的试剂的步骤。
32.根据权利要求11至31中任一项所述的方法,其中所述刺激嗜中性粒细胞以分泌HNL的试剂是N-甲酰基肽,优选fMLP,和/或蛋白A和/或脂多糖(LPS)和/或血小板活化因子和/或未甲基化的CpG寡核苷酸和/或肿瘤坏死因子(TNF)。
33.针对抗细菌疗法将主体分层为具有细菌感染的那些和不具有细菌感染的那些的方法,其包括根据方法11至13、15、16、19至21或28至32中任一项所述的步骤,
a) 任选地包括向被鉴定为具有细菌感染的主体治疗性施用抗细菌药物的步骤,和
b) 进一步任选地包括向被鉴定为未被细菌感染的主体治疗性施用疾病特异性药物的步骤,其中所述药物选自抗炎药、止痛剂、病毒抑制剂、杀真菌剂、抗寄生虫药物、抗细胞增殖药物。
34.根据权利要求11至33中任一项所述的方法,其中所述样品选自血液或其级分,优选血清、血浆,或选自尿液、脑脊髓液(CSF)、骨髓、唾液和痰液。
35.确定抗细菌疗法的效率的方法,其包括如权利要求11中所述的步骤a)至d),
其中至少在开始抗细菌治疗后的一个另外时间点测定来自被诊断具有细菌性疾病的主体的样品中的HNL水平,其任选地包括重复所述分析,
且进一步任选地比较在抗细菌疗法之前、期间和/或之后的HNL-水平。
36.根据权利要求11至13、14、16、18至21或24至35中任一项所述的方法,其中所述主体已被鉴定为引起败血症或另一细菌性疾病的细菌的携带者。
37.根据权利要求36所述的方法,其中所述主体被引起败血症或另一细菌性疾病的抗生素耐受性细菌感染。
38.根据权利要求36或37中任一项所述的方法,其中所述主体被MRSA感染。
39.根据权利要求32至35所述的方法,其中所述主体选自:选自新生儿的感染有引起败血症或另一细菌性疾病的抗生素耐受性细菌的患者,选自以下的住院患者:以前进行手术的个体、具有肺炎的个体、感染有性传播性细菌的个体、具有烧伤的患者、已接受移植的个体、具有阑尾炎或疑似具有阑尾炎的患者、具有脑膜炎或脑炎的个体或疑似患有脑膜炎或脑炎的个体、以前被鉴定为耐受性细菌的携带者的个体、接受免疫抑制疗法的个体(例如患有自身免疫性疾病诸如类风湿性关节炎或克罗恩病的患者)、免疫受损的个体,其包括具有HIV或接受化疗的患者。
40.用于诊断样品中的细菌感染的装置,其含有包含根据权利要求1至5中任一项所述的结合剂的隔室,其中所述隔室适合于与所述样品接触,任选地含有包含能够在进一步分析之前活化样品中存在的嗜中性粒细胞的化学底物的隔室,其中所述隔室包含将其与所述包含结合剂的隔室连接的孔口,任选地包含用于将所述装置与用于从疑似者移取血液样品的另一装置连接的连接器,和/或用于将所述装置与用于在所述装置中分析化学、物理或生物反应的计算机和/或设备组合的连接器,其中所述反应指示HNL和所述结合剂的相互作用,并且其进一步任选地允许测定所述样品中的HNL的水平。
41.根据权利要求40所述的装置,其额外包含权利要求26、27或28中任一项所述的一种或多种额外多肽决定因素的结合剂,其中所述反应指示多肽决定因素的相互作用,并且其进一步任选地允许测定所述样品中所述多肽决定因素的水平。
42.根据权利要求40或41所述的装置,其选自现场装置、测试条、放射免疫测定、ELISA、“夹心”免疫测定、免疫放射测定、凝胶扩散沉淀测定、免疫扩散测定、原位免疫测定,优选使用胶体金、酶或放射性同位素标记的那些、Western印迹、沉淀测定、凝集测定,优选凝胶凝集测定或血细胞凝集测定、免疫荧光测定、蛋白A测定、免疫电泳测定以及涉及分析物的基于磁性分离的用于检测分析物的装置。
43.根据权利要求11至39中任一项所述的方法或根据权利要求40至42所述的装置,其进一步包括测量C反应蛋白和/或TRAIL和/或原降钙素和/或CD64的水平,和/或白血细胞和/或嗜中性粒细胞的数目。
CN201580063084.6A 2014-11-19 2015-11-19 利用hnl的诊断方法 Active CN107001455B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14193886 2014-11-19
EP14193886.0 2014-11-19
PCT/EP2015/077045 WO2016079219A1 (en) 2014-11-19 2015-11-19 Diagnostic method employing hnl

Publications (2)

Publication Number Publication Date
CN107001455A true CN107001455A (zh) 2017-08-01
CN107001455B CN107001455B (zh) 2022-03-01

Family

ID=51945737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580063084.6A Active CN107001455B (zh) 2014-11-19 2015-11-19 利用hnl的诊断方法

Country Status (8)

Country Link
US (2) US11270782B2 (zh)
EP (1) EP3221340B1 (zh)
JP (1) JP6788586B2 (zh)
CN (1) CN107001455B (zh)
BR (1) BR112017010268B1 (zh)
ES (1) ES2981450T3 (zh)
RU (1) RU2758608C2 (zh)
WO (1) WO2016079219A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843732A (zh) * 2017-09-29 2018-03-27 北京市心肺血管疾病研究所 检测肺栓塞的血清标志物及其应用
CN108492877A (zh) * 2018-03-26 2018-09-04 西安电子科技大学 一种基于ds证据理论的心血管病辅助预测方法
CN108486246A (zh) * 2018-06-06 2018-09-04 北京泱深生物信息技术有限公司 子痫前期的诊治标志物
WO2020035028A1 (zh) * 2018-08-16 2020-02-20 苏州芬瑞医疗诊断科技有限公司 感染的检测
CN114573678A (zh) * 2022-03-11 2022-06-03 中山大学 一种Rheb蛋白激活剂及其应用
CN115066612A (zh) * 2019-12-11 2022-09-16 伊契洛夫科技有限公司 用于鉴别细菌和病毒感染的非侵入性测定法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3133249C (en) 2012-02-09 2023-07-25 Memed Diagnostics Ltd. Signatures and determinants for diagnosing infections and methods of use thereof
AU2015302870B2 (en) 2014-08-14 2021-12-23 Memed Diagnostics Ltd. Computational analysis of biological data using manifold and a hyperplane
US20170234873A1 (en) 2014-10-14 2017-08-17 Memed Diagnostics Ltd. Signatures and determinants for diagnosing infections in non-human subjects and methods of use thereof
WO2017132132A1 (en) * 2016-01-28 2017-08-03 Beckman Coulter, Inc. Infection detection and differentiation systems and methods
US12338497B2 (en) 2016-03-03 2025-06-24 Memed Diagnostics Ltd. Analyzing RNA for diagnosing infection type
WO2017149548A1 (en) 2016-03-03 2017-09-08 Memed Diagnostics Ltd. Rna determinants for distinguishing between bacterial and viral infections
CA3022616A1 (en) * 2016-06-07 2017-12-14 The Board Of Trustees Of The Leland Stanford Junior University Methods for diagnosis of bacterial and viral infections
WO2017220483A1 (en) 2016-06-21 2017-12-28 Koninklijke Philips N.V. Analyte detection system and method
EP3479119B1 (en) * 2016-06-30 2020-08-12 Koninklijke Philips N.V. Method for detecting an analyte in a body fluid sample containing a plurality of cells
CN109661578B (zh) 2016-07-10 2022-05-10 米密德诊断学有限公司 用于区分细菌和病毒感染的蛋白质特征
EP4184167A1 (en) * 2016-07-10 2023-05-24 MeMed Diagnostics Ltd. Early diagnosis of infections
WO2018060998A1 (en) 2016-09-29 2018-04-05 Memed Diagnostics Ltd. Methods of prognosis and treatment
EP3519834A4 (en) 2016-09-29 2020-06-17 MeMed Diagnostics Ltd. RISK ASSESSMENT AND DISEASE CLASSIFICATION METHODS
US12009078B2 (en) 2016-10-17 2024-06-11 Reliant Immune Diagnostics, Inc. System and method for medical escalation and intervention that is a direct result of a remote diagnostic test
US9857372B1 (en) 2016-10-17 2018-01-02 Reliant Immune Diagnostics, LLC Arbovirus indicative birth defect risk test
US11693002B2 (en) 2016-10-17 2023-07-04 Reliant Immune Diagnostics, Inc. System and method for variable function mobile application for providing medical test results using visual indicia to determine medical test function type
US11579145B2 (en) * 2016-10-17 2023-02-14 Reliant Immune Diagnostics, Inc. System and method for image analysis of medical test results
US11802868B2 (en) * 2016-10-17 2023-10-31 Reliant Immune Diagnostics, Inc. System and method for variable function mobile application for providing medical test results
US11651866B2 (en) 2016-10-17 2023-05-16 Reliant Immune Diagnostics, Inc. System and method for real-time insurance quote in response to a self-diagnostic test
US11107585B2 (en) 2016-10-17 2021-08-31 Reliant Immune Diagnostics, Inc System and method for a digital consumer medical wallet and storehouse
US10902951B2 (en) 2016-10-17 2021-01-26 Reliant Immune Diagnostics, Inc. System and method for machine learning application for providing medical test results using visual indicia
CA3049582A1 (en) * 2017-01-08 2018-07-12 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Systems and methods for using supervised learning to predict subject-specific bacteremia outcomes
EP3997461A1 (en) 2019-07-12 2022-05-18 Beckman Coulter, Inc. Systems and methods for evaluating immune response to infection
WO2022004730A1 (ja) * 2020-06-30 2022-01-06 株式会社堀場製作所 体液分析装置、体液検体を判定するための方法、および、コンピュータープログラム
US11175293B1 (en) 2021-01-04 2021-11-16 University Of Utah Research Foundation Rapid assay for detection of SARS-CoV-2 antibodies
US20240082400A1 (en) * 2021-01-15 2024-03-14 The General Hospital Corporation Cd64 chimeric receptor and uses thereof
WO2024246048A1 (en) 2023-06-01 2024-12-05 P & M Venge Ab Specific detection of homodimeric hnl
CN117741165A (zh) * 2023-11-29 2024-03-22 浙江鼎创医疗科技有限公司 一种高特异性、高灵敏度hnl检测用胶体金免疫层析试纸条及其制备方法以及使用方法
CN119375492B (zh) * 2024-12-27 2025-05-30 北京水木翼锋诊断技术有限公司 Hnl在制备用于鉴定血流感染的试剂中的用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029404A1 (en) * 1994-04-21 1995-11-02 Per Venge Use of human neutrophil lipocalin (hnl) as a diagnostic marker and anti-hnl-antibody preparation
US20040115728A1 (en) * 2002-12-16 2004-06-17 Villanueva Julie M. Detecting lipocalin
WO2006066587A1 (en) * 2004-12-20 2006-06-29 Antibodyshop A/S Determination of neutrophil gelatinase-associated lipocalin (ngal) as a diagnostic marker for renal disorders
WO2008049330A1 (en) * 2006-10-20 2008-05-02 The University Of Hong Kong Use of lipocalin-2 as a diagnostic marker and therapeutic target
WO2009052390A1 (en) * 2007-10-19 2009-04-23 Abbott Laboratories Glycosylated mammalian ngal and use thereof
CN101421622A (zh) * 2006-02-17 2009-04-29 儿童医学中心公司 作为癌症生物标志物的游离ngal
CN102221608A (zh) * 2011-04-06 2011-10-19 浙江大学医学院附属第一医院 一种抗体组合物及其应用
WO2014006408A1 (en) * 2012-07-05 2014-01-09 Isis Innovation Limited Lipocalin-2 as a biomarker for pneumococcal infection status and uses thereof

