CN106847874A - The forming method of the semiconductor devices with different threshold voltages - Google Patents
The forming method of the semiconductor devices with different threshold voltages Download PDFInfo
- Publication number
- CN106847874A CN106847874A CN201510896800.0A CN201510896800A CN106847874A CN 106847874 A CN106847874 A CN 106847874A CN 201510896800 A CN201510896800 A CN 201510896800A CN 106847874 A CN106847874 A CN 106847874A
- Authority
- CN
- China
- Prior art keywords
- region
- layer
- work function
- threshold voltage
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/351—Substrate regions of field-effect devices
- H10D62/357—Substrate regions of field-effect devices of FETs
- H10D62/364—Substrate regions of field-effect devices of FETs of IGFETs
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
一种具有不同阈值电压的半导体器件的形成方法,包括:提供包括第一区域和第二区域的基底,第一区域和第二区域的区域类型相同;对第一区域基底进行第一阈值电压调节掺杂处理;在第一区域以及第二区域基底表面形成栅介质层;形成覆盖第一区域和第二区域的栅介质层表面的第一功函数层,第一功函数层具有第一厚度;对第一区域的第一功函数层进行减薄处理,使得第一区域的第一功函数层具有第二厚度;在具有第二厚度的第一功函数层表面形成第一栅电极层;在第二区域的第一功函数层表面形成第二栅电极层。本发明增加了第一区域形成的MOS管与第二区域形成的MOS管的阈值电压差值,从而使得半导体器件的阈值电压差值得到提高,满足器件性能的需求。
A method for forming a semiconductor device having different threshold voltages, comprising: providing a substrate including a first region and a second region, the first region and the second region having the same region type; performing a first threshold voltage adjustment on the first region substrate Doping treatment; forming a gate dielectric layer on the substrate surface of the first region and the second region; forming a first work function layer covering the surface of the gate dielectric layer in the first region and the second region, and the first work function layer has a first thickness; Thinning the first work function layer in the first region, so that the first work function layer in the first region has a second thickness; forming a first gate electrode layer on the surface of the first work function layer with the second thickness; A second gate electrode layer is formed on the surface of the first work function layer in the second region. The present invention increases the threshold voltage difference between the MOS transistors formed in the first region and the MOS transistors formed in the second region, thereby improving the threshold voltage difference of the semiconductor device and meeting the requirements of device performance.
Description
技术领域technical field
本发明涉及半导体制作技术领域,特别涉及一种具有不同阈值电压的半导体器件的形成方法。The invention relates to the technical field of semiconductor manufacturing, in particular to a method for forming semiconductor devices with different threshold voltages.
背景技术Background technique
集成电路尤其超大规模集成电路的主要半导体器件是金属-氧化物-半导体场效应管(MOS晶体管)。随着集成电路制作技术的不断发展,半导体器件技术节点不断减小,半导体结构的几何尺寸遵循摩尔定律不断缩小。当半导体结构尺寸减小到一定程度时,各种因为半导体结构的物理极限所带来的二级效应相继出现,半导体结构的特征尺寸按比例缩小变得越来越困难。其中,在半导体制作领域,最具挑战性的是如何解决半导体结构漏电流大的问题。半导体结构的漏电流大,主要是由传统栅介质层厚度不断减小所引起的。The main semiconductor device of an integrated circuit, especially a very large scale integrated circuit, is a metal-oxide-semiconductor field effect transistor (MOS transistor). With the continuous development of integrated circuit manufacturing technology, the technology nodes of semiconductor devices are continuously reduced, and the geometric dimensions of semiconductor structures are continuously reduced following Moore's law. When the size of the semiconductor structure is reduced to a certain extent, various secondary effects caused by the physical limit of the semiconductor structure appear one after another, and it becomes more and more difficult to scale down the feature size of the semiconductor structure. Among them, in the field of semiconductor manufacturing, the most challenging thing is how to solve the problem of large leakage current in semiconductor structures. The large leakage current of the semiconductor structure is mainly caused by the continuous reduction of the thickness of the traditional gate dielectric layer.
当前提出的解决方法是,采用高k栅介质材料代替传统的二氧化硅栅介质材料,并使用金属作为栅电极,以避免高k材料与传统栅电极材料发生费米能级钉扎效应以及硼渗透效应。高k金属栅的引入,减小了半导体结构的漏电流。The currently proposed solution is to replace the traditional silicon dioxide gate dielectric material with a high-k gate dielectric material, and use metal as the gate electrode to avoid the Fermi level pinning effect between the high-k material and the traditional gate electrode material and boron penetration effect. The introduction of the high-k metal gate reduces the leakage current of the semiconductor structure.
阈值电压(Vt)是MOS晶体管的重要参数之一,现有技术中对不同的MOS晶体管的阈值电压有着不同的要求。然而,现有技术形成的半导体器件中,不同MOS管的阈值电压差值较小,半导体器件中的阈值电压差值范围不足以满足器件的需求。Threshold voltage (Vt) is one of the important parameters of MOS transistors, and there are different requirements for threshold voltages of different MOS transistors in the prior art. However, in the semiconductor devices formed in the prior art, the threshold voltage difference of different MOS transistors is small, and the range of the threshold voltage difference in the semiconductor device is not enough to meet the requirements of the device.
尽管高k金属栅极的引入能够在一定程度上改善半导体结构的电学性能,但是现有技术形成的半导体结构的电学性能仍有待提高。Although the introduction of a high-k metal gate can improve the electrical performance of the semiconductor structure to a certain extent, the electrical performance of the semiconductor structure formed in the prior art still needs to be improved.
发明内容Contents of the invention
本发明解决的问题是提供一种具有不同阈值电压的半导体器件的形成方法,增加第一区域和第二区域形成的器件的阈值电压差值,从而获得具有较大阈值电压差值的半导体器件。The problem to be solved by the present invention is to provide a method for forming semiconductor devices with different threshold voltages, which increases the threshold voltage difference between the devices formed in the first region and the second region, thereby obtaining a semiconductor device with a larger threshold voltage difference.
为解决上述问题,本发明提供一种具有不同阈值电压的半导体器件的形成方法,包括:提供基底,所述基底包括第一区域和第二区域,所述第一区域和第二区域的区域类型相同;对所述第一区域的基底进行第一阈值电压调节掺杂处理;在所述第一区域以及第二区域基底表面形成栅介质层;形成覆盖所述第一区域和第二区域的栅介质层表面的第一功函数层,所述第一功函数层具有第一厚度;对所述第一区域的第一功函数层进行减薄处理,使得第一区域的第一功函数层具有第二厚度;在所述具有第二厚度的第一功函数层表面形成第一栅电极层;在所述第二区域的第一功函数层表面形成第二栅电极层。In order to solve the above problems, the present invention provides a method for forming a semiconductor device with different threshold voltages, including: providing a substrate, the substrate includes a first region and a second region, and the region types of the first region and the second region Same; perform first threshold voltage adjustment doping treatment on the base of the first region; form a gate dielectric layer on the substrate surface of the first region and the second region; form a gate covering the first region and the second region The first work function layer on the surface of the dielectric layer, the first work function layer has a first thickness; the first work function layer in the first region is thinned, so that the first work function layer in the first region has second thickness; forming a first gate electrode layer on the surface of the first work function layer with the second thickness; forming a second gate electrode layer on the surface of the first work function layer in the second region.
可选的,在形成所述第一功函数层之前,在所述栅介质层表面形成盖帽层;在所述盖帽层表面形成刻蚀停止层。Optionally, before forming the first work function layer, a capping layer is formed on the surface of the gate dielectric layer; an etching stop layer is formed on the surface of the capping layer.
可选的,采用干法刻蚀工艺,对所述第一区域的第一功函数层进行减薄处理。Optionally, a dry etching process is used to thin the first work function layer in the first region.
可选的,进行所述减薄处理的工艺步骤包括:在所述第二区域的第一功函数层表面形成图形层;以所述图形层为掩膜,对所述第一区域的第一功函数层进行干法刻蚀工艺;去除所述图形层。Optionally, the process step of performing the thinning treatment includes: forming a pattern layer on the surface of the first work function layer in the second region; using the pattern layer as a mask, The work function layer is subjected to a dry etching process; the pattern layer is removed.
可选的,所述第一区域为PMOS区域;所述第二区域为PMOS区域;所述第一阈值电压调节掺杂处理的掺杂离子为N型离子;所述第一功函数层的材料为P型功函数材料。Optionally, the first region is a PMOS region; the second region is a PMOS region; the dopant ions in the first threshold voltage adjustment doping treatment are N-type ions; the material of the first work function layer It is a P-type work function material.
可选的,所述第一阈值电压调节掺杂处理的掺杂离子为P或As;所述第一功函数层的材料为Ta、TiN、TaSiN或TiSiN中的一种或几种。Optionally, the doping ions of the first threshold voltage adjustment doping treatment are P or As; the material of the first work function layer is one or more of Ta, TiN, TaSiN or TiSiN.
可选的,所述第一区域为NMOS区域;所述第二区域为NMOS区域;所述阈值电压调节掺杂处理的掺杂离子为P型离子;所述第一功函数层的材料为N型功函数材料。Optionally, the first region is an NMOS region; the second region is an NMOS region; the dopant ions in the threshold voltage adjustment doping treatment are P-type ions; the material of the first work function layer is N work function materials.
可选的,所述阈值电压调节掺杂处理的掺杂离子为B、Ga或In;所述第一功函数层的材料为TiAl、TiAlC、TaAlN、TiAlN、MoN、TaCN或AlN中的一种或几种。Optionally, the doping ions of the threshold voltage adjustment doping treatment are B, Ga or In; the material of the first work function layer is one of TiAl, TiAlC, TaAlN, TiAlN, MoN, TaCN or AlN or several.
可选的,所述第一厚度为30埃至60埃;所述第二厚度为15埃至30埃。Optionally, the first thickness is 30 angstroms to 60 angstroms; the second thickness is 15 angstroms to 30 angstroms.
可选的,所述第一区域还包括若干个子区域,其中,对所述若干个子区域的基底进行第一阈值电压调节掺杂处理,且对所述若干个子区域的基底进行的第一阈值电压调节掺杂处理的掺杂浓度各不相同。Optionally, the first region further includes several subregions, wherein the substrates of the several subregions are subjected to the first threshold voltage adjustment doping treatment, and the substrates of the several subregions are subjected to the first threshold voltage The doping concentration of the adjustment doping process varies.
可选的,所述若干个子区域包括上拉晶体管区域、输入输出晶体管区域、标准阈值电压区域和低阈值电压区域;所述第二区域为超低阈值电压区域。Optionally, the several sub-regions include a pull-up transistor region, an input-output transistor region, a standard threshold voltage region, and a low threshold voltage region; the second region is an ultra-low threshold voltage region.
可选的,所述若干个子区域包括下拉晶体管区域、输入输出晶体管区域、传送门晶体管区域、标准阈值电压区域和低阈值电压区域;所述第二区域为超低阈值电压区域。Optionally, the several sub-regions include a pull-down transistor region, an input-output transistor region, a pass-gate transistor region, a standard threshold voltage region, and a low threshold voltage region; the second region is an ultra-low threshold voltage region.
可选的,所述若干个子区域基底表面的栅介质层中,位于所述输入输出晶体管区域基底表面的栅介质层的厚度最厚。Optionally, among the gate dielectric layers on the base surface of the several sub-regions, the gate dielectric layer located on the base surface of the input-output transistor region has the thickest thickness.
可选的,所述输入输出晶体管区域的栅介质层包括氧化层以及位于氧化层表面的高k栅介质层;所述第一区域中输入输出晶体管区域之外的栅介质层包括界面层以及位于界面层表面的高k栅介质层,其中,所述氧化层的厚度大于界面层的厚度。Optionally, the gate dielectric layer in the input-output transistor region includes an oxide layer and a high-k gate dielectric layer located on the surface of the oxide layer; the gate dielectric layer outside the input-output transistor region in the first region includes an interface layer and a A high-k gate dielectric layer on the surface of the interface layer, wherein the thickness of the oxide layer is greater than the thickness of the interface layer.
可选的,对所述第一区域的若干个子区域的第一功函数层进行减薄处理的减薄厚度相同;或者,对所述第一区域的若干个子区域的第一功函数层进行减薄处理的减薄厚度不相同。Optionally, the first work function layers of the several sub-regions of the first region are thinned to the same thickness; or, the first work function layers of the several sub-regions of the first region are thinned. The thinning thickness of the thinning process is not the same.
可选的,所述基底还包括第三区域和第四区域,所述第三区域和第四区域的区域类型相同,且第三区域、第四区域与第一区域和第二区域的区域类型不同;还包括步骤:对所述第三区域的基底进行第二阈值电压调节掺杂处理;所述栅介质层还位于第三区域以及第四区域基底表面;形成覆盖所述栅介质层的第二功函数层,所述第二功函数层具有第三厚度;对所述第三区域的第二功函数层进行减薄处理,使得第三区域的第二功函数层具有第四厚度;在所述具有第四厚度的第二功函数层表面形成第三栅电极层;在所述第四区域的第二功函数层表面形成第四栅电极层。Optionally, the base further includes a third area and a fourth area, the area types of the third area and the fourth area are the same, and the area types of the third area and the fourth area are the same as those of the first area and the second area It is different; it also includes the steps of: performing a second threshold voltage adjustment doping treatment on the substrate of the third region; the gate dielectric layer is also located on the surface of the substrate of the third region and the fourth region; forming a first layer covering the gate dielectric layer Two work function layers, the second work function layer has a third thickness; thinning the second work function layer in the third region, so that the second work function layer in the third region has a fourth thickness; A third gate electrode layer is formed on the surface of the second work function layer with a fourth thickness; a fourth gate electrode layer is formed on the surface of the second work function layer in the fourth region.
可选的,所述第一区域和第二区域为PMOS区域;所述第三区域和第四区域为NMOS区域;其中,所述第一区域包括若干个子区域,第一区域的若干个子区域包括上拉晶体管区域、第一输入输出晶体管区域、第一标准阈值电压区域和第一低阈值电压区域;所述第二区域为第一超低阈值电压区域;所述第三区域包括若干个子区域,所述第三区域的若干个子区域包括下拉晶体管区域、第二输入输出晶体管区域、传送门晶体管区域、第二标准阈值电压区域和第二低阈值电压区域;所述第四区域为第二超低阈值电压区域。Optionally, the first area and the second area are PMOS areas; the third area and the fourth area are NMOS areas; wherein, the first area includes several sub-areas, and the several sub-areas of the first area include The pull-up transistor area, the first input and output transistor area, the first standard threshold voltage area and the first low threshold voltage area; the second area is the first ultra-low threshold voltage area; the third area includes several sub-areas, Several sub-areas of the third area include a pull-down transistor area, a second input-output transistor area, a transfer gate transistor area, a second standard threshold voltage area, and a second low threshold voltage area; the fourth area is the second ultra-low threshold voltage region.
可选的,对所述第一区域的若干个子区域的基底进行第一阈值电压调节掺杂处理,且对所述第一区域的若干个子区域的基底进行的第一阈值电压调节掺杂处理的掺杂浓度各不相同;对所述第三区域的若干个子区域的基底进行第二阈值电压调节掺杂处理,且对所述第三区域的若干个子区域的基底进行的第二阈值电压调节掺杂处理的掺杂浓度各不相同。Optionally, performing the first threshold voltage adjusting doping treatment on the substrates of the several subregions of the first region, and performing the first threshold voltage adjusting doping treatment on the substrates of the several subregions of the first region The doping concentration is different; the second threshold voltage adjustment doping treatment is performed on the substrates of the several subregions of the third region, and the second threshold voltage adjustment doping treatment is performed on the substrates of the several subregions of the third region. The doping concentrations of the doping treatments vary.
可选的,所述基底包括衬底以及位于衬底表面的分立的鳍部。Optionally, the base includes a substrate and discrete fins located on the surface of the substrate.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明提供的具有不同阈值电压的半导体器件的形成方法的技术方案中,对第一区域的基底进行第一阈值电压调节掺杂处理;在第一区域以及第二区域的基底表面形成栅介质层;形成覆盖第一区域和第二区域的栅介质层表面的第一功函数层,所述第一功函数层具有第一厚度;接着,对第一区域的第一功函数层进行减薄处理,使得第一区域的第一功函数层具有第二厚度;然后在具有第二厚度的第一功函数层表面形成第一栅电极层,在第二区域的第一功函数层表面形成第二栅电极层。由于第一区域既经历了第一阈值电压调节掺杂处理,且第一区域的第一功函数层厚度较第二区域的第一功函数层厚度小,因此第一区域的金属与半导体材料之间的功函数差值比第二区域的金属与半导体材料之间的差值大,因此第一区域形成的MOS管的阈值电压比第二区域形成的MOS管的阈值电压高的多,从而使得形成的半导体器件中不同MOS管的阈值电压差值较大,满足器件性能需求。In the technical solution of the method for forming semiconductor devices with different threshold voltages provided by the present invention, a first threshold voltage adjustment doping treatment is performed on the base of the first region; a gate dielectric layer is formed on the substrate surfaces of the first region and the second region ; forming a first work function layer covering the surface of the gate dielectric layer in the first region and the second region, the first work function layer having a first thickness; then, thinning the first work function layer in the first region , so that the first work function layer in the first region has a second thickness; then a first gate electrode layer is formed on the surface of the first work function layer with the second thickness, and a second gate electrode layer is formed on the surface of the first work function layer in the second region. gate electrode layer. Since the first region has undergone the first threshold voltage adjustment doping treatment, and the thickness of the first work function layer of the first region is smaller than the thickness of the first work function layer of the second region, the relationship between the metal and the semiconductor material in the first region The work function difference between them is larger than the difference between the metal and the semiconductor material in the second region, so the threshold voltage of the MOS transistor formed in the first region is much higher than the threshold voltage of the MOS transistor formed in the second region, so that The threshold voltage difference of different MOS transistors in the formed semiconductor device is relatively large, which meets the performance requirement of the device.
进一步,所述第一区域还包括若干个子区域,对所述若干个子区域的基底进行第一阈值电压调节掺杂处理,且对所述若干个子区域的基底进行的第一阈值电压调节掺杂处理的掺杂浓度各不相同,从而使得第一区域中形成的各MOS管也具有不同的阈值电压。Further, the first region also includes several subregions, the first threshold voltage adjustment doping treatment is performed on the substrates of the several subregions, and the first threshold voltage adjustment doping treatment is performed on the substrates of the several subregions The doping concentrations of the MOS tubes are different, so that the MOS transistors formed in the first region also have different threshold voltages.
进一步,对第一区域的若干个子区域的第一功函数层进行减薄处理的减薄厚度不相同,从而使得第一区域中形成的各MOS管具有不同的阈值电压。Further, the thicknesses of the first work function layers in the several sub-regions of the first region are different, so that the MOS transistors formed in the first region have different threshold voltages.
更进一步,本发明提供的基底还包括区域类型相同的第三区域和第四区域,且第三区域和第四区域的区域类型与第一区域和第二区域的区域类型不同,对第三区域的基底进行第二阈值电压调节掺杂处理;形成覆盖栅介质层的第二功函数层;对第三区域的第二功函数层进行减薄处理,使得第三区域的第二功函数层厚度由第三厚度减小为第四厚度;在所述具有第四厚度的第二功函数层表面形成第三栅电极层;在所述第四区域的第二功函数层表面形成第四栅电极层。同样的,本发明在第三区域和第四区域形成的器件的阈值电压差值较大。Furthermore, the substrate provided by the present invention also includes a third region and a fourth region with the same region type, and the region types of the third region and the fourth region are different from those of the first region and the second region, and the third region The substrate is subjected to the second threshold voltage adjustment doping treatment; the second work function layer covering the gate dielectric layer is formed; the second work function layer in the third region is thinned so that the thickness of the second work function layer in the third region is reducing from the third thickness to the fourth thickness; forming a third gate electrode layer on the surface of the second work function layer with the fourth thickness; forming a fourth gate electrode on the surface of the second work function layer in the fourth region Floor. Similarly, the threshold voltage difference of the devices formed in the third region and the fourth region of the present invention is relatively large.
附图说明Description of drawings
图1至图25为本发明一实施例提供的半导体器件形成过程的剖面结构示意图。1 to 25 are schematic cross-sectional structural diagrams of a semiconductor device forming process provided by an embodiment of the present invention.
具体实施方式detailed description
由背景技术可知,现有技术形成的半导体器件中的阈值电压差值较小,难以满足器件需求。It can be seen from the background art that the threshold voltage difference in the semiconductor device formed in the prior art is small, and it is difficult to meet the requirement of the device.
经研究发现,现有技术形成的具有不同阈值电压的半导体器件中,阈值电压中的最大值与最小值之间的差值在150mV左右,但是随着技术的发展,对半导体器件中的所述阈值电压的差值通常要大于200mV,因此,亟需提供一种新的半导体器件的形成方法,增加阈值电压中最大值与最小值之间的差值,从而满足器件的需求。It has been found through research that in the semiconductor devices with different threshold voltages formed in the prior art, the difference between the maximum value and the minimum value of the threshold voltage is about 150mV, but with the development of technology, the The threshold voltage difference is usually greater than 200mV. Therefore, it is urgent to provide a new method for forming a semiconductor device that increases the difference between the maximum value and the minimum value of the threshold voltage to meet the requirements of the device.
为解决上述问题,本发明提供一种具有不同阈值电压的半导体器件的形成方法,包括:提供基底,所述基底至少包括第一区域和第二区域,所述第一区域和第二区域的区域类型相同;对所述第一区域的基底进行第一阈值电压调节掺杂处理;在所述第一区域以及第二区域基底表面形成栅介质层;形成覆盖所述第一区域和第二区域的栅介质层表面的第一功函数层,所述第一功函数层具有第一厚度;对所述第一区域的第一功函数层进行减薄处理,使得第一区域的第一功函数层具有第二厚度;在所述具有第二厚度的第一功函数层表面形成第一栅电极层;在所述第二区域的第一功函数层表面形成第二栅电极层。本发明中既对第一区域的基底进行第一阈值电压调节掺杂处理,还对第一区域的第一功函数层进行减薄处理,使得第一区域的第一功函数层的厚度由第一厚度减小为第二厚度,因此,第一区域形成的器件的阈值电压数值比第二区域形成的器件的阈值电压数值高的多,从而提高半导体器件中MOS管的阈值电压差值,满足器件的性能需求。In order to solve the above problems, the present invention provides a method for forming a semiconductor device with different threshold voltages, comprising: providing a substrate, the substrate at least including a first region and a second region, the regions of the first region and the second region the same type; perform a first threshold voltage adjustment doping treatment on the substrate of the first region; form a gate dielectric layer on the substrate surface of the first region and the second region; form a gate dielectric layer covering the first region and the second region The first work function layer on the surface of the gate dielectric layer, the first work function layer has a first thickness; the first work function layer in the first region is thinned, so that the first work function layer in the first region It has a second thickness; a first gate electrode layer is formed on the surface of the first work function layer with the second thickness; and a second gate electrode layer is formed on the surface of the first work function layer in the second region. In the present invention, the first threshold voltage adjustment doping treatment is performed on the base of the first region, and the first work function layer in the first region is thinned, so that the thickness of the first work function layer in the first region is reduced by the first One thickness is reduced to the second thickness, therefore, the threshold voltage value of the device formed in the first region is much higher than the threshold voltage value of the device formed in the second region, thereby increasing the threshold voltage difference of the MOS transistor in the semiconductor device, satisfying device performance requirements.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图1至图25为本发明一实施例提供的具有不同阈值电压的半导体器件的形成方法。1 to 25 illustrate a method for forming semiconductor devices with different threshold voltages according to an embodiment of the present invention.
参考图1,提供基底,所述基底至少包括第一区域(未标示)和第二区域II。Referring to FIG. 1 , a substrate is provided, and the substrate includes at least a first region (not labeled) and a second region II.
后续在第一区域和第二区域II各自形成的器件具有不同的阈值电压。所述第一区域和第二区域II的区域类型相同。所述第一区域为PMOS区域,所述第二区域II为PMOS区域;或者,所述第一区域为NMOS区域,所述第二区域II为NMOS区域。Subsequent devices formed in the first region and the second region II respectively have different threshold voltages. The area types of the first area and the second area II are the same. The first area is a PMOS area, and the second area II is a PMOS area; or, the first area is an NMOS area, and the second area II is an NMOS area.
所述第一区域还包括若干个子区域,后续在所述若干个子区域各自形成的器件也具有不同的阈值电压。所述第二区域II为超低阈值电压(ULVT,Ultra-low VT)区域。在另一实施例中,所述第一区域还能够只包括一个子区域。The first region further includes several sub-regions, and the devices subsequently formed in each of the several sub-regions also have different threshold voltages. The second region II is an ultra-low threshold voltage (ULVT, Ultra-low VT) region. In another embodiment, the first area can only include one sub-area.
在一个实施例中,所述第一区域为PMOS区域时,所述若干个子区域包括上拉(PU,Pull Up)晶体管区域、输入输出晶体管(IO,Input Output)区域、标准阈值电压(SVT,Standard VT)区域和低阈值电压(LVT,Low VT)区域。在另一实施例中,所述第一区域为NMOS区域时,所述第一区域中的若干个子区域包括下拉(PD,Pull Down)晶体管区域、输入输出晶体管区域、传送门(PG,Pass Gate)晶体管区域、标准阈值电压区域和低阈值电压区域。In one embodiment, when the first region is a PMOS region, the several subregions include a pull-up (PU, Pull Up) transistor region, an input-output transistor (IO, Input Output) region, a standard threshold voltage (SVT, Standard VT) region and low threshold voltage (LVT, Low VT) region. In another embodiment, when the first region is an NMOS region, several subregions in the first region include a pull-down (PD, Pull Down) transistor region, an input and output transistor region, a transfer gate (PG, Pass Gate ) transistor region, standard threshold voltage region, and low threshold voltage region.
