CN106780459A - A kind of three dimensional point cloud autoegistration method - Google Patents
A kind of three dimensional point cloud autoegistration method Download PDFInfo
- Publication number
- CN106780459A CN106780459A CN201611138671.XA CN201611138671A CN106780459A CN 106780459 A CN106780459 A CN 106780459A CN 201611138671 A CN201611138671 A CN 201611138671A CN 106780459 A CN106780459 A CN 106780459A
- Authority
- CN
- China
- Prior art keywords
- point
- point cloud
- feature
- matrix
- matching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000005070 sampling Methods 0.000 claims abstract description 25
- 230000009466 transformation Effects 0.000 claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims description 72
- 238000013519 translation Methods 0.000 claims description 49
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 239000013598 vector Substances 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000017105 transposition Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 5
- 238000012795 verification Methods 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
Landscapes
- Image Processing (AREA)
Abstract
本发明公开了一种三维点云数据自动配准方法,包括如下步骤:对待配准的两片点云进行采样得到特征点,分别计算这些特征点的旋转不变特征子,对两片点云中特征点的旋转不变特征子进行匹配搜索,得到特征点之间的初始对应关系;然后采用随机采样一致算法对初匹配点集中存在的误匹配点进行判断和去除,得到优化的特征点对应关系,计算得到两片点云之间的大致刚性变换关系,实现粗配准;并提供一种刚性变换一致性的检测算法,利用匹配特征点间的局部坐标系变换关系对粗配准结果进行约束性检测,完成粗配准结果正确性的验证;并采用ICP算法优化点云数据间的刚性变换关系,最终实现点云的自动精确配准。
The invention discloses a method for automatic registration of three-dimensional point cloud data, comprising the following steps: sampling two point clouds to be registered to obtain feature points, calculating the rotation invariant feature of these feature points, The rotation-invariant feature sub-characteristics of the feature points are matched and searched to obtain the initial correspondence between the feature points; then the random sampling consensus algorithm is used to judge and remove the false matching points existing in the initial matching point set, and the optimized feature point correspondence is obtained. relationship, calculate the roughly rigid transformation relationship between the two point clouds, and realize rough registration; and provide a rigid transformation consistency detection algorithm, use the local coordinate system transformation relationship between the matching feature points to perform rough registration results Constraint detection, to complete the verification of the correctness of the rough registration results; and use the ICP algorithm to optimize the rigid transformation relationship between point cloud data, and finally realize the automatic and accurate registration of point clouds.
Description
技术领域technical field
本发明属于三维测量领域,更具体地,涉及一种三维点云数据自动配准方法。The invention belongs to the field of three-dimensional measurement, and more specifically relates to an automatic registration method for three-dimensional point cloud data.
背景技术Background technique
三维模型在工业检测、文物保护、生物医学等领域都具有重要的意义。随着三维测量技术的发展,对点云模型的处理技术已成为近年来研究的热点。点云处理中一个重要步骤就是将同一场景中不同视点获得的点云数据统一到同一坐标系,即点云配准。The 3D model is of great significance in the fields of industrial inspection, cultural relics protection, biomedicine and so on. With the development of 3D measurement technology, the processing technology of point cloud model has become a research hotspot in recent years. An important step in point cloud processing is to unify the point cloud data obtained from different viewpoints in the same scene into the same coordinate system, that is, point cloud registration.
点云配准方法主要分为以下几类:(1)手动配准:手动选取两片点云之间的对应点实现拼合,该方法需要人工干预,拼合的效果往往依赖操作者的经验;(2)基于外部辅助的配准方法:利用转台或者在被测物上粘贴标志点的方式实现辅助配准,此类方法对环境要求较高,配准的精度易受外部辅助的影响;(3)基于自身形貌特征的配准方法:利用被测物体自身的形貌特征实现点云之间的匹配进而实现点云的自动配准,无需使用额外的设备或者标志点,能够满足不同测量场合的需求,但算法的稳定性和精度与有辅助的点云配准技术相比还有待加强。The point cloud registration methods are mainly divided into the following categories: (1) Manual registration: Manually select the corresponding points between two point clouds to achieve merging. This method requires manual intervention, and the effect of merging often depends on the experience of the operator; ( 2) Registration method based on external assistance: using a turntable or pasting mark points on the object to achieve auxiliary registration, this type of method has high environmental requirements, and the registration accuracy is easily affected by external assistance; (3 ) registration method based on its own topographic features: use the topographic features of the measured object to achieve matching between point clouds and then realize automatic registration of point clouds, without using additional equipment or marker points, and can meet different measurement occasions However, the stability and accuracy of the algorithm need to be strengthened compared with the assisted point cloud registration technology.
针对基于自身形貌特征的配准方法,已有研究单位进行相关研究,并取得了一定的成果;Rusu利用特征点与周围邻域点的法向量夹角作为特征构建了一种快速点特征直方图(Fast Point Feature Histograms,FPFH)用于特征点的查找和匹配,完成初始配准得到较理想的初始位置之后,采用精确配准算法提高配准精度;Chen和Besl提出了迭代最近点算法(Iterative closest point,ICP)来进行两幅点云数据的精确配准,该方法通过迭代寻找对应点集中的最近点作为对应点,不断优化刚性变换矩阵,最终获得精确配准。但该方法对两片点云的初始位置要求较高,需要点云之间初始相对位置大致相近。Aiming at the registration method based on its own shape features, some research units have carried out related research and achieved certain results; Rusu used the normal vector angle between the feature point and the surrounding neighbor points as a feature to construct a fast point feature histogram Fast Point Feature Histograms (FPFH) are used to search and match feature points. After completing the initial registration to obtain an ideal initial position, the precise registration algorithm is used to improve the registration accuracy; Chen and Besl proposed an iterative closest point algorithm ( Iterative closest point (ICP) is used to perform accurate registration of two point cloud data. This method iteratively finds the closest point in the corresponding point set as the corresponding point, continuously optimizes the rigid transformation matrix, and finally obtains accurate registration. However, this method has high requirements for the initial positions of the two point clouds, and the initial relative positions between the point clouds need to be roughly similar.
现有的点云配准方法通常采用粗配准和精确配准相结合的方式,其中,粗配准一般通过计算点的特征寻找对应点,估计得到两幅点云间的初始位置关系;精配准则是采用ICP及其改进算法对粗配准结果进行进一步优化,实现点云数据的精确配准;但现有的利用点的特征进行点云配准的方法对于点云噪声、体外孤立点以及点云密度变化等干扰因素较为敏感,易出现大量的误匹配点,降低了配准的精度和稳定性。Existing point cloud registration methods usually use a combination of coarse registration and precise registration. Among them, coarse registration generally finds corresponding points by calculating the characteristics of points, and estimates the initial position relationship between the two point clouds; The registration criterion is to use ICP and its improved algorithm to further optimize the rough registration results to achieve precise registration of point cloud data; And interference factors such as point cloud density changes are relatively sensitive, and a large number of mismatching points are prone to appear, which reduces the accuracy and stability of registration.
发明内容Contents of the invention
本发明的目的在于针对现有的技术问题,提供一种三维点云数据自动配准方法,配准精度高并且具有很强的稳定性,完成配准结果正确性的自动判断。The purpose of the present invention is to provide an automatic registration method for three-dimensional point cloud data in view of the existing technical problems, which has high registration accuracy and strong stability, and completes automatic judgment of the correctness of registration results.
为实现上述目的,本发明的技术解决方案是基于旋转不变特征描述子的点云自动配准方法,首先对待配准的两片点云进行采样得到特征点,分别计算这些特征点的旋转不变特征子,对两片点云中特征点的旋转不变特征进行匹配搜索,得到特征点之间的初始对应关系;然后采用随机采样一致算法(Random Sample Consensus,RANSAC)对初匹配点集中存在的误匹配点进行判断和去除,得到优化的特征点对应关系,计算得到两片点云之间的大致刚性变换关系,实现粗配准;并提供一种刚性变换一致性的检测算法,利用匹配特征点间的局部坐标系变换关系对粗配准结果进行约束性检测,进行粗配准结果正确性的验证;最后采用迭代最近点算法优化点云数据间的刚性变换关系,最终实现点云的自动精确配准。In order to achieve the above object, the technical solution of the present invention is an automatic point cloud registration method based on rotation-invariant feature descriptors. First, the two point clouds to be registered are sampled to obtain feature points, and the rotation invariance of these feature points is calculated respectively. Variable feature sub, to search for the rotation invariant features of the feature points in the two point clouds, and obtain the initial correspondence between the feature points; then use the random sampling consensus algorithm (Random Sample Consensus, RANSAC) Judging and removing the mis-matched points, obtaining the optimized corresponding relationship of feature points, calculating the roughly rigid transformation relationship between the two point clouds, and realizing rough registration; and providing a rigid transformation consistency detection algorithm, using the matching The local coordinate system transformation relationship between the feature points is constrained to detect the rough registration results, and the correctness of the rough registration results is verified; finally, the iterative closest point algorithm is used to optimize the rigid transformation relationship between the point cloud data, and finally the point cloud is realized. Automatic precise registration.
具体包括如下步骤:Specifically include the following steps:
步骤1:读入采集到的待配准的源点云P和目标点云Q;Step 1: Read in the collected source point cloud P and target point cloud Q to be registered;
步骤2:分别计算源点云P和目标点云Q的密度,并从所述源点云P中随机选取若干个点构成源特征点集S1,从目标点云Q中随机选取若干个点构成目标特征点集S2;Step 2: Calculate the density of the source point cloud P and the target point cloud Q respectively, and randomly select several points from the source point cloud P to form the source feature point set S 1 , and randomly select several points from the target point cloud Q Constitute the target feature point set S 2 ;
步骤3:根据源点云与目标点云的密度,分别计算源特征点集S1与目标特征点集S2中每个特征点的局部旋转平移不变坐标系;Step 3: Calculate the local rotation-translation invariant coordinate system of each feature point in the source feature point set S 1 and the target feature point set S 2 according to the density of the source point cloud and the target point cloud;
步骤4:根据特征点的局部旋转平移不变坐标系计算每个特征点的高维特征描述;对目标点云Q与源点云P进行特征点匹配,获得初匹配点集C;Step 4: Calculate the high-dimensional feature description of each feature point according to the local rotation and translation invariant coordinate system of the feature point; perform feature point matching on the target point cloud Q and the source point cloud P, and obtain the initial matching point set C;
步骤5:利用随机采样一致算法去除所述步骤4中获得的所述初匹配点集中的误匹配,利用基于奇异值分解法的刚性变化估计算法计算获得旋转矩阵R和平移矩阵T,获得所述目标点云和所述源点云之间的粗配准结果;Step 5: Use the random sampling consensus algorithm to remove the mismatching in the initial matching point set obtained in the step 4, use the rigidity change estimation algorithm based on the singular value decomposition method to calculate and obtain the rotation matrix R and the translation matrix T, and obtain the a coarse registration result between the target point cloud and said source point cloud;
步骤6:采用基于刚性变换一致性的配准错误检测算法判定步骤5获得的粗配准结果是否正确,结果正确则转入步骤7,结果不正确则返回配准失败的结果;Step 6: Use a registration error detection algorithm based on rigid transformation consistency to determine whether the rough registration result obtained in step 5 is correct, and if the result is correct, go to step 7, and if the result is incorrect, return the result of registration failure;
步骤7:采用迭代最近点算法迭代优化上述估计得到的旋转矩阵R和平移矩阵T,实现所述目标点云和源点云的自动精确配准。Step 7: Iteratively optimize the rotation matrix R and translation matrix T obtained by the above estimation by using the iterative closest point algorithm, so as to realize the automatic and accurate registration of the target point cloud and the source point cloud.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:Generally speaking, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:
(1)本发明提供的三维点云数据自动配准方法,通过从点云数据中选取特征点集,为每个特征点构建局部旋转平移不变坐标系,并计算得到在该特征点上的高维特征描述,实现了对传统人工标志点的替代,可以用于诸如文物数字化扫描等应用场景当中,可以减少人工粘贴、去除标志点的工作量;(1) The automatic registration method of 3D point cloud data provided by the present invention, by selecting a feature point set from the point cloud data, constructs a local rotation-translation invariant coordinate system for each feature point, and calculates the coordinate system on the feature point High-dimensional feature description realizes the replacement of traditional artificial markers, and can be used in application scenarios such as digital scanning of cultural relics, which can reduce the workload of manual pasting and removal of markers;
(2)本发明提供的三维点云数据自动配准方法,利用所得到的特征点集和高维特征描述,可以有效实现不同点云数据之间的对应点查找与匹配,实现任意初始姿态下点云数据的自动配准;(2) The automatic registration method of 3D point cloud data provided by the present invention can effectively realize the search and matching of corresponding points between different point cloud data by using the obtained feature point set and high-dimensional feature description, and realize Automatic registration of point cloud data;
(3)本发明提供的三维点云数据自动配准方法,通过将利用局部旋转不变坐标系计算得到的局部旋转矩阵结果与利用随机抽样一致性算法求解得到的全局旋转平移矩阵结果进行比较,判断其之间是否具有旋转平移一致性,可以进而有效判断粗配准结果是否成功,实现了精确配准。(3) The method for automatic registration of three-dimensional point cloud data provided by the present invention compares the result of the local rotation matrix calculated by using the local rotation-invariant coordinate system with the result of the global rotation-translation matrix obtained by using the random sampling consistency algorithm, Judging whether there is rotation-translation consistency between them can further effectively judge whether the rough registration result is successful, and realize precise registration.
附图说明Description of drawings
图1是按照本发明提供的三维点云数据自动配准方法的整体流程示意图。Fig. 1 is a schematic diagram of the overall flow of the method for automatic registration of 3D point cloud data according to the present invention.
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below may be combined with each other as long as they do not constitute a conflict with each other.
本发明实施例所提供的三维点云数据自动配准方法,其流程如图1所示,包括如下步骤:The method for automatic registration of three-dimensional point cloud data provided by the embodiment of the present invention has a process as shown in FIG. 1 and includes the following steps:
步骤1:读入由三维测量设备采集得到的目标点云和源点云;Step 1: Read in the target point cloud and source point cloud collected by the 3D measuring equipment;
步骤2:分别随机选取源点云和目标点云中的若干个点构成两组特征点集,具体为:Step 2: Randomly select several points in the source point cloud and the target point cloud to form two sets of feature points, specifically:
根据预设的特征点采样比例h1和h2,分别从源点云P与目标点云Q中随机采样得到对应的特征点集 According to the preset feature point sampling ratios h 1 and h 2 , randomly sample from the source point cloud P and the target point cloud Q respectively to obtain the corresponding feature point sets
其中,n1是指源点云P的特征点集的特征点数目,n2是指目标点云Q的特征点集的特征点数目,n1=h1·N1,n2=h2·N2。Among them, n 1 refers to the number of feature points in the feature point set of the source point cloud P, n 2 refers to the number of feature points in the feature point set of the target point cloud Q, n 1 =h 1 ·N 1 , n 2 =h 2 • N 2 .
步骤3:对采样得到的特征点集,计算其中每个特征点的局部旋转平移不变坐标系;具体包括以下子步骤:Step 3: Calculate the local rotation and translation invariant coordinate system of each feature point for the sampled feature point set; specifically include the following sub-steps:
步骤3.1:对于源点云中的每个点pi与目标点云Q中的每个点qi,利用最近邻搜索方法计算点pi的最近邻点pi′,以及点qi的最近邻点qi′Step 3.1: For each point p i in the source point cloud and each point q i in the target point cloud Q, use the nearest neighbor search method to calculate the nearest neighbor point p i ′ of point p i and the nearest point q i neighboring point q i ′
获取点云pi的点云密度dp,以及点云qi的点云密度dq;Obtain the point cloud density d p of point cloud p i , and the point cloud density d q of point cloud q i ;
其中,||pi-pi′||是指点pi与pi′之间的欧式距离,||qi-qi′||是指之间点qi与点qi′之间的欧式距离;i=1,2,3,…,N,N为点云数据中点的个数;源点云P中包含N1个点,对源点云P而言,N=N1;目标点云中Q包含N2个点,对目标点云Q而言,N=N2;Among them, ||p i -p i ′|| is the Euclidean distance between point p i and p i ′, ||q i -q i ′|| is the distance between point q i and point q i ′ Euclidean distance; i=1,2,3,...,N, N is the number of points in the point cloud data; the source point cloud P contains N 1 points, for the source point cloud P, N=N 1 ; Q in the target point cloud contains N 2 points, and for the target point cloud Q, N=N 2 ;
步骤3.2:任意选取特征点集中一点pi,构造点pi的协方差矩阵:Step 3.2: Randomly select a point p i in the set of feature points, and construct the covariance matrix of point p i :
其中,wi=1/||pj-pi||,半径rloc为pi的邻域计算半径;实施例中,取rloc=15dp;Among them, w i =1/||p j -p i ||, The radius r loc is the calculated radius of the neighborhood of p i ; in the embodiment, r loc =15d p ;
步骤3.3:采用下式求解协方差矩阵的特征值和特征向量;Step 3.3: use the following formula to solve the eigenvalues and eigenvectors of the covariance matrix;
COV(pi)V=EVCOV(p i )V=EV
其中,E是由构成的3×3对角阵 where E is given by The 3×3 diagonal matrix formed by
是特征值对应的特征向量,l=1,2,3; is the eigenvalue Corresponding eigenvectors, l=1,2,3;
步骤3.4:将分别设为x+,y+,z+,的反向向量设为x-,y-,z-;Step 3.4: Put Set to x + , y + , z + respectively, The reverse vector of is set to x - , y - , z - ;
局部坐标系中z轴的方向由下式确定:The direction of the z-axis in the local coordinate system is determined by the following formula:
步骤3.5:采用步骤3.4的方法确定局部坐标系中x轴方向;局部坐标系中y轴方向由z×x确定,由此建立起以pi为原点的局部旋转平移不变坐标系Fi={x,y,x},;采用与上述步骤3.2~3.4同样的方法,建立以点qi为原点的局部旋转平移不变坐标系。Step 3.5: Use the method of step 3.4 to determine the direction of the x-axis in the local coordinate system; the direction of the y-axis in the local coordinate system is determined by z×x, thus establishing a local rotation-translation invariant coordinate system F i = with p i as the origin {x, y, x},; use the same method as the above steps 3.2 to 3.4 to establish a local rotation and translation invariant coordinate system with the point q i as the origin.
步骤4:根据计算得到的特征点的局部旋转平移不变坐标系,计算特征点的高维特征描述,对两幅点云进行特征点匹配,得到初匹配点集;具体包括如下子步骤:Step 4: According to the local rotation and translation invariant coordinate system of the calculated feature points, calculate the high-dimensional feature description of the feature points, match the feature points of the two point clouds, and obtain the initial matching point set; specifically include the following sub-steps:
步骤4.1:对源点云特征点集中任一特征点pi,其高维特征描述为高维向量形式在目标点云特征点集所对应的特征几何所构成的高维空间中搜索与距离最近的特征及次近的特征 Step 4.1: For any feature point p i in the source point cloud feature point set, its high-dimensional features are described in the form of high-dimensional vectors In the high-dimensional space formed by the feature geometry corresponding to the feature point set of the target point cloud, search and nearest feature and next closest feature
在本发明中,最近邻特征的搜索是通过快速近似最近邻搜索方法(FastApproximate Nearest Neighbor Search)进行加速计算;In the present invention, the search of the nearest neighbor feature is accelerated calculation by fast approximate nearest neighbor search method (FastApproximate Nearest Neighbor Search);
步骤4.2:计算特征分别到最近的特征次近的特征的欧式距离和计算与比值,并判断该比值与预设的距离比阈值τ的大小;Step 4.2: Calculate features to the nearest feature next closest feature Euclidean distance of with calculate and Ratio, and judge the size of the ratio and the preset distance ratio threshold τ;
具体地,根据下式判定得到与之间是否具有正确对应关系 Specifically, it is determined according to the following formula and Is there a correct correspondence between
若则表明与匹配成功,否则匹配失败;若与匹配成功,则其分别对应的源点云与目标点云中的特征点也正确对应,该点对构成一个匹配点对;like then it shows and The match is successful, otherwise the match fails; if and If the matching is successful, the corresponding feature points in the source point cloud and the target point cloud are also correctly corresponding, and the point pair constitutes a matching point pair;
对源点云的其他特征点也进行上述处理,由所有的匹配点对构成初匹配点集C。The above processing is also performed on other feature points of the source point cloud, and the initial matching point set C is formed by all matching point pairs.
步骤5:采用随机采样一致算法(Random Sample Consensus,RANSAC)去除初匹配点集中的误匹配,利用奇异值分解法(SVD)计算旋转矩阵R和平移矩阵T,得到源点云和目标点云之间的粗配准关系,具体包括如下子步骤:Step 5: Use Random Sample Consensus (RANSAC) to remove false matches in the initial matching point set, and use Singular Value Decomposition (SVD) to calculate the rotation matrix R and translation matrix T, and obtain the distance between the source point cloud and the target point cloud. Coarse registration relationship among them, specifically including the following sub-steps:
步骤5.1:设定随机采样的次数Snum和初始残余误差Err,从初匹配点集C中随机采样,选取3对匹配点作为初始点;Step 5.1: Set the number of random sampling S num and the initial residual error E rr , randomly sample from the initial matching point set C, and select 3 pairs of matching points as the initial point;
若选取的某个特征点的匹配点有多个,则从相应点集中随机选取其中一点作为该查找点的对应点;If there are multiple matching points of a selected feature point, one of them is randomly selected from the corresponding point set as the corresponding point of the search point;
步骤5.2:利用SVD算法求解旋转矩阵R和平移矩阵T,具体如下:Step 5.2: Use the SVD algorithm to solve the rotation matrix R and translation matrix T, as follows:
步骤5.21:设由步骤5.1得到匹配点集为P={p1,p2,p3,},P′={p′1,p′2,p′3},利用下式计算点集的质心;Step 5.21: Assuming that the matching point set obtained in step 5.1 is P={p 1 ,p 2 ,p 3 ,}, P′={p′ 1 ,p′ 2 ,p′ 3 }, use the following formula to calculate the point set Centroid;
其中,pk和p′k为任一对匹配点的三维坐标;Wherein, p k and p′ k are the three-dimensional coordinates of any pair of matching points;
步骤5.22:利用下式将点集P和P′相对于各自质心做平移,得到新点集Q={q1,q2,q3,}和Q′={q′1,q′2,q′3};Step 5.22: Use the following formula to translate the point sets P and P′ relative to their respective centroids to obtain new point sets Q={q 1 ,q 2 ,q 3 ,} and Q′={q′ 1 ,q′ 2 , q′ 3 };
qk=pk-g,q′k=p′k-g′,(k=1,2,3);q k =p k -g,q' k =p' k -g',(k=1,2,3);
步骤5.23:利用下式计算3×3的矩阵M:Step 5.23: Calculate the 3×3 matrix M using the following formula:
步骤5.24:对M矩阵进行奇异值分解M=UΛVT;Step 5.24: performing singular value decomposition M=UΛV T on the M matrix;
其中,上标T为矩阵的转置,U、V为3×3的酉矩阵,Λ为3×3的对角阵,定义3×3的对角阵A为:Among them, the superscript T is the transposition of the matrix, U and V are 3×3 unitary matrices, Λ is a 3×3 diagonal matrix, and the 3×3 diagonal matrix A is defined as:
步骤5.25:利用下式计算3×3的旋转矩阵R和3×1的平移矩阵T:Step 5.25: Use the following formula to calculate the 3×3 rotation matrix R and the 3×1 translation matrix T:
R=UAVT,T=g′-Rg;R = UAV T , T = g'-Rg;
步骤5.3:对初匹配点集中所有的匹配点对,根据下式计算旋转平移后的距离误差derr;Step 5.3: For all matching point pairs in the initial matching point set, calculate the distance error d err after rotation and translation according to the following formula;
derr=||pτ-(R·qτ+T)||2;d err =||p τ -(R·q τ +T)|| 2 ;
若距离误差derr小于给定的初始残余误差Err,则判定该匹配点是内点;按照上述方法求出所有内点并统计内点的个数m′;If the distance error d err is smaller than the given initial residual error E rr , it is determined that the matching point is an interior point; all interior points are calculated according to the above method and the number m′ of interior points is counted;
实施例中,残余误差即为距离阈值;(pτ,qτ)为初匹配点集中的一个匹配点对,τ=1,2,…r,r为初匹配点集中的匹配点对的数目;In the embodiment, the residual error is the distance threshold; (p τ , q τ ) is a matching point pair in the initial matching point set, τ=1,2,...r, r is the number of matching point pairs in the initial matching point set ;
步骤5.4:如果内点个数m′大于给定的内点个数m,则利用该内点数据集中的点采用SVD算法重新求解旋转矩阵R、平移矩阵T;Step 5.4: If the number of interior points m' is greater than the given number of interior points m, use the points in the interior point data set to re-solve the rotation matrix R and translation matrix T using the SVD algorithm;
根据下式计算残余误差E′rr;Calculate the residual error E′ rr according to the following formula;
若残余误差小于初始残余误差,则将此时计算得到的旋转平移矩阵作为最佳估计目标模型参数,更新旋转平移矩阵R、T和初始残余误差E′rr;否则转到步骤5.5;若内点的个数小于给定内点的个数,则直接转到步骤5.5;If the residual error is smaller than the initial residual error, then use the rotation-translation matrix calculated at this time as the best estimated target model parameter to update the rotation-translation matrix R, T and the initial residual error E′ rr ; otherwise, go to step 5.5; if the interior point is less than the number of given interior points, then go directly to step 5.5;
步骤5.5:重复随机采样Snum次,重复步骤5.2~5.4,得到该组抽样所对应的内点数,对所有抽样的内点数进行排序,选取内点数最多的抽样结果作为最佳抽样;Step 5.5: Repeat random sampling S num times, repeat steps 5.2 to 5.4 to obtain the number of inliers corresponding to the group of samples, sort the number of inliers in all samples, and select the sampling result with the largest number of inliers as the best sampling;
利用该最佳抽样下得到的内点数据集C,根据步骤5.2求解旋转矩阵R、平移矩阵T,作为最佳旋转平移矩阵Rran和Tran;其中C1中包含S对匹配点对。Using the interior point data set C obtained under the optimal sampling, solve the rotation matrix R and translation matrix T according to step 5.2 as the optimal rotation and translation matrices R ran and T ran ; where C 1 contains S pairs of matching points.
步骤6:采用刚性变换一致性的检测算法校验粗配准关系是否正确;Step 6: Use the rigid transformation consistency detection algorithm to check whether the rough registration relationship is correct;
步骤6.1:利用下式计算初匹配点集C中的匹配点对(ploc,qloc)其匹配点之间的旋转平移矩阵(Rloc,Tloc):Step 6.1: Use the following formula to calculate the rotation-translation matrix (R loc , T loc ) between matching point pairs (p loc , q loc ) in the initial matching point set C:
其中,Rloc为两个匹配点之间的局部旋转矩阵,Tloc为两个匹配点之间的局部平移矩阵;Among them, R loc is the local rotation matrix between two matching points, and T loc is the local translation matrix between two matching points;
Fploc、Fqloc分别是在点ploc,qloc建立的局部坐标系,loc=1,2,…S,S为匹配点集C中匹配点对的数目;F ploc and F qloc are local coordinate systems established at points p loc and q loc respectively, loc=1,2,...S, S is the number of matching point pairs in matching point set C;
步骤6.2:将求解得到的旋转矩阵Rloc转换为欧拉角表示,即Step 6.2: Convert the obtained rotation matrix R loc into Euler angle representation, namely
Rloc→(αloc,βloc,γloc);将步骤5.6中得到的旋转矩阵Rran转化为欧拉角表示,即Rran→(αran,βran,γran);R loc →(α loc ,β loc ,γ loc ); convert the rotation matrix R ran obtained in step 5.6 into Euler angle representation, that is, R ran →(α ran ,β ran ,γ ran );
步骤6.3:根据下式计算欧拉角之间的角度差值da:Step 6.3: Calculate the angle difference d a between the Euler angles according to the following formula:
其中,Δ(η1,η2)2=(η1-η2)2,η1,η2为欧拉角;Among them, Δ(η 1 , η 2 ) 2 = (η 1 -η 2 ) 2 , η 1 , η 2 are Euler angles;
步骤6.4:根据下式计算与Tran=(tx,ty,tz)T之间的距离差值dt:Step 6.4: Calculate according to the following formula The distance difference d t between T ran = (t x , t y , t z ) T :
步骤6.5:根据da和dt是否均小于给定的阈值σa和σt,判定两种方法求解出的旋转平移矩阵是否一致;Step 6.5: According to whether d a and d t are both smaller than the given thresholds σ a and σ t , determine whether the rotation and translation matrices obtained by the two methods are consistent;
实施例中,σa取0.5236,σt取15Dden,Dden为点云密度,即旋转矩阵相差小于30°,平移矩阵距离小于15倍的点云密度时,则表明本步骤所计算的旋转平移矩阵与步骤5所获得的旋转平移矩阵是一致的;In the embodiment, σ a takes 0.5236, σ t takes 15D den , and D den is the point cloud density, that is, when the rotation matrix difference is less than 30°, and when the translation matrix distance is less than 15 times the point cloud density, it indicates that the rotation calculated in this step The translation matrix is consistent with the rotation-translation matrix obtained in step 5;
步骤6.6:对最佳抽样下得到的内点数据集C内的其他匹配点对也执行步骤6.1到步骤6.5,得到所有匹配点对之间的局部旋转平移矩阵与上述最佳旋转平移矩阵(Rran,Tran)之间的一致性关系;Step 6.6: Perform steps 6.1 to 6.5 for other matching point pairs in the inlier data set C obtained under the best sampling, and obtain the local rotation-translation matrix between all matching point pairs and the above-mentioned optimal rotation-translation matrix (R ran , T ran ) consistency relationship between;
最终统计得到最佳抽样下得到的内点数据集C中所有满足一致性关系的匹配点对的数目s;The final statistics obtain the number s of all matching point pairs satisfying the consistency relationship in the interior point data set C obtained under the best sampling;
步骤6.7:计算满足一致性关系的匹配点对的数目s与匹配点集C中匹配点对的数目S的一致性比值λ=s/S;Step 6.7: Calculate the consistency ratio λ=s/S of the number s of matching point pairs satisfying the consistency relationship and the number S of matching point pairs in the matching point set C;
若λ≥阈值τλ,则表明利用RANSAC求解得到的旋转矩阵和利用局部旋转不变坐标系计算得到的旋转矩阵是一致的,则判定为配准成功;否则,判定配准失败;实施例中,阈值τλ=0.7。If λ≥threshold τ λ , it indicates that the rotation matrix obtained by using RANSAC solution is consistent with the rotation matrix calculated by using the local rotation-invariant coordinate system, and it is determined that the registration is successful; otherwise, it is determined that the registration has failed; in the embodiment , the threshold τ λ =0.7.
步骤7:采用改进的ICP算法优化点云之间的刚性变换关系,实现点云的自动精确配准;刚性变换关系包括旋转平移矩阵;具体步骤如下:Step 7: Use the improved ICP algorithm to optimize the rigid transformation relationship between point clouds to realize automatic and accurate registration of point clouds; the rigid transformation relationship includes the rotation and translation matrix; the specific steps are as follows:
步骤7.1:设定距离阈值ω作为迭代终止的条件;其中,ω>0;距离阈值ω根据源点云P的点云密度dp;实施例中,取ω=5dp;Step 7.1: Set the distance threshold ω as the condition for iteration termination; where, ω>0; the distance threshold ω is based on the point cloud density dp of the source point cloud P; in the embodiment, ω= 5dp ;
步骤7.2:在源点云中随机选取若干点作为待匹配点;Step 7.2: Randomly select several points in the source point cloud as points to be matched;
步骤7.3:用逆向投影法在目标点云中查找源点云中待匹配点的对应点;Step 7.3: use the reverse projection method to find the corresponding point of the point to be matched in the source point cloud in the target point cloud;
步骤7.4:采用基于点到面距离度量作为ICP算法所需求解的目标函数,不断迭代计算源点云到目标点云的刚性变换关系;Step 7.4: Using the point-to-plane distance measurement as the objective function to be solved by the ICP algorithm, iteratively calculate the rigid transformation relationship from the source point cloud to the target point cloud;
步骤7.5:当目标函数值小于距离阈值ω时,停止迭代;并将此时求解得到的刚性变换关系作为最终结果,完成点云的自动精确配准。Step 7.5: When the objective function value is less than the distance threshold ω, stop the iteration; and use the rigid transformation relationship obtained at this time as the final result to complete the automatic precise registration of the point cloud.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611138671.XA CN106780459A (en) | 2016-12-12 | 2016-12-12 | A kind of three dimensional point cloud autoegistration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611138671.XA CN106780459A (en) | 2016-12-12 | 2016-12-12 | A kind of three dimensional point cloud autoegistration method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106780459A true CN106780459A (en) | 2017-05-31 |
Family
ID=58880016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611138671.XA Pending CN106780459A (en) | 2016-12-12 | 2016-12-12 | A kind of three dimensional point cloud autoegistration method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106780459A (en) |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107491071A (en) * | 2017-09-04 | 2017-12-19 | 中山大学 | A kind of Intelligent multi-robot collaboration mapping system and its method |
CN107702663A (en) * | 2017-09-29 | 2018-02-16 | 五邑大学 | A kind of point cloud registration method based on the rotation platform with index point |
CN107818598A (en) * | 2017-10-20 | 2018-03-20 | 西安电子科技大学昆山创新研究院 | A kind of three-dimensional point cloud map amalgamation method of view-based access control model correction |
CN107860346A (en) * | 2017-09-30 | 2018-03-30 | 北京卫星制造厂 | A kind of measuring coordinate system method for registering |
CN107945220A (en) * | 2017-11-30 | 2018-04-20 | 华中科技大学 | A kind of method for reconstructing based on binocular vision |
CN108022262A (en) * | 2017-11-16 | 2018-05-11 | 天津大学 | A kind of point cloud registration method based on neighborhood of a point center of gravity vector characteristics |
CN108122280A (en) * | 2017-12-20 | 2018-06-05 | 北京搜狐新媒体信息技术有限公司 | The method for reconstructing and device of a kind of three-dimensional point cloud |
CN108564605A (en) * | 2018-04-09 | 2018-09-21 | 大连理工大学 | A kind of three-dimensional measurement spots cloud optimization method for registering |
CN108648167A (en) * | 2018-03-06 | 2018-10-12 | 深圳市菲森科技有限公司 | A kind of interior 3-D scanning method scanned of mouth |
CN108776991A (en) * | 2018-04-17 | 2018-11-09 | 深圳清创新科技有限公司 | Three-dimensional modeling method, device, storage medium and computer equipment |
CN109087342A (en) * | 2018-07-12 | 2018-12-25 | 武汉尺子科技有限公司 | A kind of three-dimensional point cloud global registration method and system based on characteristic matching |
CN109377551A (en) * | 2018-10-16 | 2019-02-22 | 北京旷视科技有限公司 | A three-dimensional face reconstruction method, device and storage medium thereof |
CN109523501A (en) * | 2018-04-28 | 2019-03-26 | 江苏理工学院 | One kind being based on dimensionality reduction and the matched battery open defect detection method of point cloud data |
CN109584310A (en) * | 2018-11-26 | 2019-04-05 | 南昌航空大学 | A kind of joining method of the big object Shape ' measurement based on verticality constraint |
CN109697728A (en) * | 2017-10-20 | 2019-04-30 | 阿里巴巴集团控股有限公司 | Data processing method, device, system and storage medium |
CN109741374A (en) * | 2019-01-30 | 2019-05-10 | 重庆大学 | Point cloud registration and rotation transformation method, point cloud registration method, device and readable storage medium |
CN109767463A (en) * | 2019-01-09 | 2019-05-17 | 重庆理工大学 | A method for automatic registration of 3D point clouds |
CN109859256A (en) * | 2019-03-13 | 2019-06-07 | 大连理工大学 | Three-dimensional point cloud registration method based on automatic corresponding point matching |
CN109887012A (en) * | 2019-01-09 | 2019-06-14 | 天津大学 | A Point Cloud Registration Method Combined with Adaptive Search Point Set |
CN109919984A (en) * | 2019-04-15 | 2019-06-21 | 武汉惟景三维科技有限公司 | A kind of point cloud autoegistration method based on local feature description's |
CN110136178A (en) * | 2018-02-08 | 2019-08-16 | 中国人民解放军战略支援部队信息工程大学 | A 3D laser point cloud registration method and device based on endpoint fitting |
CN110222382A (en) * | 2019-05-22 | 2019-09-10 | 成都飞机工业(集团)有限责任公司 | A kind of aircraft axes Optimal Fitting method |
CN110215281A (en) * | 2019-06-11 | 2019-09-10 | 北京和华瑞博科技有限公司 | A kind of femur or shin bone method for registering and device based on total knee replacement |
CN110287873A (en) * | 2019-06-25 | 2019-09-27 | 清华大学深圳研究生院 | Noncooperative target pose measuring method, system and terminal device based on deep neural network |
CN110335234A (en) * | 2019-04-28 | 2019-10-15 | 武汉大学 | A 3D change detection method based on LiDAR point cloud of ancient cultural relics |
CN110353806A (en) * | 2019-06-18 | 2019-10-22 | 北京航空航天大学 | Augmented reality navigation methods and systems for the operation of minimally invasive total knee replacement |
CN110415339A (en) * | 2019-07-19 | 2019-11-05 | 清华大学 | Method and device for calculating matching relationship between input three-dimensional shapes |
CN110473239A (en) * | 2019-08-08 | 2019-11-19 | 刘秀萍 | A kind of high-precision point cloud registration method of 3 D laser scanning |
CN110766733A (en) * | 2019-10-28 | 2020-02-07 | 广东三维家信息科技有限公司 | Single-space point cloud registration method and device |
CN110827382A (en) * | 2019-11-11 | 2020-02-21 | 杭州都市高速公路有限公司 | Automatic inspection method for arc hinge joint structural size of assembled culvert segment |
CN110930495A (en) * | 2019-11-22 | 2020-03-27 | 哈尔滨工业大学(深圳) | Multi-unmanned aerial vehicle cooperation-based ICP point cloud map fusion method, system, device and storage medium |
CN111009005A (en) * | 2019-11-27 | 2020-04-14 | 天津大学 | Scene classification point cloud rough registration method combining geometric information and photometric information |
CN111090084A (en) * | 2018-10-24 | 2020-05-01 | 舜宇光学(浙江)研究院有限公司 | Multi-laser-radar external reference calibration method, multi-laser-radar external reference calibration device, multi-laser-radar external reference calibration system and electronic equipment |
CN111210466A (en) * | 2020-01-14 | 2020-05-29 | 华志微创医疗科技(北京)有限公司 | Multi-view point cloud registration method and device and computer equipment |
CN111223132A (en) * | 2019-12-25 | 2020-06-02 | 华东师范大学 | Object registration method and system |
CN111311651A (en) * | 2018-12-11 | 2020-06-19 | 北京大学 | Point cloud registration method and device |
CN111612847A (en) * | 2020-04-30 | 2020-09-01 | 重庆见芒信息技术咨询服务有限公司 | Point cloud data matching method and system for robot grabbing operation |
CN111652801A (en) * | 2020-05-11 | 2020-09-11 | 东莞理工学院 | A method for precise splicing of point clouds |
CN111681282A (en) * | 2020-06-18 | 2020-09-18 | 浙江大华技术股份有限公司 | A kind of pallet identification processing method and device |
CN111986219A (en) * | 2020-08-10 | 2020-11-24 | 中国科学院光电技术研究所 | A matching method of 3D point cloud and free-form surface model |
CN112001955A (en) * | 2020-08-24 | 2020-11-27 | 深圳市建设综合勘察设计院有限公司 | Point cloud registration method and system based on two-dimensional projection plane matching constraint |
CN112067314A (en) * | 2020-09-01 | 2020-12-11 | 无锡威莱斯电子有限公司 | Barrier invasion calculation method in MPDB |
CN112184783A (en) * | 2020-09-22 | 2021-01-05 | 西安交通大学 | Three-dimensional point cloud registration method combined with image information |
CN112382359A (en) * | 2020-12-09 | 2021-02-19 | 北京柏惠维康科技有限公司 | Patient registration method and device, electronic equipment and computer readable medium |
CN112509019A (en) * | 2020-12-02 | 2021-03-16 | 西北工业大学 | Three-dimensional corresponding relation grouping method based on compatibility characteristics |
CN112669359A (en) * | 2021-01-14 | 2021-04-16 | 武汉理工大学 | Three-dimensional point cloud registration method, device, equipment and storage medium |
CN112904361A (en) * | 2020-12-10 | 2021-06-04 | 成都飞机工业(集团)有限责任公司 | Engine thrust line accurate measurement method based on laser scanning |
WO2021114026A1 (en) * | 2019-12-09 | 2021-06-17 | 深圳大学 | 3d shape matching method and apparatus based on local reference frame |
WO2021114027A1 (en) * | 2019-12-09 | 2021-06-17 | 深圳大学 | 3d shape matching method and device for describing 3d local features on the basis of sgh |
CN113470084A (en) * | 2021-05-18 | 2021-10-01 | 西安电子科技大学 | Point set registration method based on outline rough matching |
CN113591977A (en) * | 2021-07-29 | 2021-11-02 | 武汉联影智融医疗科技有限公司 | Point pair matching method and device, electronic equipment and storage medium |
CN113628258A (en) * | 2021-04-25 | 2021-11-09 | 西安理工大学 | Point cloud rough registration method based on self-adaptive feature point extraction |
CN113616350A (en) * | 2021-07-16 | 2021-11-09 | 元化智能科技(深圳)有限公司 | Verification method and device for selected positions of marking points, terminal equipment and storage medium |
CN113658166A (en) * | 2021-08-24 | 2021-11-16 | 凌云光技术股份有限公司 | Point cloud defect detection method and device based on grid model |
CN113706593A (en) * | 2021-08-27 | 2021-11-26 | 北京工业大学 | Vehicle chassis point cloud fusion method suitable for vehicle geometric passing parameter detection |
CN113706381A (en) * | 2021-08-26 | 2021-11-26 | 北京理工大学 | Three-dimensional point cloud data splicing method and device |
CN113865506A (en) * | 2021-09-09 | 2021-12-31 | 武汉惟景三维科技有限公司 | Automatic three-dimensional measurement method and system for non-mark point splicing |
CN114118181A (en) * | 2021-08-26 | 2022-03-01 | 西北大学 | A high-dimensional regression point cloud registration method, system, computer equipment and application |
CN114170283A (en) * | 2021-12-14 | 2022-03-11 | 中山大学 | A Point Cloud Accelerated Registration Method |
CN114219717A (en) * | 2021-11-26 | 2022-03-22 | 杭州三坛医疗科技有限公司 | Point cloud registration method, device, electronic device and storage medium |
CN114593681A (en) * | 2020-12-07 | 2022-06-07 | 北京格灵深瞳信息技术有限公司 | Thickness measurement method, device, electronic device and storage medium |
CN114677418A (en) * | 2022-04-18 | 2022-06-28 | 南通大学 | Registration method based on point cloud feature point extraction |
CN115147833A (en) * | 2022-07-25 | 2022-10-04 | 温州大学乐清工业研究院 | Part pose identification method and system |
CN115272433A (en) * | 2022-09-23 | 2022-11-01 | 武汉图科智能科技有限公司 | Light-weight point cloud registration method and system for automatic obstacle avoidance of unmanned aerial vehicle |
CN115564811A (en) * | 2022-09-28 | 2023-01-03 | 国网江苏省电力有限公司电力科学研究院 | Point cloud registration method for transformer wiring terminal |
CN115830080A (en) * | 2022-10-27 | 2023-03-21 | 上海神玑医疗科技有限公司 | Point cloud registration method and device, electronic equipment and storage medium |
CN116021391A (en) * | 2022-04-21 | 2023-04-28 | 泉州华中科技大学智能制造研究院 | Flexible grinding and polishing equipment and method based on vision and force control |
CN116152303A (en) * | 2022-09-08 | 2023-05-23 | 上海贝特威自动化科技有限公司 | Two-part graph point cloud matching algorithm based on geometric space consistency weighting |
CN116188544A (en) * | 2022-12-29 | 2023-05-30 | 易思维(杭州)科技有限公司 | Point cloud registration method combining edge features |
CN116309756A (en) * | 2023-04-04 | 2023-06-23 | 中国农业大学烟台研究院 | Three-dimensional point cloud global automatic registration method for lettuce |
CN116523979A (en) * | 2023-04-24 | 2023-08-01 | 北京长木谷医疗科技股份有限公司 | Point cloud registration method, device and electronic equipment based on deep learning |
CN118628474A (en) * | 2024-07-05 | 2024-09-10 | 苏州诺达佳自动化技术有限公司 | Industrial automation three-dimensional detection system and method |
CN119068028A (en) * | 2024-08-07 | 2024-12-03 | 广东工业大学 | Fast 3D point cloud registration method based on matching of three pairs of block geometric features |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103236064A (en) * | 2013-05-06 | 2013-08-07 | 东南大学 | Point cloud automatic registration method based on normal vector |
CN104392426A (en) * | 2014-10-23 | 2015-03-04 | 华中科技大学 | Adaptive markerless three-dimensional point cloud automatic registration method |
CN105654483A (en) * | 2015-12-30 | 2016-06-08 | 四川川大智胜软件股份有限公司 | Three-dimensional point cloud full-automatic registration method |
-
2016
- 2016-12-12 CN CN201611138671.XA patent/CN106780459A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103236064A (en) * | 2013-05-06 | 2013-08-07 | 东南大学 | Point cloud automatic registration method based on normal vector |
CN104392426A (en) * | 2014-10-23 | 2015-03-04 | 华中科技大学 | Adaptive markerless three-dimensional point cloud automatic registration method |
CN105654483A (en) * | 2015-12-30 | 2016-06-08 | 四川川大智胜软件股份有限公司 | Three-dimensional point cloud full-automatic registration method |
Non-Patent Citations (3)
Title |
---|
Y. ZHONG,M. STEVENS: "Action recognition in spatiotemporal volume", 《2010 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION-WORKSHOPS》 * |
刘新: "三维点云数据的配准算法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
黄欢欢 等: "旋转不变特征描述子的点云自动配准方法", 《黑龙江科技大学学报》 * |
Cited By (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107491071B (en) * | 2017-09-04 | 2020-10-30 | 中山大学 | Intelligent multi-robot cooperative mapping system and method thereof |
CN107491071A (en) * | 2017-09-04 | 2017-12-19 | 中山大学 | A kind of Intelligent multi-robot collaboration mapping system and its method |
CN107702663A (en) * | 2017-09-29 | 2018-02-16 | 五邑大学 | A kind of point cloud registration method based on the rotation platform with index point |
CN107702663B (en) * | 2017-09-29 | 2019-12-13 | 五邑大学 | Point cloud registration method based on rotating platform with mark points |
CN107860346A (en) * | 2017-09-30 | 2018-03-30 | 北京卫星制造厂 | A kind of measuring coordinate system method for registering |
CN107860346B (en) * | 2017-09-30 | 2019-12-20 | 北京卫星制造厂 | Registration method for measuring coordinate system |
CN107818598A (en) * | 2017-10-20 | 2018-03-20 | 西安电子科技大学昆山创新研究院 | A kind of three-dimensional point cloud map amalgamation method of view-based access control model correction |
CN109697728B (en) * | 2017-10-20 | 2023-04-25 | 阿里巴巴集团控股有限公司 | Data processing method, device, system and storage medium |
CN109697728A (en) * | 2017-10-20 | 2019-04-30 | 阿里巴巴集团控股有限公司 | Data processing method, device, system and storage medium |
CN107818598B (en) * | 2017-10-20 | 2020-12-25 | 西安电子科技大学昆山创新研究院 | Three-dimensional point cloud map fusion method based on visual correction |
CN108022262A (en) * | 2017-11-16 | 2018-05-11 | 天津大学 | A kind of point cloud registration method based on neighborhood of a point center of gravity vector characteristics |
CN107945220B (en) * | 2017-11-30 | 2020-07-10 | 华中科技大学 | A Reconstruction Method Based on Binocular Vision |
CN107945220A (en) * | 2017-11-30 | 2018-04-20 | 华中科技大学 | A kind of method for reconstructing based on binocular vision |
CN108122280A (en) * | 2017-12-20 | 2018-06-05 | 北京搜狐新媒体信息技术有限公司 | The method for reconstructing and device of a kind of three-dimensional point cloud |
CN110136178B (en) * | 2018-02-08 | 2021-06-25 | 中国人民解放军战略支援部队信息工程大学 | A three-dimensional laser point cloud registration method and device based on endpoint fitting |
CN110136178A (en) * | 2018-02-08 | 2019-08-16 | 中国人民解放军战略支援部队信息工程大学 | A 3D laser point cloud registration method and device based on endpoint fitting |
CN108648167A (en) * | 2018-03-06 | 2018-10-12 | 深圳市菲森科技有限公司 | A kind of interior 3-D scanning method scanned of mouth |
CN108648167B (en) * | 2018-03-06 | 2021-10-01 | 深圳市菲森科技有限公司 | Three-dimensional scanning method for intraoral scanning |
CN108564605B (en) * | 2018-04-09 | 2020-04-07 | 大连理工大学 | Three-dimensional measurement point cloud optimization registration method |
CN108564605A (en) * | 2018-04-09 | 2018-09-21 | 大连理工大学 | A kind of three-dimensional measurement spots cloud optimization method for registering |
CN108776991A (en) * | 2018-04-17 | 2018-11-09 | 深圳清创新科技有限公司 | Three-dimensional modeling method, device, storage medium and computer equipment |
CN108776991B (en) * | 2018-04-17 | 2023-02-28 | 深圳一清创新科技有限公司 | Three-dimensional modeling method, three-dimensional modeling device, storage medium and computer equipment |
CN109523501A (en) * | 2018-04-28 | 2019-03-26 | 江苏理工学院 | One kind being based on dimensionality reduction and the matched battery open defect detection method of point cloud data |
CN109087342A (en) * | 2018-07-12 | 2018-12-25 | 武汉尺子科技有限公司 | A kind of three-dimensional point cloud global registration method and system based on characteristic matching |
CN109377551B (en) * | 2018-10-16 | 2023-06-27 | 北京旷视科技有限公司 | Three-dimensional face reconstruction method and device and storage medium thereof |
CN109377551A (en) * | 2018-10-16 | 2019-02-22 | 北京旷视科技有限公司 | A three-dimensional face reconstruction method, device and storage medium thereof |
CN111090084A (en) * | 2018-10-24 | 2020-05-01 | 舜宇光学(浙江)研究院有限公司 | Multi-laser-radar external reference calibration method, multi-laser-radar external reference calibration device, multi-laser-radar external reference calibration system and electronic equipment |
CN109584310A (en) * | 2018-11-26 | 2019-04-05 | 南昌航空大学 | A kind of joining method of the big object Shape ' measurement based on verticality constraint |
CN109584310B (en) * | 2018-11-26 | 2022-12-16 | 南昌航空大学 | Splicing method for large object surface shape measurement based on verticality constraint |
CN111311651B (en) * | 2018-12-11 | 2023-10-20 | 北京大学 | Point cloud registration method and device |
CN111311651A (en) * | 2018-12-11 | 2020-06-19 | 北京大学 | Point cloud registration method and device |
CN109767463A (en) * | 2019-01-09 | 2019-05-17 | 重庆理工大学 | A method for automatic registration of 3D point clouds |
CN109887012A (en) * | 2019-01-09 | 2019-06-14 | 天津大学 | A Point Cloud Registration Method Combined with Adaptive Search Point Set |
CN109887012B (en) * | 2019-01-09 | 2023-03-31 | 天津大学 | Point cloud registration method combined with self-adaptive search point set |
CN109741374A (en) * | 2019-01-30 | 2019-05-10 | 重庆大学 | Point cloud registration and rotation transformation method, point cloud registration method, device and readable storage medium |
CN109741374B (en) * | 2019-01-30 | 2022-12-06 | 重庆大学 | Point cloud registration rotation transformation method, point cloud registration equipment and readable storage medium |
CN109859256B (en) * | 2019-03-13 | 2023-03-31 | 大连理工大学 | Three-dimensional point cloud registration method based on automatic corresponding point matching |
CN109859256A (en) * | 2019-03-13 | 2019-06-07 | 大连理工大学 | Three-dimensional point cloud registration method based on automatic corresponding point matching |
CN109919984A (en) * | 2019-04-15 | 2019-06-21 | 武汉惟景三维科技有限公司 | A kind of point cloud autoegistration method based on local feature description's |
CN110335234A (en) * | 2019-04-28 | 2019-10-15 | 武汉大学 | A 3D change detection method based on LiDAR point cloud of ancient cultural relics |
CN110222382B (en) * | 2019-05-22 | 2023-04-18 | 成都飞机工业(集团)有限责任公司 | Aircraft coordinate system optimization fitting method |
CN110222382A (en) * | 2019-05-22 | 2019-09-10 | 成都飞机工业(集团)有限责任公司 | A kind of aircraft axes Optimal Fitting method |
CN110215281A (en) * | 2019-06-11 | 2019-09-10 | 北京和华瑞博科技有限公司 | A kind of femur or shin bone method for registering and device based on total knee replacement |
CN110215281B (en) * | 2019-06-11 | 2020-07-10 | 北京和华瑞博医疗科技有限公司 | Femur or tibia registration method and device based on total knee replacement surgery |
CN110353806A (en) * | 2019-06-18 | 2019-10-22 | 北京航空航天大学 | Augmented reality navigation methods and systems for the operation of minimally invasive total knee replacement |
CN110353806B (en) * | 2019-06-18 | 2021-03-12 | 北京航空航天大学 | Augmented reality navigation method and system for minimally invasive total knee replacement surgery |
WO2020253280A1 (en) * | 2019-06-18 | 2020-12-24 | 北京航空航天大学 | Augmented reality navigation method and system for minimally invasive total knee replacement surgery |
CN110287873B (en) * | 2019-06-25 | 2021-06-29 | 清华大学深圳研究生院 | Non-cooperative target pose measurement method and system based on deep neural network and terminal equipment |
CN110287873A (en) * | 2019-06-25 | 2019-09-27 | 清华大学深圳研究生院 | Noncooperative target pose measuring method, system and terminal device based on deep neural network |
CN110415339A (en) * | 2019-07-19 | 2019-11-05 | 清华大学 | Method and device for calculating matching relationship between input three-dimensional shapes |
CN110473239A (en) * | 2019-08-08 | 2019-11-19 | 刘秀萍 | A kind of high-precision point cloud registration method of 3 D laser scanning |
CN110766733B (en) * | 2019-10-28 | 2022-08-12 | 广东三维家信息科技有限公司 | Single-space point cloud registration method and device |
CN110766733A (en) * | 2019-10-28 | 2020-02-07 | 广东三维家信息科技有限公司 | Single-space point cloud registration method and device |
CN110827382B (en) * | 2019-11-11 | 2024-07-09 | 中交赤峰市政建设有限公司 | Automatic inspection method for structural dimension of arc hinge joint of assembled culvert pipe piece |
CN110827382A (en) * | 2019-11-11 | 2020-02-21 | 杭州都市高速公路有限公司 | Automatic inspection method for arc hinge joint structural size of assembled culvert segment |
CN110930495A (en) * | 2019-11-22 | 2020-03-27 | 哈尔滨工业大学(深圳) | Multi-unmanned aerial vehicle cooperation-based ICP point cloud map fusion method, system, device and storage medium |
CN111009005A (en) * | 2019-11-27 | 2020-04-14 | 天津大学 | Scene classification point cloud rough registration method combining geometric information and photometric information |
US12307738B2 (en) | 2019-12-09 | 2025-05-20 | Shenzhen University | 3D shape matching method and device based on 3D local feature description using SGHS |
US11625454B2 (en) | 2019-12-09 | 2023-04-11 | Shenzhen University | Method and device for 3D shape matching based on local reference frame |
WO2021114026A1 (en) * | 2019-12-09 | 2021-06-17 | 深圳大学 | 3d shape matching method and apparatus based on local reference frame |
WO2021114027A1 (en) * | 2019-12-09 | 2021-06-17 | 深圳大学 | 3d shape matching method and device for describing 3d local features on the basis of sgh |
CN111223132A (en) * | 2019-12-25 | 2020-06-02 | 华东师范大学 | Object registration method and system |
CN111210466A (en) * | 2020-01-14 | 2020-05-29 | 华志微创医疗科技(北京)有限公司 | Multi-view point cloud registration method and device and computer equipment |
CN111612847A (en) * | 2020-04-30 | 2020-09-01 | 重庆见芒信息技术咨询服务有限公司 | Point cloud data matching method and system for robot grabbing operation |
CN111612847B (en) * | 2020-04-30 | 2023-10-20 | 湖北煌朝智能自动化装备有限公司 | Point cloud data matching method and system for robot grabbing operation |
CN111652801A (en) * | 2020-05-11 | 2020-09-11 | 东莞理工学院 | A method for precise splicing of point clouds |
CN111652801B (en) * | 2020-05-11 | 2021-12-21 | 东莞理工学院 | A method for precise splicing of point clouds |
CN111681282A (en) * | 2020-06-18 | 2020-09-18 | 浙江大华技术股份有限公司 | A kind of pallet identification processing method and device |
CN111986219B (en) * | 2020-08-10 | 2023-09-19 | 中国科学院光电技术研究所 | Matching method of three-dimensional point cloud and free-form surface model |
CN111986219A (en) * | 2020-08-10 | 2020-11-24 | 中国科学院光电技术研究所 | A matching method of 3D point cloud and free-form surface model |
CN112001955A (en) * | 2020-08-24 | 2020-11-27 | 深圳市建设综合勘察设计院有限公司 | Point cloud registration method and system based on two-dimensional projection plane matching constraint |
CN112067314B (en) * | 2020-09-01 | 2023-02-28 | 无锡威莱斯电子有限公司 | A Calculation Method of Barrier Intrusion in MPDB |
CN112067314A (en) * | 2020-09-01 | 2020-12-11 | 无锡威莱斯电子有限公司 | Barrier invasion calculation method in MPDB |
CN112184783A (en) * | 2020-09-22 | 2021-01-05 | 西安交通大学 | Three-dimensional point cloud registration method combined with image information |
CN112509019A (en) * | 2020-12-02 | 2021-03-16 | 西北工业大学 | Three-dimensional corresponding relation grouping method based on compatibility characteristics |
CN112509019B (en) * | 2020-12-02 | 2024-03-08 | 西北工业大学 | Three-dimensional corresponding relation grouping method based on compatibility characteristics |
CN114593681A (en) * | 2020-12-07 | 2022-06-07 | 北京格灵深瞳信息技术有限公司 | Thickness measurement method, device, electronic device and storage medium |
CN114593681B (en) * | 2020-12-07 | 2024-10-18 | 北京格灵深瞳信息技术有限公司 | Thickness measuring method, thickness measuring device, electronic equipment and storage medium |
CN112382359A (en) * | 2020-12-09 | 2021-02-19 | 北京柏惠维康科技有限公司 | Patient registration method and device, electronic equipment and computer readable medium |
CN112904361B (en) * | 2020-12-10 | 2022-05-10 | 成都飞机工业(集团)有限责任公司 | Engine thrust line accurate measurement method based on laser scanning |
CN112904361A (en) * | 2020-12-10 | 2021-06-04 | 成都飞机工业(集团)有限责任公司 | Engine thrust line accurate measurement method based on laser scanning |
CN112669359B (en) * | 2021-01-14 | 2023-05-26 | 武汉理工大学 | Three-dimensional point cloud registration method, device, equipment and storage medium |
CN112669359A (en) * | 2021-01-14 | 2021-04-16 | 武汉理工大学 | Three-dimensional point cloud registration method, device, equipment and storage medium |
CN113628258B (en) * | 2021-04-25 | 2024-04-26 | 西安理工大学 | Point cloud rough registration method based on self-adaptive feature point extraction |
CN113628258A (en) * | 2021-04-25 | 2021-11-09 | 西安理工大学 | Point cloud rough registration method based on self-adaptive feature point extraction |
CN113470084A (en) * | 2021-05-18 | 2021-10-01 | 西安电子科技大学 | Point set registration method based on outline rough matching |
CN113470084B (en) * | 2021-05-18 | 2024-01-30 | 西安电子科技大学 | Point set registration method based on outline rough matching |
CN113616350A (en) * | 2021-07-16 | 2021-11-09 | 元化智能科技(深圳)有限公司 | Verification method and device for selected positions of marking points, terminal equipment and storage medium |
CN113591977A (en) * | 2021-07-29 | 2021-11-02 | 武汉联影智融医疗科技有限公司 | Point pair matching method and device, electronic equipment and storage medium |
CN113658166B (en) * | 2021-08-24 | 2024-04-12 | 凌云光技术股份有限公司 | Point cloud defect detection method and device based on grid model |
CN113658166A (en) * | 2021-08-24 | 2021-11-16 | 凌云光技术股份有限公司 | Point cloud defect detection method and device based on grid model |
CN114118181A (en) * | 2021-08-26 | 2022-03-01 | 西北大学 | A high-dimensional regression point cloud registration method, system, computer equipment and application |
CN113706381A (en) * | 2021-08-26 | 2021-11-26 | 北京理工大学 | Three-dimensional point cloud data splicing method and device |
CN114118181B (en) * | 2021-08-26 | 2022-06-21 | 西北大学 | High-dimensional regression point cloud registration method, system, computer equipment and application |
CN113706593A (en) * | 2021-08-27 | 2021-11-26 | 北京工业大学 | Vehicle chassis point cloud fusion method suitable for vehicle geometric passing parameter detection |
CN113706593B (en) * | 2021-08-27 | 2024-03-08 | 北京工业大学 | Vehicle chassis point cloud fusion method suitable for vehicle geometric passing parameter detection |
CN113865506A (en) * | 2021-09-09 | 2021-12-31 | 武汉惟景三维科技有限公司 | Automatic three-dimensional measurement method and system for non-mark point splicing |
CN113865506B (en) * | 2021-09-09 | 2023-11-24 | 武汉惟景三维科技有限公司 | Automatic three-dimensional measurement method and system without mark point splicing |
CN114219717A (en) * | 2021-11-26 | 2022-03-22 | 杭州三坛医疗科技有限公司 | Point cloud registration method, device, electronic device and storage medium |
CN114170283A (en) * | 2021-12-14 | 2022-03-11 | 中山大学 | A Point Cloud Accelerated Registration Method |
CN114677418A (en) * | 2022-04-18 | 2022-06-28 | 南通大学 | Registration method based on point cloud feature point extraction |
CN114677418B (en) * | 2022-04-18 | 2024-05-24 | 南通大学 | Registration method based on point cloud feature point extraction |
CN116021391A (en) * | 2022-04-21 | 2023-04-28 | 泉州华中科技大学智能制造研究院 | Flexible grinding and polishing equipment and method based on vision and force control |
CN115147833A (en) * | 2022-07-25 | 2022-10-04 | 温州大学乐清工业研究院 | Part pose identification method and system |
CN116152303B (en) * | 2022-09-08 | 2023-11-24 | 上海贝特威自动化科技有限公司 | Two-part graph point cloud matching algorithm based on geometric space consistency weighting |
CN116152303A (en) * | 2022-09-08 | 2023-05-23 | 上海贝特威自动化科技有限公司 | Two-part graph point cloud matching algorithm based on geometric space consistency weighting |
CN115272433A (en) * | 2022-09-23 | 2022-11-01 | 武汉图科智能科技有限公司 | Light-weight point cloud registration method and system for automatic obstacle avoidance of unmanned aerial vehicle |
CN115272433B (en) * | 2022-09-23 | 2022-12-09 | 武汉图科智能科技有限公司 | Light-weight point cloud registration method and system for automatic obstacle avoidance of unmanned aerial vehicle |
CN115564811A (en) * | 2022-09-28 | 2023-01-03 | 国网江苏省电力有限公司电力科学研究院 | Point cloud registration method for transformer wiring terminal |
CN115830080A (en) * | 2022-10-27 | 2023-03-21 | 上海神玑医疗科技有限公司 | Point cloud registration method and device, electronic equipment and storage medium |
CN115830080B (en) * | 2022-10-27 | 2024-05-03 | 上海神玑医疗科技有限公司 | Point cloud registration method and device, electronic equipment and storage medium |
CN116188544A (en) * | 2022-12-29 | 2023-05-30 | 易思维(杭州)科技有限公司 | Point cloud registration method combining edge features |
CN116309756A (en) * | 2023-04-04 | 2023-06-23 | 中国农业大学烟台研究院 | Three-dimensional point cloud global automatic registration method for lettuce |
CN116523979B (en) * | 2023-04-24 | 2024-01-30 | 北京长木谷医疗科技股份有限公司 | Point cloud registration method, device and electronic equipment based on deep learning |
CN116523979A (en) * | 2023-04-24 | 2023-08-01 | 北京长木谷医疗科技股份有限公司 | Point cloud registration method, device and electronic equipment based on deep learning |
CN118628474B (en) * | 2024-07-05 | 2024-10-11 | 苏州诺达佳自动化技术有限公司 | Industrial automation three-dimensional detection system and method |
CN118628474A (en) * | 2024-07-05 | 2024-09-10 | 苏州诺达佳自动化技术有限公司 | Industrial automation three-dimensional detection system and method |
CN119068028A (en) * | 2024-08-07 | 2024-12-03 | 广东工业大学 | Fast 3D point cloud registration method based on matching of three pairs of block geometric features |
CN119068028B (en) * | 2024-08-07 | 2025-05-23 | 广东工业大学 | Fast 3D point cloud registration method based on matching of three pairs of block geometric features |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106780459A (en) | A kind of three dimensional point cloud autoegistration method | |
Lei et al. | Fast descriptors and correspondence propagation for robust global point cloud registration | |
CN111028277A (en) | SAR and optical remote sensing image registration method based on pseudo-twin convolutional neural network | |
CN108376408B (en) | Three-dimensional point cloud data rapid weighting registration method based on curvature features | |
CN108107444B (en) | A method for identifying foreign objects in substations based on laser data | |
CN104143210B (en) | Multi-scale normal feature point cloud registering method | |
CN103400384B (en) | The wide-angle image matching process of calmodulin binding domain CaM coupling and some coupling | |
CN104899918B (en) | The three-dimensional environment modeling method and system of a kind of unmanned plane | |
CN104392426A (en) | Adaptive markerless three-dimensional point cloud automatic registration method | |
CN109559340A (en) | A kind of parallel three dimensional point cloud automation method for registering | |
CN106548462A (en) | Non-linear SAR image geometric correction method based on thin-plate spline interpolation | |
CN105118059A (en) | Multi-scale coordinate axis angle feature point cloud fast registration method | |
CN103727930A (en) | Edge-matching-based relative pose calibration method of laser range finder and camera | |
CN112200915B (en) | Front-back deformation detection method based on texture image of target three-dimensional model | |
CN107358629A (en) | Figure and localization method are built in a kind of interior based on target identification | |
JP2011113197A (en) | Method and system for image search | |
CN104268866A (en) | Video sequence registering method based on combination of motion information and background information | |
CN111652801B (en) | A method for precise splicing of point clouds | |
CN105513094A (en) | Stereo vision tracking method and stereo vision tracking system based on 3D Delaunay triangulation | |
CN117173437B (en) | Multimodal remote sensing image hybrid matching method and system | |
CN117132630A (en) | A point cloud registration method based on second-order spatial compatibility measure | |
Qiao et al. | Pyramid semantic graph-based global point cloud registration with low overlap | |
CN109255815A (en) | A kind of object detection and recognition methods based on order spherical harmonic | |
CN104123711B (en) | The localization method of multiple organ in a kind of 3-D view | |
CN108062766A (en) | A kind of three-dimensional point cloud method for registering of Fusion of Color square information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170531 |