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US535968A (en) 1895-03-19 Pessary
NL154598B (nl) 1970-11-10 1977-09-15 Organon Nv Werkwijze voor het aantonen en bepalen van laagmoleculire verbindingen en van eiwitten die deze verbindingen specifiek kunnen binden, alsmede testverpakking.
US3901654A (en) 1971-06-21 1975-08-26 Biological Developments Receptor assays of biologically active compounds employing biologically specific receptors
US3935074A (en) 1973-12-17 1976-01-27 Syva Company Antibody steric hindrance immunoassay with two antibodies
US3996345A (en) 1974-08-12 1976-12-07 Syva Company Fluorescence quenching with immunological pairs in immunoassays
US4034074A (en) 1974-09-19 1977-07-05 The Board Of Trustees Of Leland Stanford Junior University Universal reagent 2-site immunoradiometric assay using labelled anti (IgG)
US3984533A (en) 1975-11-13 1976-10-05 General Electric Company Electrophoretic method of detecting antigen-antibody reaction
US4098876A (en) 1976-10-26 1978-07-04 Corning Glass Works Reverse sandwich immunoassay
USRE30985E (en) 1978-01-01 1982-06-29 Serum-free cell culture media
US4452901A (en) 1980-03-20 1984-06-05 Ciba-Geigy Corporation Electrophoretically transferring electropherograms to nitrocellulose sheets for immuno-assays
US4376110A (en) 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
GB8516415D0 (en) 1985-06-28 1985-07-31 Celltech Ltd Culture of animal cells
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
AU632065B2 (en) 1988-09-23 1992-12-17 Novartis Vaccines And Diagnostics, Inc. Cell culture medium for enhanced cell growth, culture longevity and product expression
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
ATE139258T1 (de) 1990-01-12 1996-06-15 Cell Genesys Inc Erzeugung xenogener antikörper
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
AU3178993A (en) 1991-11-25 1993-06-28 Enzon, Inc. Multivalent antigen-binding proteins
US5885793A (en) 1991-12-02 1999-03-23 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
JP3507073B2 (ja) 1992-03-24 2004-03-15 ケンブリッジ アンティボディー テクノロジー リミティド 特異的結合対の成員の製造方法
EP0731842A1 (en) 1993-12-03 1996-09-18 Medical Research Council Recombinant binding proteins and peptides
EP0823941A4 (en) 1995-04-28 2001-09-19 Abgenix Inc HUMAN ANTIBODIES DERIVED FROM IMMUNIZED XENO MOUSES
US5869451A (en) 1995-06-07 1999-02-09 Glaxo Group Limited Peptides and compounds that bind to a receptor
AU5702298A (en) 1996-12-03 1998-06-29 Abgenix, Inc. Transgenic mammals having human Ig loci including plural VH and VK regions nd antibodies produced therefrom
US6306393B1 (en) 1997-03-24 2001-10-23 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
US7560534B2 (en) 2000-05-08 2009-07-14 Celldex Research Corporation Molecular conjugates comprising human monoclonal antibodies to dendritic cells
CN1487996B (zh) 2000-11-30 2010-06-16 米德列斯公司 用于生产人类抗体的转基因转染色体啮齿动物
JP2003275949A (ja) 2002-01-15 2003-09-30 Seiko Epson Corp 研磨方法及び研磨装置
JP2005530490A (ja) 2002-03-29 2005-10-13 シェーリング コーポレイション インターロイキン−5に対するヒトモノクローナル抗体および方法およびこれを含む組成物
EP1498743A3 (en) 2003-07-18 2005-05-04 Nikon Corporation System for displaying residual capacity of a battery and camera
US8614101B2 (en) * 2008-05-20 2013-12-24 Rapid Pathogen Screening, Inc. In situ lysis of cells in lateral flow immunoassays
WO2008072156A2 (en) 2006-12-12 2008-06-19 Koninklijke Philips Electronics N. V. Microelectronic sensor device for detecting label particles
JP2010530956A (ja) 2007-02-23 2010-09-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁性粒子を感知するセンサ装置及び方法
US8618508B2 (en) 2008-09-25 2013-12-31 Koninklijke Philips N.V. Detection system and method
WO2010127294A2 (en) * 2009-05-01 2010-11-04 Abbott Laboratories Dual variable domain immunoglobulins and uses thereof
CN102575976B (zh) 2009-09-28 2016-03-30 皇家飞利浦电子股份有限公司 物质确定设备
WO2011053832A1 (en) 2009-10-29 2011-05-05 The Trustees Of Columbia University In The City Of New York Use of urinary ngal to diagnose sepsis in very low birth weight infants
CA3133249C (en) * 2012-02-09 2023-07-25 Memed Diagnostics Ltd. Signatures and determinants for diagnosing infections and methods of use thereof
WO2013132347A2 (en) 2012-03-06 2013-09-12 Calpro As Improved elisa immunoassay for calprotectin
EP2952948B1 (en) 2014-06-06 2023-05-17 Airbus Defence and Space GmbH Thermal heating device using light for binder activation and its integration in preforming device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029404A1 (en) * 1994-04-21 1995-11-02 Per Venge Use of human neutrophil lipocalin (hnl) as a diagnostic marker and anti-hnl-antibody preparation
US20040115728A1 (en) * 2002-12-16 2004-06-17 Villanueva Julie M. Detecting lipocalin
WO2006066587A1 (en) * 2004-12-20 2006-06-29 Antibodyshop A/S Determination of neutrophil gelatinase-associated lipocalin (ngal) as a diagnostic marker for renal disorders
CN101421622A (zh) * 2006-02-17 2009-04-29 儿童医学中心公司 作为癌症生物标志物的游离ngal
WO2008049330A1 (en) * 2006-10-20 2008-05-02 The University Of Hong Kong Use of lipocalin-2 as a diagnostic marker and therapeutic target
WO2009052390A1 (en) * 2007-10-19 2009-04-23 Abbott Laboratories Glycosylated mammalian ngal and use thereof
CN102221608A (zh) * 2011-04-06 2011-10-19 浙江大学医学院附属第一医院 一种抗体组合物及其应用
WO2014006408A1 (en) * 2012-07-05 2014-01-09 Isis Innovation Limited Lipocalin-2 as a biomarker for pneumococcal infection status and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENGYUAN XU等: "Lipocalins as biochemical markers of disease", 《BIOCHIM BIOPHYS ACTA》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843732A (zh) * 2017-09-29 2018-03-27 北京市心肺血管疾病研究所 检测肺栓塞的血清标志物及其应用
CN107843732B (zh) * 2017-09-29 2019-09-06 北京市心肺血管疾病研究所 检测肺栓塞的血清标志物及其应用
CN108492877A (zh) * 2018-03-26 2018-09-04 西安电子科技大学 一种基于ds证据理论的心血管病辅助预测方法
CN108492877B (zh) * 2018-03-26 2021-04-27 西安电子科技大学 一种基于ds证据理论的心血管病辅助预测方法
CN108486246A (zh) * 2018-06-06 2018-09-04 北京泱深生物信息技术有限公司 子痫前期的诊治标志物
CN108486246B (zh) * 2018-06-06 2020-06-09 青岛泱深生物医药有限公司 子痫前期的诊治标志物
WO2020035028A1 (zh) * 2018-08-16 2020-02-20 苏州芬瑞医疗诊断科技有限公司 感染的检测
CN115066612A (zh) * 2019-12-11 2022-09-16 伊契洛夫科技有限公司 用于鉴别细菌和病毒感染的非侵入性测定法
CN114573678A (zh) * 2022-03-11 2022-06-03 中山大学 一种Rheb蛋白激活剂及其应用
CN114573678B (zh) * 2022-03-11 2022-12-27 中山大学 一种Rheb蛋白激活剂及其应用

Also Published As

Publication number Publication date
US11270782B2 (en) 2022-03-08
ES2981450T3 (es) 2024-10-08
EP3221340B1 (en) 2024-05-22
WO2016079219A1 (en) 2016-05-26
BR112017010268B1 (pt) 2024-01-16
JP2017536361A (ja) 2017-12-07
RU2017121108A3 (zh) 2019-06-24
RU2017121108A (ru) 2018-12-19
US20220165372A1 (en) 2022-05-26
EP3221340C0 (en) 2024-05-22
BR112017010268A2 (pt) 2018-02-06
JP6788586B2 (ja) 2020-11-25
CN107001455B (zh) 2022-03-01
US20170356921A1 (en) 2017-12-14
EP3221340A1 (en) 2017-09-27
RU2758608C2 (ru) 2021-11-01

Similar Documents

Publication Publication Date Title
US20220165372A1 (en) Diagnostic method employing hnl
JP7153775B2 (ja) Il23経路バイオマーカーを使用するil23アンタゴニストに対する臨床応答の予測
US12188934B2 (en) Signatures and determinants for diagnosing infections and methods of use thereof
US11262358B2 (en) Infiltrating immune cell proportions predict anti-TNF response in colon biopsies
KR20200037258A (ko) 생물학적 약물로 치료받은 피험자에서 중화 항체 수준 평가용 분석법 및 맞춤 의료에서 이의 사용
JP2017501680A (ja) 好酸球性疾患の診断及び治療方法
HK1247287A1 (zh) 檢測和定量il-13的方法和在診斷和治療th2相關疾病中的用途
JP2016521540A (ja) 炎症性腸疾患の診断及び治療方法
US20130216557A1 (en) Ltbr blockade: methods for optimizing therapeutic responsiveness of patients
KR20180096633A (ko) Il23-길항제에 대한 임상적 반응의 예측인자로서의 ccl20
JP2022505422A (ja) 疾患活動性を特徴付ける全身性エリテマトーデス(sle)疾患活動性免疫指標のバイオマーカー
EP4019643A1 (en) Biomarkers for assessing subjects with multiple sclerosis
CN114502960A (zh) 预测系统性红斑狼疮活动事件的可溶性介质
WO2022026807A2 (en) Antibodies targeting sars-cov-2 and uses thereof
WO2021231436A1 (en) Therapeutic methods for treating covid-19 infections
Amjadi Antibody responses after SARS-CoV-2 infection
Willis Mechanistic pharmacokinetic/pharmacodynamic modelling of acute inflammatory challenge models
Class et al. Patent application title: SIGNATURES AND DETERMINANTS FOR DIAGNOSING INFECTIONS AND METHODS OF USE THEREOF Inventors: Kfir Oved (Moshav Megadim, IL) Eran Eden (Haifa, IL) Ilan Ifergan (Haifa, IL)
HK1204065B (zh) 用於診斷感染的標記和決定因素和其使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220729

Address after: uppsala

Patentee after: P & M Wenji Co.,Ltd.

Address before: Holland Ian Deho Finn

Patentee before: KONINKLIJKE PHILIPS N.V.

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: uppsala

Patentee after: Swedish Diagnostic Development Co.,Ltd.

Country or region after: Sweden

Address before: uppsala

Patentee before: P & M Wenji Co.,Ltd.

Country or region before: Sweden