在一个实施例中,形成的半导体器件仅包括NMOS管。在另一实施例中,形成的半导体器件仅包括PMOS管。In one embodiment, the formed semiconductor device only includes NMOS transistors. In another embodiment, the formed semiconductor device only includes PMOS transistors.
本实施例中,形成的半导体器件包括NMOS管以及PMOS管,其中,不同NMOS管的阈值电压不相同,不同PMOS管的阈值电压不相同。所述基底还包括第三区域(未标示)和第四区域IV,所述第三区域和第四区域IV的区域类型相同,且第三区域、第四区域IV与第一区域和第二区域II的区域类型不同。本实施例中,所述第一区域和第二区域II为PMOS区域,所述第三区域和第四区域IV为NMOS区域。其中,所述第一区域包括若干个子区域,第一区域的若干个子区域包括第一低阈值电压区域11、第一标准阈值电压区域12、上拉晶体管区域13和第一输入输出晶体管区域14;所述第二区域II为第一超低阈值电压区域;所述第三区域包括若干个子区域,第三区域的若干个子区域包括第二低阈值电压区域21、第二标准阈值电压区域22、下拉晶体管区域23、传送门晶体管区域24和第二输入输出晶体管区域25;第四区域为第二超低阈值电压区域。在其他实施例中,还能够为第一区域和第二区域为NMOS区域,第三区域和第四区域为PMOS区域。In this embodiment, the formed semiconductor device includes NMOS transistors and PMOS transistors, wherein the threshold voltages of different NMOS transistors are different, and the threshold voltages of different PMOS transistors are different. The substrate also includes a third area (not marked) and a fourth area IV, the third area and the fourth area IV are of the same area type, and the third area, the fourth area IV are the same as the first area and the second area II has a different type of region. In this embodiment, the first region and the second region II are PMOS regions, and the third region and fourth region IV are NMOS regions. Wherein, the first region includes several subregions, and the several subregions of the first region include a first low threshold voltage region 11, a first standard threshold voltage region 12, a pull-up transistor region 13 and a first input-output transistor region 14; The second region II is the first ultra-low threshold voltage region; the third region includes several subregions, and the several subregions of the third region include the second low threshold voltage region 21, the second standard threshold voltage region 22, the pull-down The transistor region 23 , the transfer gate transistor region 24 and the second input-output transistor region 25 ; the fourth region is the second ultra-low threshold voltage region. In other embodiments, it is also possible that the first area and the second area are NMOS areas, and the third area and the fourth area are PMOS areas.
本实施例以形成的半导体器件为鳍式场效应管为例,所述基底包括衬底101、位于衬底101表面的分立的鳍部102。In this embodiment, the semiconductor device formed is a FinFET as an example, and the base includes a substrate 101 and discrete fins 102 located on the surface of the substrate 101 .
在另一实施例中,所述半导体器件为平面晶体管,所述基底为平面基底,所述平面基底为硅衬底、锗衬底、硅锗衬底或碳化硅衬底、绝缘体上硅衬底或绝缘体上锗衬底、玻璃衬底或III-V族化合物衬底(例如氮化镓衬底或砷化镓衬底等),栅极结构形成于所述平面基底表面。In another embodiment, the semiconductor device is a planar transistor, the substrate is a planar substrate, and the planar substrate is a silicon substrate, a germanium substrate, a silicon germanium substrate or a silicon carbide substrate, or a silicon-on-insulator substrate. Or a germanium-on-insulator substrate, a glass substrate or a III-V compound substrate (such as a gallium nitride substrate or a gallium arsenide substrate, etc.), and the gate structure is formed on the surface of the planar substrate.
所述衬底101的材料为硅、锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底101还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底;所述鳍部102的材料包括硅、锗、锗化硅、碳化硅、砷化镓或镓化铟。本实施例中,所述衬底101为硅衬底,所述鳍部102的材料为硅。The material of the substrate 101 is silicon, germanium, silicon germanium, silicon carbide, gallium arsenide or gallium indium, and the substrate 101 can also be a silicon-on-insulator substrate or a germanium-on-insulator substrate; The material of the fin portion 102 includes silicon, germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium. In this embodiment, the substrate 101 is a silicon substrate, and the material of the fins 102 is silicon.
本实施例中,形成所述衬底101、鳍部102的工艺步骤包括:提供初始衬底;在所述初始衬底表面形成图形化的硬掩膜层103;以所述硬掩膜层103为掩膜刻蚀所述初始衬底,刻蚀后的初始衬底作为衬底101,位于衬底101表面的凸起作为鳍部102。In this embodiment, the process steps of forming the substrate 101 and the fin portion 102 include: providing an initial substrate; forming a patterned hard mask layer 103 on the surface of the initial substrate; The initial substrate is etched as a mask, the etched initial substrate is used as the substrate 101 , and the protrusions on the surface of the substrate 101 are used as the fins 102 .
在一个实施例中,形成所述硬掩膜层103的工艺步骤包括:首先形成初始硬掩膜;在所述初始硬掩膜表面形成图形化的光刻胶层;以所述图形化的光刻胶层为掩膜刻蚀所述初始硬掩膜,在初始衬底表面形成硬掩膜层103;去除所述图形化的光刻胶层。在其他实施例中,所述硬掩膜层的形成工艺还能够包括:自对准双重图形化(SADP,Self-aligned Double Patterned)工艺、自对准三重图形化(Self-aligned Triple Patterned)工艺、或自对准四重图形化(Self-aligned Double Double Patterned)工艺。所述双重图形化工艺包括LELE(Litho-Etch-Litho-Etch)工艺或LLE(Litho-Litho-Etch)工艺。In one embodiment, the process steps of forming the hard mask layer 103 include: first forming an initial hard mask; forming a patterned photoresist layer on the surface of the initial hard mask; The resist layer is used as a mask to etch the initial hard mask to form a hard mask layer 103 on the surface of the initial substrate; and remove the patterned photoresist layer. In other embodiments, the formation process of the hard mask layer can also include: self-aligned double patterning (SADP, Self-aligned Double Patterned) process, self-aligned triple patterning (Self-aligned Triple Patterned) process , or self-aligned quadruple patterning (Self-aligned Double Double Patterned) process. The double patterning process includes LELE (Litho-Etch-Litho-Etch) process or LLE (Litho-Litho-Etch) process.
本实施例中,在形成所述鳍部102之后,保留位于鳍部102顶部表面的硬掩膜层103。所述硬掩膜层103的材料为氮化硅,后续在进行平坦化工艺时,所述硬掩膜层103顶部表面能够作为平坦化工艺的停止位置,起到保护鳍部102顶部的作用。本实施例中,所述鳍部102的顶部尺寸小于底部尺寸。在其他实施例中,所述鳍部的侧壁还能够与衬底表面相垂直,即鳍部的顶部尺寸等于底部尺寸。In this embodiment, after the fin portion 102 is formed, the hard mask layer 103 on the top surface of the fin portion 102 remains. The material of the hard mask layer 103 is silicon nitride, and the top surface of the hard mask layer 103 can be used as a stop position of the planarization process to protect the top of the fin portion 102 when the subsequent planarization process is performed. In this embodiment, the top size of the fin 102 is smaller than the bottom size. In other embodiments, the sidewall of the fin can also be perpendicular to the substrate surface, that is, the top dimension of the fin is equal to the bottom dimension.
参考图2,形成覆盖所述衬底101表面以及鳍部102表面的隔离膜104,所述隔离膜104顶部高于硬掩膜层103顶部。Referring to FIG. 2 , an isolation film 104 covering the surface of the substrate 101 and the surface of the fin portion 102 is formed, and the top of the isolation film 104 is higher than the top of the hard mask layer 103 .
在形成所述隔离膜104之前,还包括步骤:对所述衬底101和鳍部102进行氧化处理,在所述衬底101表面以及鳍部102表面形成线性氧化层。Before forming the isolation film 104 , a step is further included: performing oxidation treatment on the substrate 101 and the fin portion 102 , and forming a linear oxide layer on the surface of the substrate 101 and the surface of the fin portion 102 .
所述隔离膜104为后续形成隔离层提供工艺基础;所述隔离膜104的材料为绝缘材料,例如为氧化硅、氮化硅或氮氧化硅。本实施例中,所述隔离膜104的材料为氧化硅。The isolation film 104 provides a process basis for subsequent formation of an isolation layer; the material of the isolation film 104 is an insulating material, such as silicon oxide, silicon nitride or silicon oxynitride. In this embodiment, the material of the isolation film 104 is silicon oxide.
为了提高形成隔离膜104工艺的填孔(gap-filling)能力,采用流动性化学气相沉积(FCVD,Flowable CVD)或高纵宽比化学气相沉积工艺(HARPCVD),形成所述隔离膜104。In order to improve the gap-filling capability of the process for forming the isolation film 104 , the isolation film 104 is formed by using flowable chemical vapor deposition (FCVD, Flowable CVD) or high aspect ratio chemical vapor deposition process (HARPCVD).
在形成所述隔离膜104之后,还包括步骤:对所述隔离膜104进行退火处理,提高所述隔离膜104的致密度。After the isolation film 104 is formed, a step is further included: annealing the isolation film 104 to increase the density of the isolation film 104 .
参考图3,去除部分厚度的隔离膜104(参考图2)形成隔离层114,所述隔离层114位于衬底101表面且覆盖鳍部102部分侧壁表面,所述隔离层114顶部低于鳍部102顶部。Referring to FIG. 3 , removing part of the thickness of the isolation film 104 (refer to FIG. 2 ) to form an isolation layer 114, the isolation layer 114 is located on the surface of the substrate 101 and covers part of the sidewall surface of the fin 102, and the top of the isolation layer 114 is lower than the fin. Section 102 top.
所述隔离层114的材料为氧化硅、氮化硅或氮氧化硅。本实施例中,所述隔离层114的材料为氧化硅。The material of the isolation layer 114 is silicon oxide, silicon nitride or silicon oxynitride. In this embodiment, the material of the isolation layer 114 is silicon oxide.
在一个实施例中,采用干法刻蚀工艺,刻蚀去除部分厚度的隔离膜104。在另一实施例中,采用湿法刻蚀工艺,刻蚀去除部分厚度的隔离膜104。In one embodiment, a dry etching process is used to etch and remove part of the thickness of the isolation film 104 . In another embodiment, a wet etching process is used to etch and remove part of the thickness of the isolation film 104 .
还包括步骤:刻蚀去除所述硬掩膜层103(参考图2)。还能够包括步骤:在所述鳍部102顶部和侧壁表面、以及隔离层114表面形成屏蔽层,所述屏蔽层的材料为氧化硅或氮氧化硅,其作用在于:在后续的掺杂处理过程中,所述屏蔽层能够减小掺杂处理对鳍部102造成的晶格损伤。A step is also included: removing the hard mask layer 103 by etching (refer to FIG. 2 ). It can also include the step of: forming a shielding layer on the top and sidewall surfaces of the fin portion 102 and the surface of the isolation layer 114, the material of the shielding layer is silicon oxide or silicon oxynitride, and its function is: in the subsequent doping process During the process, the shielding layer can reduce the lattice damage caused by the doping process to the fin portion 102 .
参考图4,对所述第一区域和第二区域II的基底进行第一阱区掺杂处理,在所述第一区域和第二区域II的基底内形成第一阱区(未图示)。Referring to FIG. 4, the substrates of the first region and the second region II are subjected to a first well region doping treatment, and a first well region (not shown) is formed in the substrates of the first region and the second region II .
本实施例中,对所述第一区域和第二区域II的衬底101进行第一阱区掺杂处理。所述第一区域和第二区域II为PMOS区域,所述第一阱区掺杂处理的掺杂离子为N型离子,N型离子为P、As或Sb。In this embodiment, the first well region doping treatment is performed on the substrate 101 in the first region and the second region II. The first region and the second region II are PMOS regions, and the dopant ions in the first well region doping treatment are N-type ions, and the N-type ions are P, As or Sb.
进行所述第一阱区掺杂处理的工艺步骤包括:在所述第三区域和第四区域IV的隔离层114表面以及鳍部102表面形成第一图形层105,所述第一图形层105顶部高于鳍部102顶部;以所述第一图形层105为掩膜,对所述第一区域和第二区域II的衬底101进行第一阱区掺杂处理;接着,去除所述第一图形层105。The process steps of performing the first well region doping treatment include: forming a first pattern layer 105 on the surface of the isolation layer 114 and the surface of the fin portion 102 in the third region and the fourth region IV, and the first pattern layer 105 The top is higher than the top of the fin portion 102; using the first pattern layer 105 as a mask, perform a first well doping treatment on the substrate 101 in the first region and the second region II; then, remove the first A graphics layer 105 .
所述第一图形层105的材料为硬掩膜材料或光刻胶材料。The material of the first pattern layer 105 is hard mask material or photoresist material.
参考图5,对所述第三区域和第四区域IV的基底进行第二阱区掺杂处理,在所述第三区域和第四区域IV的基底内形成第二阱区(未图示)。Referring to FIG. 5 , the substrates of the third region and the fourth region IV are subjected to a second well region doping treatment, and a second well region (not shown) is formed in the substrates of the third region and the fourth region IV. .
本实施例中,对所述第三区域和第四区域IV的衬底101进行第二阱区掺杂处理。所述第三区域和第四区域IV为NMOS区域,所述第二阱区掺杂处理的掺杂离子为P型离子,P型离子为B、Ga或In。In this embodiment, the second well region doping treatment is performed on the substrate 101 in the third region and the fourth region IV. The third region and the fourth region IV are NMOS regions, and the doping ions in the second well region are P-type ions, and the P-type ions are B, Ga or In.
进行所述第二阱区掺杂处理的工艺步骤包括:在所述第一区域和第二区域II的隔离层114表面以及鳍部102表面形成第二图形层106,所述第二图形层106顶部高于鳍部102顶部;以所述第二图形层106为掩膜,对所述第三区域和第四区域IV的衬底101进行第二阱区掺杂处理;接着,去除所述第二图形层106。The process step of performing the second well region doping treatment includes: forming a second pattern layer 106 on the surface of the isolation layer 114 and the surface of the fin portion 102 in the first region and the second region II, and the second pattern layer 106 The top is higher than the top of the fin portion 102; using the second pattern layer 106 as a mask, perform a second well doping treatment on the substrate 101 in the third region and the fourth region IV; then, remove the first Two graphic layers 106 .
所述第二图形层106的材料为硬掩膜材料或光刻胶材料。The material of the second pattern layer 106 is hard mask material or photoresist material.
后续还包括步骤,对所述第一区域的基底进行第一阈值电压调节处理,由于第一区域还包括若干个子区域,因此对所述若干个子区域的基底进行第一阈值电压调节掺杂处理,且对所述若干个子区域的基底进行的第一阈值电压调节掺杂处理的掺杂浓度各不相同。以下将结合附图进行详细说明,所述第一阈值电压调节掺杂处理实际上是对鳍部102进行的。The subsequent step further includes the step of performing a first threshold voltage adjustment treatment on the substrate of the first region, since the first region also includes several subregions, performing the first threshold voltage adjustment doping treatment on the substrates of the several subregions, And the doping concentration of the first threshold voltage adjustment doping treatment performed on the substrates of the several sub-regions is different. The details will be described below with reference to the accompanying drawings. The first threshold voltage adjustment doping treatment is actually performed on the fin portion 102 .
参考图6,对所述第一区域中的第一低阈值电压区域11的基底进行第一阈值电压调节掺杂处理。Referring to FIG. 6 , a first threshold voltage adjustment doping treatment is performed on the substrate of the first low threshold voltage region 11 in the first region.
所述第一区域为PMOS区域时,所述第一阈值电压调节掺杂处理的掺杂离子为N型离子,所述第一阈值电压调节掺杂处理的掺杂离子为P或As;所述第一区域为NMOS区域时,所述第一阈值电压调节掺杂处理的掺杂离子为P型离子,所述第一阈值电压调节掺杂处理的掺杂离子为B或Ga。When the first region is a PMOS region, the dopant ions of the first threshold voltage adjustment doping treatment are N-type ions, and the doping ions of the first threshold voltage adjustment doping treatment are P or As; When the first region is an NMOS region, the dopant ions in the first threshold voltage adjusting doping treatment are P-type ions, and the doping ions in the first threshold voltage adjusting doping treatment are B or Ga.
本实施例中,所述第一区域为PMOS区域,对所述第一低阈值电压区域11进行第一阈值电压调节掺杂处理的工艺步骤包括:在所述第二区域II、第三区域、第四区域IV、以及第一区域中除第一低阈值电压区域11之外的区域的隔离层114表面以及鳍部102表面形成第三图形层107;以所述第三图形层107为掩膜,对所述第一低阈值电压区域11进行N型离子注入;接着,去除所述第三图形层107。In this embodiment, the first region is a PMOS region, and the process steps of performing the first threshold voltage adjustment doping treatment on the first low threshold voltage region 11 include: in the second region II, the third region, The third pattern layer 107 is formed on the surface of the isolation layer 114 and the surface of the fin portion 102 in the fourth region IV, and the region except the first low threshold voltage region 11 in the first region; the third pattern layer 107 is used as a mask , performing N-type ion implantation on the first low-threshold voltage region 11 ; then, removing the third pattern layer 107 .
本实施例中,根据所述第一低阈值电压区域11形成的器件所需的阈值电压范围,确定对其进行第一阈值电压调节掺杂处理的掺杂浓度。In this embodiment, according to the required threshold voltage range of the device formed in the first low threshold voltage region 11 , the doping concentration for performing the first threshold voltage adjustment doping treatment is determined.
参考图7,对所述第一区域中的第一标准阈值电压区域12的基底进行第一阈值电压调节掺杂处理。Referring to FIG. 7 , the substrate of the first standard threshold voltage region 12 in the first region is subjected to a first threshold voltage adjustment doping treatment.
本实施例中,所述第一区域为PMOS区域,所述第一阈值电压调节掺杂处理的掺杂离子为N型离子。In this embodiment, the first region is a PMOS region, and dopant ions in the first threshold voltage adjustment doping treatment are N-type ions.
对所述第一标准阈值电压区域12的基底进行第一阈值电压调节掺杂处理的工艺步骤包括:在所述第二区域II、第三区域、第四区域IV、以及第一区域中除第一标准阈值电压区域12之外的区域的隔离层114表面以及鳍部102表面形成第四图形层108;以所述第四图形层108为掩膜,对所述第一标准阈值电压区域12进行N型离子注入;接着,去除所述第四图形层108。The process step of performing the first threshold voltage adjustment doping treatment on the substrate of the first standard threshold voltage region 12 includes: removing the second region II, the third region, the fourth region IV, and the first region A fourth pattern layer 108 is formed on the surface of the isolation layer 114 and the surface of the fin portion 102 outside the standard threshold voltage region 12; using the fourth pattern layer 108 as a mask, the first standard threshold voltage region 12 is N-type ion implantation; then, removing the fourth pattern layer 108 .
根据所述第一标准阈值电压区域12形成的器件所需的阈值电压范围,确定对其进行第一阈值电压调节掺杂处理的掺杂浓度。本实施例中,对所述第一标准阈值电压区域12以及第一低阈值电压区域11进行的第一阈值电压调节掺杂处理的掺杂浓度不相同。According to the required threshold voltage range of the device formed in the first standard threshold voltage region 12 , the doping concentration for performing the first threshold voltage adjustment doping treatment is determined. In this embodiment, the doping concentrations of the first threshold voltage adjusting doping treatment performed on the first standard threshold voltage region 12 and the first low threshold voltage region 11 are different.
参考图8,对所述第一区域中的上拉晶体管区域13的基底进行第一阈值电压调节掺杂处理。Referring to FIG. 8 , a first threshold voltage adjustment doping treatment is performed on the base of the pull-up transistor region 13 in the first region.
本实施例中,所述第一区域为PMOS区域,所述第一阈值电压调节掺杂处理的掺杂离子为N型离子。In this embodiment, the first region is a PMOS region, and dopant ions in the first threshold voltage adjustment doping treatment are N-type ions.
对所述上拉晶体管区域13的基底进行第一阈值电压调节掺杂处理的工艺步骤包括:在所述第二区域II、第三区域、第四区域IV、以及第一区域中除上拉晶体管区域13之外的区域的隔离层114表面以及鳍部102表面形成第五图形层109;以所述第五图形层109为掩膜,对所述上拉晶体管区域13进行N型离子注入;接着,去除所述第五图形层109。The process step of performing the first threshold voltage adjustment doping treatment on the base of the pull-up transistor region 13 includes: removing the pull-up transistor in the second region II, the third region, the fourth region IV, and the first region A fifth pattern layer 109 is formed on the surface of the isolation layer 114 and the surface of the fin portion 102 outside the region 13; using the fifth pattern layer 109 as a mask, perform N-type ion implantation on the pull-up transistor region 13; then , removing the fifth graphic layer 109 .
根据所述上拉晶体管区域13形成的器件所需的阈值电压范围,确定对其进行第一阈值电压调节掺杂处理的掺杂浓度。本实施例中,对所述上拉晶体管区域13、第一标准阈值电压区域12以及第一低阈值电压区域11进行的第一阈值电压调节掺杂处理的掺杂浓度不相同。According to the required threshold voltage range of the device formed in the pull-up transistor region 13 , the doping concentration for performing the first threshold voltage adjustment doping treatment is determined. In this embodiment, the doping concentrations of the first threshold voltage adjusting doping treatment performed on the pull-up transistor region 13 , the first standard threshold voltage region 12 and the first low threshold voltage region 11 are different.
参考图9,对所述第一区域中的第一输入输出晶体管区域14的基底进行第一阈值电压调节掺杂处理。Referring to FIG. 9 , a first threshold voltage adjustment doping treatment is performed on the substrate of the first input-output transistor region 14 in the first region.
本实施例中,所述第一区域为PMOS区域,所述第一阈值电压调节掺杂处理的掺杂离子为N型离子。In this embodiment, the first region is a PMOS region, and dopant ions in the first threshold voltage adjustment doping treatment are N-type ions.
对所述第一输入输出晶体管区域14的基底进行第一阈值电压调节掺杂处理的工艺步骤包括:对所述第二区域II、第三区域、第四区域IV、以及第一区域中除第一输入输出晶体管区域14之外的区域的隔离层114表面以及鳍部102表面形成第六图形层110;以所述第六图形层110为掩膜,对所述第一输入输出晶体管区域14进行N型离子注入;接着,去除所述第六图形层110。The process step of performing the first threshold voltage adjustment doping treatment on the substrate of the first input-output transistor region 14 includes: the second region II, the third region, the fourth region IV, and the first region except the first region A sixth pattern layer 110 is formed on the surface of the isolation layer 114 and the surface of the fin portion 102 other than the input-output transistor region 14; using the sixth pattern layer 110 as a mask, the first input-output transistor region 14 is N-type ion implantation; then, removing the sixth pattern layer 110 .
根据所述第一输入输出晶体管区域14形成的器件所需的阈值电压范围,确定对其进行第一阈值电压调节掺杂处理的掺杂浓度。本实施例中,对所述第一输入输出晶体管区域14、上拉晶体管区域13、第一标准阈值电压区域12以及第一低阈值电压区域11进行的第一阈值电压调节掺杂处理的掺杂浓度不相同。According to the required threshold voltage range of the device formed in the first input-output transistor region 14 , the doping concentration for performing the first threshold voltage adjustment doping treatment is determined. In this embodiment, the doping of the first threshold voltage adjustment doping process performed on the first input and output transistor region 14, the pull-up transistor region 13, the first standard threshold voltage region 12 and the first low threshold voltage region 11 is Concentrations are not the same.
通过调节第一区域内各子区域的基底中的掺杂离子浓度,使得相应形成的器件的阈值电压数值不同。一般的,子区域的基底中掺杂离子浓度越小,相应形成的器件的阈值电压数值越小。By adjusting the concentration of doping ions in the base of each sub-region in the first region, the threshold voltage values of correspondingly formed devices are different. Generally, the lower the concentration of dopant ions in the substrate of the sub-region, the smaller the threshold voltage value of the corresponding formed device.
后续还包括,对所述第三区域的基底进行第二阈值电压调节处理,由于第三区域包括若干个子区域,因此后续对所述第三区域的若干个子区域的基底进行第二阈值电压调节处理,且对所述第三区域的若干个子区域的基底进行的第二阈值电压调节掺杂处理的掺杂浓度各不相同。以下将结合附图进行详细说明,所述第二阈值电压调节掺杂处理实际为对鳍部102进行的。Subsequent steps also include performing a second threshold voltage adjustment process on the base of the third region. Since the third region includes several sub-regions, the second threshold voltage adjustment process is subsequently performed on the bases of the several sub-regions of the third region. , and the doping concentrations of the second threshold voltage adjusting doping treatment performed on the substrates of the several sub-regions of the third region are different. The details will be described below with reference to the accompanying drawings. The second threshold voltage adjustment doping treatment is actually performed on the fin portion 102 .
参考图10,对所述第三区域中的第二低阈值电压区域21的基底进行第二阈值电压调节掺杂处理。Referring to FIG. 10 , a second threshold voltage adjustment doping treatment is performed on the substrate of the second low threshold voltage region 21 in the third region.
所述第三区域为PMOS区域时,所述第二阈值电压调节掺杂处理的掺杂离子为N型离子,所述第二阈值电压调节掺杂处理的掺杂离子为P或As;所述第三区域为NMOS区域时,所述第二阈值电压调节掺杂处理的掺杂离子为P型离子,所述第二阈值电压调节掺杂处理的掺杂离子为B或Ga。When the third region is a PMOS region, the dopant ions of the second threshold voltage adjustment doping treatment are N-type ions, and the dopant ions of the second threshold voltage adjustment doping treatment are P or As; When the third region is an NMOS region, the dopant ions in the second threshold voltage adjustment doping treatment are P-type ions, and the dopant ions in the second threshold voltage adjustment doping treatment are B or Ga.
本实施例中,所述第三区域为NMOS区域,对所述第二低阈值电压区域21的基底进行第二阈值电压调节掺杂处理的工艺步骤包括:在所述第一区域、第二区域II、第四区域IV、第三区域中除第二低阈值电压区域21之外的区域的隔离层114表面以及鳍部102表面形成第七图形层111;以所述第七图形层111为掩膜,对所述第二低阈值电压区域21进行P型离子注入;接着,去除所述第七图形层111。In this embodiment, the third region is an NMOS region, and the process step of performing the second threshold voltage adjustment doping treatment on the substrate of the second low threshold voltage region 21 includes: II, fourth region IV, the surface of the isolation layer 114 and the surface of the fin portion 102 in the third region except the second low threshold voltage region 21 forms a seventh pattern layer 111; using the seventh pattern layer 111 as a mask film, performing P-type ion implantation on the second low-threshold voltage region 21; then, removing the seventh pattern layer 111.
根据所述第二低阈值电压区域21形成的器件所需的阈值电压范围,确定对其进行第二阈值电压调节掺杂处理的掺杂浓度。According to the required threshold voltage range of the device formed in the second low threshold voltage region 21 , the doping concentration for performing the second threshold voltage adjustment doping treatment is determined.
参考图11,对所述第三区域中的第二标准阈值电压区域22的基底进行第二阈值电压调节掺杂处理。Referring to FIG. 11 , the substrate of the second standard threshold voltage region 22 in the third region is subjected to a second threshold voltage adjusting doping treatment.
本实施例中,所述第三区域为NMOS区域,所述第二阈值电压调节掺杂处理的掺杂离子为P型离子。In this embodiment, the third region is an NMOS region, and dopant ions in the second threshold voltage adjustment doping treatment are P-type ions.
对所述第二标准阈值电压区域22的基底进行第二阈值电压调节掺杂处理的工艺步骤包括:在所述第一区域、第二区域II、第四区域IV、第三区域中除第二标准阈值电压区域22之外的区域的隔离层114表面以及鳍部102表面形成第八图形层112;以所述第八图形层112为掩膜,对所述第二标准阈值电压区域22进行P型离子注入;接着,去除所述第八图形层112。The process step of performing the second threshold voltage adjustment doping treatment on the substrate of the second standard threshold voltage region 22 includes: removing the second Form the eighth pattern layer 112 on the surface of the isolation layer 114 and the surface of the fin portion 102 outside the standard threshold voltage region 22; use the eighth pattern layer 112 as a mask to perform P type ion implantation; then, removing the eighth pattern layer 112 .
根据所述第二标准阈值电压区域22形成的器件所需的阈值电压范围,确定对其进行第二阈值电压调节掺杂处理的掺杂浓度。本实施例中,对所述第二标准阈值电压区域22以及第二低阈值电压区域21进行的第二阈值电压调节掺杂处理的掺杂浓度不相同。According to the required threshold voltage range of the device formed in the second standard threshold voltage region 22 , the doping concentration for performing the second threshold voltage adjustment doping treatment is determined. In this embodiment, the doping concentration of the second threshold voltage adjusting doping treatment performed on the second standard threshold voltage region 22 and the second low threshold voltage region 21 is different.
参考图12,对所述第三区域中的下拉晶体管区域23的基底进行第二阈值电压调节掺杂处理。Referring to FIG. 12 , a second threshold voltage adjustment doping treatment is performed on the base of the pull-down transistor region 23 in the third region.
本实施例中,所述第三区域为NMOS区域,所述第二阈值电压调节掺杂处理的掺杂离子为P型离子。In this embodiment, the third region is an NMOS region, and dopant ions in the second threshold voltage adjustment doping treatment are P-type ions.
对所述下拉晶体管区域23的基底进行第二阈值电压调节掺杂处理的工艺步骤包括:在所述第一区域、第二区域II、第四区域IV、以及第三区域中除下拉晶体管区域23之外的区域的隔离层114表面以及鳍部102表面形成第九图形层113;以所述第九图形层113为掩膜,对所述下拉晶体管区域23进行P型离子注入;接着,去除所述第九图形层113。The process step of performing the second threshold voltage adjustment doping treatment on the base of the pull-down transistor region 23 includes: removing the pull-down transistor region 23 from the first region, the second region II, the fourth region IV, and the third region. Form the ninth pattern layer 113 on the surface of the isolation layer 114 and the surface of the fin portion 102 in the area outside the region; use the ninth pattern layer 113 as a mask to perform P-type ion implantation on the pull-down transistor region 23; then, remove all Describe the ninth graphics layer 113.
根据所述下拉晶体管区域23形成的器件所需的阈值电压范围,确定对其进行第二阈值电压调节掺杂处理的掺杂浓度。本实施例中,对所述下拉晶体管区域23、第二标准阈值电压区域22以及第二低阈值电压区域21进行的第二阈值电压调节掺杂处理的掺杂浓度不相同。According to the required threshold voltage range of the device formed in the pull-down transistor region 23 , the doping concentration for performing the second threshold voltage adjustment doping treatment is determined. In this embodiment, the doping concentrations of the second threshold voltage adjusting doping treatment performed on the pull-down transistor region 23 , the second standard threshold voltage region 22 and the second low threshold voltage region 21 are different.
参考图13,对所述第三区域中的传送门晶体管区域24的基底进行第二阈值电压调节掺杂处理。Referring to FIG. 13 , a second threshold voltage adjustment doping treatment is performed on the base of the transfer gate transistor region 24 in the third region.
本实施例中,所述第三区域为NMOS区域,所述第二阈值电压调节掺杂处理的掺杂离子为P型离子。In this embodiment, the third region is an NMOS region, and dopant ions in the second threshold voltage adjustment doping treatment are P-type ions.
对所述传送门晶体管区域24的基底进行第二阈值电压调节掺杂处理的工艺步骤包括:在所述第一区域、第二区域II、第四区域IV、以及第三区域中除传送门晶体管区域24之外的区域的隔离层114表面以及鳍部102表面形成第十图形层115;以所述第十图形层115为掩膜,对所述传送门晶体管区域24进行P型离子注入;接着,去除所述第十图形层115。The process step of performing the second threshold voltage adjustment doping treatment on the substrate of the transfer gate transistor region 24 includes: removing transfer gate transistors in the first region, the second region II, the fourth region IV, and the third region. A tenth pattern layer 115 is formed on the surface of the isolation layer 114 and the surface of the fin portion 102 outside the region 24; using the tenth pattern layer 115 as a mask, perform P-type ion implantation on the transfer gate transistor region 24; then , removing the tenth graphics layer 115 .
根据所述传送门晶体管区域24形成的器件所需的阈值电压范围,确定对其进行第二阈值电压调节掺杂处理的掺杂浓度。本实施例中,对所述传送门晶体管区域24、下拉晶体管区域23、第二标准阈值电压区域22以及第二低阈值电压区域21进行的第二阈值电压调节掺杂处理的掺杂浓度不相同。According to the required threshold voltage range of the device formed by the transfer gate transistor region 24 , the doping concentration for performing the second threshold voltage adjustment doping treatment is determined. In this embodiment, the doping concentration of the second threshold voltage adjustment doping treatment performed on the transfer gate transistor region 24, the pull-down transistor region 23, the second standard threshold voltage region 22 and the second low threshold voltage region 21 is different. .
参考图14,对所述第三区域中的第二输入输出晶体管区域25的基底进行第二阈值电压调节掺杂处理。Referring to FIG. 14 , a second threshold voltage adjustment doping treatment is performed on the base of the second input-output transistor region 25 in the third region.
本实施例中,所述第三区域为NMOS区域,所述第二阈值电压调节掺杂处理的掺杂离子为P型离子。In this embodiment, the third region is an NMOS region, and dopant ions in the second threshold voltage adjustment doping treatment are P-type ions.
对所述第二输入输出晶体管区域25的基底进行第二阈值电压调节掺杂处理的工艺步骤包括:在所述第一区域、第二区域II、第四区域IV、以及第三区域中除第二输入输出晶体管区域25之外的区域的隔离层114表面以及鳍部102表面形成第一掩膜层116;以所述第一掩膜层116为掩膜,对所述传送门晶体管区域24进行P型离子注入;接着,去除所述第一掩膜层116。The process step of performing the second threshold voltage adjustment doping treatment on the substrate of the second input-output transistor region 25 includes: removing the second threshold voltage in the first region, the second region II, the fourth region IV, and the third region. A first mask layer 116 is formed on the surface of the isolation layer 114 and the surface of the fin portion 102 outside the two-input-output transistor region 25; using the first mask layer 116 as a mask, the transfer gate transistor region 24 is P-type ion implantation; next, removing the first mask layer 116 .
根据所述第二输入输出晶体管区域25形成的器件所需的阈值电压范围,确定对其进行第二阈值电压调节掺杂处理的掺杂浓度。本实施例中,对所述第二输入输出晶体管区域25、传送门晶体管区域24、下拉晶体管区域23、第二标准阈值电压区域22以及第二低阈值电压区域21进行的第二阈值电压调节掺杂处理的掺杂浓度不相同。According to the required threshold voltage range of the device formed by the second input-output transistor region 25 , the doping concentration for performing the second threshold voltage adjustment doping treatment is determined. In this embodiment, the second threshold voltage adjustment doping performed on the second input and output transistor region 25, the transfer gate transistor region 24, the pull-down transistor region 23, the second standard threshold voltage region 22 and the second low threshold voltage region 21 is The doping concentration of doping treatment is different.
通过调节第三区域内各子区域的基底中的掺杂离子浓度,使得相应形成的器件的阈值电压数值不同。一般的,子区域的基底中掺杂离子浓度越小,相应形成的器件的阈值电压数值越小。By adjusting the concentration of dopant ions in the base of each sub-region in the third region, the threshold voltage values of correspondingly formed devices are different. Generally, the lower the concentration of dopant ions in the substrate of the sub-region, the smaller the threshold voltage value of the corresponding formed device.
后续还包括步骤:在所述第一区域基底表面形成第一栅极结构;在所述第二区域基底表面形成第二栅极结构;在所述第三区域基底表面形成第三栅极结构;在所述第四区域基底表面形成第四栅极结构。具体的,后续还包括步骤:在所述第一区域以及第二区域基底表面形成栅介质层;形成覆盖所述第一区域和第二区域的栅介质层表面的第一功函数层,所述第一功函数层具有第一厚度;对所述第一区域的第一功函数层进行减薄处理,使得第一区域的第一功函数层具有第二厚度;所述栅介质层还位于第三区域和第四区域基底表面;形成覆盖所述第三区域和第四区域的栅介质层表面的第二功函数层,所述第二功函数层具有第三厚度;对所述第三区域的第二功函数层进行减薄处理,使得第三区域的第二功函数层具有第四厚度;在所述具有第二厚度的第一功函数层表面形成第一栅电极层;在所述第二区域的第一功函数层表面形成第二栅电极层;在所述具有第四厚度的第二功函数层表面形成第三栅电极层;在所述第四区域的第二功函数层表面形成第四栅电极层。The subsequent steps further include: forming a first gate structure on the surface of the substrate in the first region; forming a second gate structure on the surface of the substrate in the second region; forming a third gate structure on the surface of the substrate in the third region; A fourth gate structure is formed on the surface of the substrate in the fourth region. Specifically, the subsequent steps further include: forming a gate dielectric layer on the substrate surface of the first region and the second region; forming a first work function layer covering the surface of the gate dielectric layer in the first region and the second region, the The first work function layer has a first thickness; the first work function layer in the first region is thinned so that the first work function layer in the first region has a second thickness; the gate dielectric layer is also located in the first region. The substrate surface of the third region and the fourth region; forming a second work function layer covering the surface of the gate dielectric layer in the third region and the fourth region, the second work function layer having a third thickness; for the third region The second work function layer is thinned so that the second work function layer in the third region has a fourth thickness; a first gate electrode layer is formed on the surface of the first work function layer with the second thickness; The second gate electrode layer is formed on the surface of the first work function layer in the second region; the third gate electrode layer is formed on the surface of the second work function layer with a fourth thickness; the second work function layer in the fourth region A fourth gate electrode layer is formed on the surface.
其中,第一栅极结构、第二栅极结构、第三栅极结构或第四栅极结构既能够采用先栅工艺(gate first)制作,还能够采用后栅工艺(gate last)制作。本实施例中,所述第一区域的若干个子区域基底表面的栅介质层中,位于所述第一输入输出晶体管区域基底表面的栅介质层的厚度最厚。所述第三区域的若干个子区域基底表面的栅介质层中,位于所述第二输入输出晶体管区域基底表面的栅介质层的厚度最厚。Wherein, the first gate structure, the second gate structure, the third gate structure or the fourth gate structure can be fabricated by a gate first process (gate first), and can also be produced by a gate last process. In this embodiment, among the gate dielectric layers on the base surface of the several sub-regions of the first region, the gate dielectric layer located on the base surface of the first input-output transistor region has the thickest thickness. Among the gate dielectric layers on the base surface of the several sub-regions of the third region, the gate dielectric layer located on the base surface of the second input-output transistor region has the thickest thickness.
以下将结合附图对第一栅极结构。第二栅极结构、第三栅极结构和第四栅极结构的形成工艺进行详细说明,以采用后栅工艺为例。The first gate structure will be described below with reference to the accompanying drawings. The formation process of the second gate structure, the third gate structure and the fourth gate structure will be described in detail, taking the gate-last process as an example.
参考图15,在所述第一区域、第二区域II、第三区域和第四区域IV基底表面形成氧化膜;在所述氧化膜表面形成伪栅膜;图形化所述伪栅膜以及氧化膜,形成位于第一区域、第二区域II、第三区域和第四区域IV部分基底表面的氧化层201,形成位于氧化层201表面的伪栅层202。Referring to FIG. 15 , an oxide film is formed on the substrate surface of the first region, the second region II, the third region and the fourth region IV; a dummy gate film is formed on the surface of the oxide film; the dummy gate film is patterned and the oxide film is film, forming an oxide layer 201 on the substrate surface of the first region, the second region II, the third region and the fourth region IV, and forming a dummy gate layer 202 on the surface of the oxide layer 201 .
所述伪栅层202占据后续形成的第一栅极结构、第二栅极结构、第三栅极结构和第四栅极结构的空间位置。The dummy gate layer 202 occupies the spatial positions of the subsequently formed first gate structure, second gate structure, third gate structure and fourth gate structure.
所述氧化层201的材料为氧化硅或氮氧化硅。本实施例中,所述氧化层201的厚度较厚,后续保留位于第一输入输出晶体管区域14、以及第二输入输出晶体管区域25的氧化层201,进而使得第一区域的各子区域中第一输入输出晶体管区域14的栅介质层厚度最厚,第三区域的各子区域中第二输入输出晶体管区域25的栅介质层的厚度最厚。The material of the oxide layer 201 is silicon oxide or silicon oxynitride. In this embodiment, the thickness of the oxide layer 201 is relatively thick, and the oxide layer 201 located in the first input-output transistor region 14 and the second input-output transistor region 25 is subsequently retained, so that the first region in each sub-region of the first region The first I/O transistor region 14 has the thickest gate dielectric layer, and the second I/O transistor region 25 has the thickest gate dielectric layer in each sub-region of the third region.
所述伪栅层202的材料为多晶硅、非晶硅或无定形碳。本实施例中,所述伪栅层202的材料为多晶硅。The material of the dummy gate layer 202 is polysilicon, amorphous silicon or amorphous carbon. In this embodiment, the material of the dummy gate layer 202 is polysilicon.
还包括步骤:在所述伪栅层202侧壁表面形成偏移侧墙;对所述伪栅层202两侧的第一区域鳍部102进行轻掺杂处理,形成第一LDD区域,本实施例中,包括对第一区域中各子区域的鳍部102进行轻掺杂处理;对所述伪栅层202两侧的第二区域II鳍部102进行轻掺杂处理,形成第二LDD区域;对所述伪栅层202两侧的第三区域鳍部102进行轻掺杂处理,形成第三LDD区域,本实施例中,包括对第三区域中各子区域的鳍部102进行轻掺杂处理;对所述伪栅层202两侧的第四区域IV鳍部102进行轻掺杂处理,形成第四LDD区域。It also includes the steps of: forming offset sidewalls on the sidewall surface of the dummy gate layer 202; performing light doping treatment on the fins 102 in the first region on both sides of the dummy gate layer 202 to form the first LDD region. In this example, it includes lightly doping the fins 102 of each sub-region in the first region; lightly doping the fins 102 in the second region II on both sides of the dummy gate layer 202 to form the second LDD region lightly doping the fins 102 of the third region on both sides of the dummy gate layer 202 to form the third LDD region, in this embodiment, lightly doping the fins 102 of each sub-region in the third region Doping treatment: performing light doping treatment on the fins 102 in the fourth region IV on both sides of the dummy gate layer 202 to form a fourth LDD region.
还包括步骤:在所述偏移侧墙侧壁表面形成主侧墙;对所述伪栅层202两侧的第一区域鳍部102进行重掺杂处理,形成第一S/D区域,本实施例中,包括对第一区域中各子区域的鳍部102进行重掺杂处理;对所述伪栅层202两侧的第二区域II鳍部102进行重掺杂处理,形成第二S/D区域;对所述伪栅层202两侧的第三区域鳍部102进行重掺杂处理,形成第三S/D区域,本实施例中,包括对第三区域中各子区域的鳍部102进行重掺杂处理;对所述伪栅层202两侧的第四区域IV鳍部102进行重掺杂处理,形成第四S/D区域。It also includes the steps of: forming main sidewalls on the sidewall surfaces of the offset sidewalls; performing heavy doping treatment on the fins 102 in the first region on both sides of the dummy gate layer 202 to form a first S/D region. In the embodiment, it includes performing heavy doping treatment on the fins 102 of each sub-region in the first region; performing heavy doping treatment on the fins 102 in the second region II on both sides of the dummy gate layer 202 to form the second S /D region: perform heavy doping treatment on the fins 102 of the third region on both sides of the dummy gate layer 202 to form the third S/D region. In this embodiment, fins for each subregion in the third region are included. The heavy doping treatment is performed on the portion 102; the heavy doping treatment is performed on the fourth region IV fin portion 102 on both sides of the dummy gate layer 202 to form the fourth S/D region.
参考图16,去除所述伪栅层202(参考图15)。Referring to FIG. 16 , the dummy gate layer 202 (refer to FIG. 15 ) is removed.
在去除所述伪栅层202之前,还包括步骤:在所述基底表面形成层间介质层(未图示),所述层间介质层覆盖伪栅层202的侧壁表面。Before removing the dummy gate layer 202 , a step is further included: forming an interlayer dielectric layer (not shown) on the surface of the substrate, and the interlayer dielectric layer covers the sidewall surface of the dummy gate layer 202 .
采用干法刻蚀工艺、湿法刻蚀工艺或SiCoNi刻蚀系统,刻蚀去除所述伪栅层202。The dummy gate layer 202 is etched and removed by using a dry etching process, a wet etching process or a SiCoNi etching system.
参考图17,刻蚀去除位于第一输入输出晶体管区域14、第二输入输出晶体管区域25之外的氧化层201。Referring to FIG. 17 , the oxide layer 201 located outside the first I/O transistor region 14 and the second I/O transistor region 25 is removed by etching.
本实施例中,在所述第一输入输出晶体管区域14、第二输入输出晶体管区域25的氧化层201表面形成第三掩膜层203,暴露出第二区域II、第四区域IV、第一低阈值电压区域11、第一标准阈值电压区域12、上拉晶体管区域13、第二低阈值电压区域21、第二标准阈值电压区域22、下拉晶体管区域23以及传送门晶体管区域24的氧化层201表面;以所述第三掩膜层203为掩膜,刻蚀去除所述第三掩膜层203暴露出的氧化层201;接着,去除所述第三掩膜层203。In this embodiment, a third mask layer 203 is formed on the surface of the oxide layer 201 of the first input-output transistor region 14 and the second input-output transistor region 25, exposing the second region II, the fourth region IV, the first The oxide layer 201 of the low threshold voltage region 11, the first standard threshold voltage region 12, the pull-up transistor region 13, the second low threshold voltage region 21, the second standard threshold voltage region 22, the pull-down transistor region 23 and the transfer gate transistor region 24 surface: using the third mask layer 203 as a mask, etching and removing the oxide layer 201 exposed by the third mask layer 203 ; then, removing the third mask layer 203 .
参考图18,在所述第二区域II、第四区域IV、第一低阈值电压区域11、第一标准阈值电压区域12、上拉晶体管区域13、第二低阈值电压区域21、第二标准阈值电压区域22、下拉晶体管区域23以及传送门晶体管区域24的基底表面形成界面层204。18, in the second region II, the fourth region IV, the first low threshold voltage region 11, the first standard threshold voltage region 12, the pull-up transistor region 13, the second low threshold voltage region 21, the second standard The base surfaces of the threshold voltage region 22 , the pull-down transistor region 23 and the transfer gate transistor region 24 form an interface layer 204 .
所述界面层204的材料为氧化硅或氮氧化硅。本实施例中,采用氧化工艺形成所述界面层204,所述氧化工艺为干氧氧化、湿氧氧化或水汽氧化,形成的界面层204仅位于暴露出的鳍部102顶部表面和侧壁表面,所述界面层204的厚度小于氧化层202的厚度。所述界面层204以及氧化层202为栅介质层的一部分;由于氧化层202的厚度大于界面层204的厚度,使得后续第一输入输出晶体管区域14和第二输入输出晶体管区域25的栅介质层的厚度较其他区域的栅介质层的厚度更厚。The material of the interface layer 204 is silicon oxide or silicon oxynitride. In this embodiment, the interface layer 204 is formed by an oxidation process, the oxidation process is dry oxygen oxidation, wet oxygen oxidation or water vapor oxidation, and the formed interface layer 204 is only located on the exposed top surface and sidewall surface of the fin portion 102 , the thickness of the interface layer 204 is smaller than the thickness of the oxide layer 202 . The interface layer 204 and the oxide layer 202 are part of the gate dielectric layer; since the thickness of the oxide layer 202 is greater than the thickness of the interface layer 204, the subsequent gate dielectric layer of the first input-output transistor region 14 and the second input-output transistor region 25 The thickness of the gate dielectric layer is thicker than that of other regions.
在其他实施例中,采用沉积工艺形成所述界面层,所述沉积工艺为化学气相沉积、物理气相沉积或原子层沉积,形成的界面层还位于氧化层表面。同样的,后续第一输入输出晶体管区域和第二输入输出晶体管区域的栅介质层的厚度较其他区域的栅介质层的厚度更厚。In other embodiments, the interface layer is formed by a deposition process, the deposition process is chemical vapor deposition, physical vapor deposition or atomic layer deposition, and the formed interface layer is also located on the surface of the oxide layer. Similarly, the thickness of the gate dielectric layer in the subsequent first input-output transistor region and the second input-output transistor region is thicker than that in other regions.
参考图19,在所述界面层204表面以及氧化层202表面形成高k栅介质层205。Referring to FIG. 19 , a high-k gate dielectric layer 205 is formed on the surface of the interface layer 204 and the surface of the oxide layer 202 .
所述高k栅介质层205的材料为高k栅介质材料,其中,高k栅介质材料指的是,相对介电常数大于氧化硅相对介电常数的栅介质材料,所述高k栅介质层205的材料为HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3。The material of the high-k gate dielectric layer 205 is a high-k gate dielectric material, wherein the high-k gate dielectric material refers to a gate dielectric material with a relative permittivity greater than that of silicon oxide, and the high-k gate dielectric The material of layer 205 is HfO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, ZrO 2 or Al 2 O 3 .
采用化学气相沉积、物理气相沉积或原子层沉积工艺形成所述高k栅介质层205。本实施例中,所述高k栅介质层205的材料为HfO2,所述高k栅介质层205的厚度为5埃至15埃,采用原子层沉积工艺形成所述高k栅介质层205。The high-k gate dielectric layer 205 is formed by chemical vapor deposition, physical vapor deposition or atomic layer deposition. In this embodiment, the material of the high-k gate dielectric layer 205 is HfO 2 , the thickness of the high-k gate dielectric layer 205 is 5 angstroms to 15 angstroms, and the high-k gate dielectric layer 205 is formed by atomic layer deposition process .
对于第一输入输出晶体管区域14和第二输入输出晶体管区域25而言,所述栅介质层包括:氧化层202以及位于氧化层202表面的高k栅介质层205。对于除第一输入输出晶体管区域14和第二输入输出晶体管区域25之外的区域而言,所述栅介质层包括:界面层204以及位于界面层204表面的高k栅介质层205。由前述分析可知,第一区域各子区域中,第一输入输出晶体管区域14的栅介质层的厚度最厚;第三区域各子区域中,第二输入输出晶体管区域25的栅介质层的厚度最厚。For the first input-output transistor region 14 and the second input-output transistor region 25 , the gate dielectric layer includes: an oxide layer 202 and a high-k gate dielectric layer 205 located on the surface of the oxide layer 202 . For regions other than the first I/O transistor region 14 and the second I/O transistor region 25 , the gate dielectric layer includes: an interface layer 204 and a high-k gate dielectric layer 205 located on the surface of the interface layer 204 . From the foregoing analysis, it can be seen that among the subregions of the first region, the thickness of the gate dielectric layer of the first input-output transistor region 14 is the thickest; among the subregions of the third region, the thickness of the gate dielectric layer of the second input-output transistor region 25 is thickest.
继续参考图19,形成覆盖所述第一区域和第二区域II的栅介质层表面的第一功函数层208。Continuing to refer to FIG. 19 , a first work function layer 208 covering the surface of the gate dielectric layer in the first region and the second region II is formed.
在形成所述第一功函数层208之前,还包括步骤:在所述高k栅介质层205表面形成盖帽层206;在所述盖帽层206表面形成刻蚀停止层(未图示)。Before forming the first work function layer 208 , further steps are included: forming a capping layer 206 on the surface of the high-k gate dielectric layer 205 ; forming an etching stop layer (not shown) on the surface of the capping layer 206 .
所述盖帽层206起到保护高k栅介质层205的作用,防止后续的刻蚀工艺对高k栅介质层205造成不必要的刻蚀损失,所述盖帽层206还有利于阻挡金属离子向高k栅介质层205内扩散。The capping layer 206 plays a role in protecting the high-k gate dielectric layer 205, preventing the subsequent etching process from causing unnecessary etching loss to the high-k gate dielectric layer 205, and the capping layer 206 is also conducive to blocking metal ions from diffusion in the high-k gate dielectric layer 205 .
所述盖帽层206的材料为TiN;采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述盖帽层206。The material of the capping layer 206 is TiN; the capping layer 206 is formed by chemical vapor deposition process, physical vapor deposition process or atomic layer deposition process.
所述刻蚀停止层与后续形成的第一功函数层以及第二功函数层的材料不同,从而使得后续刻蚀第一功函数层的刻蚀工艺对刻蚀停止层的刻蚀速率小,后续刻蚀第二功函数层的刻蚀工艺对刻蚀停止层的刻蚀速率小,从而避免对高k栅介质层205造成刻蚀损伤。本实施例中,所述刻蚀停止层的材料为TaN,采用原子层沉积工艺形成所述刻蚀停止层。The material of the etching stop layer is different from that of the subsequently formed first work function layer and the second work function layer, so that the etching rate of the etching stop layer in the subsequent etching process of etching the first work function layer is small, The subsequent etching process for etching the second work function layer has a small etching rate for the etching stop layer, so as to avoid etching damage to the high-k gate dielectric layer 205 . In this embodiment, the material of the etching stop layer is TaN, and the etching stop layer is formed by an atomic layer deposition process.
本实施例中,所述第一功函数层208位于第一区域、第二区域II、第三区域和第四区域IV,后续会刻蚀去除位于第三区域和第四区域IV的第一功函数层208。所述第一功函数层208位于所述刻蚀停止层表面。In this embodiment, the first work function layer 208 is located in the first area, the second area II, the third area, and the fourth area IV, and the first work function layer 208 located in the third area and the fourth area IV will be etched and removed later. Function layer 208 . The first work function layer 208 is located on the surface of the etch stop layer.
所述第一区域和第二区域II为PMOS区域,所述第一功函数层208的材料为P型功函数材料,所述第一功函数层208的材料为Ta、TiN、TaSiN或TiSiN中的一种或几种。采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述第一功函数层208。The first region and the second region II are PMOS regions, the material of the first work function layer 208 is a P-type work function material, and the material of the first work function layer 208 is Ta, TiN, TaSiN or TiSiN. one or more of. The first work function layer 208 is formed by chemical vapor deposition process, physical vapor deposition process or atomic layer deposition process.
本实施例中,所述第一功函数层208的材料为TiN,所述第一功函数层208具有第一厚度,所述第一厚度为30埃至60埃。In this embodiment, the material of the first work function layer 208 is TiN, and the first work function layer 208 has a first thickness, and the first thickness is 30 angstroms to 60 angstroms.
参考图20,对所述第一区域的第一功函数层208进行减薄处理,使得第一区域的第一功函数层208具有第二厚度。Referring to FIG. 20 , the first work function layer 208 in the first region is thinned so that the first work function layer 208 in the first region has a second thickness.
所述第一功函数层208的厚度越薄,所述第一功函数层208所在区域的金属与半导体材料之间的功函数差值越大,相应所在区域形成的器件的阈值电压数值越大。The thinner the thickness of the first work function layer 208, the greater the work function difference between the metal and the semiconductor material in the area where the first work function layer 208 is located, and the greater the threshold voltage value of the device formed in the corresponding area. .
本实施例中,由于第二区域II为超低阈值电压区域,所述第二区域II形成的器件的阈值电压数值很小,且为了满足半导体器件需求,第二区域II形成的器件的阈值电压与第一区域形成的器件的阈值电压之间的差值较大,前述进行的第一阈值电压调节掺杂处理难以获得较大差值的阈值电压。为此,本实施例进一步对第一区域的第一功函数层208进行减薄处理,使得第一区域形成的器件的阈值电压数值进一步增加,从而使得第二区域II形成的器件的阈值电压与第一区域形成的器件的阈值电压之间的差值较大。In this embodiment, since the second region II is an ultra-low threshold voltage region, the threshold voltage value of the device formed in the second region II is very small, and in order to meet the requirements of semiconductor devices, the threshold voltage of the device formed in the second region II The difference between the threshold voltage and the threshold voltage of the device formed in the first region is large, and it is difficult to obtain a threshold voltage with a large difference in the above-mentioned first threshold voltage adjustment doping treatment. For this reason, this embodiment further thins the first work function layer 208 in the first region, so that the threshold voltage value of the device formed in the first region is further increased, so that the threshold voltage of the device formed in the second region II is the same as The difference between the threshold voltages of the devices formed in the first region is relatively large.
本实施例中,所述第二厚度为15埃至30埃。采用干法刻蚀工艺、湿法刻蚀工艺或SiCoNi刻蚀系统,刻蚀去除第一区域部分厚度的第一功函数层208。具体的,在所述第二区域II、第三区域以及第四区域IV的第一功函数层208表面形成第四掩膜层209;以所述第四掩膜层209为掩膜,刻蚀去除第一区域的部分厚度的第一功函数层208,使第一区域的第一功函数层208的厚度由第一厚度减薄至第二厚度。本实施例中,所述第四掩膜层209还覆盖第一输入输出晶体管区域14的第一功函数层208表面。In this embodiment, the second thickness is 15 angstroms to 30 angstroms. A dry etching process, a wet etching process or a SiCoNi etching system is used to etch and remove the first work function layer 208 with a partial thickness of the first region. Specifically, a fourth mask layer 209 is formed on the surface of the first work function layer 208 in the second region II, the third region and the fourth region IV; using the fourth mask layer 209 as a mask, etching Partial thickness of the first work function layer 208 in the first region is removed, so that the thickness of the first work function layer 208 in the first region is reduced from the first thickness to the second thickness. In this embodiment, the fourth mask layer 209 also covers the surface of the first work function layer 208 of the first input-output transistor region 14 .
本实施例中,对所述第一区域的各子区域的第一功函数层208进行减薄处理的减薄厚度相同,即第一区域各子区域的第一功函数层208的第二厚度相同。在其他实施例中,对第一区域中各子区域的第一功函数层进行减薄处理的减薄厚度还能够各不相同,即第一区域中各子区域的第一功函数层的第二厚度各不相同。In this embodiment, the thinning thickness of the first work function layer 208 in each subregion of the first region is the same, that is, the second thickness of the first work function layer 208 in each subregion of the first region same. In other embodiments, the thinning thickness of the first work function layer of each sub-region in the first region can also be different, that is, the first work function layer of each sub-region in the first region Two thicknesses vary.
参考图21,去除位于第三区域和第四区域IV的第一功函数层208。Referring to FIG. 21 , the first work function layer 208 located in the third region and the fourth region IV is removed.
具体的,在所述第一区域和第二区域II的第一功函数层208表面形成第五掩膜层210;以所述第五掩膜层210为掩膜,刻蚀去除位于第三区域和第四区域IV的第一功函数层208;接着,去除所述第五掩膜层210。Specifically, a fifth mask layer 210 is formed on the surface of the first work function layer 208 in the first region and the second region II; using the fifth mask layer 210 as a mask, etching removes the and the first work function layer 208 in the fourth region IV; then, the fifth mask layer 210 is removed.
在其他实施例中,还能够先去除位于第三区域和第四区域的第一功函数层,然后对第一区域的第一功函数层进行减薄处理。In other embodiments, the first work function layer located in the third region and the fourth region can also be removed first, and then the first work function layer in the first region is thinned.
参考图22,形成覆盖所述栅介质层的第二功函数层211。Referring to FIG. 22 , a second work function layer 211 covering the gate dielectric layer is formed.
本实施例中,所述第二功函数层211位于第一区域、第二区域II、第三区域和第四区域IV,所述第二功函数层211位于第一区域和第二区域II的第一功函数层208表面,还位于第三区域和第四区域IV的刻蚀停止层表面。后续会刻蚀去除位于第一区域和第二区域II的第二功函数层211。In this embodiment, the second work function layer 211 is located in the first region, the second region II, the third region and the fourth region IV, and the second work function layer 211 is located between the first region and the second region II The surface of the first work function layer 208 is also located on the surface of the etching stop layer in the third region and the fourth region IV. Subsequent etching removes the second work function layer 211 located in the first region and the second region II.
所述第三区域和第四区域IV为NMOS区域,所述第二功函数层211的材料为N型功函数材料,所述第二功函数层211的材料为TiAl、TiAlC、TaAlN、TiAlN、MoN、TaCN或AlN中的一种或几种。采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述第二功函数层211。The third region and the fourth region IV are NMOS regions, the material of the second work function layer 211 is an N-type work function material, and the material of the second work function layer 211 is TiAl, TiAlC, TaAlN, TiAlN, One or more of MoN, TaCN or AlN. The second work function layer 211 is formed by chemical vapor deposition process, physical vapor deposition process or atomic layer deposition process.
本实施例中,所述第二功函数层211的材料为TiAlC,所述第二功函数层211具有第三厚度,所述第三厚度为30埃至60埃。In this embodiment, the material of the second work function layer 211 is TiAlC, and the second work function layer 211 has a third thickness, and the third thickness is 30 angstroms to 60 angstroms.
参考图23,对所述第三区域的第二功函数层211进行减薄处理,使得第三区域的第二功函数层211具有第四厚度。Referring to FIG. 23 , the second work function layer 211 in the third region is thinned so that the second work function layer 211 in the third region has a fourth thickness.
所述第二功函数层211的厚度越薄,所述第二功函数层211所在区域的金属与半导体材料之间的功函数差值越大,相应所在区域形成的器件的阈值电压数值越大。The thinner the second work function layer 211 is, the greater the work function difference between the metal and the semiconductor material in the area where the second work function layer 211 is located, and the greater the threshold voltage value of the device formed in the corresponding area. .
本实施例中,由于第四区域IV为超低阈值电压区域,所述第四区域IV形成的器件的阈值电压数值很小,且为了满足半导体器件需求,第四区域IV形成的器件的阈值电压与第三区域形成的器件的阈值电压之间的差值较大,前述进行的第二阈值电压调节掺杂处理难以获得较大差值的阈值电压。为此,本实施例进一步对第三区域的第二功函数层211进行减薄处理,使得第三区域形成的器件的阈值电压数值进一步增加,从而使得第四区域IV形成的器件的阈值电压与第三区域形成的器件的阈值电压之间的差值较大。In this embodiment, since the fourth region IV is an ultra-low threshold voltage region, the threshold voltage value of the device formed in the fourth region IV is very small, and in order to meet the requirements of semiconductor devices, the threshold voltage of the device formed in the fourth region IV The difference between the threshold voltage and the threshold voltage of the device formed in the third region is large, and it is difficult to obtain a threshold voltage with a large difference in the second threshold voltage adjustment doping treatment performed above. For this reason, this embodiment further thins the second work function layer 211 in the third region, so that the threshold voltage value of the device formed in the third region is further increased, so that the threshold voltage of the device formed in the fourth region IV is the same as The difference between the threshold voltages of the devices formed in the third region is larger.
本实施例中,所述第四厚度为15埃至30埃。采用干法刻蚀工艺、湿法刻蚀工艺或SiCoNi刻蚀系统,刻蚀去除第三区域部分厚度的第二功函数层211。具体的,在所述第一区域、第二区域II以及第四区域IV的第二功函数层211表面形成第五掩膜层212;以所述第五掩膜层212为掩膜,刻蚀去除第三区域的部分厚度的第二功函数层211,使第三区域的第二功函数层211的厚度由第三厚度减薄至第四厚度。本实施例中,所述第五掩膜层212还覆盖传送门晶体管区域23以及第二输入输出晶体管区域25。In this embodiment, the fourth thickness is 15 angstroms to 30 angstroms. A dry etching process, a wet etching process or a SiCoNi etching system is used to etch and remove the second work function layer 211 partially thick in the third region. Specifically, a fifth mask layer 212 is formed on the surface of the second work function layer 211 in the first region, the second region II, and the fourth region IV; using the fifth mask layer 212 as a mask, etching Partial thickness of the second work function layer 211 in the third region is removed, so that the thickness of the second work function layer 211 in the third region is reduced from the third thickness to the fourth thickness. In this embodiment, the fifth mask layer 212 also covers the transfer gate transistor region 23 and the second I/O transistor region 25 .
本实施例中,对所述第三区域的各子区域的第二功函数层211进行减薄处理的减薄厚度相同,即第三区域各子区域的第二功函数层211的第四厚度相同。在其他实施例中,对所述第三区域中各子区域的第二功函数层进行减薄处理的减薄厚度还能够各不相同,即所述第三区域中各子区域的第二功函数层的第四厚度各不相同。In this embodiment, the thinned thickness of the second work function layer 211 in each sub-region of the third region is the same, that is, the fourth thickness of the second work function layer 211 in each sub-region of the third region same. In other embodiments, the thinning thickness of the second work function layer of each subregion in the third region can also be different, that is, the second work function layer of each subregion in the third region The fourth thickness of the functional layer varies.
参考图24,去除位于第一区域和第二区域II的第二功函数层211。Referring to FIG. 24, the second work function layer 211 located in the first region and the second region II is removed.
具体的,在所述第三区域和第四区域IV的第二功函数层211表面形成第六掩膜层213;以所述第六掩膜层213为掩膜,刻蚀去除位于第一区域和第二区域II的第二功函数层211;接着,去除所述第六掩膜层213。Specifically, a sixth mask layer 213 is formed on the surface of the second work function layer 211 in the third region and the fourth region IV; using the sixth mask layer 213 as a mask, etch and remove and the second work function layer 211 in the second region II; then, removing the sixth mask layer 213 .
在其他实施例中,还能够先去除位于第一区域和第二区域的第二功函数层,然后对第三区域的第二功函数层进行减薄处理。In other embodiments, the second work function layer located in the first region and the second region can also be removed first, and then the second work function layer in the third region is thinned.
在其他实施例中,第一区域和第二区域为PMOS区域,第三区域和第四区域为NMOS区域时,还能够保留位于第一区域和第二区域的第二功函数层,位于第一区域和第二区域的第二功函数层对第一区域和第二区域形成的MOS管的阈值电压影响较小。In other embodiments, when the first area and the second area are PMOS areas, and when the third area and the fourth area are NMOS areas, the second work function layer located in the first area and the second area can also be reserved, and the second work function layer located in the first area can also be reserved. The second work function layer in the region and the second region has little influence on the threshold voltage of the MOS transistor formed in the first region and the second region.
参考图25,在所述具有第二厚度的第一功函数层208表面形成第一栅电极层302;在所述第二区域II的第一功函数层208表面形成第二栅电极层301;在所述具有第四厚度的第二功函数层211表面形成第三栅电极层304;在所述第四区域IV的第二功函数层211表面形成第四栅电极层303。Referring to FIG. 25 , a first gate electrode layer 302 is formed on the surface of the first work function layer 208 having a second thickness; a second gate electrode layer 301 is formed on the surface of the first work function layer 208 in the second region II; A third gate electrode layer 304 is formed on the surface of the second work function layer 211 having a fourth thickness; a fourth gate electrode layer 303 is formed on the surface of the second work function layer 211 in the fourth region IV.
所述第一栅电极层302的材料包括Al、Cu、Ag、Au、Pt、Ni、Ti或W中的一种或多种;所述第二栅电极层301的材料包括Al、Cu、Ag、Au、Pt、Ni、Ti或W中的一种或多种;所述第三栅电极层304的材料包括Al、Cu、Ag、Au、Pt、Ni、Ti或W中的一种或多种;所述第四栅电极层303的材料包括Al、Cu、Ag、Au、Pt、Ni、Ti或W中的一种或多种。The material of the first gate electrode layer 302 includes one or more of Al, Cu, Ag, Au, Pt, Ni, Ti or W; the material of the second gate electrode layer 301 includes Al, Cu, Ag One or more of Au, Pt, Ni, Ti or W; the material of the third gate electrode layer 304 includes one or more of Al, Cu, Ag, Au, Pt, Ni, Ti or W species; the material of the fourth gate electrode layer 303 includes one or more of Al, Cu, Ag, Au, Pt, Ni, Ti or W.
本实施例中,所述第一栅电极层302、第二栅电极层301、第三栅电极层304以及第四栅电极层303的材料相同。在同一道工艺步骤中形成所述第一栅电极层302、第二栅电极层301、第三栅电极层304以及第四栅电极层303。In this embodiment, the materials of the first gate electrode layer 302 , the second gate electrode layer 301 , the third gate electrode layer 304 and the fourth gate electrode layer 303 are the same. The first gate electrode layer 302 , the second gate electrode layer 301 , the third gate electrode layer 304 and the fourth gate electrode layer 303 are formed in the same process step.
形成所述第一栅电极层302、第二栅电极层301、第三栅电极层304以及第四栅电极层303的工艺步骤包括:在所述第一功函数层208表面以及第二功函数层211表面形成栅电极膜,所述栅电极膜顶部高于层间介质层顶部表面;研磨去除高于层间介质层顶部的栅极膜,相应形成所述第一栅电极层302、第二栅电极层301、第三栅电极层304以及第四栅电极层303。The process steps of forming the first gate electrode layer 302, the second gate electrode layer 301, the third gate electrode layer 304 and the fourth gate electrode layer 303 include: forming the first work function layer 208 surface and the second work function layer A gate electrode film is formed on the surface of layer 211, and the top of the gate electrode film is higher than the top surface of the interlayer dielectric layer; the gate film higher than the top of the interlayer dielectric layer is removed by grinding, and the first gate electrode layer 302, the second gate electrode layer 302, and the second gate electrode layer are formed accordingly. The gate electrode layer 301 , the third gate electrode layer 304 and the fourth gate electrode layer 303 .
由于第二区域II的基底不仅未进行第一阈值电压调节掺杂处理,且第二区域II的第一功函数层208的厚度大于第一区域的第一功函数层208的厚度,使得第二区域II形成的器件的阈值电压比第一区域形成的器件的阈值电压低的多,因此所述第二区域II形成的器件与第一区域形成的器件具有较大的阈值电压差值,从而满足半导体器件性能需求。同样的,由于第四区域IV的基底不仅未进行第二阈值电压调节掺杂处理,且第四区域IV的第二功函数层211的厚度大于第三区域的第二功函数层211的厚度,使得第四区域IV形成的器件的阈值电压比第三区域形成的器件的阈值电压低的多,因此所述第四区域IV形成的器件与第三区域形成的器件具有较大的阈值电压差值,从而满足半导体器件性能需求。Since the base of the second region II is not subjected to the first threshold voltage adjustment doping treatment, and the thickness of the first work function layer 208 in the second region II is greater than the thickness of the first work function layer 208 in the first region, so that the second The threshold voltage of the device formed in the region II is much lower than the threshold voltage of the device formed in the first region, so the device formed in the second region II and the device formed in the first region have a larger threshold voltage difference, thereby satisfying Semiconductor device performance requirements. Similarly, because the substrate of the fourth region IV is not only not subjected to the second threshold voltage adjustment doping treatment, but also the thickness of the second work function layer 211 of the fourth region IV is greater than the thickness of the second work function layer 211 of the third region, The threshold voltage of the device formed in the fourth region IV is much lower than the threshold voltage of the device formed in the third region, so the device formed in the fourth region IV and the device formed in the third region have a larger difference in threshold voltage , so as to meet the performance requirements of semiconductor devices.
需要说明的是,在其他实施例中,还能够采用先栅工艺,形成所述具有第一厚度的第一功函数层、具有第二厚度的第一功函数层、具有第三厚度的第二功函数层以及具有第四厚度的第二功函数层。It should be noted that, in other embodiments, a gate-first process can also be used to form the first work function layer with the first thickness, the first work function layer with the second thickness, and the second work function layer with the third thickness. A work function layer and a second work function layer having a fourth thickness.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510896800.0A CN106847874A (en) | 2015-12-07 | 2015-12-07 | The forming method of the semiconductor devices with different threshold voltages |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510896800.0A CN106847874A (en) | 2015-12-07 | 2015-12-07 | The forming method of the semiconductor devices with different threshold voltages |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106847874A true CN106847874A (en) | 2017-06-13 |
Family
ID=59150697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510896800.0A Pending CN106847874A (en) | 2015-12-07 | 2015-12-07 | The forming method of the semiconductor devices with different threshold voltages |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106847874A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109427663A (en) * | 2017-08-22 | 2019-03-05 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN110120418A (en) * | 2019-05-07 | 2019-08-13 | 芯盟科技有限公司 | Vertical nanowire transistor and forming method thereof |
CN112802898A (en) * | 2020-12-31 | 2021-05-14 | 泉芯集成电路制造(济南)有限公司 | Fin type field effect transistor and manufacturing method thereof |
TWI741768B (en) * | 2019-09-05 | 2021-10-01 | 台灣積體電路製造股份有限公司 | Method of manufacturing semiconductor devices and semiconductor devices |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140363960A1 (en) * | 2013-06-05 | 2014-12-11 | Samsung Electronics Co., Ltd. | Semiconductor device and method for fabricating the same |
US20150171218A1 (en) * | 2013-12-16 | 2015-06-18 | Joseph M. Steigerwald | Multi-threshold voltage devices and associated techniques and configurations |
CN104766823A (en) * | 2014-01-07 | 2015-07-08 | 中国科学院微电子研究所 | Semiconductor device manufacturing method |
-
2015
- 2015-12-07 CN CN201510896800.0A patent/CN106847874A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140363960A1 (en) * | 2013-06-05 | 2014-12-11 | Samsung Electronics Co., Ltd. | Semiconductor device and method for fabricating the same |
US20150171218A1 (en) * | 2013-12-16 | 2015-06-18 | Joseph M. Steigerwald | Multi-threshold voltage devices and associated techniques and configurations |
CN104766823A (en) * | 2014-01-07 | 2015-07-08 | 中国科学院微电子研究所 | Semiconductor device manufacturing method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109427663A (en) * | 2017-08-22 | 2019-03-05 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN110120418A (en) * | 2019-05-07 | 2019-08-13 | 芯盟科技有限公司 | Vertical nanowire transistor and forming method thereof |
CN110120418B (en) * | 2019-05-07 | 2023-03-24 | 芯盟科技有限公司 | Vertical nanowire transistor and method of forming the same |
TWI741768B (en) * | 2019-09-05 | 2021-10-01 | 台灣積體電路製造股份有限公司 | Method of manufacturing semiconductor devices and semiconductor devices |
US11183431B2 (en) | 2019-09-05 | 2021-11-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of manufacturing semiconductor devices and semiconductor devices |
US11978675B2 (en) | 2019-09-05 | 2024-05-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of manufacturing semiconductor devices and semiconductor devices |
CN112802898A (en) * | 2020-12-31 | 2021-05-14 | 泉芯集成电路制造(济南)有限公司 | Fin type field effect transistor and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108281478B (en) | Semiconductor structure and method of forming the same | |
CN108122852B (en) | Semiconductor structure and forming method thereof | |
US10269659B2 (en) | Semiconductor structure and fabrication method thereof | |
CN106558584B (en) | Semiconductor structure and method of forming the same | |
EP3267472B1 (en) | Semiconductor device and fabrication method thereof | |
CN103426821B (en) | The method that semiconductor integrated circuit manufactures | |
CN106952908B (en) | Semiconductor structure and manufacturing method thereof | |
CN103489779B (en) | Semiconductor structure and manufacturing method thereof | |
CN104517901A (en) | Method for forming CMOS transistor | |
CN106847874A (en) | The forming method of the semiconductor devices with different threshold voltages | |
CN108257918B (en) | Semiconductor structure and method of forming the same | |
CN108155235B (en) | Semiconductor structure and forming method thereof | |
CN106847755B (en) | Method for improving SRAM performance | |
CN107591370B (en) | Semiconductor device and method of forming the same | |
CN108573910A (en) | Semiconductor structures and methods of forming them | |
CN109390394B (en) | Tunneling field effect transistor and manufacturing method thereof | |
CN108258028B (en) | Semiconductor structure and method of forming the same | |
CN108258033B (en) | Semiconductor device and method of forming the same | |
CN107492523B (en) | Semiconductor device and method of forming the same | |
CN112309845B (en) | Semiconductor structures and methods of forming them | |
CN108389835B (en) | Semiconductor structure and forming method thereof | |
US9853153B2 (en) | Method of manufacturing fin field effect transistor | |
CN107492522B (en) | CMOS device, PMOS device and NMOS device forming method | |
CN109309050B (en) | Semiconductor structure and method of forming the same | |
CN108074816B (en) | Transistor and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170613 |