CN106847755B - Method for improving SRAM performance - Google Patents
Method for improving SRAM performance Download PDFInfo
- Publication number
- CN106847755B CN106847755B CN201510896857.0A CN201510896857A CN106847755B CN 106847755 B CN106847755 B CN 106847755B CN 201510896857 A CN201510896857 A CN 201510896857A CN 106847755 B CN106847755 B CN 106847755B
- Authority
- CN
- China
- Prior art keywords
- work function
- type
- function layer
- layer
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
- H10B10/12—Static random access memory [SRAM] devices comprising a MOSFET load element
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0172—Manufacturing their gate conductors
- H10D84/0177—Manufacturing their gate conductors the gate conductors having different materials or different implants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
Abstract
一种改善SRAM性能的方法,包括:在P型逻辑器件区栅介质层表面形成P型功函数层,等效功函数值最大的P型功函数层为第一P型功函数层;在上拉晶体管区的栅介质层表面形成上拉功函数层,上拉功函数层的材料和厚度与第一P型功函数层的材料和厚度相同;对上拉晶体管区的基底进行第一阈值电压调节掺杂处理;在N型逻辑器件区栅介质层表面形成N型功函数层,且等效功函数值最大的N型功函数层为第一N型功函数层;在传送门晶体管区的栅介质层表面形成传送门功函数层,传送门功函数层与第一N型功函数层的材料和厚度相同;对传送门晶体管区的基底进行第二阈值电压调节掺杂处理。本发明提高存储器的写入冗余度,提高半导体器件的整体性能。
A method for improving SRAM performance, comprising: forming a P-type work function layer on the surface of a gate dielectric layer in a P-type logic device region, and the P-type work function layer with the largest equivalent work function value is the first P-type work function layer; A pull-up work function layer is formed on the surface of the gate dielectric layer in the pull-up transistor region, and the material and thickness of the pull-up work function layer are the same as those of the first P-type work function layer; a first threshold voltage is applied to the substrate of the pull-up transistor region Adjust doping treatment; form an N-type work function layer on the surface of the gate dielectric layer in the N-type logic device region, and the N-type work function layer with the largest equivalent work function value is the first N-type work function layer; in the transfer gate transistor region A transfer gate work function layer is formed on the surface of the gate dielectric layer, and the transfer gate work function layer has the same material and thickness as the first N-type work function layer; a second threshold voltage adjustment doping treatment is performed on the substrate of the transfer gate transistor region. The invention improves the write redundancy of the memory and improves the overall performance of the semiconductor device.
Description
技术领域technical field
本发明涉及半导体制作技术领域,特别涉及一种改善SRAM性能的方法。The present invention relates to the technical field of semiconductor fabrication, in particular to a method for improving the performance of an SRAM.
背景技术Background technique
在目前的半导体产业中,集成电路产品主要可分为三大类型:逻辑、存储器和模拟电路,其中存储器件在集成电路产品中占了相当大的比例。随着半导体技术发展,对存储器件进行更为广泛的应用,需要将所述存储器件与其他器件区同时形成在一个芯片上,以形成嵌入式半导体存储装置。例如将所述存储器件内嵌置于中央处理器,则需要使得所述存储器件与嵌入的中央处理器平台进行兼容,并且保持原有的存储器件的规格及对应的电学性能。In the current semiconductor industry, integrated circuit products can be mainly divided into three types: logic, memory and analog circuits, among which memory devices account for a considerable proportion of integrated circuit products. With the development of semiconductor technology, the memory device is more widely used, and the memory device and other device regions need to be simultaneously formed on a chip to form an embedded semiconductor memory device. For example, if the storage device is embedded in the central processing unit, it is necessary to make the storage device compatible with the embedded central processing unit platform, and maintain the original specifications and corresponding electrical performance of the storage device.
一般地,需要将所述存储器件与嵌入的标准逻辑装置进行兼容。对于嵌入式半导体器件来说,其通常分为逻辑区和存储区,逻辑区通常包括逻辑器件,存储区则包括存储器件。随着存储技术的发展,出现了各种类型的半导体存储器,例如静态随机随机存储器(SRAM,Static Random Access Memory)、动态随机存储器(DRAM,Dynamic Random AccessMemory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only)和闪存(Flash)。由于静态随机存储器具有低功耗和较快工作速度等优点,使得静态随机存储器及其形成方法受到越来越多的关注。Typically, the memory device needs to be compatible with embedded standard logic devices. For an embedded semiconductor device, it is usually divided into a logic area and a storage area, the logic area usually includes logic devices, and the storage area includes storage devices. With the development of storage technology, various types of semiconductor memories have emerged, such as static random access memory (SRAM, Static Random Access Memory), dynamic random access memory (DRAM, Dynamic Random Access Memory), erasable programmable read-only memory ( EPROM, Erasable Programmable Read-Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only) and Flash Memory (Flash). Due to the advantages of low power consumption and faster working speed of SRAM, more and more attention has been paid to SRAM and its forming method.
然而,现有技术形成的半导体器件中静态随机存储器的性能有待进一步提高,使得半导体器件的整体性能较差。However, the performance of the SRAM in the semiconductor device formed by the prior art needs to be further improved, so that the overall performance of the semiconductor device is poor.
发明内容SUMMARY OF THE INVENTION
本发明解决的问题是提供一种改善SRAM性能的方法,改善存储器的写入冗余度,从而提高形成的半导体器件的整体性能。The problem solved by the present invention is to provide a method for improving the performance of the SRAM, to improve the write redundancy of the memory, thereby improving the overall performance of the formed semiconductor device.
为解决上述问题,本发明提供一种改善SRAM性能的方法,包括:提供基底,所述基底包括N型逻辑器件区、P型逻辑器件区、上拉晶体管区以及传送门晶体管区,其中,所述N型逻辑器件区包括若干个N型阈值电压区,所述P型逻辑器件区包括若干个P型阈值电压区,所述N型逻辑器件区、P型逻辑器件区、上拉晶体管区以及传送门晶体管区的部分基底表面形成有栅介质层;在所述P型逻辑器件区栅介质层表面形成P型功函数层,且所述若干个P型阈值电压区对应的P型功函数层的等效功函数值不同,其中,等效功函数值最大的P型功函数层为第一P型功函数层;在所述上拉晶体管区的栅介质层表面形成上拉功函数层,且所述上拉功函数层的材料和厚度与第一P型功函数层的材料和厚度相同;对所述上拉晶体管区的基底进行第一阈值电压调节掺杂处理;在所述N型逻辑器件区栅介质层表面形成N型功函数层,且所述若干个N型阈值电压区对应的N型功函数层的等效功函数值不同,其中,等效功函数值最大的N型功函数层为第一N型功函数层;在所述传送门晶体管区的栅介质层表面形成传送门功函数层,且所述传送门功函数层的材料和厚度与第一N型功函数层的材料和厚度相同;对所述传送门晶体管区的基底进行第二阈值电压调节掺杂处理;在所述N型功函数层表面、P型功函数层表面、传送门功函数层表面以及上拉功函数层表面形成栅电极层。In order to solve the above problems, the present invention provides a method for improving the performance of an SRAM, comprising: providing a substrate, the substrate includes an N-type logic device region, a P-type logic device region, a pull-up transistor region and a transfer gate transistor region, wherein the The N-type logic device region includes several N-type threshold voltage regions, the P-type logic device region includes several P-type threshold voltage regions, the N-type logic device region, the P-type logic device region, the pull-up transistor region and the A gate dielectric layer is formed on the surface of part of the substrate in the transfer gate transistor region; a P-type work function layer is formed on the surface of the gate dielectric layer in the P-type logic device region, and the P-type work function layers corresponding to the plurality of P-type threshold voltage regions The equivalent work function values are different, wherein the P-type work function layer with the largest equivalent work function value is the first P-type work function layer; a pull-up work function layer is formed on the surface of the gate dielectric layer in the pull-up transistor region, And the material and thickness of the pull-up work function layer are the same as those of the first P-type work function layer; the substrate of the pull-up transistor region is subjected to a first threshold voltage adjustment doping treatment; An N-type work function layer is formed on the surface of the gate dielectric layer in the logic device region, and the equivalent work function values of the N-type work function layers corresponding to the plurality of N-type threshold voltage regions are different, wherein, the N-type work function layer with the largest equivalent work function value The work function layer is a first N-type work function layer; a transfer gate work function layer is formed on the surface of the gate dielectric layer in the transfer gate transistor region, and the material and thickness of the transfer gate work function layer are the same as the first N-type work function The material and thickness of the layers are the same; a second threshold voltage adjustment doping treatment is performed on the substrate of the transfer gate transistor region; on the surface of the N-type work function layer, the surface of the P-type work function layer, the surface of the transfer gate work function layer and A gate electrode layer is formed on the surface of the pull-up work function layer.
可选的,在所述若干个P型阈值电压区对应的P型功函数层中,所述第一P型功函数层的厚度最厚;在所述若干个N型阈值电压区对应的N型功函数层中,所述第一N型功函数层的厚度最薄。Optionally, in the P-type work function layers corresponding to the several P-type threshold voltage regions, the thickness of the first P-type work function layer is the thickest; In the type work function layer, the thickness of the first N type work function layer is the thinnest.
可选的,在同一道工艺步骤中,形成所述上拉功函数层和第一P型功函数层;在同一道工艺步骤中,形成所述传送门功函数层和第一N型功函数层。Optionally, in the same process step, the pull-up work function layer and the first P-type work function layer are formed; in the same process step, the transfer gate work function layer and the first N-type work function layer are formed Floor.
可选的,所述第二阈值电压调节掺杂处理的掺杂离子为B,掺杂浓度为1E12atom/cm3至1E14atom/cm3。Optionally, the doping ion used in the second threshold voltage adjustment doping treatment is B, and the doping concentration is 1E12 atom/cm 3 to 1E14 atom/cm 3 .
可选的,所述第一阈值电压掺杂处理的掺杂离子为As,掺杂浓度为1E12atom/cm3至1E14atom/cm3。Optionally, the doping ions of the first threshold voltage doping treatment are As, and the doping concentration is 1E12 atoms/cm 3 to 1E14 atoms/cm 3 .
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明提供的改善SRAM性能的方法的技术方案中,在P型逻辑器件区栅介质层表面形成P型功函数层,且所述若干个P型阈值电压区对应的P型功函数层的等效功函数值不同,其中,等效功函数值最大的P型功函数层为第一P型功函数层;在上拉晶体管区的栅介质层表面形成上拉功函数层,且所述上拉功函数层的材料和厚度与第一P型功函数层的材料和厚度相同。也就是说,上拉晶体管区的上拉功函数层的等效功函数值与若干P型功函数层的等效功函数值中的最大等效功函数值相同,为使上拉晶体管保持具有固定的阈值电压数值,对所述上拉晶体管区的基底进行第一阈值电压调节掺杂处理的掺杂离子浓度较高,进而使得形成的上拉晶体管的饱和电流和开态电流较小。在N型逻辑器件区栅介质层表面形成N型功函数层,且所述若干个N型阈值电压区对应的N型功函数层的等效功函数值不同,其中,等效功函数值最大的N型功函数层为第一N型功函数层;在传送门晶体管区的栅介质层表面形成传送门功函数层,且所述传送门功函数层的材料和厚度与第一N型功函数层的材料和厚度相同。也就是说,传送门晶体管区的传送门功函数层的等效功函数值与若干N型功函数层的等效功函数值中的最大等效功函数值相同,为了使传送门晶体管保持具有固定的阈值电压数值,对所述传送门晶体管区的基底进行的第二阈值电压调节掺杂处理的掺杂离子浓度较低,进而使得形成的传送门晶体管的饱和电流和开态电流较大。因此本发明形成的半导体器件中存储器的伽马比得到提高,从而使得存储器的写入冗余度得到改善,进而提高形成的存储器的电学性能,提高半导体器件的整体性能。In the technical solution of the method for improving SRAM performance provided by the present invention, a P-type work function layer is formed on the surface of the gate dielectric layer in the P-type logic device region, and the P-type work function layers corresponding to the plurality of P-type threshold voltage regions are The work function values are different, wherein, the P-type work function layer with the largest equivalent work function value is the first P-type work function layer; a pull-up work function layer is formed on the surface of the gate dielectric layer in the pull-up transistor region, and the upper The material and thickness of the pull work function layer are the same as those of the first P-type work function layer. That is to say, the equivalent work function value of the pull-up work function layer in the pull-up transistor region is the same as the maximum equivalent work function value among the equivalent work function values of several P-type work function layers. With a fixed threshold voltage value, the concentration of doping ions in the first threshold voltage adjustment doping treatment on the substrate of the pull-up transistor region is relatively high, thereby reducing the saturation current and on-state current of the formed pull-up transistor. An N-type work function layer is formed on the surface of the gate dielectric layer in the N-type logic device region, and the equivalent work function values of the N-type work function layers corresponding to the plurality of N-type threshold voltage regions are different, wherein the equivalent work function value is the largest The N-type work function layer is the first N-type work function layer; a transfer gate work function layer is formed on the surface of the gate dielectric layer in the transfer gate transistor region, and the material and thickness of the transfer gate work function layer are the same as the first N-type work function layer. The material and thickness of the functional layer are the same. That is, the equivalent work function value of the transfer gate work function layer in the transfer gate transistor region is the same as the largest equivalent work function value among the equivalent work function values of several N-type work function layers. With a fixed threshold voltage value, the doping ion concentration of the second threshold voltage adjustment doping treatment performed on the substrate of the transfer gate transistor region is relatively low, so that the saturation current and on-state current of the formed transfer gate transistor are relatively large. Therefore, the gamma ratio of the memory in the semiconductor device formed by the present invention is improved, thereby improving the write redundancy of the memory, thereby improving the electrical performance of the formed memory and improving the overall performance of the semiconductor device.
附图说明Description of drawings
图1至图15为本发明一实施例提供的半导体器件形成过程的剖面结构示意图。1 to 15 are schematic cross-sectional structural diagrams of a semiconductor device forming process according to an embodiment of the present invention.
具体实施方式Detailed ways
由背景技术可知,现有技术中形成的半导体器件中静态随机存储器的性能有待提高。It can be known from the background art that the performance of the SRAM in the semiconductor device formed in the prior art needs to be improved.
对于静态随机存储器,其主要包括上拉(PU,Pull Up)晶体管、下拉(PD,PullDown)晶体管以及传送门(PG,Pass Gate)晶体管,而存储器的写入冗余度(write margin)对存储器性能起到关键作用,若能够改善存储器的写入冗余度性能,则存储器的良率将得到提高,半导体器件的整体性能相应得到改善。研究发现,存储器的写入冗余度与伽玛比(gamma ratio)成正比例关系,伽马比为传送门晶体管的开态电流与上拉晶体管的开态电流之间的比值。传送门晶体管的开态电流与传送门晶体管沟道区的掺杂离子浓度有关,传送门晶体管沟道区的掺杂离子浓度越低,则传送门晶体管的开态电流越大;上拉晶体管的开态电流与上拉晶体管沟道区的掺杂离子浓度有关,上拉晶体管沟道区的掺杂离子浓度越高,则上拉晶体管的开态电流越小。因此,降低传送门晶体管沟道区的掺杂离子浓度,或者提高上拉晶体管沟道区的掺杂离子浓度,能够使得存储器的伽马比增加,进而提高存储器的写入冗余度,改善存储器的良率。For static random access memory, it mainly includes a pull-up (PU, Pull Up) transistor, a pull-down (PD, PullDown) transistor and a pass gate (PG, Pass Gate) transistor, and the write margin of the memory (write margin) The memory Performance plays a key role. If the write redundancy performance of the memory can be improved, the yield of the memory will be improved, and the overall performance of the semiconductor device will be improved accordingly. The study found that the write redundancy of the memory is proportional to the gamma ratio, which is the ratio between the on-state current of the pass-gate transistor and the on-state current of the pull-up transistor. The on-state current of the transfer gate transistor is related to the dopant ion concentration in the channel region of the transfer gate transistor. The lower the dopant ion concentration in the channel region of the transfer gate transistor, the greater the on-state current of the transfer gate transistor; The on-state current is related to the dopant ion concentration in the channel region of the pull-up transistor. The higher the dopant ion concentration in the channel region of the pull-up transistor, the smaller the on-state current of the pull-up transistor. Therefore, reducing the dopant ion concentration in the channel region of the transfer gate transistor or increasing the dopant ion concentration in the channel region of the pull-up transistor can increase the gamma ratio of the memory, thereby improving the write redundancy of the memory and improving the memory yield.
进一步研究发现,对于传送门晶体管而言,传送门晶体管为NMOS管,所述传送门晶体管一般具有固定的阈值电压值(Vt),若在形成传送门晶体管时采用了等效功函数值(equal work function)较高的功函数层,为了使传送门晶体管保持固定的阈值电压,则相应传送门晶体管沟道区的阈值电压调节掺杂离子浓度较低,使得传送门晶体管的开态电流增加。对于上拉晶体管而言,上拉晶体管为PMOS管,所述上拉晶体管一般也具有固定阈值电压,若在形成上拉晶体管时采用了等效功函数值较高的功函数层,则为了使上拉晶体管保持固定的阈值电压,所述上拉晶体管沟道区的阈值电压调节掺杂离子浓度应较高,使得上拉晶体管的开态电流减小。Further research found that for the transfer gate transistor, the transfer gate transistor is an NMOS transistor, and the transfer gate transistor generally has a fixed threshold voltage value (Vt). If the equivalent work function value (equal In order to maintain a fixed threshold voltage of the pass gate transistor, the threshold voltage of the corresponding pass gate transistor channel region is adjusted to lower the concentration of doping ions, so that the on-state current of the pass gate transistor increases. For the pull-up transistor, the pull-up transistor is a PMOS transistor, and the pull-up transistor generally also has a fixed threshold voltage. If a work function layer with a higher equivalent work function value is used when forming the pull-up transistor, in order to make The pull-up transistor maintains a fixed threshold voltage, and the threshold voltage in the channel region of the pull-up transistor should be adjusted to have a higher concentration of doping ions, so that the on-state current of the pull-up transistor is reduced.
为此,本发明提供一种改善SRAM性能的方法,本发明中上拉晶体管区的上拉功函数层的等效功函数值为:P型逻辑器件区中若干P型功函数层的等效功函数值中最大的等效功函数值,为使上拉晶体管保持具有固定的阈值电压数值,对所述上拉晶体管区的基底进行第一阈值电压调节掺杂处理的掺杂离子浓度较高,进而使得形成的上拉晶体管的饱和电流和开态电流较小;传送门晶体管区的传送门功函数层的等效功函数值为:N型逻辑器件区中若干N型功函数层的等效功函数值中最大的等效功函数值,为了使传送门晶体管保持具有固定的阈值电压数值,对所述传送门晶体管区的基底进行的第二阈值电压调节掺杂处理的掺杂离子浓度较低,进而使得形成的传送门晶体管的饱和电流和开态电流较大。因此本发明形成的半导体器件中存储器的伽马比得到提高,从而使得存储器的写入冗余度得到改善,进而提高形成的存储器的电学性能,提高半导体器件的整体性能。Therefore, the present invention provides a method for improving the performance of SRAM. In the present invention, the equivalent work function value of the pull-up work function layer in the pull-up transistor region is: the equivalent of several P-type work function layers in the P-type logic device region The largest equivalent work function value in the work function value, in order to keep the pull-up transistor with a fixed threshold voltage value, the doping ion concentration of the first threshold voltage adjustment doping treatment on the substrate of the pull-up transistor region is relatively high , so that the saturation current and on-state current of the formed pull-up transistor are smaller; the equivalent work function value of the transfer gate work function layer in the transfer gate transistor region is: the equivalent work function value of several N-type work function layers in the N-type logic device region The largest equivalent work function value in the work function value, in order to keep the transfer gate transistor with a fixed threshold voltage value, the second threshold voltage performed on the substrate of the transfer gate transistor region adjusts the doping ion concentration of the doping treatment lower, which in turn results in higher saturation current and on-state current of the resulting pass-gate transistor. Therefore, the gamma ratio of the memory in the semiconductor device formed by the present invention is improved, thereby improving the write redundancy of the memory, thereby improving the electrical performance of the formed memory and improving the overall performance of the semiconductor device.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图1至图15为本发明一实施例提供的半导体器件形成过程的剖面结构示意图。1 to 15 are schematic cross-sectional structural diagrams of a semiconductor device forming process according to an embodiment of the present invention.
参考图1,提供基底,所述基底包括N型逻辑器件区(未标示)、P型逻辑器件区(未标示)、上拉晶体管区I以及传送门晶体管区II。Referring to FIG. 1, a substrate is provided that includes an N-type logic device region (not labeled), a P-type logic device region (not labeled), a pull-up transistor region I, and a pass-gate transistor region II.
本实施例形成的半导体器件包括逻辑器件以及SRAM器件。所述N型逻辑器件区为后续形成N型逻辑器件提供工艺平台,所述P型逻辑器件区为后续形成P型逻辑器件提供工艺平台,所述上拉晶体管区I为后续形成上拉晶体管提供工艺平台,所述传送门晶体管区II为后续形成传送门晶体管提供工艺平台。所述上拉晶体管区I为PMOS区域,所述传送门晶体管区域II为NMOS区域。The semiconductor device formed in this embodiment includes a logic device and an SRAM device. The N-type logic device region provides a process platform for the subsequent formation of N-type logic devices, the P-type logic device region provides a process platform for the subsequent formation of P-type logic devices, and the pull-up transistor region I provides for the subsequent formation of pull-up transistors. A process platform, the transfer gate transistor region II provides a process platform for the subsequent formation of transfer gate transistors. The pull-up transistor region I is a PMOS region, and the transfer gate transistor region II is an NMOS region.
所述基底还包括下拉晶体管区III,所述下拉晶体管区III为后续形成下拉晶体管提供工艺平台,所述下拉晶体管区III为NMOS区域。其中,所述上拉晶体管区I、传送门晶体管区II以及下拉晶体管区III为存储区,为后续形成静态随机存储器提供工艺平台。The substrate further includes a pull-down transistor region III, the pull-down transistor region III provides a process platform for subsequent formation of the pull-down transistor, and the pull-down transistor region III is an NMOS region. The pull-up transistor region I, the transfer gate transistor region II, and the pull-down transistor region III are storage regions, which provide a process platform for the subsequent formation of the SRAM.
所述P型逻辑器件区包括若干个P型阈值电压区,其中,所述P型阈值电压区包括P型超低阈值电压区(ULVT,Ultra-low VT)11、P型标准阈值电压区(Standard VT)12以及P型高阈值电压(High VT)区13,各区域形成的P型逻辑器件的阈值电压由低至高的排序为:P型超低阈值电压区11、P型标准阈值电压区12、P型高阈值电压区13。所述P型逻辑器件区还能够包括P型低阈值电压区(未图示)、P型输入输出器件区(IO,Input Output)(未图示)。The P-type logic device region includes several P-type threshold voltage regions, wherein the P-type threshold voltage region includes a P-type ultra-low threshold voltage region (ULVT, Ultra-low VT) 11, a P-type standard threshold voltage region ( Standard VT) 12 and P-type high threshold voltage (High VT)
所述N型逻辑器件区包括若干个N型阈值电压区,其中,所述N型阈值电压包括N型超低阈值电压区21、N型标准阈值电压区22以及N型高阈值电压区23,各区域形成的N型逻辑器件的阈值电压由低至高的排序为:N型超低阈值电压区21、N型标准阈值电压区22、N型高阈值电压区23。所述N型逻辑器件区还能够包括N型低阈值电压区(未图示)、N型输入输出器件区(未图示)。The N-type logic device region includes several N-type threshold voltage regions, wherein the N-type threshold voltage includes an N-type ultra-low
本实施例以形成的半导体器件为鳍式场效应管为例,所述基底包括衬底101、位于衬底101表面的分立的鳍部102。In this embodiment, the semiconductor device formed is a fin field effect transistor as an example, and the base includes a
在另一实施例中,所述半导体器件为平面晶体管,所述基底为平面基底,所述平面基底为硅衬底、锗衬底、硅锗衬底或碳化硅衬底、绝缘体上硅衬底或绝缘体上锗衬底、玻璃衬底或III-V族化合物衬底(例如氮化镓衬底或砷化镓衬底等),栅极结构形成于所述平面基底表面。In another embodiment, the semiconductor device is a planar transistor, the base is a planar base, and the planar base is a silicon substrate, a germanium substrate, a silicon germanium substrate, a silicon carbide substrate, or a silicon-on-insulator substrate Or a germanium-on-insulator substrate, a glass substrate or a III-V group compound substrate (eg, a gallium nitride substrate or a gallium arsenide substrate, etc.), and the gate structure is formed on the surface of the planar base.
所述衬底101的材料为硅、锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底101还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底;所述鳍部102的材料包括硅、锗、锗化硅、碳化硅、砷化镓或镓化铟。本实施例中,所述衬底101为硅衬底,所述鳍部102的材料为硅。The material of the
本实施例中,形成所述衬底101、鳍部102的工艺步骤包括:提供初始衬底;在所述初始衬底表面形成图形化的硬掩膜层103;以所述硬掩膜层103为掩膜刻蚀所述初始衬底,刻蚀后的初始衬底作为衬底101,位于衬底101表面的凸起作为鳍部102。In this embodiment, the process steps of forming the
在一个实施例中,形成所述硬掩膜层103的工艺步骤包括:首先形成初始硬掩膜;在所述初始硬掩膜表面形成图形化的光刻胶层;以所述图形化的光刻胶层为掩膜刻蚀所述初始硬掩膜,在初始衬底表面形成硬掩膜层103;去除所述图形化的光刻胶层。In one embodiment, the process steps of forming the
在其他实施例中,所述硬掩膜层的形成工艺还能够包括:自对准双重图形化(SADP,Self-aligned Double Patterned)工艺、自对准三重图形化(Self-aligned TriplePatterned)工艺、或自对准四重图形化(Self-aligned Double Double Patterned)工艺。所述双重图形化工艺包括LELE(Litho-Etch-Litho-Etch)工艺或LLE(Litho-Litho-Etch)工艺。In other embodiments, the formation process of the hard mask layer may further include: a self-aligned double patterned (SADP, Self-aligned Double Patterned) process, a self-aligned triple patterned (Self-aligned Triple Patterned) process, Or self-aligned quadruple patterning (Self-aligned Double Double Patterned) process. The double patterning process includes a LLE (Litho-Etch-Litho-Etch) process or an LLE (Litho-Litho-Etch) process.
本实施例中,在形成所述鳍部102之后,保留位于鳍部102顶部表面的硬掩膜层103。所述硬掩膜层103的材料为氮化硅,后续在进行平坦化工艺时,所述硬掩膜层103顶部表面能够作为平坦化工艺的停止位置,起到保护鳍部102顶部的作用。本实施例中,所述鳍部102的顶部尺寸小于底部尺寸。在其他实施例中,所述鳍部的侧壁还能够与衬底表面相垂直,即鳍部的顶部尺寸等于底部尺寸。In this embodiment, after the
参考图2,形成覆盖所述衬底101表面以及鳍部102表面的隔离膜104,所述隔离膜104顶部高于硬掩膜层103顶部。Referring to FIG. 2 , an
在形成所述隔离膜104之前,还包括步骤:对所述衬底101和鳍部102进行氧化处理,在所述衬底101表面以及鳍部102表面形成线性氧化层。Before forming the
所述隔离膜104为后续形成隔离层提供工艺基础;所述隔离膜104的材料为绝缘材料,例如为氧化硅、氮化硅或氮氧化硅。本实施例中,所述隔离膜104的材料为氧化硅。The
为了提高形成隔离膜104工艺的填孔(gap-filling)能力,采用流动性化学气相沉积(FCVD,Flowable CVD)或高纵宽比化学气相沉积工艺(HARP CVD),形成所述隔离膜104。In order to improve the gap-filling capability of the process of forming the
在形成所述隔离膜104之后,还包括步骤:对所述隔离膜104进行退火处理,提高所述隔离膜104的致密度。After the
参考图3,去除部分厚度的隔离膜104(参考图2)形成隔离层114,所述隔离层114位于衬底101表面且覆盖鳍部102部分侧壁表面,所述隔离层114顶部低于鳍部102顶部。Referring to FIG. 3 , a partial thickness of the isolation film 104 (refer to FIG. 2 ) is removed to form an
所述隔离层114的材料为氧化硅、氮化硅或氮氧化硅。本实施例中,所述隔离层114的材料为氧化硅。The material of the
在一个实施例中,采用干法刻蚀工艺,刻蚀去除部分厚度的隔离膜104。在另一实施例中,采用湿法刻蚀工艺,刻蚀去除部分厚度的隔离膜104。In one embodiment, a dry etching process is used to remove a part of the thickness of the
还包括步骤:刻蚀去除所述硬掩膜层103(参考图2)。还能够包括步骤:在所述鳍部102顶部和侧壁表面、以及隔离层114表面形成屏蔽层,所述屏蔽层的材料为氧化硅或氮氧化硅,其作用在于:在后续的掺杂处理过程中,所述屏蔽层能够减小掺杂处理对鳍部102造成的晶格损伤。It also includes the step of removing the
还包括步骤:对所述P型逻辑器件区以及上拉晶体管区I进行N型阱区掺杂处理,在所述P型逻辑器件区以及上拉晶体管区I的基底内形成N型阱区;对所述N型逻辑器件区、传送门晶体管区II以及下拉晶体管区III进行P型阱区掺杂处理,在所述N型逻辑器件区、传送门晶体管区II以及下拉晶体管区III的基底内形成P型阱区。It also includes the steps of: performing an N-type well region doping process on the P-type logic device region and the pull-up transistor region I, and forming an N-type well region in the substrate of the P-type logic device region and the pull-up transistor region I; P-type well region doping treatment is performed on the N-type logic device region, transfer gate transistor region II and pull-down transistor region III, in the substrate of the N-type logic device region, transfer gate transistor region II and pull-down transistor region III A P-type well region is formed.
参考图4,对所述上拉晶体管区I的基底进行第一阈值电压调节掺杂处理。Referring to FIG. 4 , a first threshold voltage adjustment doping treatment is performed on the substrate of the pull-up transistor region I.
本实施例中,所述上拉晶体管区I为PMOS区域,所述第一阈值电压调节掺杂处理的掺杂离子为N型离子,N型离子为P、As或Sb。所述第一阈值电压调节掺杂处理实际上是对后续形成的上拉晶体管栅极结构下方的沟道区进行的掺杂,本实施例中,对上拉晶体管区I的鳍部102进行第一阈值电压调节掺杂处理。In this embodiment, the pull-up transistor region I is a PMOS region, and the doping ions for the first threshold voltage adjustment doping treatment are N-type ions, and the N-type ions are P, As or Sb. The first threshold voltage adjustment doping treatment is actually doping the channel region below the gate structure of the pull-up transistor formed subsequently. A threshold voltage adjusts the doping process.
对所述上拉晶体管区I的基底进行第一阈值电压调节掺杂处理的工艺步骤包括:在所述隔离层114表面以及鳍部102表面形成第一图形层105,所述第一图形层105暴露出上拉晶体管区I基底表面;以所述第一图形层105为掩膜,对所述上拉晶体管区I的鳍部102进行N型离子注入;接着,去除所述第一图形层105。The process steps of performing the first threshold voltage adjustment doping treatment on the substrate of the pull-up transistor region I include: forming a
本实施例中,后续在上拉晶体管区I基底上形成的上拉功函数层等效功函数值较高,具体的,后续会在各P型阈值电压区形成等效功函数值不同的P型功函数层,其中,等效功函数值最大的P型功函数层为第一P型功函数层,而本实施例中后续形成的上拉功函数层与第一P型功函数层的材料和厚度均相同。因此对于上拉晶体管而言,上拉晶体管中上拉功函数层的等效功函数值较大,为了使形成的上拉晶体管具有固定的阈值电压,本实施例中对上拉晶体管区I基底进行的第一阈值电压调节掺杂处理的掺杂离子浓度应较高。本实施例中,所述第一阈值电压掺杂处理的掺杂离子为As,掺杂浓度为1E12atom/cm3至1E14atom/cm3。In this embodiment, the equivalent work function value of the pull-up work function layer subsequently formed on the substrate of the pull-up transistor region I is relatively high. Specifically, P-type threshold voltage regions with different equivalent work function values are subsequently formed in each P-type threshold voltage region. type work function layer, wherein, the P-type work function layer with the largest equivalent work function value is the first P-type work function layer, and the pull-up work function layer formed subsequently in this embodiment and the first P-type work function layer are Material and thickness are the same. Therefore, for the pull-up transistor, the equivalent work function value of the pull-up work function layer in the pull-up transistor is relatively large. In order to make the formed pull-up transistor have a fixed threshold voltage, the pull-up transistor region I substrate is The doping ion concentration of the first threshold voltage adjustment doping treatment performed should be high. In this embodiment, the doping ions in the first threshold voltage doping treatment are As, and the doping concentration is 1E12 atoms/cm 3 to 1E14 atoms/cm 3 .
与现有技术中对上拉晶体管区的基底进行的阈值电压调节掺杂处理的掺杂浓度相比较,本实施例中对上拉晶体管区I基底进行的第一阈值电压调节掺杂处理的掺杂离子浓度更高,也可以认为,本实施例中上拉晶体管区I沟道区的掺杂离子浓度更高,因此本实施例相应形成的上拉晶体管的饱和电流和开态电流更低,使得形成的上拉晶体管具有更低的工作电流。Compared with the doping concentration of the threshold voltage adjustment doping treatment performed on the substrate of the pull-up transistor region in the prior art, the doping concentration of the first threshold voltage adjustment doping treatment performed on the substrate of the pull-up transistor region I in this embodiment is The concentration of impurity ions is higher. It can also be considered that the concentration of impurity ions in the I-channel region of the pull-up transistor region in this embodiment is higher, so the saturation current and on-state current of the pull-up transistor formed in this embodiment are lower. The resulting pull-up transistor has a lower operating current.
在一个具体实施例中,采用离子注入工艺进行所述第一阈值电压调节掺杂处理,所述第一阈值电压调节掺杂处理的工艺参数包括:注入离子为As,注入能量为5kev至15kev,注入剂量为1E12atom/cm2至1E14atom/cm2,注入角度为0度至15度,twist角度为23度,注入次数为4次。In a specific embodiment, the first threshold voltage adjustment doping treatment is performed by an ion implantation process, and the process parameters of the first threshold voltage adjustment doping treatment include: the implanted ions are As, the implantation energy is 5kev to 15kev, The implantation dose is 1E12atom/cm 2 to 1E14atom/cm 2 , the implantation angle is 0 degree to 15 degrees, the twist angle is 23 degrees, and the number of injections is 4 times.
还包括步骤:对所述P型逻辑器件区基底进行N型阈值电压调节掺杂处理。具体的,对所述P型超低阈值电压区11、P型标准阈值电压区12以及P型高阈值电压区13的基底进行N型阈值电压调节掺杂处理。根据若干个P型阈值电压区形成的器件所需的阈值电压范围,确定对各P型阈值电压区进行N型阈值电压调节掺杂处理的掺杂浓度。本实施例中,对所述P型超低阈值电压区11、P型标准阈值电压区12以及P型高阈值电压区13进行的N型阈值电压调节掺杂处理的掺杂浓度不相同。It also includes the step of: performing N-type threshold voltage adjustment doping treatment on the P-type logic device region substrate. Specifically, N-type threshold voltage adjustment doping treatment is performed on the substrates of the P-type ultra-low
参考图5,对所述传送门晶体管区II的基底进行第二阈值电压调节掺杂处理。Referring to FIG. 5 , a second threshold voltage adjustment doping process is performed on the substrate of the transfer gate transistor region II.
本实施例中,所述传送门晶体管区II为NMOS区域,所述第二阈值电压调节掺杂处理的掺杂离子为P型离子,P型离子为B、Ga或In。所述第二阈值调节掺杂处理实际上是对后续形成的传送门晶体管栅极结构下方的沟道区进行的掺杂,本实施例中,对传送门晶体管区II的鳍部102进行第二阈值电压调节掺杂处理。In this embodiment, the transfer gate transistor region II is an NMOS region, the doping ions for the second threshold voltage adjustment doping treatment are P-type ions, and the P-type ions are B, Ga, or In. The second threshold adjustment doping process is actually doping the channel region below the gate structure of the transfer gate transistor formed subsequently. Threshold voltage adjustment doping treatment.
对所述传送门晶体管区II的基底进行第二阈值电压调节掺杂处理的工艺步骤包括:在所述隔离层114表面以及鳍部102表面形成第二图形层106,所述第二图形层106暴露出传送门晶体管区II的基底表面;以所述第二图形层106为掩膜,对所述传送门晶体管区II的鳍部102进行P型离子注入;接着,去除所述第二图形层106。The process steps of performing the second threshold voltage adjustment doping treatment on the substrate of the transfer gate transistor region II include: forming a
本实施例中,后续在传送门晶体管区II栅介质层表面形成的传送门功函数层等效功函数值较高,具体的,后续会在各N型阈值电压区形成等效功函数值不同的N型功函数层,其中,等效功函数值最大的N型功函数层为第一N型功函数层,而本实施例中后续形成的传送门功函数层与第一N型功函数层的材料和厚度均相同。In this embodiment, the equivalent work function value of the transfer gate work function layer subsequently formed on the surface of the gate dielectric layer of the transfer gate transistor region II is relatively high. Specifically, the equivalent work function values of the subsequent N-type threshold voltage regions will be different. The N-type work function layer, wherein, the N-type work function layer with the largest equivalent work function value is the first N-type work function layer, and the transmission gate work function layer formed subsequently in this embodiment and the first N-type work function layer The material and thickness of the layers are the same.
因此对于传送门晶体管而言,传送门晶体管中传送门功函数层的的等效功函数值较大,为了使形成的传送门晶体管具有固定的阈值电压,本实施例中对传送门晶体管区II基底进行的第二阈值电压调节掺杂处理的掺杂离子浓度应较低。本实施例中,所述第二阈值电压调节掺杂处理的掺杂离子为B,掺杂浓度为1E12atom/cm3至1E14atom/cm3。Therefore, for the transfer gate transistor, the equivalent work function value of the transfer gate work function layer in the transfer gate transistor is relatively large. In order to make the formed transfer gate transistor have a fixed threshold voltage, in this embodiment, the transfer gate transistor region II is The doping ion concentration of the second threshold voltage adjustment doping treatment performed on the substrate should be low. In this embodiment, the doping ion used in the second threshold voltage adjustment doping treatment is B, and the doping concentration is 1E12 atom/cm 3 to 1E14 atom/cm 3 .
与现有技术中对传送门晶体管区的基底进行的阈值电压调节掺杂处理的掺杂浓度相比较,本实施例中对传送门晶体管区II基底进行的第二阈值电压调节掺杂处理的掺杂离子浓度更低,也可以认为,本实施例中传送门晶体管区II沟道区的掺杂离子浓度更低,因此本实施例相应形成的传送门晶体管的饱和电流和开态电流更低,使得形成的传送门晶体管具有更低的工作电流。Compared with the doping concentration of the threshold voltage adjustment doping treatment performed on the substrate of the transfer gate transistor region in the prior art, the doping concentration of the second threshold voltage adjustment doping treatment performed on the transfer gate transistor region II substrate in this embodiment is The impurity ion concentration is lower, and it can also be considered that the dopant ion concentration in the channel region II of the transfer gate transistor region in this embodiment is lower, so the correspondingly formed transfer gate transistor in this embodiment has lower saturation current and on-state current, The resulting transfer gate transistor has a lower operating current.
在一个具体实施例中,采用离子注入工艺进行所述第二阈值电压调节掺杂处理,所述第二阈值电压调节掺杂处理的工艺参数包括:注入离子为B,注入能量为2kev至5kev,注入剂量为1E12atom/cm2至1E14atom/cm2,注入角度为0度至15度,注入twist角度为23度,注入次数为4次。In a specific embodiment, the second threshold voltage adjustment doping treatment is performed by an ion implantation process, and the process parameters of the second threshold voltage adjustment doping treatment include: the implanted ions are B, the implantation energy is 2kev to 5kev, The implantation dose is 1E12atom/cm 2 to 1E14atom/cm 2 , the implantation angle is 0° to 15°, the implantation twist angle is 23°, and the implantation times are 4 times.
还包括步骤:对所述下拉晶体管区III的基底进行第三阈值电压调节掺杂处理,所述第三阈值电压调节掺杂处理的掺杂离子为P型离子;对所述N型逻辑器件区基底进行P型阈值电压调节掺杂处理。具体的,对所述N型超低阈值电压调节区21、N型标准阈值电压区22以及N型高阈值电压区23的基底进行P型阈值电压调节掺杂处理。根据若干个N型阈值电压区形成的器件所需的阈值电压范围,确定对各N型阈值电压区进行P型阈值电压调节掺杂处理的掺杂浓度。本实施例中,对所述N型超低阈值电压区21、N型标准阈值电压区22以及N型高阈值电压区23进行的P型阈值电压调节掺杂处理的掺杂浓度不相同。It also includes the steps of: performing a third threshold voltage adjustment doping treatment on the substrate of the pull-down transistor region III, and the doping ions of the third threshold voltage adjustment doping treatment are P-type ions; The substrate is subjected to P-type threshold voltage adjustment doping treatment. Specifically, the substrates of the N-type ultra-low threshold
后续会在基底表面形成栅极结构,本实施中,以采用后栅工艺(gate last)形成栅极结构作为示例,即在形成源漏区(S/D,Source/Drain)之后形成栅极结构。在其他实施例中,还能够采用先栅工艺(gate first)形成栅极结构,在形成源漏区之前形成栅极结构。The gate structure will be formed on the surface of the substrate later. In this implementation, the gate structure is formed by using a gate last process as an example, that is, the gate structure is formed after the source/drain region (S/D, Source/Drain) is formed. . In other embodiments, the gate structure can also be formed by a gate first process, and the gate structure is formed before the source and drain regions are formed.
参考图6,在所述上拉晶体管区I、P型逻辑器件区、N型逻辑器件区、传送门晶体管区II以及下拉晶体管区II基底表面形成伪氧化膜;在所述伪氧化膜表面形成伪栅膜;图形化所述伪栅膜以及伪氧化膜,形成位于N型逻辑器件区、P型逻辑器件区、上拉晶体管区I、传送门晶体管区II以及下拉晶体管区III部分基底表面的伪氧化层201,形成位于氧化层201表面的伪栅层202。Referring to FIG. 6, a dummy oxide film is formed on the substrate surface of the pull-up transistor region I, the P-type logic device region, the N-type logic device region, the transfer gate transistor region II and the pull-down transistor region II; dummy gate film; patterning the dummy gate film and the dummy oxide film to form parts of the substrate surface located in the N-type logic device region, the P-type logic device region, the pull-up transistor region I, the transfer gate transistor region II and the pull-down transistor region III The
所述伪栅层202占据后续形成的栅极结构的空间位置。所述伪氧化层201的材料为氧化硅或氮氧化硅,所述伪栅层202的材料为多晶硅、非晶硅或无定形碳。本实施例中,所述伪氧化层201的材料为氧化硅,所述伪栅层202的材料为多晶硅。The
还包括步骤:在所述伪栅层202侧壁表面形成偏移侧墙;对所述伪栅层202两侧的N型逻辑器件区鳍部102进行轻掺杂处理,形成N型LDD区域,本实施例中,包括对N型逻辑器件区中各N型阈值电压区的鳍部102进行轻掺杂处理;对所述伪栅层202两侧的P型逻辑器件区鳍部102进行轻掺杂处理,形成P型LDD区域,本实施例中,包括对P型逻辑器件区中各P型阈值电压区的鳍部102进行轻掺杂处理;对所述伪栅层202两侧的上拉晶体管区I鳍部102进行轻掺杂处理,形成上拉LDD区域;对所述伪栅层202两侧的传送门晶体管区II鳍部102进行轻掺杂处理,形成传送门LDD区域;对所述伪栅层202两侧的下拉晶体管区III鳍部102进行轻掺杂处理,形成下拉LDD区域。It also includes the steps of: forming offset spacers on the sidewall surfaces of the
还包括步骤:在所述偏移侧墙侧壁表面形成主侧墙;对所述伪栅层202两侧的N型逻辑器件区鳍部102进行重掺杂处理,形成N型S/D区域,本实施例中,包括对N型逻辑器件区中各N型阈值电压区的鳍部102进行重掺杂处理;对所述伪栅层202两侧的P型逻辑器件区鳍部102进行重掺杂处理,形成P型S/D区域,本实施例中,包括对P型逻辑器件区中各P型阈值电压区的鳍部102进行重掺杂处理;对所述伪栅层202两侧的上拉晶体管区I鳍部102进行重掺杂处理,形成上拉S/D区域;对所述伪栅层202两侧的传送门晶体管区域II鳍部102进行重掺杂处理,形成传送门S/D区域;对所述伪栅层202两侧的下拉晶体管区III鳍部102进行重掺杂处理,形成下拉S/D区域。It also includes the steps of: forming a main spacer on the sidewall surface of the offset spacer; performing heavy doping treatment on the N-type logic
参考图7,去除所述伪栅层202(参考图6)以及伪氧化层201(参考图6)。Referring to FIG. 7 , the dummy gate layer 202 (refer to FIG. 6 ) and the dummy oxide layer 201 (refer to FIG. 6 ) are removed.
在去除所述伪栅层202之前,还包括步骤:在所述基底表面形成层间介质层(未图示),所述层间介质层覆盖伪栅层202的侧壁表面。Before removing the
采用干法刻蚀工艺、湿法刻蚀工艺或SiCoNi刻蚀系统,刻蚀去除所述伪栅层202和伪氧化层201。在去除所述伪栅层202的工艺过程中,所述伪氧化层201起到保护鳍部102的作用。The
接着,参考图8,在所述N型逻辑器件区、P型逻辑器件区、上拉晶体管区I、传送门晶体管区II以及下拉晶体管区III基底表面形成界面层204。Next, referring to FIG. 8 , an
所述界面层204作为后续形成的栅介质层的一部分,所述界面层204的材料为氧化硅或氮氧化硅。本实施例中,采用氧化工艺形成所述界面层204,所述氧化工艺为干氧氧化、湿氧氧化或水汽氧化,形成的界面层204仅位于暴露出的鳍部102顶部表面和侧壁表面。The
在其他实施例中,采用沉积工艺形成所述界面层,所述沉积工艺为化学气相沉积、物理气相沉积或原子层沉积,形成的界面层还位于隔离层表面。In other embodiments, the interface layer is formed by a deposition process, and the deposition process is chemical vapor deposition, physical vapor deposition or atomic layer deposition, and the formed interface layer is also located on the surface of the isolation layer.
继续参考图8,在所述界面层204表面形成高k栅介质层205。Continuing to refer to FIG. 8 , a high-k
本实施例中,所述高k栅介质层205还位于隔离层114表面以及层间介质层(未图示)侧壁表面。所述高k栅介质层205的材料为高k栅介质材料,其中,高k栅介质材料指的是,相对介电常数大于氧化硅相对介电常数的栅介质材料,所述高k栅介质层205的材料为HfO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3。In this embodiment, the high-k
采用化学气相沉积、物理气相沉积或原子层沉积工艺形成所述高k栅介质层205。本实施例中,所述高k栅介质层205的材料为HfO2,所述高k栅介质层205的厚度为5埃至15埃,采用原子层沉积工艺形成所述高k栅介质层205。The high-k
所述界面层204以及位于界面层204表面的高k栅介质层205的叠层结构作为栅介质层,因此所述N型逻辑器件区、P型逻辑器件区、上拉晶体管区I、传送门晶体管区II以及下拉晶体管区III基底表面形成有栅介质层。具体到本实施例中,所述栅介质层横跨鳍部102,且覆盖鳍部102部分顶部表面和侧壁表面。The stacked structure of the
后续还会在N型逻辑器件区栅介质层表面形成N型功函数层,在P型逻辑器件区栅介质层表面形成P型功函数层。本实施例将以先形成P型逻辑器件区的P型功函数层、后形成N型逻辑器件区的N型功函数层作为示例进行详细说明。在其他实施例中,还能够先形成N型逻辑器件区的N型功函数层、后形成P型逻辑器件区的P型功函数层。Subsequently, an N-type work function layer will be formed on the surface of the gate dielectric layer in the N-type logic device region, and a P-type work function layer will be formed on the surface of the gate dielectric layer in the P-type logic device region. In this embodiment, the P-type work function layer of the P-type logic device region is formed first, and then the N-type work function layer of the N-type logic device region is formed as an example for detailed description. In other embodiments, the N-type work function layer of the N-type logic device region can also be formed first, and then the P-type work function layer of the P-type logic device region can be formed.
参考图9,在所述P型逻辑器件区栅介质层表面形成P型功函数层208。Referring to FIG. 9 , a P-type
本实施例中,形成的所述P型功函数层还位于上拉晶体管区I栅介质层表面,所述P型功函数层208还位于N型逻辑器件区、传送门晶体管区II以及下拉晶体管区III的栅介质层表面。In this embodiment, the formed P-type work function layer is also located on the surface of the gate dielectric layer in the pull-up transistor region I, and the P-type
在形成所述P型功函数层208之前,还包括步骤:在所述高k栅介质层205表面形成盖帽层(未图示);在所述盖帽层表面形成刻蚀停止层(未图示)。Before forming the P-type
所述盖帽层起到保护高k栅介质层205的作用,防止后续的刻蚀工艺对高k栅介质层205造成不必要的刻蚀损失,所述盖帽层还有利于阻挡金属离子向高k栅介质层205内扩散。所述盖帽层的材料为TiN;采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述盖帽层。The cap layer plays a role in protecting the high-k
所述刻蚀停止层与形成的P型功函数层208以及后续形成的N型功函数层的材料不同,从而使得后续刻蚀P型功函数层208的刻蚀工艺对刻蚀停止层的刻蚀速率小,后续刻蚀N型功函数层的刻蚀工艺对刻蚀停止层的刻蚀速率小,从而避免对高k栅介质层205造成刻蚀损伤。本实施例中,所述刻蚀停止层的材料为TaN,采用原子层沉积工艺形成所述刻蚀停止层。The material of the etch stop layer is different from that of the formed P-type
所述P型功函数层208的材料为Ta、TiN、TaSiN或TiSiN中的一种或几种。采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述P型功函数层208。The material of the P-type
本实施例中,所述P型功函数层208的材料为TiN,所述P型功函数层208具有第三厚度,所述第三厚度为45埃至55埃,例如为50埃。In this embodiment, the material of the P-type
本实施例中,由于P型逻辑器件区包括P型超低阈值电压区11、P型标准阈值电压区12以及P型高阈值电压区,为了满足器件需求,P型逻辑器件区各区域形成的器件的阈值电压之间的差值较大,仅依靠前述进行的P型阈值电压调节掺杂处理难以获得较大差值的阈值电压。为此,本实施例后续进一步对P型高阈值电压区13的P型功函数层208进行刻蚀,减薄P型高阈值电压区13的P型功函数层208,从而使得P型高阈值电压区13的P型功函数层的等效功函数值减小,进而进一步增加P型高阈值电压区13形成的器件阈值电压数值,从而使得P型逻辑器件区各区域形成的器件的阈值电压之间的差值较大。In this embodiment, since the P-type logic device region includes a P-type ultra-low
参考图10,在所述P型功函数层208表面形成第二掩膜层209,所述第二掩膜层暴露出P型高阈值电压区13的P型功函数层208表面;以所述第二掩膜层209为掩膜,刻蚀去除位于P型高阈值电压区13的第二厚度的P型功函数层208。Referring to FIG. 10, a
所述第二掩膜层209还覆盖上拉晶体管区I的P型功函数层208表面,还位于传送门晶体管区II、N型逻辑器件区以及下拉晶体管区III的P型功函数层208表面。在其他实施例中,所述第二掩膜层还暴露出传送门晶体管、N型逻辑器件区以及下拉晶体管区的P型功函数层表面,使得后续去除传送门晶体管、N型逻辑器件区以及下拉晶体管区的P型功函数层的工艺时长较短。The
本实施例中,所述第二掩膜层209的材料为光刻胶材料。在其他实施例中,所述第二掩膜层的材料还能够为氮化硅或氮化硼。In this embodiment, the material of the
采用干法刻蚀工艺、湿法刻蚀工艺或SiCoNi刻蚀系统,刻蚀去除P型高阈值电压区13的第二厚度的P型功函数层208。A dry etching process, a wet etching process or a SiCoNi etching system is used to etch and remove the P-type
在刻蚀工艺完成后,所述若干个P型阈值电压区对应的P型功函数层208的等效功函数值不同,其中,等效功函数值最大的P型功函数层208为第一P型功函数层218,因此,P型逻辑器件区中未被刻蚀的P型功函数层208为第一P型功函数层218,具体到本实施例中,所述P型超低阈值电压区11对应的P型功函数层208为第一P型功函数层218。在所述若干个P型阈值电压区对应的P型功函数层208中,所述第一P型功函数层218的厚度最厚。After the etching process is completed, the equivalent work function values of the P-type work function layers 208 corresponding to the plurality of P-type threshold voltage regions are different, and the P-type
由于第二掩膜层209还覆盖上拉晶体管区I的P型功函数层208表面,使得上拉晶体管区I的P型功函数层208也未被刻蚀,上拉晶体管区I未被刻蚀的P型功函数层208为上拉功函数层228。因此,本实施例中,在所述上拉晶体管区I的栅介质层表面形成上拉功函数层228,且所述上拉功函数层228与第一P型功函数层218的材料和厚度相同。且本实施例在同一道工艺步骤中形成所述上拉功函数层228以及第一P型功函数层218,无需为形成所述上拉功函数层228而采用额外的光罩。Since the
本实施例中,所述第一P型功函数层218的厚度为45埃至55埃,例如为50埃;所述上拉晶体管区I的上拉功函数层228的厚度为45埃至55埃,例如为50埃;被刻蚀后的P型功函数层208的厚度为25埃至35埃,例如为30埃,即,在所述P型逻辑器件区中,除所述第一P型功函数层218之外的P型功函数层208的厚度为25埃至35埃。In this embodiment, the thickness of the first P-type
本实施例中,由于上拉晶体管区I的上拉功函数层228的等效功函数值选取的为:P型逻辑器件区中对应的若干个P型功函数层的最大等效功函数值,因此,为了使上拉晶体管区I形成的上拉晶体管具有固定的阈值电压,前述对上拉晶体管区I基底进行的第一阈值电压调节掺杂处理的掺杂浓度高,使得形成的上拉晶体管沟道区的掺杂浓度高,因此上拉晶体管的饱和电流和开态电流小。In this embodiment, since the equivalent work function value of the pull-up
在其他实施例中,还能够对P型逻辑器件区中除P型高阈值电压区的其他P型阈值电压区的P型功函数层进行刻蚀减薄,且对其他P型阈值电压区的P型功函数层进行刻蚀减薄的厚度还能够不相同,保证P型逻辑器件区中等效功函数值最大的P型功函数层为第一P型功函数层,且上拉功函数层的材料和厚度与第一P型功函数层的材料和厚度相同即可,也可以认为,对于材料相同的P型功函数层而言,P型逻辑器件区中厚度最厚的P型功函数层为第一P型功函数层。In other embodiments, the P-type work function layers of other P-type threshold voltage regions other than the P-type high threshold voltage region in the P-type logic device region can also be etched and thinned, and the P-type work function layers of the other P-type threshold voltage regions The thickness of the P-type work function layer to be etched and thinned can also be different, ensuring that the P-type work function layer with the largest equivalent work function value in the P-type logic device region is the first P-type work function layer, and the pull-up work function layer is The material and thickness are the same as those of the first P-type work function layer. It can also be considered that for the P-type work function layer with the same material, the thickest P-type work function in the P-type logic device region The layer is the first P-type work function layer.
接着,参考图11,去除所述第二掩膜层209(参考图10);刻蚀去除位于N型逻辑器件区、传送门晶体管区II以及下拉晶体管区III的P型功函数层208。Next, referring to FIG. 11 , the second mask layer 209 (refer to FIG. 10 ) is removed; the P-type
具体的,在所述P型逻辑器件区的P型功函数层208表面以及上拉晶体管区I的上拉功函数层228表面形成第三掩膜层(未图示),所述第三掩膜暴露出N型逻辑器件区、传送门晶体管区II以及下拉晶体管区III的P型功函数层208表面;以所述第三掩膜层为掩膜,刻蚀去除位于N型逻辑器件区、传送门晶体管区II以及下拉晶体管区III的P型功函数层208;接着,去除所述第三掩膜层。Specifically, a third mask layer (not shown) is formed on the surface of the P-type
在其他实施例中,还能够先去除位于N型逻辑器件区、传送门晶体管区以及下拉晶体管区的P型功函数层,后对所述P型逻辑器件区的P型功函数层进行刻蚀。In other embodiments, the P-type work function layer located in the N-type logic device region, the transfer gate transistor region and the pull-down transistor region can also be removed first, and then the P-type work function layer in the P-type logic device region can be etched .
参考图12,在所述N型逻辑器件区栅介质层表面形成N型功函数层211。Referring to FIG. 12 , an N-type
本实施例中,形成的所述N型功函数层211还位于传送门晶体管区II栅介质层表面,所述N型功函数层211还位于P型功函数层208表面、第一P型功函数层218表面、上拉功函数层228表面以及下拉晶体管区III的栅介质层表面。In this embodiment, the formed N-type
所述N型功函数层211的材料为TiAl、TiAlC、TaAlN、TiAlN、MoN、TaCN或AlN中的一种或几种。采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述N型功函数层211。The material of the N-type
本实施例中,所述N型功函数层211的材料为TiAlC,所述N型功函数层211具有第四厚度,所述第四厚度为45埃至55埃,例如为50埃。In this embodiment, the material of the N-type
由于N型逻辑器件区包括N型超低阈值电压区21、N型标准阈值电压区22以及N型高阈值电压区23,为了满足器件需求,N型逻辑器件区各区域形成的器件的阈值电压之间差值较大,仅依靠前述进行的N型阈值电压调节掺杂处理难以获得较大差值的阈值电压。Since the N-type logic device region includes an N-type ultra-low
为此,本实施例后续进一步对N型高阈值电压区域23的N型功函数层211进行刻蚀,减薄N型高阈值电压区23的N型功函数层211,进而进一步增加N型高阈值电压区23形成的器件阈值电压数值,从而使得N型逻辑器件区各区域形成的器件的阈值电压之间的差值较大。To this end, in this embodiment, the N-type
参考图13,在所述N型功函数层211表面形成第一掩膜层212,所述第一掩膜层212暴露出N型高阈值电压区23的N型功函数层211表面;以所述第一掩膜层212为掩膜,刻蚀去除位于N型高阈值电压区23的第二厚度的N型功函数层211。13, a
所述第一掩膜层212还暴露出传送门晶体管区II的N型功函数层211表面,且还覆盖上拉晶体管区I、下拉晶体管区III以及P型逻辑器件区的N型功函数层211表面。在其他实施例中,所述第一掩膜层还能够暴露出上拉晶体管区、下拉晶体管区或P型逻辑器件区的N型功函数层表面。The
本实施例中,所述第一掩膜层212的材料为光刻胶材料。在其他实施例中,所述第一掩膜层的材料还能够为氮化硅或氮化硼。In this embodiment, the material of the
采用干法刻蚀工艺、湿法刻蚀工艺或SiCoNi刻蚀系统,刻蚀去除N型高阈值电压区23的第一厚度的N型功函数层211。A dry etching process, a wet etching process or a SiCoNi etching system is used to etch and remove the N-type
在刻蚀完成后,所述若干个N型阈值电压区对应的N型功函数层211的等效功函数值不同,其中,等效功函数值最大的N型功函数层211为第一N型功函数层221,因此,N型逻辑器件区中刻蚀后的N型功函数层211为第一N型功函数层221。具体到本实施例中,所述N型高阈值电压区23对应的N型功函数层211为第一N型功函数层221。在所述若干个N型阈值电压区对应的N型功函数层211中,所述第一N型功函数层221的厚度最薄。After the etching is completed, the equivalent work function values of the N-type work function layers 211 corresponding to the plurality of N-type threshold voltage regions are different, wherein the N-type
由于第一掩膜层212还暴露出传送门晶体管区II的N型功函数层211表面,在刻蚀去除位于N型高阈值电压区23的第一厚度的N型功函数层211的同时,还刻蚀去除位于传送门晶体管区II栅介质层表面的第一厚度的N型功函数层211,传送门晶体管区II中刻蚀后的N型功函数层211为传送门功函数层231。Since the
因此,本实施例中,在所述传送门晶体管区II栅介质层表面形成传送门功函数层231,且所述传送门功函数层231与第一N型功函数层221的材料和厚度相同。且本实施例中在同一道工艺步骤中,形成所述传送门功函数层231以及第一N型功函数层221,无需为形成所述传送门功函数层231而采用额外的光罩。Therefore, in this embodiment, a transfer gate
在所述N型逻辑器件区中,除所述第一N型功函数层221之外的N型功函数层211的厚度为45埃至55埃,例如为50埃;所述第一N型功函数层221的厚度为25埃至35埃,例如为30埃;所述传送门功函数层231的厚度为25埃至35埃,例如为30埃。In the N-type logic device region, the thickness of the N-type
本实施例中,由于传送门晶体管区II的传送门功函数层231的等效功函数值选取的为:N型逻辑器件区中对应的若干个N型功函数层的最大等效功函数值,因此,为了使传送门晶体管区II形成的传送门晶体管具有固定的阈值电压,前述对传送门晶体管区II基底进行的第二阈值电压调节掺杂处理的掺杂浓度低,使得形成的传送门晶体管沟道区的掺杂浓度低,因袭传送门晶体管的饱和电流和开态电流大。In this embodiment, since the equivalent work function value of the transfer gate
在其他实施例中,还能够对N型逻辑器件区中其他N型阈值电压区的N型功函数层进行刻蚀减薄,且对其他N型阈值电压区的N型功函数层进行刻蚀减薄的厚度还能够不相同,保证N型逻辑器件区等效功函数值最大的N型功函数层为第一N型功函数层,且传送门功函数层的材料和厚度与第一N型功函数层的材料和厚度相同即可,也可以认为,对于材料相同的N型功函数层而言,N型逻辑器件区中厚度最薄的N型功函数层为第一N型功函数层。In other embodiments, the N-type work function layers of other N-type threshold voltage regions in the N-type logic device region can also be etched and thinned, and the N-type work function layers of other N-type threshold voltage regions can be etched The thickness of the thinning can also be different, ensuring that the N-type work function layer with the largest equivalent work function value in the N-type logic device region is the first N-type work function layer, and the material and thickness of the transfer gate work function layer are the same as those of the first N-type work function layer. The material and thickness of the type work function layer can be the same. It can also be considered that for the N type work function layer with the same material, the N type work function layer with the thinnest thickness in the N type logic device region is the first N type work function. Floor.
接着,参考图14,去除所述第一掩膜层212(参考图13);去除位于上拉晶体管区I以及P型逻辑器件区的N型功函数层211。Next, referring to FIG. 14 , the first mask layer 212 (refer to FIG. 13 ) is removed; the N-type
具体的,在所述传送门晶体管区II的传送门功函数层231表面形成第四掩膜层(未图示),所述第四掩膜层还覆盖下拉晶体管区III的N型功函数层211以及N型逻辑器件区的N型功函数层211;以所述第四掩膜层为掩膜,刻蚀去除位于上拉晶体管区I以及P型逻辑器件区的N型功函数层211;接着,去除所述第四掩膜层。Specifically, a fourth mask layer (not shown) is formed on the surface of the transfer gate
在其他实施例中,还能先去除上拉晶体管区和P型逻辑器件区的N型功函数层,然后对N型高阈值电压区的N型功函数层进行刻蚀减薄。In other embodiments, the N-type work function layer in the pull-up transistor region and the P-type logic device region can also be removed first, and then the N-type work function layer in the N-type high threshold voltage region is etched and thinned.
在另一实施例中,由于N型功函数层对上拉晶体管以及P型逻辑器件的阈值电压影响较小,因此还能够保留上拉晶体管区以及P型逻辑器件区的N型功函数层。In another embodiment, since the N-type work function layer has less influence on the threshold voltage of the pull-up transistor and the P-type logic device, the pull-up transistor region and the N-type work function layer of the P-type logic device region can also be reserved.
参考图15,在所述N型功函数层211表面、P型功函数层208表面、传送门功函数层231表面以及上拉功函数层228表面形成栅电极层301。15 , a
本实施例中,所述P型功函数层208包括位于P型超低阈值电压区11的第一P型功函数层218,所述N型功函数层211包括位于N型高阈值电压区23的第一N型功函数层221。所述栅电极层301还位于下拉晶体管区III的N型功函数层211表面。In this embodiment, the P-type
位于N型功函数层211表面、P型功函数层208表面、传送门功函数层231表面以及上拉功函数层228表面的栅电极层301相互连接。在其他实施例中,位于N型功函数层表面、P型功函数层表面、传送门功函数层表面以及上拉功函数层表面的栅电极层还能够相互独立。The gate electrode layers 301 located on the surface of the N-type
所述栅电极层301的材料包括Al、Cu、Ag、Au、Pt、Ni、Ti或W中的一种或多种。The material of the
在一具体实施例中,形成所述第一栅电极层301的工艺步骤包括:在所述N型功函数层211表面、P型功函数层208表面、传送门功函数层231表面以及上拉功函数层228表面形成栅电极膜,所述栅电极膜顶部高于层间介质层顶部;研磨去除高于层间介质层顶部的栅电极膜,形成所述栅电极层301。In a specific embodiment, the process steps of forming the first
由前述分析可知,本实施例形成的上拉晶体管的饱和电流和开态电流较低,而形成的传送门晶体管的饱和电流和开态电流较高,由于存储器的伽马比与传送门晶体管开态电流与上拉晶体管开态电流之间的比值成正比例关系,因此本实施例形成的存储器的伽马比较大,进而使得存储器的写入冗余度得到改善,相应的存储器的性能得到提高,例如存储器的良率得到改善,进而提高了形成的半导体器件的性能。It can be seen from the foregoing analysis that the saturation current and on-state current of the pull-up transistor formed in this embodiment are low, while the saturation current and on-state current of the transfer gate transistor formed are relatively high. The ratio between the state current and the on-state current of the pull-up transistor is proportional, so the gamma of the memory formed in this embodiment is relatively large, thereby improving the write redundancy of the memory and the corresponding performance of the memory. For example, the yield of memory is improved, which in turn improves the performance of the resulting semiconductor device.
并且,本实施例在形成逻辑器件的同时形成了存储器中的上拉晶体管、下拉晶体管以及传送门晶体管,使得形成的存储器在具有较大写入冗余度的同时,形成存储器的工艺与形成逻辑器件的工艺相兼容,节省了工艺步骤,无需为了提高存储器的写入冗余度而引入额外的光罩,节省了半导体生产成本。In addition, in this embodiment, the pull-up transistor, pull-down transistor and transfer gate transistor in the memory are formed while the logic device is formed, so that the formed memory has a large write redundancy, and the process of forming the memory and the logic of forming the memory are also formed. The process of the device is compatible, the process steps are saved, an extra mask is not needed to improve the write redundancy of the memory, and the semiconductor production cost is saved.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510896857.0A CN106847755B (en) | 2015-12-07 | 2015-12-07 | Method for improving SRAM performance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510896857.0A CN106847755B (en) | 2015-12-07 | 2015-12-07 | Method for improving SRAM performance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106847755A CN106847755A (en) | 2017-06-13 |
CN106847755B true CN106847755B (en) | 2020-03-10 |
Family
ID=59151435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510896857.0A Active CN106847755B (en) | 2015-12-07 | 2015-12-07 | Method for improving SRAM performance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106847755B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107993925B (en) * | 2017-11-27 | 2020-04-10 | 长江存储科技有限责任公司 | Self-aligned quadruple patterning technology |
CN110364530B (en) * | 2018-04-11 | 2021-12-03 | 中芯国际集成电路制造(上海)有限公司 | Memory and forming method thereof |
CN109614730B (en) * | 2018-12-19 | 2023-06-20 | 上海华力集成电路制造有限公司 | SRAM cell design method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7902009B2 (en) * | 2008-12-11 | 2011-03-08 | Intel Corporation | Graded high germanium compound films for strained semiconductor devices |
US9496143B2 (en) * | 2012-11-06 | 2016-11-15 | Globalfoundries Inc. | Metal gate structure for midgap semiconductor device and method of making same |
CN104022035B (en) * | 2013-02-28 | 2016-08-31 | 中芯国际集成电路制造(上海)有限公司 | Transistor and forming method thereof |
KR102056582B1 (en) * | 2013-06-05 | 2020-01-22 | 삼성전자 주식회사 | Semiconductor device and method for the same |
CN104766823A (en) * | 2014-01-07 | 2015-07-08 | 中国科学院微电子研究所 | Semiconductor device manufacturing method |
CN104779207A (en) * | 2014-01-13 | 2015-07-15 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device manufacturing method |
-
2015
- 2015-12-07 CN CN201510896857.0A patent/CN106847755B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106847755A (en) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108122852B (en) | Semiconductor structure and forming method thereof | |
CN108122913B (en) | Semiconductor device and method of forming the same | |
US9640540B1 (en) | Structure and method for an SRAM circuit | |
TWI415263B (en) | Semiconductor device and method of manufacturing same | |
US9178036B1 (en) | Methods of forming transistor devices with different threshold voltages and the resulting products | |
CN106558584B (en) | Semiconductor structure and method of forming the same | |
WO2014082332A1 (en) | Manufacturing method of semiconductor device | |
US9196706B2 (en) | Method for manufacturing P-type MOSFET | |
CN108122914B (en) | SRAM device and its manufacturing method | |
CN113964123A (en) | Semiconductor device with a plurality of semiconductor chips | |
CN106847755B (en) | Method for improving SRAM performance | |
CN107452604B (en) | Semiconductor device and its manufacturing method | |
CN106847874A (en) | The forming method of the semiconductor devices with different threshold voltages | |
CN108257918B (en) | Semiconductor structure and method of forming the same | |
CN108155235B (en) | Semiconductor structure and forming method thereof | |
CN113327978B (en) | Semiconductor structures and methods of forming them | |
CN106449391B (en) | Transistor and method of forming the same | |
CN108258033B (en) | Semiconductor device and method of forming the same | |
CN108258028B (en) | Semiconductor structure and method of forming the same | |
CN108074929B (en) | Semiconductor structure and its manufacturing method | |
CN203134802U (en) | Semiconductor structure | |
CN108122912B (en) | SRAM device and manufacturing method thereof | |
CN111211055A (en) | Semiconductor structure and method of forming the same | |
CN112309845B (en) | Semiconductor structures and methods of forming them | |
CN109309050B (en) | Semiconductor structure and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |