[go: up one dir, main page]

CN106867019A - One-pot method for preparing SiO2Method for producing cellulose composite aerogel material - Google Patents

One-pot method for preparing SiO2Method for producing cellulose composite aerogel material Download PDF

Info

Publication number
CN106867019A
CN106867019A CN201710010005.6A CN201710010005A CN106867019A CN 106867019 A CN106867019 A CN 106867019A CN 201710010005 A CN201710010005 A CN 201710010005A CN 106867019 A CN106867019 A CN 106867019A
Authority
CN
China
Prior art keywords
cellulose
solution
silicon source
inorganic silicon
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710010005.6A
Other languages
Chinese (zh)
Other versions
CN106867019B (en
Inventor
崔升
张鑫
王凯阳
林本兰
沈晓冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201710010005.6A priority Critical patent/CN106867019B/en
Publication of CN106867019A publication Critical patent/CN106867019A/en
Application granted granted Critical
Publication of CN106867019B publication Critical patent/CN106867019B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及一种一锅法制备SiO2‑纤维素复合气凝胶材料的方法,以纤维素为原料,绿色碱尿溶剂溶解纤维素;以无机硅酸钠为硅源,通过搅拌分散获得纤维素和硅酸钠均匀混合水性溶液,结合溶胶‑凝胶法得到含硅源的再生纤维素湿凝胶;以纤维素凝胶为骨架,以无机酸为反应溶剂诱导生成SiO2,最后通过CO2超临界干燥工艺制干燥得到SiO2‑纤维素有机‑无机复合气凝胶。本发明工艺简易快速、可行性高且绿色环保,有效克服原位浸渍法中SiO2在纤维素多孔网络结构中分散性差、复合含量低和复合稳定性差等问题,所制备的无机‑有机复合气凝胶具有较低的导热系数、良好的隔热性能,在低温保冷材料、中低温隔热保温材料以及吸附材料方面具有良好的应用前景。

The invention relates to a one-pot method for preparing SiO 2 -cellulose composite airgel materials, which uses cellulose as a raw material and dissolves the cellulose in a green alkali urine solvent; uses inorganic sodium silicate as a silicon source, and obtains fibers by stirring and dispersing The regenerated cellulose wet gel containing silicon source was obtained by combining the sol-gel method with the aqueous solution uniformly mixed with sodium silicate; the cellulose gel was used as the skeleton, and the inorganic acid was used as the reaction solvent to induce the formation of SiO 2 , and finally the CO 2 Drying by supercritical drying process to obtain SiO 2 -cellulose organic-inorganic composite airgel. The process of the present invention is simple and fast, high in feasibility and environmental protection, effectively overcomes the problems of poor dispersion of SiO2 in the porous cellulose network structure in the in-situ impregnation method, low composite content and poor composite stability, and the prepared inorganic-organic composite gas Gel has low thermal conductivity and good thermal insulation performance, and has good application prospects in low-temperature cold insulation materials, medium and low temperature thermal insulation materials, and adsorption materials.

Description

一锅法制备SiO2-纤维素复合气凝胶材料的方法One-pot method for preparing SiO2-cellulose composite airgel materials

技术领域technical field

本发明属于高分子纳米功能材料制备领域,涉及一种一锅法制备SiO2-纤维素复合气凝胶材料的方法。The invention belongs to the field of preparation of polymer nano functional materials, and relates to a method for preparing SiO 2 -cellulose composite airgel materials in one pot.

背景技术Background technique

纤维素气凝胶是近些年发展起来的一类新型天然生物质新型材料。纤维素是地球上储量最大的绿色可再生资源,纤维素气凝胶兼具可再生天然高分子特性及传统高孔隙率纳米无机多孔材料的诸多优点,相对于强度差、易碎的硅气凝胶,具有韧性好、易加工等特性,因此纤维素气凝胶成为一类应用前景广阔、开发价值高的新材料,在控制药物释放的支架、气体吸收剂、隔热材料以及热解时的碳电池和燃料电池的电极材料极具潜力。Cellulose airgel is a new type of new natural biomass material developed in recent years. Cellulose is the green renewable resource with the largest reserves on the earth. Cellulose airgel has both the characteristics of renewable natural polymers and many advantages of traditional high-porosity nano-inorganic porous materials. Cellulose airgel has the characteristics of good toughness and easy processing. Therefore, cellulose aerogel has become a new material with broad application prospects and high development value. Electrode materials for carbon batteries and fuel cells have great potential.

纤维素气凝胶具备许多优良特性,但是多糖气凝胶自身的局限性,如稳定性差、阻燃性差等特点在一定程度上限制了其发展。传统SiO2气凝胶虽然性能优良,但是易碎性是很难克服。而纤维素-SiO2复合气凝胶不但拥有两种气凝胶的特点,还表现出许多新的优良性能。Cellulose airgel has many excellent properties, but the limitations of polysaccharide airgel itself, such as poor stability and poor flame retardancy, limit its development to a certain extent. Although traditional SiO 2 aerogels have excellent properties, their fragility is difficult to overcome. The cellulose-SiO 2 composite aerogel not only has the characteristics of the two aerogels, but also exhibits many new excellent properties.

常规SiO2-纤维素复合气凝胶通常是将湿纤维素膜浸渍到正硅酸乙酯/正硅酸甲酯中,二氧化硅气凝胶在纤维素基质的微孔中形成,然后在超临界CO2中干燥等,然而该法会使得二氧化硅在纤维素的外表面迅速凝胶,从而阻断了孔隙开口并阻碍了二氧化硅渗透到纤维素基质中,孔隙率发生急需下降。然而直接将纤维素溶液与正硅酸乙酯直接混合的方法又不可取,碱溶纤维素溶液是亚稳态体系,直接和硅烷水解液会导致纤维素立即凝固和硅溶胶发生相分离。Conventional SiO 2 -cellulose composite aerogels are usually impregnated with wet cellulose membranes into tetraethyl orthosilicate/methyl orthosilicate, silica airgel is formed in the micropores of the cellulose matrix, and then Drying in supercritical CO 2 , etc., however, this method will quickly gel silica on the outer surface of the cellulose, thereby blocking the pore openings and hindering the penetration of silica into the cellulose matrix, resulting in an urgent decrease in porosity . However, it is not advisable to directly mix the cellulose solution with tetraethyl orthosilicate, the alkali-soluble cellulose solution is a metastable system, and directly mixing with the silane hydrolyzate will cause the cellulose to immediately solidify and the silica sol to phase separate.

水性硅酸钠是一种基本的硅酸盐,饱和溶液的pH约14;同样pH为14的碱溶纤维素水溶液硅酸钠水溶液作为起始溶液,采用一锅法直接混合能够形成均匀稳定的混合溶液,纤维素在醇浴中纤维素链的自缔合会导致凝胶化生成Ⅱ型纤维素凝胶,硅酸钠溶液分散在纤维素网络结构中,再将凝固的纤维素置于酸性水浴中时,硅酸钠可转化为SiO2Aqueous sodium silicate is a basic silicate, and the pH of the saturated solution is about 14; similarly, the alkali-soluble cellulose aqueous sodium silicate aqueous solution with a pH of 14 is used as the starting solution, and the one-pot method can be directly mixed to form a uniform and stable solution. Mix the solution, the self-association of cellulose chains in the alcohol bath will cause gelation to form type II cellulose gel, the sodium silicate solution is dispersed in the cellulose network structure, and then the coagulated cellulose is placed in an acidic Sodium silicate can be converted to SiO 2 when in a water bath.

发明内容Contents of the invention

本发明的目的是针对现有SiO2-纤维素复合气凝胶制备过程中局限性而提供一种锅法制备SiO2-纤维素复合气凝胶材料的方法,该方法可行、简易,通过采用一锅法,直接将无机硅源均匀分散到纤维素凝胶三维网络结构中,避免了孔道堵塞与相分离的现象发生,同时也能够在一定程度改善SiO2-纤维素气凝胶的机械性能与隔热效果。The purpose of the present invention is to provide a method for preparing SiO 2 -cellulose composite airgel materials by pot method in view of the limitations in the preparation process of the existing SiO 2 -cellulose composite airgel, the method is feasible and simple, by adopting The one-pot method directly disperses the inorganic silicon source evenly into the three-dimensional network structure of the cellulose gel, which avoids the phenomenon of channel blockage and phase separation, and can also improve the mechanical properties of SiO 2 -cellulose airgel to a certain extent and thermal insulation effect.

本发明的技术方案为:一锅法制备SiO2-纤维素复合气凝胶材料的方法,其具体步骤如下:The technical scheme of the present invention is: a method for preparing SiO 2 -cellulose composite airgel material by one-pot method, and its specific steps are as follows:

(1)纤维素溶液的配置(1) Configuration of cellulose solution

将纤维素纤维在搅拌作用下分散到碱脲混合水溶液中,密封后预冷至-20~-5℃,取出后用电动搅拌机搅拌溶解纤维素得到粘稠状溶液,随后离心除去气泡得到澄清透明的纤维素溶液;其中纤维素溶液中纤维素、碱、脲和去离子水的质量分数分别为(2%—6%),(4%-20%),(10%-20%),(54%-84%);Disperse the cellulose fiber into the mixed aqueous solution of alkali urea under the action of stirring, seal it and pre-cool it to -20~-5°C, take it out, stir and dissolve the cellulose with an electric mixer to obtain a viscous solution, and then centrifuge to remove air bubbles to obtain a clear and transparent The cellulose solution; wherein the mass fractions of cellulose, alkali, urea and deionized water in the cellulose solution are (2%-6%), (4%-20%), (10%-20%), ( 54%-84%);

(2)无机硅源-纤维素混合溶液的配置(2) Configuration of inorganic silicon source-cellulose mixed solution

在搅拌作用溶解无机硅源,得到质量分数为1%-7%的无机硅源水溶液;按纤维素水溶液和无机硅源水溶液体积比为1:(0.1-1),将无机硅源水溶液加入到纤维素水溶液中,搅拌混合后,超声振荡除去气泡,形成均匀混合的无机硅源-纤维素混合溶液;Dissolving the inorganic silicon source under agitation, to obtain a mass fraction of 1%-7% inorganic silicon source aqueous solution; according to the volume ratio of the cellulose aqueous solution and the inorganic silicon source aqueous solution is 1: (0.1-1), the inorganic silicon source aqueous solution is added to In the cellulose aqueous solution, after stirring and mixing, ultrasonic vibration removes air bubbles to form a uniformly mixed inorganic silicon source-cellulose mixed solution;

(3)含无机硅源-纤维素湿凝胶的制备(3) Preparation of inorganic silicon source-cellulose wet gel

将均匀混合的无机硅源-纤维素混合溶液倒入模具中置于凝固浴中再生,静置得到含有无机硅源的纤维素湿凝胶;Pour the uniformly mixed inorganic silicon source-cellulose mixed solution into a mold, place it in a coagulation bath for regeneration, and let stand to obtain a cellulose wet gel containing an inorganic silicon source;

(4)二氧化硅-纤维素湿凝胶的制备(4) Preparation of silica-cellulose wet gel

将含无机硅源的纤维素湿凝胶转移到稀酸溶液中,在发生中和反应后在纤维素凝胶孔内诱导无机硅源形成二氧化硅;Transfer the cellulose wet gel containing the inorganic silicon source to a dilute acid solution, and induce the inorganic silicon source to form silica in the pores of the cellulose gel after a neutralization reaction;

(5)复合气凝胶的制备(5) Preparation of composite airgel

将二氧化硅-纤维素湿凝胶用蒸馏水漂洗制溶液的pH为6-8;再将二氧化硅-纤维素水凝胶转移到有机溶剂进行溶剂置和老化得到二氧化硅-纤维素醇凝胶;后转移到CO2超临界干燥装置中进行干燥处理,最终得到二氧化硅-纤维素复合气凝胶。Rinse the silica-cellulose wet gel with distilled water to make the pH of the solution 6-8; then transfer the silica-cellulose hydrogel to an organic solvent for solvent placement and aging to obtain silica-cellulose alcohol Gel; then transfer to CO2 supercritical drying device for drying treatment, and finally obtain silica-cellulose composite aerogel.

优选步骤(1)中所述的纤维素纤维为棉浆柏、短绒棉或微晶纤维素中的一种;所述的碱脲混合水溶液中的碱为氢氧化钠或氢氧化锂中的一种;脲为尿素或硫脲。Preferably, the cellulose fiber described in step (1) is one of cotton pulp, short-staple cotton or microcrystalline cellulose; the alkali in the described alkali urea mixed aqueous solution is sodium hydroxide or lithium hydroxide One; urea is urea or thiourea.

优选步骤(1)中电动搅拌机的转速为1000-2000rpm,搅拌时间为4-12min;离心机的转速为8000-10000rpm,离心时间为5-10min。In the preferred step (1), the rotating speed of the electric mixer is 1000-2000rpm, and the stirring time is 4-12min; the rotating speed of the centrifuge is 8000-10000rpm, and the centrifuging time is 5-10min.

优选步骤(2)所述的无机硅源为五水硅酸钠粉末、九水硅酸钠粉末、无水硅酸钠或碱性水玻璃。Preferably, the inorganic silicon source described in step (2) is sodium silicate pentahydrate powder, sodium silicate nonahydrate powder, anhydrous sodium silicate or alkaline water glass.

优选步骤(3)所述的凝固浴为甲醇、乙醇、丙酮或稀硫酸。优选步骤(3)中的静置时间5-360min。The coagulation bath described in the preferred step (3) is methanol, ethanol, acetone or dilute sulfuric acid. The standing time in the preferred step (3) is 5-360min.

优选步骤(4)所述的稀酸溶液为盐酸、硝酸、硫酸或醋酸水溶液;稀酸溶液的浓度为0.5-1mol/L。Preferably, the dilute acid solution described in step (4) is aqueous hydrochloric acid, nitric acid, sulfuric acid or acetic acid; the concentration of the dilute acid solution is 0.5-1mol/L.

优选步骤(5)中所述的有机溶剂为甲醇、乙醇或丙酮中的一种或其混合液。Preferably, the organic solvent described in step (5) is one of methanol, ethanol or acetone or a mixture thereof.

优选步骤(5)中所述的二氧化碳超临界干燥法以二氧化碳为干燥介质,反应温度为40-70℃,高压反应釜内压强为8~12MPa,干燥时间为10~20h。Preferably, the carbon dioxide supercritical drying method described in step (5) uses carbon dioxide as the drying medium, the reaction temperature is 40-70° C., the pressure in the autoclave is 8-12 MPa, and the drying time is 10-20 hours.

优选步骤(5)中所制备的二氧化硅-纤维素复合气凝胶的表观密度0.092~0.143g/cm3,比表面积227.41~264.93m2/g,热导率系数介于0.029~0.038W/m·K。Preferably, the silica-cellulose composite airgel prepared in step (5) has an apparent density of 0.092-0.143 g/cm 3 , a specific surface area of 227.41-264.93 m 2 /g, and a thermal conductivity of 0.029-0.038 W/m·K.

有益效果:Beneficial effect:

本发明方法以及由该一锅法所制备得到有机-无机复合SiO2-纤维素气凝胶材料具有如下特点:The method of the present invention and the organic-inorganic composite SiO 2 -cellulose airgel material prepared by the one-pot method have the following characteristics:

(1)工艺简单行之有效。本制备方法克服了浸渍法制备法中SiO2-纤维素气凝胶材料时孔道堵塞问题以及有机硅源与碱溶纤维素溶液中的相分离问题。浸渍法中硅溶胶是通过渗透到三维纤维素基质中实现对多孔纤维素凝胶的填空。这种工艺具有一定的限制,因为它是一个扩散过程,所以纤维素基质中二氧化硅分布不均匀,易受纤维素凝胶制备的影响,且浸渍过程所需的时间很长。而直接混合有机硅源与碱溶纤维素水溶液由于而碱溶纤维素水溶液非真正溶解,而处于亚稳态溶解体系,加入有机硅源后,会发生有机硅源的强烈水解,与纤维素争夺水,使得纤维素分子间和分子内的氢键暴露出来,从而发生纤维素快速凝胶和相分离。而选用同为碱性的硅酸钠作为硅源,溶解后直接混合到碱解纤维素溶液中不会破坏亚稳态溶解体系,同时也抑制了相分离的出现,能够形成混合均匀的稳定溶液。醇浴凝胶后,在酸的作用下,使得硅酸钠向生产二氧化硅和钠盐的方向转化,最后通过超临界干燥得到SiO2-纤维素复合气凝胶。(1) The process is simple and effective. The preparation method overcomes the problem of pore blockage in the SiO 2 -cellulose airgel material in the impregnation method and the phase separation problem of the organic silicon source and the alkali-soluble cellulose solution. In the impregnation method, the silica sol fills the porous cellulose gel by penetrating into the three-dimensional cellulose matrix. This process has certain limitations because it is a diffusion process, so the distribution of silica in the cellulose matrix is not uniform, it is susceptible to the preparation of the cellulose gel, and the impregnation process takes a long time. However, directly mixing the organic silicon source and the aqueous solution of alkali-soluble cellulose is in a metastable dissolution system because the aqueous solution of alkali-soluble cellulose is not really dissolved. Water exposes the inter- and intra-molecular hydrogen bonds of cellulose, resulting in rapid gelation and phase separation of cellulose. However, sodium silicate, which is also alkaline, is selected as the silicon source. After dissolving, it is directly mixed into the alkali-lyzed cellulose solution without destroying the metastable dissolution system. At the same time, it also inhibits the occurrence of phase separation, and can form a uniformly mixed stable solution. . After alcohol bath gelation, under the action of acid, the sodium silicate is converted to the direction of producing silicon dioxide and sodium salt, and finally SiO 2 -cellulose composite airgel is obtained by supercritical drying.

(2)原材料价格低廉来源广泛,所主要选用的纤维素和硅酸钠(水玻璃)均为廉价易得的工业原材料,极大的降低生产制造成本,易于实现规模化生产。且兼具很好的绿色环保效应。同时所有选用的纤维素溶解体系为绿色溶解,仅需氢氧化钠和尿素等材料就能够在低温环境实现对纤维素溶解,简单有效。(2) The raw material is cheap and has a wide range of sources. The cellulose and sodium silicate (water glass) mainly selected are cheap and easy-to-get industrial raw materials, which greatly reduce the manufacturing cost and are easy to realize large-scale production. And it has good environmental protection effect. At the same time, all the cellulose dissolving systems selected are green dissolving, and only need materials such as sodium hydroxide and urea to dissolve cellulose in a low temperature environment, which is simple and effective.

(3)相对于其它气凝胶隔热材料,采用一锅混合法所制备SiO2-纤维素复合气凝胶,以纤维素凝胶的三维网络结构为生成模版,硅酸钠填充在纤维素的孔洞中,在酸性溶液的催化作用下生成SiO2颗粒,SiO2凝聚为较大的球形颗粒形成附聚物附着在纤维素的纳米纤丝上,避免了游离SiO2颗粒出现,所制备的材料表面平整,厚度可控,成形性较好,所制备的SiO2-纤维素复合气凝胶的微观形貌由扫描电镜图所示。且所制备的SiO2-纤维素复合气凝胶依然保有极高的孔隙率和比较均一的孔道结构。(3) Compared with other airgel insulation materials, the SiO 2 -cellulose composite airgel is prepared by the one-pot mixing method. The three-dimensional network structure of the cellulose gel is used as the generation template, and the sodium silicate is filled in the cellulose In the pores of the cellulose, SiO 2 particles are generated under the catalysis of the acidic solution, and SiO 2 condenses into larger spherical particles to form agglomerates attached to the nanofibrils of cellulose, avoiding the appearance of free SiO 2 particles, and the prepared The surface of the material is smooth, the thickness is controllable, and the formability is good. The microscopic appearance of the prepared SiO 2 -cellulose composite airgel is shown by the scanning electron microscope. And the prepared SiO 2 -cellulose composite airgel still maintains extremely high porosity and relatively uniform pore structure.

附图说明Description of drawings

图1是实例1所制备SiO2-纤维素复合气凝胶材料的样品图;Fig. 1 is the sample diagram of SiO 2 -cellulose composite airgel material prepared in Example 1;

图2是实例2所制备SiO2-纤维素复合气凝胶材料的X射线衍射谱图;Fig. 2 is the X-ray diffraction spectrogram of the SiO 2 -cellulose composite airgel material prepared in Example 2;

图3是实例2所制备SiO2-纤维素复合气凝胶材料的扫描电镜图片;Fig. 3 is the scanning electron micrograph of the SiO 2 -cellulose composite airgel material prepared in Example 2;

图4是实例3所制备SiO2-纤维素复合气凝胶的氮气吸附-脱附曲线。Fig. 4 is the nitrogen adsorption-desorption curve of the SiO 2 -cellulose composite airgel prepared in Example 3.

具体实施方式detailed description

实例1Example 1

1.将2g的微晶纤维素搅拌分散到碱脲溶液(4.0gLiOH/10gUrea/84gH2O)中,分散后转移至冰箱预冷于-5℃,取出后立即使用电动机在2000rpm的条件下搅拌4min溶解纤维素得到粘稠状溶液,随后立即在转速为8000rpm的条件下离心10min除去气泡得到澄清透明的纤维素溶液,溶剂质量分数为2%;称取16.3g的Na2SiO3·9H2O磁力搅拌溶解到83.7g蒸馏水中得到质量分数为7%的硅酸钠水溶液,将纤维素溶液和硅酸钠溶液按体积比为10:1进行机械搅拌混合,后超声振荡除去气泡,形成均匀混合的硅酸钠-纤维素混合溶液。再将均匀混合的硅酸钠-纤维素混合溶液倒入模具当中置于甲醇凝固浴中再生,静置360min后得到含有硅酸钠的纤维素湿凝胶。陈化后,再将含有硅酸钠的纤维素湿凝胶脱模后转移到体积为200ML浓度为0.5mol/L稀硫酸溶液中,在发生中和反应后在纤维素凝胶孔内诱导硅酸钠生成二氧化硅,再将二氧化硅-纤维素复合湿凝胶用去蒸馏水漂洗除去多于的酸和生成的盐,此时溶液的pH为7。再将二氧化硅-纤维素水凝胶转移到乙醇溶剂进行溶剂置换和老化,共计置换8次,最终得到二氧化硅-纤维素醇凝胶,将二氧化硅-纤维素醇凝胶置于CO2超临界干燥装置中进行干燥处理,干燥温度为40℃,高压反应釜内压强为8MPa,干燥时间为20h。经过超临界CO2干燥,形成有机-无机SiO2-纤维素气凝胶。该密度为0.092/cm3,比表面积为227.41m2/g,热导率系数0.032W/m·K。附图1是实例1中所制备的SiO2-纤维素复合气凝胶材料的样品图。图中可以看出,复合气凝胶和纯的纤维素气凝胶呈现一样的乳白色,材料表面平整,不存在掉粉的情况,还具有良好的机械强度。1. Stir and disperse 2g of microcrystalline cellulose into the alkali urea solution (4.0gLiOH/10gUrea/84gH 2 O), transfer to the refrigerator to pre-cool at -5°C after dispersion, and use the motor to stir at 2000rpm immediately after taking it out Dissolve the cellulose for 4 minutes to obtain a viscous solution, then immediately centrifuge at 8000 rpm for 10 minutes to remove air bubbles to obtain a clear and transparent cellulose solution with a solvent mass fraction of 2%; weigh 16.3g of Na 2 SiO 3 ·9H 2 O magnetically stirred and dissolved in 83.7g of distilled water to obtain a sodium silicate aqueous solution with a mass fraction of 7%. The cellulose solution and the sodium silicate solution were mechanically stirred and mixed at a volume ratio of 10:1, and then ultrasonically oscillated to remove air bubbles to form a uniform Mixed sodium silicate-cellulose mixed solution. Then pour the uniformly mixed sodium silicate-cellulose mixed solution into the mold and place it in a methanol coagulation bath for regeneration. After standing for 360 minutes, a cellulose wet gel containing sodium silicate is obtained. After aging, remove the cellulose wet gel containing sodium silicate and transfer it to a dilute sulfuric acid solution with a volume of 200ML and a concentration of 0.5mol/L, and induce silica in the pores of the cellulose gel after a neutralization reaction. sodium phosphate to generate silica, and then the silica-cellulose composite wet gel was rinsed with distilled water to remove excess acid and generated salt, and the pH of the solution was 7 at this time. Then the silica-cellulose hydrogel was transferred to an ethanol solvent for solvent replacement and aging, a total of 8 replacements, and finally the silica-cellulose alcohol gel was obtained, and the silica-cellulose alcohol gel was placed in The drying process is carried out in a CO2 supercritical drying device, the drying temperature is 40°C, the pressure in the autoclave is 8MPa, and the drying time is 20h. After supercritical CO 2 drying, organic-inorganic SiO 2 -cellulose aerogels are formed. The density is 0.092/cm 3 , the specific surface area is 227.41 m 2 /g, and the thermal conductivity coefficient is 0.032 W/m·K. Accompanying drawing 1 is a sample diagram of the SiO 2 -cellulose composite airgel material prepared in Example 1. It can be seen from the figure that the composite airgel and the pure cellulose airgel have the same milky white color, the surface of the material is smooth, there is no powder drop, and it also has good mechanical strength.

实例2Example 2

将6g的棉浆柏纤维素搅拌分散到碱脲溶液(4gLiOH/10gThiourea/80gH2O)中,分散后转移至冰箱预冷于-20℃,取出后立即使用电动机在2000rpm的条件下搅拌4min溶解纤维素得到粘稠状溶液,随后立即在转速为10000rpm的条件下离心5min除去气泡得到澄清透明的纤维素溶液,溶剂质量分数为6%;称取1.74g的Na2SiO3·5H2O磁力搅拌溶解到98.3g蒸馏水中得到质量分数为1%的硅酸钠水溶液,将纤维素溶液和硅酸钠溶液按体积比为1:1进行机械搅拌混合,超声振荡除去气泡,形成均匀混合的硅酸钠-纤维素混合溶液。再将均匀混合的硅酸钠-纤维素混合溶液倒入模具当中置于乙醇凝固浴中再生,静置60min后得到含有硅酸钠的纤维素湿凝胶。陈化后,再将含有硅酸钠的纤维素湿凝胶脱模后转移到体积为100ML浓度为1mol/L稀盐酸溶液中,在发生中和反应后在纤维素凝胶孔内诱导硅酸钠生成二氧化硅,再将二氧化硅-纤维素复合湿凝胶用去蒸馏水漂洗除去多于的酸和生成的盐,此时洗涤溶液的pH为7。再将二氧化硅-纤维素水凝胶转移到甲醇溶剂进行溶剂置换和老化,共计置换5次,最终得到二氧化硅-纤维素醇凝胶,将二氧化硅-纤维素醇凝胶置于CO2超临界干燥装置中进行干燥处理,干燥温度为40℃,高压反应釜内压强为8MPa,干燥时间为20h。经过超临界CO2干燥,形成有机-无机SiO2-纤维素气凝胶。该密度为0.143/cm3,比表面积为243.46m2/g,热导率系数0.032W/m·K。图2为SiO2-纤维素复合气凝胶材料的扫描电镜图片,SiO2凝聚为较大的球形颗粒的附聚物,附着在纤维素凝胶的三维网络结构当中(如图中标注所示),SiO2形成于在纤维素的孔道结构之中,并没有游离的SiO2颗粒出现。图3为SiO2-纤维素复合气凝胶截面能谱图,EDS能谱分析显示Si峰大概位于在1.73KeV,Na峰为1.04KeV,主要是由于SiO2生成转化过程产生的钠盐。Stir and disperse 6g of cotton pulp cellulose into alkali urea solution (4gLiOH/10gThourea/80gH 2 O), transfer to the refrigerator to pre-cool at -20°C after dispersion, and immediately use a motor to stir at 2000rpm for 4min to dissolve The viscous solution was obtained from the cellulose, and then immediately centrifuged at 10,000 rpm for 5 minutes to remove air bubbles to obtain a clear and transparent cellulose solution with a solvent mass fraction of 6%; weigh 1.74g of Na 2 SiO 3 5H 2 O magnetic Stir and dissolve into 98.3g of distilled water to obtain a sodium silicate aqueous solution with a mass fraction of 1%. The cellulose solution and the sodium silicate solution are mechanically stirred and mixed at a volume ratio of 1:1, and ultrasonic vibration is used to remove air bubbles to form a uniformly mixed silicate solution. sodium bicarbonate-cellulose mixed solution. Then pour the uniformly mixed sodium silicate-cellulose mixed solution into the mold and place it in an ethanol coagulation bath for regeneration, and after standing for 60 minutes, a cellulose wet gel containing sodium silicate is obtained. After aging, remove the cellulose wet gel containing sodium silicate and transfer it to a dilute hydrochloric acid solution with a volume of 100ML and a concentration of 1mol/L, and induce silicic acid in the pores of the cellulose gel after a neutralization reaction occurs. Sodium generates silica, and then the silica-cellulose composite wet gel is rinsed with de-distilled water to remove excess acid and generated salt, and the pH of the washing solution is now 7. Then the silica-cellulose hydrogel was transferred to a methanol solvent for solvent replacement and aging, a total of 5 replacements, and finally the silica-cellulose alcohol gel was obtained, and the silica-cellulose alcohol gel was placed in The drying process is carried out in a CO2 supercritical drying device, the drying temperature is 40°C, the pressure in the autoclave is 8MPa, and the drying time is 20h. After supercritical CO 2 drying, organic-inorganic SiO 2 -cellulose aerogels are formed. The density is 0.143/cm 3 , the specific surface area is 243.46 m 2 /g, and the thermal conductivity coefficient is 0.032 W/m·K. Figure 2 is a scanning electron microscope picture of SiO 2 -cellulose composite airgel material, SiO 2 is condensed into agglomerates of larger spherical particles, attached to the three-dimensional network structure of cellulose gel (marked in the figure ), SiO 2 is formed in the pore structure of cellulose, and no free SiO 2 particles appear. Figure 3 is the cross-sectional energy spectrum of SiO 2 -cellulose composite airgel. EDS energy spectrum analysis shows that the Si peak is located at 1.73KeV, and the Na peak is at 1.04KeV, which is mainly due to the sodium salt produced during the transformation process of SiO 2 .

实例3Example 3

将3g的短绒棉纤维素搅拌分散到碱脲溶液(其中4.6gNaOH/15gUrea/77.4gH2O)中,分散后转移至冰箱预冷于-15℃,取出后立即使用电动机在1000rpm的条件下搅拌12min溶解纤维素得到粘稠状溶液,随后立即在转速为8000rpm的条件下离心10min除去气泡得到澄清透明的纤维素溶液,溶剂质量分数约为3%左右;称取3g的无水Na2SiO3磁力搅拌溶解到97ml蒸馏水中,得到质量分数为3%的硅酸钠水溶液,将纤维素溶液和硅酸钠溶液按体积比为2:1进行机械搅拌混合机械搅拌混合,超声振荡除去气泡,形成均匀混合的硅酸钠-纤维素混合溶液。再将均匀混合的硅酸钠-纤维素混合溶液倒入模具当中置于丙酮凝固浴中再生,静置5min后得到含有硅酸钠的纤维素湿凝胶。陈化后,再将含有硅酸钠的纤维素湿凝胶湿凝胶脱模后转移到体积为200ML浓度为lmol/L稀硝酸溶液中,在发生中和反应后在纤维素凝胶孔内诱导硅酸钠生成二氧化硅,再将二氧化硅-纤维素复合湿凝胶用去蒸馏水漂洗除去多于的酸和生成的盐,洗涤溶液的pH为6。再将二氧化硅-纤维素水凝胶转移到丙酮溶剂进行溶剂置换和老化,共计置换10次,最终得到二氧化硅-纤维素醇凝胶,将二氧化硅-纤维素醇凝胶置于CO2超临界干燥装置中进行干燥处理,干燥温度为70℃,高压反应釜内压强为12MPa,干燥时间为10h。经过超临界CO2干燥,形成有机-无机SiO2-纤维素气凝胶。该密度为0.109g/cm3,比表面积为264.93m2/g,热导率系数0.029W/m·K。图4为所制备的SiO2-纤维素复合气凝胶的氮气吸附-脱附曲线,属于IUPAC分类中的IV型,符合多孔材料固有本质特征。Stir and disperse 3g of linter cellulose into the alkali urea solution (4.6gNaOH/15gUrea/77.4gH 2 O), transfer to the refrigerator to pre-cool at -15°C after dispersion, and use the motor immediately after taking it out under the condition of 1000rpm Stir for 12 minutes to dissolve the cellulose to obtain a viscous solution, then immediately centrifuge at 8000rpm for 10 minutes to remove air bubbles to obtain a clear and transparent cellulose solution with a solvent mass fraction of about 3%; weigh 3g of anhydrous Na 2 SiO 3 Dissolve in 97ml of distilled water with magnetic stirring to obtain a sodium silicate aqueous solution with a mass fraction of 3%. The cellulose solution and sodium silicate solution are mechanically stirred and mixed at a volume ratio of 2:1, and ultrasonically oscillated to remove air bubbles. A uniformly mixed sodium silicate-cellulose mixed solution is formed. Then pour the uniformly mixed sodium silicate-cellulose mixed solution into the mold and place it in an acetone coagulation bath for regeneration. After standing for 5 minutes, a cellulose wet gel containing sodium silicate is obtained. After aging, the cellulose wet gel wet gel containing sodium silicate is removed from the mold and then transferred to a volume of 200ML and the concentration is 1mol/L in dilute nitric acid solution. After the neutralization reaction occurs, in the cellulose gel hole The sodium silicate is induced to generate silica, and then the silica-cellulose composite wet gel is rinsed with de-distilled water to remove excess acid and generated salt, and the pH of the washing solution is 6. Then the silica-cellulose hydrogel was transferred to acetone solvent for solvent replacement and aging, a total of 10 replacements, and finally the silica-cellulose alcohol gel was obtained, and the silica-cellulose alcohol gel was placed in The drying process is carried out in a CO2 supercritical drying device, the drying temperature is 70°C, the pressure in the autoclave is 12MPa, and the drying time is 10h. After supercritical CO 2 drying, organic-inorganic SiO 2 -cellulose aerogels are formed. The density is 0.109 g/cm 3 , the specific surface area is 264.93 m 2 /g, and the thermal conductivity coefficient is 0.029 W/m·K. Fig. 4 is the nitrogen adsorption-desorption curve of the prepared SiO 2 -cellulose composite airgel, which belongs to type IV in the IUPAC classification and conforms to the inherent essential characteristics of porous materials.

实例4Example 4

将6g的短绒棉纤维素搅拌分散到碱脲溶液(其中20gNaOH/20gUrea/54gH2O)中,分散后转移至冰箱预冷于-15℃,取出后立即使用电动机在1000rpm的条件下搅拌5min溶解纤维素得到粘稠状溶液,随后立即在转速为8000rpm的条件下离心5min除去气泡得到澄清透明的纤维素溶液,溶剂质量分数约为3%左右;称取3g的碱性水玻璃磁力搅拌溶解到97g蒸馏水中,得到质量分数约为3%的硅酸钠水溶液,将纤维素溶液和硅酸钠溶液按体积比为1:1机械搅拌混合后,超声振荡除去气泡,形成均匀混合的硅酸钠-纤维素混合溶液。再将均匀混合的硅酸钠-纤维素混合溶液倒入模具当中置于稀硫酸凝固浴中再生,静置5min后得到含有硅酸钠的纤维素湿凝胶。陈化后,再将含有硅酸钠的纤维素湿凝胶脱模后转移到体积为200ML浓度为lmol/L稀醋酸溶液中,在发生中和反应后在纤维素凝胶孔内诱导硅酸钠生成二氧化硅,再将二氧化硅-纤维素复合湿凝胶用去蒸馏水漂洗除去多于的酸和生成的盐,洗涤溶液的pH为8。再将二氧化硅-纤维素水凝胶转移到乙醇溶剂进行溶剂置换和老化,共计置换7次,最终得到二氧化硅-纤维素醇凝胶,将二氧化硅-纤维素醇凝胶置于CO2超临界干燥装置中进行干燥处理,干燥温度为40℃,高压反应釜内压强为8MPa,干燥时间为20h。经过超临界CO2干燥,形成有机-无机SiO2-纤维素气凝胶。该密度为0.128/cm3,比表面积为238.56m2/g,热导率系数0.033W/m·K。Stir and disperse 6g of linter cellulose into the alkali urea solution (20gNaOH/20gUrea/54gH 2 O), transfer to the refrigerator to pre-cool at -15°C after dispersion, and immediately use the motor to stir at 1000rpm for 5min Dissolve the cellulose to obtain a viscous solution, then immediately centrifuge at 8000rpm for 5 minutes to remove air bubbles to obtain a clear and transparent cellulose solution with a solvent mass fraction of about 3%; weigh 3g of alkaline water glass and magnetically stir to dissolve Add 97g of distilled water to obtain a sodium silicate aqueous solution with a mass fraction of about 3%. After the cellulose solution and the sodium silicate solution are mechanically stirred and mixed at a volume ratio of 1:1, the bubbles are removed by ultrasonic vibration to form a uniformly mixed silicic acid Sodium-cellulose mixed solution. Then pour the uniformly mixed sodium silicate-cellulose mixed solution into the mold and place it in a dilute sulfuric acid coagulation bath for regeneration, and after standing for 5 minutes, a cellulose wet gel containing sodium silicate is obtained. After aging, remove the cellulose wet gel containing sodium silicate from the mold and transfer it to a dilute acetic acid solution with a volume of 200ML and a concentration of 1mol/L, and induce silicic acid in the pores of the cellulose gel after a neutralization reaction. Sodium generates silica, and then the silica-cellulose composite wet gel is rinsed with de-distilled water to remove excess acid and generated salt, and the pH of the washing solution is 8. Then the silica-cellulose hydrogel was transferred to an ethanol solvent for solvent replacement and aging, a total of 7 replacements, and finally the silica-cellulose alcohol gel was obtained, and the silica-cellulose alcohol gel was placed in The drying process is carried out in a CO2 supercritical drying device, the drying temperature is 40°C, the pressure in the autoclave is 8MPa, and the drying time is 20h. After supercritical CO 2 drying, organic-inorganic SiO 2 -cellulose aerogels are formed. The density is 0.128/cm 3 , the specific surface area is 238.56 m 2 /g, and the thermal conductivity coefficient is 0.033 W/m·K.

Claims (10)

1.一锅法制备SiO2-纤维素复合气凝胶材料的方法,其具体步骤如下:1. One-pot method prepares the method for SiO 2 -cellulose composite airgel material, and its specific steps are as follows: (1)纤维素溶液的配置(1) Configuration of cellulose solution 将纤维素纤维在搅拌作用下分散到碱脲混合水溶液中,密封后预冷至-20~-5℃,取出后用电动搅拌机搅拌溶解纤维素得到粘稠状溶液,随后离心除去气泡得到澄清透明的纤维素溶液;其中纤维素溶液中纤维素、碱、脲和去离子水的质量分数分别为(2%—6%),(4%-20%),(10%-20%),(54%-84%);Disperse the cellulose fiber into the mixed aqueous solution of alkali urea under the action of stirring, seal it and pre-cool it to -20~-5°C, take it out, stir and dissolve the cellulose with an electric mixer to obtain a viscous solution, and then centrifuge to remove air bubbles to obtain a clear and transparent The cellulose solution; wherein the mass fractions of cellulose, alkali, urea and deionized water in the cellulose solution are (2%-6%), (4%-20%), (10%-20%), ( 54%-84%); (2)无机硅源-纤维素混合溶液的配置(2) Configuration of inorganic silicon source-cellulose mixed solution 在搅拌作用溶解无机硅源,得到质量分数为1%-7%的无机硅源水溶液;按纤维素水溶液和无机硅源水溶液体积比为1:(0.1-1),将无机硅源水溶液加入到纤维素水溶液中,搅拌混合后,超声振荡除去气泡,形成均匀混合的无机硅源-纤维素混合溶液;Dissolving the inorganic silicon source under agitation, to obtain a mass fraction of 1%-7% inorganic silicon source aqueous solution; according to the volume ratio of the cellulose aqueous solution and the inorganic silicon source aqueous solution is 1: (0.1-1), the inorganic silicon source aqueous solution is added to In the cellulose aqueous solution, after stirring and mixing, ultrasonic vibration removes air bubbles to form a uniformly mixed inorganic silicon source-cellulose mixed solution; (3)含无机硅源-纤维素湿凝胶的制备(3) Preparation of inorganic silicon source-cellulose wet gel 将均匀混合的无机硅源-纤维素混合溶液倒入模具中置于凝固浴中再生,静置得到含有无机硅源的纤维素湿凝胶;Pour the uniformly mixed inorganic silicon source-cellulose mixed solution into a mold, place it in a coagulation bath for regeneration, and let stand to obtain a cellulose wet gel containing an inorganic silicon source; (4)二氧化硅-纤维素湿凝胶的制备(4) Preparation of silica-cellulose wet gel 将含无机硅源的纤维素湿凝胶转移到稀酸溶液中,在发生中和反应后在纤维素凝胶孔内诱导无机硅源形成二氧化硅;Transfer the cellulose wet gel containing the inorganic silicon source to a dilute acid solution, and induce the inorganic silicon source to form silica in the pores of the cellulose gel after a neutralization reaction; (5)复合气凝胶的制备(5) Preparation of composite airgel 将二氧化硅-纤维素湿凝胶用蒸馏水漂洗制溶液的pH为6-8;再将二氧化硅-纤维素水凝胶转移到有机溶剂进行溶剂置和老化得到二氧化硅-纤维素醇凝胶;后转移到CO2超临界干燥装置中进行干燥处理,最终得到二氧化硅-纤维素复合气凝胶。Rinse the silica-cellulose wet gel with distilled water to make the pH of the solution 6-8; then transfer the silica-cellulose hydrogel to an organic solvent for solvent placement and aging to obtain silica-cellulose alcohol Gel; then transfer to CO2 supercritical drying device for drying treatment, and finally obtain silica-cellulose composite aerogel. 2.根据权利要求1所述的方法,其特征在于步骤(1)中所述的纤维素纤维为棉浆柏、短绒棉或微晶纤维素中的一种;所述的碱脲混合水溶液中的碱为氢氧化钠或氢氧化锂中的一种;脲为尿素或硫脲。2. method according to claim 1, is characterized in that the cellulose fiber described in step (1) is the one in cotton pulp, short-staple cotton or microcrystalline cellulose; Described alkali urea mixed aqueous solution The alkali is one of sodium hydroxide or lithium hydroxide; urea is urea or thiourea. 3.根据权利要求1所述的方法,其特征在于步骤(1)中电动搅拌机的转速为1000-2000rpm,搅拌时间为4-12min;离心机的转速为8000-10000rpm,离心时间为5-10min。3. method according to claim 1, it is characterized in that the rotating speed of electric mixer is 1000-2000rpm in the step (1), and stirring time is 4-12min; The rotating speed of centrifuge is 8000-10000rpm, and centrifugal time is 5-10min . 4.根据权利要求1所述的方法,其特征在于步骤(2)所述的无机硅源为五水硅酸钠粉末、九水硅酸钠粉末、无水硅酸钠或碱性水玻璃。4. The method according to claim 1, characterized in that the inorganic silicon source in step (2) is sodium silicate pentahydrate powder, sodium silicate nonahydrate powder, anhydrous sodium silicate or alkaline water glass. 5.根据权利要求1所述的方法,其特征在于步骤(3)所述的凝固浴为甲醇、乙醇、丙酮或稀硫酸。5. The method according to claim 1, characterized in that the coagulation bath described in step (3) is methanol, ethanol, acetone or dilute sulfuric acid. 6.根据权利要求1所述的方法,其特征在于步骤(3)中的静置时间5-360min。6. The method according to claim 1, characterized in that the standing time in step (3) is 5-360min. 7.根据权利要求1所述的方法,其特征在于步骤(4)所述的稀酸溶液为盐酸、硝酸、硫酸或醋酸水溶液;稀酸溶液的浓度为0.5-1mol/L。7. The method according to claim 1, characterized in that the dilute acid solution described in step (4) is hydrochloric acid, nitric acid, sulfuric acid or acetic acid aqueous solution; the concentration of the dilute acid solution is 0.5-1mol/L. 8.根据权利要求1所述的方法,其特征在于步骤(5)中所述的有机溶剂为甲醇、乙醇或丙酮中的一种或其混合液。8. The method according to claim 1, characterized in that the organic solvent described in step (5) is one of methanol, ethanol or acetone or a mixture thereof. 9.根据权利要求1所述的方法,其特征在于步骤(5)中所述的二氧化碳超临界干燥法以二氧化碳为干燥介质,反应温度为40-70℃,高压反应釜内压强为8~12MPa,干燥时间为10~20h。9. The method according to claim 1, characterized in that the carbon dioxide supercritical drying method described in step (5) uses carbon dioxide as the drying medium, the reaction temperature is 40-70°C, and the pressure in the autoclave is 8-12MPa , The drying time is 10-20 hours. 10.根据权利要求1所述的方法,其特征在于步骤(5)中所制备的二氧化硅-纤维素复合气凝胶的表观密度0.092~0.143g/cm3,比表面积227.41~264.93m2/g,热导率系数介于0.029~0.038W/m·K。10. The method according to claim 1, characterized in that the silica-cellulose composite airgel prepared in step (5) has an apparent density of 0.092-0.143 g/cm 3 and a specific surface area of 227.41-264.93 m 2 /g, and the thermal conductivity coefficient is between 0.029 and 0.038W/m·K.
CN201710010005.6A 2017-01-06 2017-01-06 Method for preparing SiO2-cellulose composite aerogel material by one-pot method Active CN106867019B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710010005.6A CN106867019B (en) 2017-01-06 2017-01-06 Method for preparing SiO2-cellulose composite aerogel material by one-pot method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710010005.6A CN106867019B (en) 2017-01-06 2017-01-06 Method for preparing SiO2-cellulose composite aerogel material by one-pot method

Publications (2)

Publication Number Publication Date
CN106867019A true CN106867019A (en) 2017-06-20
CN106867019B CN106867019B (en) 2020-05-12

Family

ID=59165464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710010005.6A Active CN106867019B (en) 2017-01-06 2017-01-06 Method for preparing SiO2-cellulose composite aerogel material by one-pot method

Country Status (1)

Country Link
CN (1) CN106867019B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107573536A (en) * 2017-09-04 2018-01-12 武汉生之源生物科技股份有限公司 A kind of preparation method and applications of aeroge
CN108117812A (en) * 2018-02-02 2018-06-05 苏州市东霖节能科技有限公司 Blocking radiant heat type heat insulating coatings for building
CN108586817A (en) * 2018-05-24 2018-09-28 广东迪奥应用材料科技有限公司 Fill SiO2The preparation method of the carbon freeze-drying glue of glue is lyophilized in/cellulose hydridization
CN108623822A (en) * 2018-05-24 2018-10-09 广东迪奥应用材料科技有限公司 A kind of SiO2The preparation method of/cellulose hybrid aerogel
CN108903055A (en) * 2018-08-17 2018-11-30 佛山市森昂生物科技有限公司 A kind of preparation method of papery cigarette filter tip
CN109516763A (en) * 2019-01-07 2019-03-26 东华大学 A kind of cellulose fibre/SiO2Aerogel composite and its preparation and application
CN109679134A (en) * 2018-12-29 2019-04-26 中国农业大学 A kind of starch blending cellulose aerogels and its preparation and application
CN110548459A (en) * 2019-09-17 2019-12-10 南京工业大学 preparation method of blocky cellulose-alumina composite aerogel
CN110669249A (en) * 2019-09-19 2020-01-10 南京林业大学 A kind of preparation method of super-amphiphobic nanocellulose aerogel
CN110938271A (en) * 2019-09-26 2020-03-31 上海稀点新材料科技有限公司 Organic-inorganic composite heat-insulating material with nano porous structure and preparation method thereof
CN110975833A (en) * 2019-12-18 2020-04-10 昆明理工大学 Preparation method and application of silicon dioxide/cellulose composite porous material
CN113410450A (en) * 2021-06-30 2021-09-17 华北水利水电大学 Silicon-oxygen-carbon negative electrode material taking cellulose/silicon dioxide aerogel as precursor and preparation method thereof
CN113825790A (en) * 2019-05-15 2021-12-21 3M创新有限公司 (Co) polymer matrix composite comprising thermally conductive particles and heat sink particles and method for preparing same
CN113956544A (en) * 2021-11-26 2022-01-21 水木山海科技(佛山)有限责任公司 Preparation method of organic-inorganic composite aerogel
CN114150392A (en) * 2021-11-29 2022-03-08 南通荣荟新材料科技有限公司 Preparation method of plant source long-acting mosquito-repelling composite functional filament
CN115726192A (en) * 2022-11-18 2023-03-03 浙江梅盛新材料有限公司 Preparation method of sound-absorbing flame-retardant fiber-based microporous composite material
CN115849381A (en) * 2022-11-18 2023-03-28 浙江新安化工集团股份有限公司 Three-dimensional porous silicon-carbon composite material and preparation method and application thereof
CN117511219A (en) * 2024-01-05 2024-02-06 中铁建设集团有限公司 Flexible fiber reinforced nano microporous aerogel and preparation method thereof
CN118983583A (en) * 2024-08-01 2024-11-19 武汉中科先进材料科技有限公司 A cellulose-based aerogel battery core thermal insulation material and a preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1635019A (en) * 2003-12-30 2005-07-06 山东海龙股份有限公司 A kind of preparation method of regenerated cellulose/SiO2 nanocomposite material
CN105463603A (en) * 2015-12-31 2016-04-06 东华大学 A kind of preparation method of SiO2/cellulose tough airgel fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1635019A (en) * 2003-12-30 2005-07-06 山东海龙股份有限公司 A kind of preparation method of regenerated cellulose/SiO2 nanocomposite material
CN105463603A (en) * 2015-12-31 2016-04-06 东华大学 A kind of preparation method of SiO2/cellulose tough airgel fiber

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107573536B (en) * 2017-09-04 2020-09-15 武汉生之源生物科技股份有限公司 Preparation method and application of aerogel
CN107573536A (en) * 2017-09-04 2018-01-12 武汉生之源生物科技股份有限公司 A kind of preparation method and applications of aeroge
CN108117812A (en) * 2018-02-02 2018-06-05 苏州市东霖节能科技有限公司 Blocking radiant heat type heat insulating coatings for building
CN108586817A (en) * 2018-05-24 2018-09-28 广东迪奥应用材料科技有限公司 Fill SiO2The preparation method of the carbon freeze-drying glue of glue is lyophilized in/cellulose hydridization
CN108623822A (en) * 2018-05-24 2018-10-09 广东迪奥应用材料科技有限公司 A kind of SiO2The preparation method of/cellulose hybrid aerogel
CN108903055A (en) * 2018-08-17 2018-11-30 佛山市森昂生物科技有限公司 A kind of preparation method of papery cigarette filter tip
CN109679134A (en) * 2018-12-29 2019-04-26 中国农业大学 A kind of starch blending cellulose aerogels and its preparation and application
CN109679134B (en) * 2018-12-29 2020-07-07 中国农业大学 A kind of starch blended cellulose aerogel and its preparation and application
CN109516763A (en) * 2019-01-07 2019-03-26 东华大学 A kind of cellulose fibre/SiO2Aerogel composite and its preparation and application
CN109516763B (en) * 2019-01-07 2021-07-20 东华大学 A kind of cellulose fiber/SiO2 composite aerogel material and its preparation and application
CN113825790A (en) * 2019-05-15 2021-12-21 3M创新有限公司 (Co) polymer matrix composite comprising thermally conductive particles and heat sink particles and method for preparing same
CN110548459A (en) * 2019-09-17 2019-12-10 南京工业大学 preparation method of blocky cellulose-alumina composite aerogel
CN110548459B (en) * 2019-09-17 2022-02-22 南京工业大学 Preparation method of blocky cellulose-alumina composite aerogel
CN110669249A (en) * 2019-09-19 2020-01-10 南京林业大学 A kind of preparation method of super-amphiphobic nanocellulose aerogel
CN110669249B (en) * 2019-09-19 2022-02-01 南京林业大学 Preparation method of super-amphiphobic nano cellulose aerogel
CN110938271A (en) * 2019-09-26 2020-03-31 上海稀点新材料科技有限公司 Organic-inorganic composite heat-insulating material with nano porous structure and preparation method thereof
CN110938271B (en) * 2019-09-26 2021-10-01 上海稀点新材料科技有限公司 Organic-inorganic composite heat-insulating material with nano porous structure and preparation method thereof
CN110975833A (en) * 2019-12-18 2020-04-10 昆明理工大学 Preparation method and application of silicon dioxide/cellulose composite porous material
CN113410450A (en) * 2021-06-30 2021-09-17 华北水利水电大学 Silicon-oxygen-carbon negative electrode material taking cellulose/silicon dioxide aerogel as precursor and preparation method thereof
CN113956544A (en) * 2021-11-26 2022-01-21 水木山海科技(佛山)有限责任公司 Preparation method of organic-inorganic composite aerogel
CN114150392A (en) * 2021-11-29 2022-03-08 南通荣荟新材料科技有限公司 Preparation method of plant source long-acting mosquito-repelling composite functional filament
CN114150392B (en) * 2021-11-29 2023-11-10 南通荣荟新材料科技有限公司 Preparation method of plant source long-acting mosquito-repellent composite functional filament
CN115726192A (en) * 2022-11-18 2023-03-03 浙江梅盛新材料有限公司 Preparation method of sound-absorbing flame-retardant fiber-based microporous composite material
CN115849381A (en) * 2022-11-18 2023-03-28 浙江新安化工集团股份有限公司 Three-dimensional porous silicon-carbon composite material and preparation method and application thereof
CN115726192B (en) * 2022-11-18 2023-08-25 浙江梅盛新材料有限公司 Preparation method of sound-absorbing flame-retardant fiber-based microporous composite material
CN117511219A (en) * 2024-01-05 2024-02-06 中铁建设集团有限公司 Flexible fiber reinforced nano microporous aerogel and preparation method thereof
CN117511219B (en) * 2024-01-05 2024-04-09 中铁建设集团有限公司 Flexible fiber reinforced nano microporous aerogel and preparation method thereof
CN118983583A (en) * 2024-08-01 2024-11-19 武汉中科先进材料科技有限公司 A cellulose-based aerogel battery core thermal insulation material and a preparation method thereof

Also Published As

Publication number Publication date
CN106867019B (en) 2020-05-12

Similar Documents

Publication Publication Date Title
CN106867019A (en) One-pot method for preparing SiO2Method for producing cellulose composite aerogel material
CN104448397B (en) A kind of in-situ preparation method of cellulose-silica composite airgel
WO2018049965A1 (en) Method for quickly preparing aerogel by using microemulsion as precursor
CN105418052B (en) A kind of preparation process of carbon nano-fiber combined oxidation silica aerogel
CN103213996B (en) Preparation method of hierarchical porous silica-based composite aerogel
CN111908478B (en) A kind of preparation method of flexible silica airgel
CN103170255B (en) Nano-meter SiO_2 2the preparation method of/cellulose composite separating film
CN101985358A (en) Method for quickly preparing carbon-silicon dioxide composite aerogel
CN108046740A (en) A kind of silica nano fibrous enhancing silica aerogel material and preparation method thereof
CN103086692A (en) Blocky SiO2-Y2O3Preparation method of composite aerogel
CN102225769A (en) A kind of preparation method of elastic silica airgel
CN101264891A (en) A kind of preparation method of high strength, low density silica airgel
CN105731470A (en) Method for preparing silicon dioxide aerogel composite material
CN104495859A (en) Preparation method of silicon dioxide aerogel
CN105883828A (en) Bulk-shaped hydrophobic flexible silicon dioxide aerogel and preparation method thereof
CN108192129A (en) Super-hydrophobic polyvinylidene fluoride aerogel material and preparation method thereof
CN105236929A (en) SiO2 airgel with bactericidal function and preparation method thereof
CN102557578A (en) Preparation method of carbon nanofiber aerogel composite
CN107051339A (en) A kind of fiber reinforced SiO2Aeroge and preparation method thereof
CN106430219A (en) Method for preparing silicon oxide aerogel with low cost
CN107188524A (en) One-step method constant pressure and dry quickly prepares TiO2The method of doping silicon dioxide aerogel powder
CN105110339A (en) Preparation method for low-cost flexible silica aerogel
CN103977749B (en) A method for preparing amorphous SiO2-Al2O3 airgel using metakaolin as raw material
CN106379904A (en) Preparation method for high-temperature-resistant silica aerogel
CN116003870B (en) Microcrystalline cellulose/Al2O3-SiO2Preparation method of composite aerogel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant