CN108122912B - SRAM device and manufacturing method thereof - Google Patents
SRAM device and manufacturing method thereof Download PDFInfo
- Publication number
- CN108122912B CN108122912B CN201611081243.8A CN201611081243A CN108122912B CN 108122912 B CN108122912 B CN 108122912B CN 201611081243 A CN201611081243 A CN 201611081243A CN 108122912 B CN108122912 B CN 108122912B
- Authority
- CN
- China
- Prior art keywords
- layer
- pull
- function layer
- work
- work function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 107
- 238000009792 diffusion process Methods 0.000 claims abstract description 103
- 230000004888 barrier function Effects 0.000 claims abstract description 83
- 239000000758 substrate Substances 0.000 claims abstract description 69
- 238000005530 etching Methods 0.000 claims abstract description 50
- 239000010410 layer Substances 0.000 claims description 626
- 239000011241 protective layer Substances 0.000 claims description 23
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 14
- 229910052718 tin Inorganic materials 0.000 claims description 13
- 229910004166 TaN Inorganic materials 0.000 claims description 12
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 229910004200 TaSiN Inorganic materials 0.000 claims description 8
- 229910008482 TiSiN Inorganic materials 0.000 claims description 8
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 claims description 8
- 229910010038 TiAl Inorganic materials 0.000 claims description 6
- 229910004491 TaAlN Inorganic materials 0.000 claims description 4
- 229910010041 TiAlC Inorganic materials 0.000 claims description 4
- 229910010037 TiAlN Inorganic materials 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 4
- 238000005137 deposition process Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims 1
- 230000006870 function Effects 0.000 description 329
- 238000000034 method Methods 0.000 description 67
- 230000008569 process Effects 0.000 description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 238000002955 isolation Methods 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 230000009286 beneficial effect Effects 0.000 description 10
- 238000003860 storage Methods 0.000 description 10
- 238000000231 atomic layer deposition Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000015654 memory Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B10/00—Static random access memory [SRAM] devices
- H10B10/12—Static random access memory [SRAM] devices comprising a MOSFET load element
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/665—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of elemental metal contacting the insulator, e.g. tungsten or molybdenum
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/667—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of alloy material, compound material or organic material contacting the insulator, e.g. TiN workfunction layers
Landscapes
- Semiconductor Memories (AREA)
Abstract
一种SRAM器件及其制造方法,制造方法包括:在上拉晶体管区以及下拉晶体管区的部分基底上形成栅介质层;在栅介质层上形成第一功函数层;刻蚀去除所述下拉晶体管区的第一功函数层;在剩余第一功函数层以及下拉晶体管区上形成第二功函数层,所述第二功函数层的材料为P型功函数材料;在所述上拉晶体管区的剩余第二功函数层侧壁以及剩余第一功函数层侧壁上形成扩散阻挡层;在所述扩散阻挡层上、上拉晶体管区的第二功函数层顶部上以及下拉晶体管区的栅介质层上形成第三功函数层,所述第三功函数层的材料为N型功函数材料;在所述第三功函数层上形成栅电极层。本发明改善SRAM器件的电学参数失配,优化形成的SRAM器件的电学性能。
A SRAM device and its manufacturing method, the manufacturing method comprising: forming a gate dielectric layer on part of the substrate of the pull-up transistor region and the pull-down transistor region; forming a first work function layer on the gate dielectric layer; etching and removing the pull-down transistor The first work function layer in the region; the second work function layer is formed on the remaining first work function layer and the pull-down transistor region, and the material of the second work function layer is a P-type work function material; in the pull-up transistor region A diffusion barrier layer is formed on the sidewall of the remaining second work function layer and the sidewall of the remaining first work function layer; on the diffusion barrier layer, on the top of the second work function layer of the pull-up transistor region, and on the gate of the pull-down transistor region A third work function layer is formed on the dielectric layer, and the material of the third work function layer is an N-type work function material; a gate electrode layer is formed on the third work function layer. The invention improves the electrical parameter mismatch of the SRAM device and optimizes the electrical performance of the formed SRAM device.
Description
技术领域technical field
本发明涉及半导体制造技术领域,特别涉及一种SRAM器件及其制造方法。The invention relates to the technical field of semiconductor manufacturing, in particular to an SRAM device and a manufacturing method thereof.
背景技术Background technique
在目前的半导体产业中,集成电路产品主要可分为三大类型:逻辑、存储器和模拟电路,其中存储器件在集成电路产品中占了相当大的比例。随着半导体技术发展,对存储器件进行更为广泛的应用,需要将所述存储器件与其他器件区同时形成在一个芯片上,以形成嵌入式半导体存储装置。例如将所述存储器件内嵌置于中央处理器,则需要使得所述存储器件与嵌入的中央处理器平台进行兼容,并且保持原有的存储器件的规格及对应的电学性能。In the current semiconductor industry, integrated circuit products can be mainly divided into three types: logic, memory and analog circuits, among which memory devices account for a considerable proportion of integrated circuit products. With the development of semiconductor technology, storage devices are more widely used, and the storage device and other device regions need to be formed on a chip at the same time to form an embedded semiconductor storage device. For example, to embed the storage device in the central processing unit, it is necessary to make the storage device compatible with the embedded central processing unit platform, and maintain the specifications and corresponding electrical performance of the original storage device.
一般地,需要将所述存储器件与嵌入的标准逻辑装置进行兼容。对于嵌入式半导体器件来说,其通常分为逻辑区和存储区,逻辑区通常包括逻辑器件,存储区则包括存储器件。随着存储技术的发展,出现了各种类型的半导体存储器,例如静态随机随机存储器(SRAM,Static Random Access Memory)、动态随机存储器(DRAM,Dynamic Random AccessMemory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only)和闪存(Flash)。由于静态随机存储器具有低功耗和较快工作速度等优点,使得静态随机存储器及其形成方法受到越来越多的关注。Generally, the memory device needs to be compatible with embedded standard logic devices. For an embedded semiconductor device, it is usually divided into a logic area and a storage area, the logic area usually includes logic devices, and the storage area includes storage devices. With the development of storage technology, various types of semiconductor memories have appeared, such as Static Random Access Memory (SRAM, Static Random Access Memory), Dynamic Random Access Memory (DRAM, Dynamic Random Access Memory), Erasable Programmable Read-Only Memory ( EPROM, Erasable Programmable Read-Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only) and flash memory (Flash). Since the SRAM has the advantages of low power consumption and fast working speed, more and more attention has been paid to the SRAM and its forming method.
然而,现有技术形成的SRAM器件的电学性能有待提高。However, the electrical performance of the SRAM device formed in the prior art needs to be improved.
发明内容Contents of the invention
本发明解决的问题是提供一种SRAM器件及其制造方法,改善形成的SRAM器件的电学性能。The problem solved by the present invention is to provide a SRAM device and its manufacturing method, and improve the electrical performance of the formed SRAM device.
为解决上述问题,本发明提供一种SRAM器件的制造方法,包括:提供基底,所述基底包括相邻接的上拉晶体管区以及下拉晶体管区;在所述上拉晶体管区以及下拉晶体管区的部分基底上形成栅介质层;在所述栅介质层上形成第一功函数层,所述第一功函数层的材料为P型功函数材料;刻蚀去除所述下拉晶体管区的第一功函数层;在剩余第一功函数层以及下拉晶体管区上形成第二功函数层,所述第二功函数层的材料为P型功函数材料;刻蚀去除所述下拉晶体管区的第二功函数层;在所述上拉晶体管区的剩余第二功函数层侧壁以及剩余第一功函数层侧壁上形成扩散阻挡层;在所述扩散阻挡层上、上拉晶体管区的第二功函数层顶部上以及下拉晶体管区的栅介质层上形成第三功函数层,所述第三功函数层的材料为N型功函数材料;在所述第三功函数层上形成栅电极层。In order to solve the above problems, the present invention provides a method for manufacturing an SRAM device, comprising: providing a substrate, the substrate including adjacent pull-up transistor regions and pull-down transistor regions; A gate dielectric layer is formed on part of the substrate; a first work function layer is formed on the gate dielectric layer, and the material of the first work function layer is a P-type work function material; the first work function layer of the pull-down transistor region is removed by etching Function layer; form a second work function layer on the remaining first work function layer and the pull-down transistor region, the material of the second work function layer is a P-type work function material; etch to remove the second work function layer of the pull-down transistor region function layer; a diffusion barrier layer is formed on the remaining second work function layer sidewall and the remaining first work function layer sidewall of the pull-up transistor region; on the diffusion barrier layer, the second work function layer of the pull-up transistor region A third work function layer is formed on the top of the function layer and on the gate dielectric layer of the pull-down transistor region, and the material of the third work function layer is an N-type work function material; a gate electrode layer is formed on the third work function layer.
可选的,采用沉积工艺形成所述扩散阻挡层;在形成所述扩散阻挡层的工艺步骤中,还在所述上拉晶体管区的第二功函数层顶部上以及所述下拉晶体管区的栅介质层上形成所述扩散阻挡层;在形成所述第三功函数层的工艺步骤中,形成的所述第三功函数层位于所述上拉晶体管区以及下拉晶体管区的扩散阻挡层上。Optionally, a deposition process is used to form the diffusion barrier layer; in the process step of forming the diffusion barrier layer, the top of the second work function layer of the pull-up transistor region and the gate of the pull-down transistor region The diffusion barrier layer is formed on the dielectric layer; in the process step of forming the third work function layer, the formed third work function layer is located on the diffusion barrier layer of the pull-up transistor region and the pull-down transistor region.
可选的,采用原子层沉积工艺形成所述扩散阻挡层。Optionally, the diffusion barrier layer is formed by using an atomic layer deposition process.
可选的,所述扩散阻挡层的厚度为5埃~20埃。Optionally, the thickness of the diffusion barrier layer is 5 angstroms to 20 angstroms.
可选的,所述扩散阻挡层的材料为TaN或TaCN。Optionally, the material of the diffusion barrier layer is TaN or TaCN.
可选的,在刻蚀去除所述下拉晶体管区的第二功函数层后,剩余第一功函数层以及剩余第二功函数层在所述上拉晶体管区与下拉晶体管区相邻接处的侧壁齐平。Optionally, after etching and removing the second work function layer of the pull-down transistor region, the remaining first work function layer and the remaining second work function layer The side walls are flush.
可选的,所述第一功函数层的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种;所述第二功函数层的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种;所述第三功函数层的材料为TiAl、TiAlC、TaAlN、TiAlN、TaCN和AlN中的一种或多种。Optionally, the material of the first work function layer is one or more of Ta, TiN, TaN, TaSiN or TiSiN; the material of the second work function layer is Ta, TiN, TaN, TaSiN or TiSiN One or more of them; the material of the third work function layer is one or more of TiAl, TiAlC, TaAlN, TiAlN, TaCN and AlN.
可选的,在形成所述栅介质层之后、形成所述第一功函数层之前,还包括:在所述栅介质层上形成保护层。Optionally, after forming the gate dielectric layer and before forming the first work function layer, the method further includes: forming a protection layer on the gate dielectric layer.
可选的,形成所述保护层的工艺步骤包括:在所述栅介质层上形成盖帽层;在所述盖帽层上形成刻蚀停止层,且所述刻蚀停止层的材料与所述第一功函数层的材料不同。Optionally, the process step of forming the protection layer includes: forming a capping layer on the gate dielectric layer; forming an etch stop layer on the cap layer, and the material of the etch stop layer is the same as that of the first The materials of a work function layer are different.
可选的,所述基底还包括通道栅晶体管区;在形成所述栅介质层以及保护层的工艺步骤中,还在所述通道栅晶体管区的部分基底上形成栅介质层以及位于栅介质层上的保护层;在形成所述第一功函数层的工艺步骤中,还在所述通道栅晶体管区上形成第一功函数层;在形成所述第二功函数层的工艺步骤中,还在所述通道栅晶体管区上形成所述第二功函数层;在形成所述第三功函数层的工艺步骤中,还在所述通道栅晶体管区上形成所述第三功函数层。Optionally, the substrate further includes a channel gate transistor region; in the process step of forming the gate dielectric layer and the protective layer, a gate dielectric layer and a gate dielectric layer located on a part of the substrate of the channel gate transistor region are also formed. In the process step of forming the first work function layer, a first work function layer is also formed on the channel gate transistor region; in the process step of forming the second work function layer, also The second work function layer is formed on the pass gate transistor region; in the process step of forming the third work function layer, the third work function layer is also formed on the pass gate transistor region.
可选的,在形成所述第二功函数层之前,刻蚀去除所述通道栅晶体管区的第一功函数层以及保护层;在形成所述第二功函数层的工艺步骤中,在所述通道栅晶体管区的栅介质层上形成第二功函数层。Optionally, before forming the second work function layer, the first work function layer and the protective layer of the channel gate transistor region are removed by etching; in the process step of forming the second work function layer, in the A second work function layer is formed on the gate dielectric layer of the channel gate transistor region.
本发明还提供一种SRAM器件,包括:基底,所述基底包括相邻接的上拉晶体管区以及下拉晶体管区;位于所述上拉晶体管区以及下拉晶体管区的部分基底上的栅介质层;位于所述上拉晶体管区的栅介质层上的第一功函数层以及位于所述第一功函数层上的第二功函数层,所述第一功函数层以及第二功函数层的材料均为P型功函数材料;位于所述上拉晶体管区的第二功函数层侧壁以及第一功函数层侧壁上的扩散阻挡层;位于所述扩散阻挡层上、上拉晶体管区的第二功函数层顶部上以及下拉晶体管区的栅介质层上的第三功函数层,所述第三功函数层的材料为N型功函数材料;位于所述第三功函数层上的栅电极层。The present invention also provides an SRAM device, comprising: a substrate, the substrate including an adjacent pull-up transistor region and a pull-down transistor region; a gate dielectric layer located on part of the substrate of the pull-up transistor region and the pull-down transistor region; The first work function layer located on the gate dielectric layer of the pull-up transistor region and the second work function layer located on the first work function layer, the materials of the first work function layer and the second work function layer All are P-type work function materials; the diffusion barrier layer located on the sidewall of the second work function layer and the side wall of the first work function layer of the pull-up transistor region; the diffusion barrier layer located on the pull-up transistor region The third work function layer on the top of the second work function layer and on the gate dielectric layer of the pull-down transistor region, the material of the third work function layer is an N-type work function material; the gate located on the third work function layer electrode layer.
可选的,所述扩散阻挡层还位于所述上拉晶体管区的第二功函数层顶部上以及下拉晶体管区的栅介质层上。Optionally, the diffusion barrier layer is also located on top of the second work function layer in the pull-up transistor region and on the gate dielectric layer in the pull-down transistor region.
可选的,所述扩散阻挡层的厚度为5埃~20埃。Optionally, the thickness of the diffusion barrier layer is 5 angstroms to 20 angstroms.
可选的,所述扩散阻挡层的材料为TaN或者TaCN。Optionally, the material of the diffusion barrier layer is TaN or TaCN.
可选的,所述第一功函数层以及第二功函数层在所述上拉晶体管与区下拉晶体管区相邻接处的侧壁齐平。Optionally, sidewalls of the first work function layer and the second work function layer are flush with each other where the pull-up transistor and the region of the pull-down transistor adjoin.
可选的,所述SRAM器件还包括:位于所述上拉晶体管区的栅介质层与第一功函数层之间的保护层,且所述保护层还位于所述下拉晶体管区的栅介质层与所述第三功函数层之间。Optionally, the SRAM device further includes: a protective layer located between the gate dielectric layer of the pull-up transistor region and the first work function layer, and the protective layer is also located in the gate dielectric layer of the pull-down transistor region and the third work function layer.
可选的,所述基底还包括通道栅晶体管区;其中,所述栅介质层还位于所述通道栅晶体管区的部分基底上;且所述第二功函数层还位于所述通道栅晶体管区的栅介质层上;所述第三功函数层还位于所述通道栅晶体管区的第二功函数层上。Optionally, the substrate further includes a pass-gate transistor region; wherein, the gate dielectric layer is also located on part of the substrate of the pass-gate transistor region; and the second work function layer is also located in the pass-gate transistor region on the gate dielectric layer; the third work function layer is also located on the second work function layer of the channel gate transistor region.
可选的,所述基底包括衬底以及位于所述衬底上的分立的鳍部。Optionally, the base includes a substrate and discrete fins on the substrate.
可选的,所述上拉晶体管区具有一个鳍部;所述下拉晶体管区具有两个鳍部。Optionally, the pull-up transistor region has one fin; the pull-down transistor region has two fins.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明提供的SRAM器件的制造方法的技术方案中,在上拉晶体管区以及下拉晶体管区的栅介质层上形成第一功函数层后,刻蚀去除所述下拉晶体管区的第一功函数层;接着在剩余第一功函数层以及下拉晶体管区上形成第二功函数层,所述第一功函数层与第二功函数层的材料均为P型功函数材料;接着刻蚀去除所述下拉晶体管区的第二功函数层;然后在上拉晶体管区的第一功函数层侧壁以及第二功函数层侧壁上形成扩散阻挡层;在所述扩散阻挡层上、上拉晶体管区的第二功函数层顶部上以及下拉晶体管区的栅介质层上形成第三功函数层,所述第三功函数层的材料为N型功函数材料;在所述第三功函数层上形成栅电极层。本发明在满足上拉晶体管以及下拉晶体管的对阈值电压要求的同时,在所述上拉晶体管区与下拉晶体管区交界处的第一功函数层侧壁以及第二功函数层侧壁上形成扩散阻挡层,所述扩散阻挡层有利于阻挡所述交界处的第一功函数层与第三功函数层之间的横向扩散,有利于阻挡所述交界处的第二功函数层与所述第三功函数层之间的横向扩散,从而提高形成的上拉晶体管与下拉晶体管之间的电学参数失配,改善形成的SRAM器件的电学性能。In the technical solution of the manufacturing method of the SRAM device provided by the present invention, after the first work function layer is formed on the gate dielectric layer of the pull-up transistor region and the pull-down transistor region, the first work function layer of the pull-down transistor region is etched and removed ; Then form a second work function layer on the remaining first work function layer and the pull-down transistor region, the materials of the first work function layer and the second work function layer are both P-type work function materials; then etch and remove the Pulling down the second work function layer of the transistor region; then forming a diffusion barrier layer on the sidewalls of the first work function layer and the second work function layer of the pull-up transistor region; on the diffusion barrier layer, the pull-up transistor region A third work function layer is formed on the top of the second work function layer and on the gate dielectric layer of the pull-down transistor region, and the material of the third work function layer is an N-type work function material; formed on the third work function layer gate electrode layer. In the present invention, while meeting the threshold voltage requirements of the pull-up transistor and the pull-down transistor, diffusion is formed on the side wall of the first work function layer and the side wall of the second work function layer at the junction of the pull-up transistor region and the pull-down transistor region. barrier layer, the diffusion barrier layer is beneficial to block the lateral diffusion between the first work function layer and the third work function layer at the junction, and is beneficial to block the second work function layer at the junction and the first work function layer The lateral diffusion between the three work function layers improves the electrical parameter mismatch between the formed pull-up transistor and the pull-down transistor, and improves the electrical performance of the formed SRAM device.
可选方案中,所述基底还包括通道栅晶体管区;在形成第二功函数层之前,去除所述通道栅晶体管区的第一功函数层以及栅介质层,从而使得通道栅晶体管区对应的功函数层厚度较薄,因此相应形成的通道栅晶体管阈值电压较低,进而提高通道栅晶体管的运行速率,进一步的改善形成的SRAM器件的电学性能。In an optional solution, the substrate further includes a pass-gate transistor region; before forming the second work-function layer, the first work function layer and the gate dielectric layer of the pass-gate transistor region are removed, so that the pass-gate transistor region corresponds to The thickness of the work function layer is relatively thin, so the threshold voltage of the channel gate transistor formed accordingly is relatively low, thereby increasing the operating speed of the channel gate transistor and further improving the electrical performance of the formed SRAM device.
可选方案中,在刻蚀去除所述下拉晶体管区的第二功函数层之后,剩余第一功函数层以及剩余第二功函数层在所述上拉晶体管区与下拉晶体管区相邻接处的侧壁齐平,为在所述交界处形成扩散阻挡层提供了良好的工艺条件,从而提高形成的扩散阻挡层的厚度均匀性,进一步的提高所述扩散阻挡层阻挡所述交界处功函数层相互扩散的能力。In an optional solution, after the second work function layer of the pull-down transistor region is removed by etching, the remaining first work function layer and the remaining second work function layer are adjacent to the pull-up transistor region and the pull-down transistor region The sidewalls are flush, which provides good process conditions for forming a diffusion barrier layer at the junction, thereby improving the thickness uniformity of the formed diffusion barrier layer, and further improving the work function of the diffusion barrier layer against the junction The ability of layers to interdiffuse.
本发明还提供一种结构性能优越的SRAM器件,所述上拉晶体管区与下拉晶体管区相邻接,且由于所述第一功函数层以及第二功函数层仅位于所述上拉晶体管区;上拉晶体管区与下拉晶体管区交界处的第一功函数层和第二功函数层与所述第三功函数层之间被所述扩散阻挡层阻挡,所述扩散阻挡层有利于阻挡所述交界处的第一功函数层与第三功函数层之间相互横向扩散,且有利于阻挡所述交界处的第二功函数层与所述第三功函数层之间相互横向扩散,从而改善了SRAM器件的电学性能,例如提高上拉晶体管和下拉晶体管之间的电学参数失配。。The present invention also provides an SRAM device with superior structural performance, the pull-up transistor region is adjacent to the pull-down transistor region, and since the first work function layer and the second work function layer are only located in the pull-up transistor region ; between the first work function layer and the second work function layer at the junction of the pull-up transistor region and the pull-down transistor region, and the third work function layer are blocked by the diffusion barrier layer, and the diffusion barrier layer is conducive to blocking all The mutual lateral diffusion between the first work function layer and the third work function layer at the junction is beneficial to block the mutual lateral diffusion between the second work function layer and the third work function layer at the junction, thereby The electrical performance of the SRAM device is improved, for example, the electrical parameter mismatch between the pull-up transistor and the pull-down transistor is improved. .
附图说明Description of drawings
图1为一种SRAM器件的俯视结构示意图;Fig. 1 is a top view structural schematic diagram of a kind of SRAM device;
图2至图14为本发明实施例提供的SRAM器件形成过程的结构示意图。2 to 14 are schematic structural diagrams of the forming process of the SRAM device provided by the embodiment of the present invention.
具体实施方式Detailed ways
由背景技术可知,现有技术形成的SRAM器件的电学性能有待提高。It can be seen from the background art that the electrical performance of the SRAM device formed in the prior art needs to be improved.
现结合一种SRAM器件进行分析,参考图1,图1为一种SRAM器件的俯视结构示意图,所述SRAM器件包括上拉(PU,Pull Up)晶体管、下拉(PD,Pull Down)晶体管以及通道栅(PG,Pass Gate)晶体管,其中,第一区域101为形成有上拉晶体管的区域,第二区域102为形成有下拉晶体管的区域,第三区域103为形成有通道栅晶体管的区域,通常的,上拉晶体管为PMOS管,下拉晶体管和通道栅晶体管为NMOS管。Now analyze in conjunction with a SRAM device, referring to Fig. 1, Fig. 1 is a schematic diagram of a top view structure of a SRAM device, the SRAM device includes a pull-up (PU, Pull Up) transistor, a pull-down (PD, Pull Down) transistor and a channel Gate (PG, Pass Gate) transistor, wherein the first region 101 is a region where a pull-up transistor is formed, the second region 102 is a region where a pull-down transistor is formed, and the third region 103 is a region where a pass gate transistor is formed, usually Yes, the pull-up transistor is a PMOS transistor, and the pull-down transistor and channel gate transistor are NMOS transistors.
以SRAM器件为FinFET器件为例,第一区域101与第二区域102相邻接,且所述第一区域101、第二区域102以及第三区域103均具有鳍部105,所述第一区域101具有1个鳍部105,所述第二区域102具有2个鳍部105,且所述第二区域102与第三区域103共同具有1个鳍部105;且所述第一区域101和第二区域102共用同一栅电极层106。Taking the SRAM device as a FinFET device as an example, the first region 101 is adjacent to the second region 102, and the first region 101, the second region 102 and the third region 103 all have fins 105, and the first region 101 has one fin 105, the second region 102 has two fins 105, and the second region 102 and the third region 103 have one fin 105 together; and the first region 101 and the second The two regions 102 share the same gate electrode layer 106 .
所述上拉晶体管为PMOS器件,所述下拉晶体管为NMOS器件。为了同时满足PMOS器件和NMOS器件改善阈值电压(Threshold Voltage)的要求,通常采用不同的金属材料作为NMOS器件和PMOS器件的栅极结构中的功函数层(WF,Work Function)材料,NMOS器件中功函数层称为N型功函数材料,PMOS器件中功函数层称为P型功函数材料。当NMOS器件与PMOS器件共用同一个栅电极层时,在NMOS器件和PMOS器件交界处N型功函数层与P型功函数层之间会具有N/P界面(N/P boundary Interface),所述N/P界面处的功函数材料相互扩散相互影响,造成NMOS器件和PMOS器件的性能发生变化。The pull-up transistor is a PMOS device, and the pull-down transistor is an NMOS device. In order to meet the requirements of improving the threshold voltage (Threshold Voltage) of PMOS devices and NMOS devices at the same time, different metal materials are usually used as the work function layer (WF, Work Function) material in the gate structure of NMOS devices and PMOS devices, and in NMOS devices The work function layer is called an N-type work function material, and the work function layer in a PMOS device is called a P-type work function material. When the NMOS device and the PMOS device share the same gate electrode layer, there will be an N/P boundary interface (N/P boundary Interface) between the N-type work function layer and the P-type work function layer at the junction of the NMOS device and the PMOS device. The above-mentioned work function materials at the N/P interface diffuse and affect each other, resulting in changes in the performance of the NMOS device and the PMOS device.
对于SRAM器件而言,上拉晶体管与下拉晶体管交界处的功函数层通常为叠层结构,且所述交界处的功函数层中既有N型功函数层又有P型功函数层,使得上拉晶体管的功函数层与下拉晶体管的功函数层之间相互影响,例如,所述上拉晶体管的功函数层与下拉晶体管的功函数层相互横向扩散相互影响,从而导致SRAM器件的上拉晶体管与下拉晶体管之间的电学参数失配(Mismatch)变差,进而影响SRAM器件的电学性能。For SRAM devices, the work function layer at the junction of the pull-up transistor and the pull-down transistor is usually a stacked structure, and the work function layer at the junction has both an N-type work function layer and a P-type work function layer, so that The work function layer of the pull-up transistor and the work function layer of the pull-down transistor influence each other, for example, the work function layer of the pull-up transistor and the work function layer of the pull-down transistor interact with each other through lateral diffusion, thereby causing the pull-up of the SRAM device The electrical parameter mismatch (Mismatch) between the transistor and the pull-down transistor becomes worse, thereby affecting the electrical performance of the SRAM device.
其中,所述横向扩散主要为N型功函数材料中的Al离子向P型功函数材料中扩散,从而影响了N型功函数层以及P型功函数层的等效功函数值,进一步的影响相应的上拉晶体管以及下拉晶体管的阈值电压。Wherein, the lateral diffusion is mainly the diffusion of Al ions in the N-type work function material to the P-type work function material, thus affecting the equivalent work function values of the N-type work function layer and the P-type work function layer, further affecting The threshold voltages of the corresponding pull-up transistors and pull-down transistors.
若所述上拉晶体管与下拉晶体管交界处的功函数层类型较为单一,则可以有效的降低上拉晶体管与下拉晶体管交界处的功函数层之间的相互扩散相互影响,从而改善SRAM器件的电学性能,且满足读取冗余度(read margin)以及写入冗余度(read margin)的要求。If the type of the work function layer at the junction of the pull-up transistor and the pull-down transistor is relatively single, it can effectively reduce the mutual diffusion interaction between the work function layers at the junction of the pull-up transistor and the pull-down transistor, thereby improving the electrical properties of the SRAM device performance, and meet the requirements of read margin and write margin.
为解决上述问题,本发明提供一种SRAM器件的制造方法,包括:提供基底,所述基底包括相邻接的上拉晶体管区以及下拉晶体管区;在所述上拉晶体管区以及下拉晶体管区的部分基底上形成栅介质层;在所述栅介质层上形成第一功函数层,所述第一功函数层的材料为P型功函数材料;刻蚀去除所述下拉晶体管区的第一功函数层;在剩余第一功函数层以及下拉晶体管区上形成第二功函数层,所述第二功函数层的材料为P型功函数材料;刻蚀去除所述下拉晶体管区的第二功函数层;在所述上拉晶体管区的第二功函数层顶部上、上拉晶体管区的剩余第二功函数层侧壁以及剩余第一功函数层侧壁上、以及所述下拉晶体管区上形成第三功函数层,所述第三功函数层的材料为N型功函数材料;在所述第三功函数层上形成栅电极层。In order to solve the above problems, the present invention provides a method for manufacturing an SRAM device, comprising: providing a substrate, the substrate including adjacent pull-up transistor regions and pull-down transistor regions; A gate dielectric layer is formed on part of the substrate; a first work function layer is formed on the gate dielectric layer, and the material of the first work function layer is a P-type work function material; the first work function layer of the pull-down transistor region is removed by etching Function layer; form a second work function layer on the remaining first work function layer and the pull-down transistor region, the material of the second work function layer is a P-type work function material; etch to remove the second work function layer of the pull-down transistor region function layer; on the top of the second work function layer of the pull-up transistor region, on the remaining second work function layer sidewalls and the remaining first work function layer sidewalls of the pull-up transistor region, and on the pull-down transistor region A third work function layer is formed, and the material of the third work function layer is an N-type work function material; a gate electrode layer is formed on the third work function layer.
本发明形成的SRAM器件中,上拉晶体管与下拉晶体管交界处的功函数层界面单一,减少或避免了所述交界处的功函数层相互扩散的问题,从而改善了上拉晶体管与下拉晶体管的电学参数失配,优化了形成的SRAM器件的电学性能。In the SRAM device formed by the present invention, the work function layer interface at the junction of the pull-up transistor and the pull-down transistor is single, reducing or avoiding the problem of mutual diffusion of the work function layers at the junction, thereby improving the pull-up transistor and the pull-down transistor. The electrical parameter mismatch optimizes the electrical performance of the formed SRAM device.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图2至图14为本发明实施例提供的SRAM器件形成过程的结构示意图。2 to 14 are schematic structural diagrams of the forming process of the SRAM device provided by the embodiment of the present invention.
参考图2及图3,图2为俯视结构示意图,图3为图2中沿AA1方向的剖面结构示意图,且为了便于图示和说明,图3中的下拉晶体管区以及通道栅晶体管区之间的部分以及隔离结构未示出,提供基底,所述基底包括相邻接的上拉晶体管区I以及下拉晶体管区II。Referring to FIG. 2 and FIG. 3, FIG. 2 is a schematic diagram of a top view structure, and FIG. 3 is a schematic diagram of a cross-sectional structure along the direction AA1 in FIG. The part and the isolation structure are not shown, and a substrate is provided, and the substrate includes adjacent pull-up transistor regions I and pull-down transistor regions II.
所述上拉晶体管区I为后续形成上拉晶体管提供工艺平台,所述下拉晶体管区II为后续形成下拉晶体管提供工艺平台。The pull-up transistor area I provides a process platform for the subsequent formation of the pull-up transistor, and the pull-down transistor area II provides a process platform for the subsequent formation of the pull-down transistor.
本实施例中,所述下拉晶体管区II包括第一下拉晶体管区(未标示)以及第二下拉晶体管区(未标示),其中,所述第一下拉晶体管区与所述上拉晶体管区相邻接;所述第一下拉晶体管区为后续形成第一下拉晶体管提供工艺平台,所述第二下拉晶体管区为后续形成第二下拉晶体管提供工艺平台,且所述第一下拉晶体管与所述第二下拉晶体管构成并联的下拉晶体管。In this embodiment, the pull-down transistor region II includes a first pull-down transistor region (not marked) and a second pull-down transistor region (not marked), wherein the first pull-down transistor region and the pull-up transistor region Adjacent; the first pull-down transistor region provides a process platform for the subsequent formation of the first pull-down transistor, the second pull-down transistor region provides a process platform for the subsequent formation of the second pull-down transistor, and the first pull-down transistor A pull-down transistor connected in parallel with the second pull-down transistor is formed.
本实施例中,所述基底还包括通道栅晶体管区III,所述通道栅晶体管区III为后续形成通道栅晶体管提供工艺平台。In this embodiment, the substrate further includes a pass-gate transistor region III, and the pass-gate transistor region III provides a process platform for subsequent formation of a pass-gate transistor.
本实施例中,所述上拉晶体管区I为PMOS区域,所述下拉晶体管区II为NMOS区域,所述通道栅晶体管区III为NMOS区域。In this embodiment, the pull-up transistor region I is a PMOS region, the pull-down transistor region II is an NMOS region, and the channel gate transistor region III is an NMOS region.
以形成的SRAM器件为FinFET器件为例,所述基底包括所述基底包括:衬底201以及位于所述衬底201上的分立的鳍部202。为了电隔离相邻鳍部202以及相邻器件,所述基底还包括:位于所述鳍部202露出的衬底201上的隔离结构214,所述隔离结构214覆盖鳍部202的部分侧壁,且所述隔离结构214顶部低于所述鳍部202顶部。Taking the formed SRAM device as a FinFET device as an example, the base includes: a substrate 201 and discrete fins 202 on the substrate 201 . In order to electrically isolate adjacent fins 202 and adjacent devices, the base further includes: an isolation structure 214 located on the substrate 201 exposed by the fins 202, the isolation structure 214 covers part of the sidewall of the fins 202, And the top of the isolation structure 214 is lower than the top of the fin 202 .
所述隔离结构214的材料为氧化硅、氮化硅或氮氧化硅。本实施例中,所述隔离结构214的材料为氧化硅。The material of the isolation structure 214 is silicon oxide, silicon nitride or silicon oxynitride. In this embodiment, the material of the isolation structure 214 is silicon oxide.
在另一实施例中,所述SRAM器件为平面晶体管,所述基底为平面基底,所述平面基底为硅衬底、锗衬底、硅锗衬底或碳化硅衬底、绝缘体上硅衬底或绝缘体上锗衬底、玻璃衬底或III-V族化合物衬底(例如氮化镓衬底或砷化镓衬底等),栅极结构形成于所述平面基底表面。In another embodiment, the SRAM device is a planar transistor, the substrate is a planar substrate, and the planar substrate is a silicon substrate, a germanium substrate, a silicon germanium substrate or a silicon carbide substrate, or a silicon-on-insulator substrate Or a germanium-on-insulator substrate, a glass substrate or a III-V compound substrate (such as a gallium nitride substrate or a gallium arsenide substrate, etc.), and the gate structure is formed on the surface of the planar substrate.
所述衬底201的材料为硅、锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底201还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底;所述鳍部202的材料包括硅、锗、锗化硅、碳化硅、砷化镓或镓化铟。本实施例中,所述衬底201为硅衬底,所述鳍部202的材料为硅。The material of the substrate 201 is silicon, germanium, silicon germanium, silicon carbide, gallium arsenide or gallium indium, and the substrate 201 can also be a silicon-on-insulator substrate or a germanium-on-insulator substrate; The material of the fin portion 202 includes silicon, germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium. In this embodiment, the substrate 201 is a silicon substrate, and the material of the fins 202 is silicon.
本实施例中,所述下拉晶体管区II区包括第一下拉晶体管区以及第二下拉晶体管区;相应的,所述上拉晶体管区I具有一个鳍部202,所述下拉晶体管区II具有两个鳍部202,其中一个鳍部202为形成第一下拉晶体管提供工艺平台,另一个鳍部202为形成第二下拉晶体管提供工艺平台;所述通道栅晶体管区III具有一个鳍部202,且所述通道栅晶体管区III与所述下拉晶体管区II共用一个鳍部202。In this embodiment, the pull-down transistor region II includes a first pull-down transistor region and a second pull-down transistor region; correspondingly, the pull-up transistor region I has a fin 202, and the pull-down transistor region II has two fins 202, wherein one fin 202 provides a process platform for forming the first pull-down transistor, and the other fin 202 provides a process platform for forming the second pull-down transistor; the channel gate transistor region III has a fin 202, and The pass-gate transistor region III shares a fin 202 with the pull-down transistor region II.
还需要说明的是,在其他实施例中,还可以根据待形成的SRAM器件的不同性能的需求,相应调整所述上拉晶体管区的鳍部的数量、下拉晶体管区的鳍部的数量以及通道栅晶体管区的鳍部的数量。It should also be noted that, in other embodiments, the number of fins in the pull-up transistor region, the number of fins in the pull-down transistor region, and channel The number of fins in the gate transistor region.
结合参考图4,本实施例中,采用后形成高k栅介质层后形成栅电极层(high klast metal gate last)的工艺,形成SRAM器件的栅极结构。因此,所述形成方法还包括:在所述上拉晶体管区I以及下拉晶体管区II的基底上形成伪栅结构210。Referring to FIG. 4 , in this embodiment, the gate structure of the SRAM device is formed by adopting a process of forming a high-k gate dielectric layer and then forming a gate electrode layer (high klast metal gate last). Therefore, the forming method further includes: forming a dummy gate structure 210 on the substrates of the pull-up transistor region I and the pull-down transistor region II.
所述伪栅结构210为后续形成SRAM器件的栅极结构占据空间位置。具体地,在所述隔离结构214上形成横跨所述鳍部202的伪栅结构210,且所述伪栅结构210覆盖所述鳍部202的部分顶部表面和部分侧壁表面。The dummy gate structure 210 occupies a spatial position for a gate structure of an SRAM device to be subsequently formed. Specifically, a dummy gate structure 210 spanning the fin 202 is formed on the isolation structure 214 , and the dummy gate structure 210 covers part of the top surface and part of the sidewall surface of the fin 202 .
所述伪栅结构210为单层结构或叠层结构。所述伪栅结构210包括伪栅层;或者所述伪栅结构210包括伪氧化层以及位于所述伪氧化层上的伪栅层。其中,所述伪栅层的材料为多晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅或非晶碳,所述伪氧化层的材料为氧化硅或氮氧化硅。The dummy gate structure 210 is a single layer structure or a stacked layer structure. The dummy gate structure 210 includes a dummy gate layer; or the dummy gate structure 210 includes a dummy oxide layer and a dummy gate layer on the dummy oxide layer. Wherein, the material of the dummy gate layer is polycrystalline silicon, silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon carbonitride or amorphous carbon, and the material of the dummy oxide layer is silicon oxide or silicon oxynitride.
本实施例中,在所述上拉晶体管区I以及下拉晶体管区II上形成伪栅结构210的工艺步骤中,还在所述通道栅晶体管区II上形成伪栅结构210。In this embodiment, in the process step of forming the dummy gate structure 210 on the pull-up transistor region I and the pull-down transistor region II, the dummy gate structure 210 is also formed on the pass-gate transistor region II.
本实施例中,由于所述上拉晶体管区I与所述下拉晶体管区II相邻接,相应使得所述伪栅结构210横跨所述上拉晶体管区I以及下拉晶体管区II,相应的,后续形成的栅电极层横跨所述上拉晶体管区I以及下拉晶体管区II。In this embodiment, since the pull-up transistor region I is adjacent to the pull-down transistor region II, the dummy gate structure 210 is made to straddle the pull-up transistor region I and the pull-down transistor region II, correspondingly, The subsequently formed gate electrode layer spans the pull-up transistor region I and the pull-down transistor region II.
在形成所述伪栅结构210之后,所述制造方法还包括:在各区域伪栅结构210两侧的鳍部202内形成各晶体管的源漏掺杂区。After forming the dummy gate structure 210 , the manufacturing method further includes: forming source and drain doped regions of each transistor in the fins 202 on both sides of the dummy gate structure 210 in each region.
在形成所述源漏掺杂区之后,去除所述伪栅结构210。本实施例中,可以采用干法刻蚀工艺、湿法刻蚀工艺或者SiCoNi刻蚀系统,去除所述伪栅结构210。After the source-drain doped region is formed, the dummy gate structure 210 is removed. In this embodiment, the dummy gate structure 210 may be removed by using a dry etching process, a wet etching process or a SiCoNi etching system.
需要说明的是,在去除所述伪栅结构210之前,所述制造方法还包括:在所述伪栅结构210暴露出的基底上形成层间介质层(图未示),所述层间介质层露出所述伪栅结构210的顶部。It should be noted that, before removing the dummy gate structure 210, the manufacturing method further includes: forming an interlayer dielectric layer (not shown in the figure) on the substrate exposed by the dummy gate structure 210, the interlayer dielectric layer exposing the top of the dummy gate structure 210 .
参考图5,在去除所述伪栅结构210之后,在所述上拉晶体管区I以及下拉晶体管区II的部分基底上形成栅介质层204。Referring to FIG. 5 , after removing the dummy gate structure 210 , a gate dielectric layer 204 is formed on part of the bases of the pull-up transistor region I and the pull-down transistor region II.
所述基底还包括通道栅晶体管区III,因此在形成所述栅介质层204的工艺步骤中,还在所述通道栅晶体管区III的部分基底上形成栅介质层204。The substrate also includes a pass-gate transistor region III, so in the process step of forming the gate dielectric layer 204 , the gate dielectric layer 204 is also formed on part of the substrate of the pass-gate transistor region III.
本实施例中,所述栅介质层204包括界面层(IL,Interfacial Layer)(未标示)以及位于所述界面层表面的高k栅介质层(未标示)。具体地,形成栅介质层204的步骤中,所述栅介质层204横跨所述鳍部202,且覆盖所述鳍部202的部分顶部表面和侧壁表面。In this embodiment, the gate dielectric layer 204 includes an interfacial layer (IL, Interfacial Layer) (not marked) and a high-k gate dielectric layer (not marked) located on the surface of the interface layer. Specifically, in the step of forming the gate dielectric layer 204 , the gate dielectric layer 204 spans the fin portion 202 and covers part of the top surface and the sidewall surface of the fin portion 202 .
所述界面层为形成所述高k栅介质层提供良好的界面基础,从而提高所述高k栅介质层的质量,减小所述高k栅介质层与鳍部202之间的界面态密度,且避免所述高k栅介质层与鳍部202直接接触造成的不良影响。所述界面层的材料为氧化硅或氮氧化硅。The interface layer provides a good interface basis for forming the high-k gate dielectric layer, thereby improving the quality of the high-k gate dielectric layer and reducing the interface state density between the high-k gate dielectric layer and the fin 202 , and avoid adverse effects caused by direct contact between the high-k gate dielectric layer and the fin portion 202 . The material of the interface layer is silicon oxide or silicon oxynitride.
本实施例中,采用氧化工艺形成所述界面层,所形成的界面层仅形成于暴露出的鳍部202顶部表面和侧壁表面。在其他实施例中,还可以采用沉积工艺形成所述界面层,例如化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺,所形成的界面层还位于所述隔离结构上。In this embodiment, the interface layer is formed by an oxidation process, and the formed interface layer is only formed on the exposed top surface and sidewall surface of the fin 202 . In other embodiments, the interface layer may also be formed by a deposition process, such as a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process, and the formed interface layer is also located on the isolation structure.
所述高k栅介质层的材料为相对介电常数大于氧化硅相对介电常数的栅介质材料。本实施例中,所述高k栅介质层的材料为HfO2。在其他实施例中,所述高k栅介质层的材料还可以为HfSiO、HfSiON、HfTaO、HfTiO、HfZrO、ZrO2或Al2O3。可以采用化学气相沉积、物理气相沉积或原子层沉积工艺形成所述高k栅介质层。本实施例中,采用原子层沉积工艺形成所述高k栅介质层。The material of the high-k gate dielectric layer is a gate dielectric material with a relative permittivity greater than that of silicon oxide. In this embodiment, the material of the high-k gate dielectric layer is HfO 2 . In other embodiments, the material of the high-k gate dielectric layer may also be HfSiO, HfSiON, HfTaO, HfTiO, HfZrO, ZrO 2 or Al 2 O 3 . The high-k gate dielectric layer can be formed by chemical vapor deposition, physical vapor deposition or atomic layer deposition. In this embodiment, the high-k gate dielectric layer is formed by an atomic layer deposition process.
后续步骤包括在栅介质层204上形成功函数层。为了在后续的工艺步骤中,对所述栅介质层204起到保护作用,在形成第一功函数层之前,还包括:在所述栅介质层204上形成保护层。Subsequent steps include forming a work function layer on the gate dielectric layer 204 . In order to protect the gate dielectric layer 204 in subsequent process steps, before forming the first work function layer, it further includes: forming a protection layer on the gate dielectric layer 204 .
参考图6,形成所述保护层的工艺步骤包括:在所述栅介质层204上形成盖帽层205;在所述盖帽层205上形成刻蚀停止层206,且所述刻蚀停止层206的材料与后续形成的第一功函数层的材料不同。Referring to FIG. 6, the process steps of forming the protective layer include: forming a cap layer 205 on the gate dielectric layer 204; forming an etch stop layer 206 on the cap layer 205, and the etch stop layer 206 The material is different from that of the subsequently formed first work function layer.
本实施例中,在形成所述保护层的工艺步骤中,还在所述通道栅晶体管区III的栅介质层204上形成所述保护层。In this embodiment, in the process step of forming the protective layer, the protective layer is further formed on the gate dielectric layer 204 of the channel gate transistor region III.
所述盖帽层205可以起到保护所述栅介质层204的作用,防止后续的刻蚀工艺对所述栅介质层204造成不必要的刻蚀损失,所述盖帽层205还有利于阻挡后续所形成栅电极层中的易扩散金属离子向所述栅介质层204内扩散。The capping layer 205 can protect the gate dielectric layer 204 and prevent unnecessary etching losses to the gate dielectric layer 204 caused by subsequent etching processes. The capping layer 205 is also beneficial to block subsequent The easily diffusible metal ions formed in the gate electrode layer diffuse into the gate dielectric layer 204 .
本实施例中,所述盖帽层205的材料为TiN,采用原子层沉积工艺形成所述盖帽层,使所述盖帽层205具有良好的台阶覆盖性。In this embodiment, the material of the capping layer 205 is TiN, and the capping layer is formed by an atomic layer deposition process, so that the capping layer 205 has good step coverage.
所述刻蚀停止层206与后续所形成功函数层的材料不同,从而使得后续刻蚀所述功函数层的刻蚀工艺对所述刻蚀停止层206的刻蚀速率较小,因此所述刻蚀停止层206在后续刻蚀所述功函数层的刻蚀工艺中起到刻蚀停止的作用,可以避免对所述栅介质层204造成刻蚀损伤。The material of the etching stop layer 206 is different from that of the subsequently formed work function layer, so that the etching rate of the etching stop layer 206 in the subsequent etching process for etching the work function layer is relatively small, so the The etch stop layer 206 functions as an etch stop in the subsequent etching process of etching the work function layer, and can avoid etching damage to the gate dielectric layer 204 .
本实施例中,所述刻蚀停止层的材料为TaN,采用原子层沉积工艺形成所述刻蚀停止层,使所述刻蚀停止层具有良好的台阶覆盖性。In this embodiment, the material of the etching stop layer is TaN, and the etching stop layer is formed by an atomic layer deposition process, so that the etching stop layer has good step coverage.
参考图7,在所述栅介质层204上形成第一功函数层207,所述第一功函数层207的材料为P型功函数材料。Referring to FIG. 7 , a first work function layer 207 is formed on the gate dielectric layer 204 , and the material of the first work function layer 207 is a P-type work function material.
在形成所述第一功函数层207的工艺步骤中,还在所述通道栅晶体管区III上形成所述第一功函数层207。本实施例中,由于所述栅介质层204上形成有保护层,因此在所述保护层上形成所述第一功函数层207;具体地,在所述刻蚀停止层206上形成所述第一功函数层207。In the process step of forming the first work function layer 207, the first work function layer 207 is also formed on the pass-gate transistor region III. In this embodiment, since a protective layer is formed on the gate dielectric layer 204, the first work function layer 207 is formed on the protective layer; specifically, the etching stop layer 206 is formed on the The first work function layer 207 .
所述第一功函数层207作为上拉晶体管区I对应的功函数层的一部分。The first work function layer 207 is a part of the work function layer corresponding to the pull-up transistor region I.
所述P型功函数材料功函数范围为5.1eV至5.5eV,例如,5.2eV、5.3eV或5.4eV。所述第一功函数层207的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种,可以采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述第一功函数层207。The work function range of the P-type work function material is 5.1eV to 5.5eV, for example, 5.2eV, 5.3eV or 5.4eV. The material of the first work function layer 207 is one or more of Ta, TiN, TaN, TaSiN or TiSiN, and the first work function layer can be formed by chemical vapor deposition process, physical vapor deposition process or atomic layer deposition process. Function layer 207 .
本实施例中,所述第一功函数层207的材料为TiN,所述第一功函数层207的厚度为10埃~30埃。In this embodiment, the material of the first work function layer 207 is TiN, and the thickness of the first work function layer 207 is 10 angstroms to 30 angstroms.
参考图8,刻蚀去除所述下拉晶体管区II的第一功函数层207。Referring to FIG. 8 , the first work function layer 207 of the pull-down transistor region II is removed by etching.
本实施例中,为了满足下拉晶体管对阈值电压的需求,需刻蚀去除所述下拉晶体管区II的第一功函数层207,保留位于所述上拉晶体管区I的第一功函数层207作为上拉晶体管的功函数层的一部分。In this embodiment, in order to meet the threshold voltage requirement of the pull-down transistor, the first work function layer 207 in the pull-down transistor region II needs to be etched and removed, and the first work function layer 207 in the pull-up transistor region I is retained as Part of the work function layer of the pull-up transistor.
具体地,刻蚀去除所述下拉晶体管区II的第一功函数层207的工艺步骤包括:在所述上拉晶体管区I以及通道栅晶体管区的第一功函数层207上形成第一图形层,所述第一图形层露出所述下拉晶体管区II的第一功函数层207;以所述第一图形层为掩膜,刻蚀去除所述下拉晶体管区II的第一功函数层207;去除所述第一图形层。Specifically, the process step of etching and removing the first work function layer 207 of the pull-down transistor region II includes: forming a first pattern layer on the first work function layer 207 of the pull-up transistor region I and the channel gate transistor region , the first pattern layer exposes the first work function layer 207 of the pull-down transistor region II; using the first pattern layer as a mask, etching and removing the first work function layer 207 of the pull-down transistor region II; The first graphics layer is removed.
在刻蚀去除所述下拉晶体管区II的第一功函数层207的工艺过程中,位于所述下拉晶体管区II的刻蚀停止层206起到刻蚀停止的作用,避免对下拉晶体管区II的栅介质层204造成刻蚀损伤。During the process of etching and removing the first work function layer 207 of the pull-down transistor region II, the etch stop layer 206 located in the pull-down transistor region II plays the role of an etching stop, avoiding damage to the pull-down transistor region II. The gate dielectric layer 204 causes etching damage.
参考图9,刻蚀去除所述通道栅晶体管区III的第一功函数层207以及保护层。Referring to FIG. 9 , the first work function layer 207 and the protection layer of the channel gate transistor region III are removed by etching.
本实施例中,还刻蚀去除所述通道栅晶体管区III的第一功函数层207以及保护层,暴露出所述通道栅晶体管区III的栅介质层204。其好处包括:In this embodiment, the first work function layer 207 and the protection layer of the pass-gate transistor region III are also etched away to expose the gate dielectric layer 204 of the pass-gate transistor region III. Its benefits include:
由于所述通道栅晶体管区III的第一功函数层207以及保护层均被刻蚀去除,使得后续在通道栅晶体管区III对应形成的功函数层厚度较薄;所述通道栅晶体管区III为NMOS区域,对于通道栅晶体管而言,功函数层越薄对应的阈值电压越低,从而有利于提高后续形成的通道栅晶体管的运行速率。Since the first work function layer 207 and the protective layer of the channel gate transistor region III are etched and removed, the thickness of the work function layer correspondingly formed in the channel gate transistor region III subsequently is relatively thin; the channel gate transistor region III is In the NMOS region, for the channel gate transistor, the thinner the work function layer, the lower the threshold voltage, which is beneficial to improve the operating speed of the subsequently formed channel gate transistor.
具体地,刻蚀去除所述通道栅晶体区III的第一功函数层207以及保护层的工艺步骤包括:在所述上拉晶体管区I的第一功函数层207上、以及下拉晶体管区II的保护层上形成第二图形层,所述第二图形层暴露出所述通道栅晶体管区III的第一功函数层207;以所述第二图形层为掩膜,刻蚀去除所述通道栅晶体管区III的第一功函数层207、刻蚀停止层206以及盖帽层205,直至露出所述通道栅晶体管区III的栅介质层204;去除所述第二图形层。Specifically, the process steps of etching and removing the first work function layer 207 and the protective layer of the channel gate crystal region III include: on the first work function layer 207 of the pull-up transistor region I and on the pull-down transistor region II A second pattern layer is formed on the protective layer, and the second pattern layer exposes the first work function layer 207 of the channel gate transistor region III; using the second pattern layer as a mask, etching removes the channel The first work function layer 207, the etching stop layer 206 and the capping layer 205 of the gate transistor region III until the gate dielectric layer 204 of the channel gate transistor region III is exposed; the second pattern layer is removed.
需要说明的是,本实施例中,先刻蚀去除所述下拉晶体管区II的第一功函数层207,后刻蚀去除所述通道栅晶体管区III的第一功函数层207以及保护层。在其他实施例中,还可以先刻蚀去除所述通道栅晶体管区的第一功函数层以及保护层,后刻蚀去除所述下拉晶体管区的第一功函数层;或者,先刻蚀去除所述下拉晶体管区以及通道栅晶体管区的第一功函数层,后刻蚀去除所述通道栅晶体管区的保护层。It should be noted that, in this embodiment, the first work function layer 207 of the pull-down transistor region II is etched and removed first, and then the first work function layer 207 and the protection layer of the channel gate transistor region III are etched and removed. In other embodiments, the first work function layer and the protective layer of the channel gate transistor region may be removed by etching first, and then the first work function layer of the pull-down transistor region may be removed by etching; or, the first work function layer of the pull-down transistor region may be removed by etching first. The pull-down transistor region and the first work function layer of the channel gate transistor region are etched to remove the protection layer of the channel gate transistor region.
参考图10,在剩余第一功函数层207以及下拉晶体管区II上形成第二功函数层208,所述第二功函数层208的材料为P型功函数材料。Referring to FIG. 10 , a second work function layer 208 is formed on the remaining first work function layer 207 and the pull-down transistor region II, and the material of the second work function layer 208 is a P-type work function material.
本实施例中,在形成所述第二功函数层207的工艺步骤中,在所述下拉晶体管区II的保护层上形成所述第二功函数层208。In this embodiment, in the process step of forming the second work function layer 207 , the second work function layer 208 is formed on the protection layer of the pull-down transistor region II.
且在形成所述第二功函数层208的工艺步骤中,还在所述通道栅晶体管区III上形成所述第二功函数层208。具体地,在形成所述第二功函数层208的工艺步骤中,在所述通道栅晶体管区III的栅介质层204上形成所述第二功函数层208。And in the process step of forming the second work function layer 208 , the second work function layer 208 is also formed on the pass-gate transistor region III. Specifically, in the process step of forming the second work function layer 208 , the second work function layer 208 is formed on the gate dielectric layer 204 of the channel gate transistor region III.
具体地,位于所述上拉晶体管区I的第二功函层208以及第一功函数层207共同构成后续形成的上拉晶体管的功函数层;位于所述通道栅晶体管区III的第二功函数层208作为后续形成的通道栅晶体管的功函数层的一部分。Specifically, the second work function layer 208 located in the pull-up transistor region I and the first work function layer 207 together constitute the work function layer of the subsequently formed pull-up transistor; the second work function layer located in the channel gate transistor region III The function layer 208 serves as a part of the work function layer of the subsequently formed pass-gate transistor.
所述第二功函数层208的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种。The material of the second work function layer 208 is one or more of Ta, TiN, TaN, TaSiN or TiSiN.
本实施例中,所述第二功函数层208的材料与所述刻蚀停止层207的材料不同,所述第二功函数层208的材料为TiN,所述第二功函数层208的厚度为5埃~30埃。In this embodiment, the material of the second work function layer 208 is different from that of the etching stop layer 207, the material of the second work function layer 208 is TiN, and the thickness of the second work function layer 208 is 5 angstroms to 30 angstroms.
参考图11,刻蚀去除所述下拉晶体管区II的第二功函数层208。Referring to FIG. 11 , the second work function layer 208 of the pull-down transistor region II is removed by etching.
为了满足下拉晶体管区II后续形成的下拉晶体管对阈值电压的要求,需要刻蚀去除所述下拉晶体管区II的第二功函数层208。In order to meet the threshold voltage requirement of the pull-down transistor subsequently formed in the pull-down transistor region II, the second work function layer 208 of the pull-down transistor region II needs to be etched away.
具体地,刻蚀去除所述下拉晶体管区II的第二功函数层208的工艺步骤包括:在所述第二功函数层208上形成第三图形层,所述第三图形层暴露出所述下拉晶体管区II的第二功函数层208;以所述第三图形层为掩膜,刻蚀去除所述下拉晶体管区II的第二功函数层208,直至露出所述保护层表面;去除所述第三图形层。Specifically, the process step of etching and removing the second work function layer 208 of the pull-down transistor region II includes: forming a third pattern layer on the second work function layer 208, and the third pattern layer exposes the Pulling down the second work function layer 208 of the transistor region II; using the third pattern layer as a mask, etching and removing the second work function layer 208 of the pull-down transistor region II until the surface of the protective layer is exposed; removing the Describe the third graphics layer.
在刻蚀去除所述下拉晶体管区II的第二功函数层208的工艺过程中,所述下拉晶体管区II的刻蚀停止层206起到刻蚀停止的作用,避免对下拉晶体管区II的栅介质层204造成刻蚀损伤。During the process of etching and removing the second work function layer 208 of the pull-down transistor region II, the etch stop layer 206 of the pull-down transistor region II acts as an etching stopper, avoiding damage to the gate of the pull-down transistor region II. Dielectric layer 204 causes etch damage.
本实施例中,在刻蚀去除所述下拉晶体管区II的第二功函数层208后,剩余第一功函数层207以及剩余第二功函数层208在所述上拉晶体管区I以及下拉晶体管区II相邻接处的侧壁齐平。In this embodiment, after the second work function layer 208 in the pull-down transistor region II is removed by etching, the remaining first work function layer 207 and the remaining second work function layer 208 are formed in the pull-up transistor region I and the pull-down transistor region. Zone II has flush sidewalls adjacent to it.
参考图12,在所述上拉晶体管区I的剩余第二功函数层208侧壁以及剩余第一功函数层207侧壁上形成扩散阻挡层212。Referring to FIG. 12 , a diffusion barrier layer 212 is formed on the remaining sidewalls of the second work function layer 208 and the remaining sidewalls of the first work function layer 207 in the pull-up transistor region I.
所述扩散阻挡层212的作用包括:后续会在所述上拉晶体管区I以及下拉晶体管区II上形成第三功函数层,且所述第三功函数层的材料为N型功函数材料;所述扩散阻挡层212有利于阻挡所述上拉晶体管区I与下拉晶体管区II交界处的功函数层之间的相互横向扩散,例如,阻挡所述交界处的第一功函数层207与第三功函数层材料之间的相互横向扩散,阻挡所述交界处的第二功函数层208与所述第三功函数层材料之间的相互横向扩散,从而改善后续形成的上拉晶体管与下拉晶体管之间的电学参数失配。The function of the diffusion barrier layer 212 includes: a third work function layer will be formed subsequently on the pull-up transistor region I and the pull-down transistor region II, and the material of the third work function layer is an N-type work function material; The diffusion barrier layer 212 is beneficial to block the mutual lateral diffusion between the work function layers at the junction of the pull-up transistor region I and the pull-down transistor region II, for example, blocking the first work function layer 207 and the second work function layer at the junction. The mutual lateral diffusion between the materials of the three work function layers blocks the mutual lateral diffusion between the materials of the second work function layer 208 and the third work function layer at the junction, thereby improving the subsequent formation of the pull-up transistor and the pull-down transistor. Electrical parameter mismatch between transistors.
本实施例中,为了降低形成所述扩散阻挡层212的工艺难度,采用沉积工艺形成所述扩散阻挡层212;在形成所述扩散阻挡层212的工艺步骤中,还在所述上拉晶体管区I的第二功函数层208顶部上以及下拉晶体管区II的栅介质层204上形成所述扩散阻挡层212。In this embodiment, in order to reduce the process difficulty of forming the diffusion barrier layer 212, the diffusion barrier layer 212 is formed by a deposition process; in the process steps of forming the diffusion barrier layer 212, the pull-up transistor region The diffusion barrier layer 212 is formed on the top of the second work function layer 208 of I and the gate dielectric layer 204 of the pull-down transistor region II.
具体地,本实施例中,由于所述下拉晶体管区II的栅介质层204上还形成有保护层,因此在所述下拉晶体管区II的栅介质层204上形成扩散阻挡层212的工艺步骤中,在所述下拉晶体管区II的保护层上形成所述扩散阻挡层212。Specifically, in this embodiment, since a protective layer is also formed on the gate dielectric layer 204 of the pull-down transistor region II, in the process step of forming the diffusion barrier layer 212 on the gate dielectric layer 204 of the pull-down transistor region II , forming the diffusion barrier layer 212 on the protection layer of the pull-down transistor region II.
所述基底还包括通道栅晶体管区III,为此,在形成所述扩散阻挡层212的工艺步骤中,还在所述通道栅晶体管区III的第二功函数层208上形成所述扩散阻挡层212。The substrate also includes a channel gate transistor region III, for which, in the process step of forming the diffusion barrier layer 212, the diffusion barrier layer is also formed on the second work function layer 208 of the channel gate transistor region III 212.
本实施例中,所述扩散阻挡层212的材料为TaN。在其他实施例中,所述扩散阻挡层212的材料还可以为TaCN。In this embodiment, the material of the diffusion barrier layer 212 is TaN. In other embodiments, the material of the diffusion barrier layer 212 may also be TaCN.
所述扩散阻挡层212的厚度不宜过薄,也不宜过厚。如果所述扩散阻挡层212的厚度过薄,则所述扩散阻挡层212阻挡后续交界处的功函数层之间相互横向扩散的能力过弱;如果所述扩散阻挡层212的厚度过厚,则所述扩散阻挡层212会对后续形成的上拉晶体管阈值电压或者下拉晶体管阈值电压造成不良影响。The thickness of the diffusion barrier layer 212 should neither be too thin nor too thick. If the thickness of the diffusion barrier layer 212 is too thin, the ability of the diffusion barrier layer 212 to block the mutual lateral diffusion between the work function layers at the subsequent junction is too weak; if the thickness of the diffusion barrier layer 212 is too thick, then The diffusion barrier layer 212 will adversely affect the threshold voltage of the pull-up transistor or the threshold voltage of the pull-down transistor formed subsequently.
为此,本实施例中,所述扩散阻挡层212的厚度为5埃~20埃。Therefore, in this embodiment, the thickness of the diffusion barrier layer 212 is 5 angstroms to 20 angstroms.
本实施例中,采用原子层沉积工艺形成所述扩散阻挡层212,有利于提高所述扩散阻挡层212的台阶覆盖能力,提高形成的扩散阻挡层212的厚度均匀性。需要说明的是,在其他实施例中,还可以采用化学气相沉积或者物理气相沉积工艺,形成所述扩散阻挡层。In this embodiment, the diffusion barrier layer 212 is formed by atomic layer deposition process, which is beneficial to improve the step coverage capability of the diffusion barrier layer 212 and improve the thickness uniformity of the formed diffusion barrier layer 212 . It should be noted that, in other embodiments, the diffusion barrier layer may also be formed by chemical vapor deposition or physical vapor deposition process.
此外,由于剩余第一功函数层207以及剩余第二功函数层208在所述上拉晶体管区I以及下拉晶体管区II相邻接处的侧壁齐平,使得在所述第一功函数层207侧壁以及第二功函数层208侧壁上形成的扩散阻挡层212的形貌良好且厚度均匀性好,从而进一步的提高所述扩散阻挡层212阻挡功函数层之间相互横向扩散的能力。In addition, since the sidewalls of the remaining first work function layer 207 and the remaining second work function layer 208 are flush at the adjoining positions of the pull-up transistor region I and the pull-down transistor region II, the first work function layer The diffusion barrier layer 212 formed on the sidewall of 207 and the sidewall of the second work function layer 208 has good morphology and good thickness uniformity, thereby further improving the ability of the diffusion barrier layer 212 to block mutual lateral diffusion between work function layers .
参考图13,在所述扩散阻挡层212上、上拉晶体管区I的第二功函数层208顶部上以及下拉晶体管区II的栅介质层204上形成第三功函数层209,所述第三功函数层209的材料为N型功函数材料。Referring to FIG. 13, a third work function layer 209 is formed on the diffusion barrier layer 212, on the top of the second work function layer 208 in the pull-up transistor region I, and on the gate dielectric layer 204 in the pull-down transistor region II. The material of the work function layer 209 is an N-type work function material.
本实施例中,在形成所述第三功函数层209的工艺步骤中,形成的所述第三功函数层209位于所述上拉晶体管区I以及下拉晶体管区II的扩散阻挡层212上;且形成的所述第三功函数层209还位于所述通道栅晶体管区III的扩散阻挡层212上。In this embodiment, in the process step of forming the third work function layer 209, the formed third work function layer 209 is located on the diffusion barrier layer 212 of the pull-up transistor region I and the pull-down transistor region II; And the formed third work function layer 209 is also located on the diffusion barrier layer 212 of the channel gate transistor region III.
位于所述下拉晶体管区II的第三功函数层209作为下拉晶体管区II对应的功函数层,用于调节后续形成的下拉晶体管的阈值电压;位于所述通道栅晶体管区III的第三功函数层209以及第二功函数层208作为通道栅晶体管区III对应的功函数层,用于调节后续形成的通道栅晶体管的阈值电压。The third work function layer 209 located in the pull-down transistor region II is used as the work function layer corresponding to the pull-down transistor region II for adjusting the threshold voltage of the pull-down transistor formed subsequently; the third work function layer 209 located in the channel gate transistor region III The layer 209 and the second work function layer 208 serve as the work function layer corresponding to the channel gate transistor region III, and are used to adjust the threshold voltage of the subsequently formed channel gate transistor.
位于所述上拉晶体管区I的第一功函数层207以及第二功函数层208作为上拉晶体管区I对应的功函数层,用于调节后续形成的上拉晶体管的阈值电压。The first work function layer 207 and the second work function layer 208 located in the pull-up transistor region I serve as work function layers corresponding to the pull-up transistor region I, and are used to adjust the threshold voltage of the subsequently formed pull-up transistor.
需要说明的是,为了减少工艺步骤、节约光罩,本实施例中,在形成所述第三功函数层209之后,保留位于所述上拉晶体管区I的第三功函数层209。还需要说明的是,在其他实施例中,在形成所述第三功函数层之后,还可以刻蚀去除所述上拉晶体管区的第三功函数层。It should be noted that, in order to reduce process steps and save photomasks, in this embodiment, after the third work function layer 209 is formed, the third work function layer 209 located in the pull-up transistor region I remains. It should also be noted that, in other embodiments, after forming the third work function layer, the third work function layer in the pull-up transistor region may be removed by etching.
所述第三功函数层209为N型功函数材料,N型功函数材料功函数范围为3.9eV至4.5eV,例如为4eV、4.1eV或4.3eV。所述第三功函数层209的材料为TiAl、TiAlC、TaAlN、TiAlN、TaCN和AlN中的一种或多种,可以采用化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺形成所述第三功函数层209。本实施例中,所述第三功函数层209的材料为TiAl。The third work function layer 209 is an N-type work function material, and the work function of the N-type work function material ranges from 3.9eV to 4.5eV, such as 4eV, 4.1eV or 4.3eV. The material of the third work function layer 209 is one or more of TiAl, TiAlC, TaAlN, TiAlN, TaCN and AlN, and the third work function layer 209 can be formed by chemical vapor deposition, physical vapor deposition or atomic layer deposition. Three work function layers 209 . In this embodiment, the material of the third work function layer 209 is TiAl.
所述第三功函数层209厚度根据所述上拉晶体管以及通道栅晶体管的阈值电压而定。本实施例中,所述第三功函数层209的厚度为20埃~70埃。The thickness of the third work function layer 209 is determined according to the threshold voltages of the pull-up transistor and the pass-gate transistor. In this embodiment, the thickness of the third work function layer 209 is 20 angstroms to 70 angstroms.
参考图14,在所述第三功函数层209上形成栅电极层211。Referring to FIG. 14 , a gate electrode layer 211 is formed on the third work function layer 209 .
本实施例中,在所述上拉晶体管区I、下拉晶体管区II以及通道栅晶体管区III的第三功函数层209上形成所述栅电极层211。其中,所述上拉晶体管区I以及下拉晶体管区II的栅电极层211横跨所述上拉晶体管区I以及下拉晶体管区II,也可以认为,所述上拉晶体管区I与下拉晶体管区II共用同一个栅电极层211。In this embodiment, the gate electrode layer 211 is formed on the third work function layer 209 of the pull-up transistor region I, the pull-down transistor region II and the pass-gate transistor region III. Wherein, the gate electrode layer 211 of the pull-up transistor region I and the pull-down transistor region II straddles the pull-up transistor region I and the pull-down transistor region II, and it can also be considered that the pull-up transistor region I and the pull-down transistor region II share the same gate electrode layer 211.
本实施例中,所述栅电极层211的材料包括Al、Cu、Ag、Au、Pt、Ni、Ti或W中的一种或多种。In this embodiment, the material of the gate electrode layer 211 includes one or more of Al, Cu, Ag, Au, Pt, Ni, Ti or W.
具体地,形成所述栅电极层211的工艺步骤包括:在所述第三功函数层209上形成栅电极膜,所述栅电极膜顶部高于所述层间介质层(未图示)顶部;研磨去除高于所述层间介质层顶部的栅电极膜,形成所述栅电极层211。Specifically, the process step of forming the gate electrode layer 211 includes: forming a gate electrode film on the third work function layer 209, the top of the gate electrode film is higher than the top of the interlayer dielectric layer (not shown) ; Grinding and removing the gate electrode film above the top of the interlayer dielectric layer to form the gate electrode layer 211 .
本发明实施例提供的SRAM器件的形成方法技术方案中,所述上拉晶体管区I与下拉晶体管区II相邻接,且由于所述第一功函数层207以及第二功函数层208仅位于所述上拉晶体管区I;上拉晶体管区I与下拉晶体管区II交界处的第一功函数层207和第二功函数层208与所述第三功函数层209之间被所述扩散阻挡层212阻挡,所述扩散阻挡层212有利于阻挡所述交界处的第一功函数层207与第三功函数层209之间相互横向扩散,且有利于阻挡所述交界处的第二功函数层208与所述第三功函数层209之间相互横向扩散,从而改善了形成的SRAM器件的电学性能,例如提高上拉晶体管和下拉晶体管之间的电学参数失配。In the technical solution for the formation method of the SRAM device provided by the embodiment of the present invention, the pull-up transistor region I is adjacent to the pull-down transistor region II, and since the first work function layer 207 and the second work function layer 208 are only located The pull-up transistor region I; the first work function layer 207, the second work function layer 208, and the third work function layer 209 at the junction of the pull-up transistor region I and the pull-down transistor region II are blocked by the diffusion layer 212, the diffusion barrier layer 212 is conducive to blocking the mutual lateral diffusion between the first work function layer 207 and the third work function layer 209 at the junction, and is conducive to blocking the second work function layer 209 at the junction The mutual lateral diffusion between the layer 208 and the third work function layer 209 improves the electrical performance of the formed SRAM device, for example, improves the electrical parameter mismatch between the pull-up transistor and the pull-down transistor.
具体地,所述扩散阻挡层212有利于阻挡所述交界处的第三功函数层209中的Al离子向第一功函数层207横向扩散,还有利于阻挡所述交界处的第三功函数层209中的Al离子向第二功函数层208横向扩散。保证所述上拉晶体管区I的功函数层的等效功函数值保持不变,所述下拉晶体管区II的功函数层的等效功函数值保持不变,从而避免对上拉晶体管以及下拉晶体管的阈值电压造成不良影响,改善上拉晶体管与下拉晶体管的电学参数失配。Specifically, the diffusion barrier layer 212 is conducive to blocking the lateral diffusion of Al ions in the third work function layer 209 at the junction to the first work function layer 207, and is also conducive to blocking the third work function layer 209 at the junction. Al ions in layer 209 diffuse laterally toward second work function layer 208 . Ensure that the equivalent work function value of the work function layer of the pull-up transistor region I remains unchanged, and the equivalent work function value of the work function layer of the pull-down transistor region II remains unchanged, thereby avoiding the pull-up transistor and the pull-down The threshold voltage of the transistor has adverse effects, and the electrical parameter mismatch between the pull-up transistor and the pull-down transistor is improved.
本实施例中,在所述上拉晶体管区I与下拉晶体管区II相邻接处的第一功函数层207侧壁与第二功函数层208侧壁齐平,有利于提高所述交界处的扩散阻挡层212厚度均匀性,从而进一步的提高所述扩散阻挡层212阻挡扩散的能力,进一步的改善形成的SRAM器件的电学性能。In this embodiment, the sidewalls of the first work function layer 207 and the sidewalls of the second work function layer 208 at the adjacent portion of the pull-up transistor region I and the pull-down transistor region II are flush with each other, which is beneficial to improve the junction area. The uniformity of the thickness of the diffusion barrier layer 212, thereby further improving the ability of the diffusion barrier layer 212 to block diffusion, and further improving the electrical performance of the formed SRAM device.
此外,本实施例中,所述形成的SRAM器件还满足读取冗余度以及写入冗余度的要求。In addition, in this embodiment, the formed SRAM device also meets the requirements of read redundancy and write redundancy.
相应的,本发明还提供一种SRAM器件,参考图14,所述SRAM器件包括:Correspondingly, the present invention also provides an SRAM device. Referring to FIG. 14, the SRAM device includes:
基底,所述基底包括相邻接的上拉晶体管区I以及下拉晶体管区II;a substrate, the substrate comprising adjacent pull-up transistor regions I and pull-down transistor regions II;
位于所述上拉晶体管区I以及下拉晶体管区II的部分基底上的栅介质层204;A gate dielectric layer 204 located on part of the base of the pull-up transistor region I and the pull-down transistor region II;
位于所述上拉晶体管区I的栅介质层204上的第一功函数层207以及位于所述第一功函数层207上的第二功函数层208,所述第一功函数层207以及第二功函数层208的材料均为P型功函数材料;The first work function layer 207 located on the gate dielectric layer 204 of the pull-up transistor region I and the second work function layer 208 located on the first work function layer 207, the first work function layer 207 and the second work function layer 208 The materials of the second work function layer 208 are P-type work function materials;
位于所述上拉晶体管区I的第二功函数层208侧壁以及第一功函数层207侧壁上的扩散阻挡层212;The diffusion barrier layer 212 located on the sidewall of the second work function layer 208 and the side wall of the first work function layer 207 of the pull-up transistor region I;
位于所述扩散阻挡层212上、上拉晶体管区I的第二功函数层208顶部上以及下拉晶体管区II的栅介质层204上的第三功函数层209,所述第三功函数层209的材料为N型功函数材料;The third work function layer 209 located on the diffusion barrier layer 212, on the top of the second work function layer 208 of the pull-up transistor region I and on the gate dielectric layer 204 of the pull-down transistor region II, the third work function layer 209 The material is an N-type work function material;
位于所述第三功函数层209上的栅电极层211。The gate electrode layer 211 is located on the third work function layer 209 .
以下将结合附图对本发明实施例提供的SRAM器件进行详细说明。The SRAM device provided by the embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
本实施例中,所述下拉晶体管区II包括第一下拉晶体管区与第二下拉晶体管区,且所述第一下拉晶体管区与所述上拉晶体管区相邻接,所述第一下拉晶体管区具有第一下拉晶体管,所述第二下拉晶体管区具有第二下拉晶体管。In this embodiment, the pull-down transistor region II includes a first pull-down transistor region and a second pull-down transistor region, and the first pull-down transistor region is adjacent to the pull-up transistor region, and the first pull-down transistor region is adjacent to the pull-up transistor region. The pull-down transistor region has a first pull-down transistor, and the second pull-down transistor region has a second pull-down transistor.
所述基底还包括通道栅晶体管区III,且所述栅介质层204还位于所述通道栅晶体管区III的基底上;其中,所述第二功函数层208还位于所述通道栅晶体管区III的栅介质层204上;所述扩散阻挡层212还位于所述通道栅晶体管区III的第二功函数层208上;所述第三功函数层209还位于所述通道栅晶体管区III的扩散阻挡层212上。The substrate also includes a channel gate transistor region III, and the gate dielectric layer 204 is also located on the substrate of the channel gate transistor region III; wherein, the second work function layer 208 is also located in the channel gate transistor region III on the gate dielectric layer 204; the diffusion barrier layer 212 is also located on the second work function layer 208 of the channel gate transistor region III; the third work function layer 209 is also located on the diffusion of the channel gate transistor region III on the barrier layer 212.
以所述SRAM器件为鳍式场效应管为例,所述基底包括衬底201以及位于所述衬底201上的鳍部202,所述基底还包括,位于所述鳍部202露出的衬底201上的隔离结构214,所述隔离结构214覆盖所述鳍部202部分侧壁,且所述隔离结构214顶部低于所述鳍部202顶部。Taking the SRAM device as an example of a fin field effect transistor, the base includes a substrate 201 and a fin 202 located on the substrate 201, and the base also includes a substrate exposed from the fin 202 The isolation structure 214 on 201 , the isolation structure 214 covers part of the sidewall of the fin 202 , and the top of the isolation structure 214 is lower than the top of the fin 202 .
本实施例中,所述上拉晶体管区I具有一个鳍部202;所述下拉晶体管区II具有两个鳍部202,其中,一个鳍部202为所述第一下拉晶体管区提供工艺平台,另一个鳍部202为所述第二下拉晶体管区提供工艺平台;所述通道栅晶体管区III具有一个鳍部202。In this embodiment, the pull-up transistor region I has one fin 202; the pull-down transistor region II has two fins 202, wherein one fin 202 provides a process platform for the first pull-down transistor region, Another fin 202 provides a process platform for the second pull-down transistor region; the pass-gate transistor region III has one fin 202 .
有关所述基底以及栅介质层204的详细说明可请参考前述实施例的相应描述,在此不再赘述。For detailed descriptions of the substrate and the gate dielectric layer 204 , please refer to the corresponding descriptions of the foregoing embodiments, which will not be repeated here.
所述第一功函数层207的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种;所述第二功函数层208的材料为Ta、TiN、TaN、TaSiN或TiSiN中的一种或几种;所述第三功函数层209的材料为TiAl、TiAlC、TaAlN、TiAlN、TaCN和AlN中的一种或几种。The material of the first work function layer 207 is one or more of Ta, TiN, TaN, TaSiN or TiSiN; the material of the second work function layer 208 is Ta, TiN, TaN, TaSiN or TiSiN. One or more; the material of the third work function layer 209 is one or more of TiAl, TiAlC, TaAlN, TiAlN, TaCN and AlN.
本实施例中,所述第一功函数层207的材料为TiN,所述第二功函数层208的材料为TiN;所述第三功函数层209的材料为TiAl。In this embodiment, the material of the first work function layer 207 is TiN, the material of the second work function layer 208 is TiN; the material of the third work function layer 209 is TiAl.
本实施例中,所述第一功函数层207的厚度为10埃~30埃;所述第二功函数层208的厚度为5埃~30埃;所述第三功函数层209的厚度为20埃~70埃。In this embodiment, the thickness of the first work function layer 207 is 10 angstroms to 30 angstroms; the thickness of the second work function layer 208 is 5 angstroms to 30 angstroms; the thickness of the third work function layer 209 is 20 angstroms to 70 angstroms.
所述SRAM器件还包括:位于所述上拉晶体管区I的栅介质层204与所述第一功函数层207之间的保护层,且所述保护层还位于所述下拉晶体管区II的栅介质层204与第三功函数层209之间。The SRAM device further includes: a protection layer located between the gate dielectric layer 204 of the pull-up transistor region I and the first work function layer 207, and the protection layer is also located at the gate of the pull-down transistor region II. between the dielectric layer 204 and the third work function layer 209 .
所述保护层起到保护栅介质层204的作用。本实施例中,所述保护层包括:位于所述栅介质层204上的盖帽层205以及位于所述盖帽层205上的刻蚀停止层206。其中,所述盖帽层205的材料为TiN,所述刻蚀停止层206的材料为TaN。The protective layer serves to protect the gate dielectric layer 204 . In this embodiment, the protection layer includes: a capping layer 205 on the gate dielectric layer 204 and an etching stop layer 206 on the capping layer 205 . Wherein, the material of the capping layer 205 is TiN, and the material of the etching stop layer 206 is TaN.
所述扩散阻挡层212还位于所述上拉晶体管区I的第二功函数层208顶部上以及下拉晶体管区II的栅介质层204上。由于所述下拉晶体管区II的栅介质层204上具有保护层,为此,所述下拉晶体管区II的扩散阻挡层212位于所述下拉晶体管区II的保护层上。The diffusion barrier layer 212 is also located on top of the second work function layer 208 in the pull-up transistor region I and on the gate dielectric layer 204 in the pull-down transistor region II. Since there is a protection layer on the gate dielectric layer 204 of the pull-down transistor region II, the diffusion barrier layer 212 of the pull-down transistor region II is located on the protection layer of the pull-down transistor region II.
本实施例中,所述扩散阻挡层212的材料为TiaN。在其他实施例中,所述扩散阻挡层的材料还可以为TaCN。In this embodiment, the material of the diffusion barrier layer 212 is TiaN. In other embodiments, the material of the diffusion barrier layer may also be TaCN.
本实施例中,所述扩散阻挡层212的厚度为5埃~20埃。有关所述扩散阻挡层212的厚度的选取原则,可参考前述实施例的相应说明,在此不再赘述。In this embodiment, the thickness of the diffusion barrier layer 212 is 5 Ř20 Å. Regarding the selection principle of the thickness of the diffusion barrier layer 212 , reference may be made to the corresponding descriptions of the above-mentioned embodiments, which will not be repeated here.
本发明提供的SRAM器件中,所述上拉晶体管区I与下拉晶体管区II相邻接,且由于所述第一功函数层207以及第二功函数层208仅位于所述上拉晶体管区I;上拉晶体管区I与下拉晶体管区II交界处的第一功函数层207和第二功函数层208与所述第三功函数层209之间被所述扩散阻挡层212阻挡,所述扩散阻挡层212有利于阻挡所述交界处的第一功函数层207与第三功函数层209之间相互横向扩散,且有利于阻挡所述交界处的第二功函数层208与所述第三功函数层209之间相互横向扩散,从而改善了SRAM器件的电学性能,例如提高上拉晶体管和下拉晶体管之间的电学参数失配。In the SRAM device provided by the present invention, the pull-up transistor region I is adjacent to the pull-down transistor region II, and since the first work function layer 207 and the second work function layer 208 are only located in the pull-up transistor region I ; between the first work function layer 207 and the second work function layer 208 at the junction of the pull-up transistor region I and the pull-down transistor region II, and the third work function layer 209 are blocked by the diffusion barrier layer 212, and the diffusion The barrier layer 212 is beneficial to block the mutual lateral diffusion between the first work function layer 207 and the third work function layer 209 at the junction, and is beneficial to block the second work function layer 208 and the third work function layer 208 at the junction. The mutual lateral diffusion between the work function layers 209 improves the electrical performance of the SRAM device, for example, improves the electrical parameter mismatch between the pull-up transistor and the pull-down transistor.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611081243.8A CN108122912B (en) | 2016-11-30 | 2016-11-30 | SRAM device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611081243.8A CN108122912B (en) | 2016-11-30 | 2016-11-30 | SRAM device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108122912A CN108122912A (en) | 2018-06-05 |
CN108122912B true CN108122912B (en) | 2019-09-27 |
Family
ID=62227264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611081243.8A Active CN108122912B (en) | 2016-11-30 | 2016-11-30 | SRAM device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108122912B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110581102B (en) * | 2018-06-07 | 2021-11-09 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
US11342434B2 (en) * | 2020-05-29 | 2022-05-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of manufacturing semiconductor devices and semiconductor devices |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9502416B1 (en) * | 2015-06-04 | 2016-11-22 | Samsung Electronics Co., Ltd. | Semiconductor device including transistors having different threshold voltages |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102056582B1 (en) * | 2013-06-05 | 2020-01-22 | 삼성전자 주식회사 | Semiconductor device and method for the same |
KR102262887B1 (en) * | 2014-07-21 | 2021-06-08 | 삼성전자주식회사 | Semiconductor device and method for fabricating the same |
-
2016
- 2016-11-30 CN CN201611081243.8A patent/CN108122912B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9502416B1 (en) * | 2015-06-04 | 2016-11-22 | Samsung Electronics Co., Ltd. | Semiconductor device including transistors having different threshold voltages |
Also Published As
Publication number | Publication date |
---|---|
CN108122912A (en) | 2018-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108122852B (en) | Semiconductor structure and forming method thereof | |
CN108122914B (en) | SRAM device and its manufacturing method | |
CN108122913B (en) | Semiconductor device and method of forming the same | |
CN106558584B (en) | Semiconductor structure and method of forming the same | |
CN102856255B (en) | Semiconductor element with metal gate and manufacturing method thereof | |
CN108010884A (en) | Semiconductor structure and forming method thereof | |
CN107492551B (en) | Semiconductor structure and manufacturing method thereof | |
CN108122973B (en) | Semiconductor structure, forming method thereof and SRAM | |
TW201608641A (en) | Semiconductor component and manufacturing method thereof | |
CN108122912B (en) | SRAM device and manufacturing method thereof | |
CN108257918B (en) | Semiconductor structure and method of forming the same | |
US11456304B2 (en) | Semiconductor structure and forming method thereof | |
CN108155235B (en) | Semiconductor structure and forming method thereof | |
CN110581102A (en) | Semiconductor structures and methods of forming them | |
CN106847755B (en) | Method for improving SRAM performance | |
CN108258033B (en) | Semiconductor device and method of forming the same | |
CN107492522B (en) | CMOS device, PMOS device and NMOS device forming method | |
CN113327857B (en) | Semiconductor structure and forming method thereof | |
CN114078762B (en) | Semiconductor structures and methods of forming them | |
CN114068394B (en) | Method for forming semiconductor structure | |
CN111863816B (en) | Semiconductor structure and method for forming the same | |
CN107492499A (en) | The forming method of semiconductor devices | |
CN115117057A (en) | Semiconductor structure and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |