CN106684141A - High linearity GaN fin-type high electron mobility transistor and manufacture method thereof - Google Patents
High linearity GaN fin-type high electron mobility transistor and manufacture method thereof Download PDFInfo
- Publication number
- CN106684141A CN106684141A CN201611122851.9A CN201611122851A CN106684141A CN 106684141 A CN106684141 A CN 106684141A CN 201611122851 A CN201611122851 A CN 201611122851A CN 106684141 A CN106684141 A CN 106684141A
- Authority
- CN
- China
- Prior art keywords
- gan
- passivation layer
- fin
- layer
- barrier layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本发明涉及一种具有高线性度的GaN鳍式高电子迁移率晶体管及其制造方法,本发明的晶体管的结构自下而上依次包括衬底、缓冲层、势垒层、钝化层;所述势垒层上方的一端设有源极和另一端设有漏极;位于所述源极和漏极之间的势垒层上方设有钝化层,所述钝化层中设有凹槽,所述凹槽内设有T型栅极,其特征在于,仅限于所述凹槽下方区域的势垒层与缓冲层上刻蚀有周期性排列的GaN基三维鳍片,所述GaN基三维鳍片的长度与凹槽的长度相等,在相邻的GaN基三维鳍片之间设有刻蚀形成的隔离槽。本发明的器件线性度、输出电流高,栅控能力强、散热性能好,频率特性高;本发明的工艺方法简单可靠,适用于大功率高线性微波功率器件。
The invention relates to a GaN fin-type high electron mobility transistor with high linearity and a manufacturing method thereof. The structure of the transistor of the invention includes a substrate, a buffer layer, a barrier layer, and a passivation layer sequentially from bottom to top; One end above the barrier layer is provided with a source electrode and the other end is provided with a drain electrode; a passivation layer is provided above the barrier layer between the source electrode and the drain electrode, and a groove is provided in the passivation layer , the groove is provided with a T-shaped gate, which is characterized in that periodically arranged GaN-based three-dimensional fins are etched on the barrier layer and the buffer layer limited to the region below the groove, and the GaN-based The length of the three-dimensional fins is equal to the length of the groove, and isolation grooves formed by etching are provided between adjacent GaN-based three-dimensional fins. The device of the invention has high linearity, high output current, strong grid control capability, good heat dissipation performance and high frequency characteristics; the process method of the invention is simple and reliable, and is suitable for high-power and high-linear microwave power devices.
Description
技术领域technical field
本发明属于半导体器件制备技术领域,特别是涉及一种具有高线性度的GaN鳍式高电子迁移率晶体管及其制造方法。The invention belongs to the technical field of semiconductor device preparation, in particular to a GaN fin-type high electron mobility transistor with high linearity and a manufacturing method thereof.
技术背景technical background
第三代半导体GaN基高电子迁移率晶体管(HEMT)具有输出功率密度大、效率高、耐高温、耐辐照等特点,已成为制造高频、高效、大功率电子器件的主流技术,有力推动了以雷达为代表的武器装备性能提升。随着高数据流卫星通信与现代无线通讯应用(如5G通讯)对高线性晶体管的迫切需求,高线性器件现在成为GaN领域的重点发展方向。高线性度将带来更加有效的频谱利用率,且能够降低对线性化模块的需求,进一步增加整个系统的效率与集成度。The third-generation semiconductor GaN-based high electron mobility transistor (HEMT) has the characteristics of high output power density, high efficiency, high temperature resistance, and radiation resistance, and has become the mainstream technology for manufacturing high-frequency, high-efficiency, and high-power electronic devices. The performance of weapons and equipment represented by radar has been improved. With the urgent demand for high-linearity transistors in high-data stream satellite communications and modern wireless communication applications (such as 5G communications), high-linearity devices are now the key development direction in the GaN field. High linearity will bring more effective spectrum utilization, and can reduce the demand for linearization modules, further increasing the efficiency and integration of the entire system.
传统GaN平面结构的跨导呈现典型的峰值特性,即跨导在高电流下严重退化,导致在高输入功率下器件增益迅速压缩,交调特性差,线性度低。为克服此缺陷,2005年香港科技大学提出Al0.05Ga0.95N/GaN复合沟道,通过减小沟道纵向电场,一定程度上改善了跨导线性度(参见文献Jie Liu et al.,Highly Linear Al0.3Ga0.7N–Al0.05Ga0.95N–GaN Composite-Channel HEMTs,IEEE Electron Device Lett.,vol.26,no.3,pp.145-147,2005)。随后,美国北卡州立大学发现,由空间电荷限流引起的非线性源电阻是限制GaN器件线性度的主要因素(参见文献Robert J.Trew et al.,Nonlinear Source Resistance in High-VoltageMicrowave AlGaN/GaN HFETs,IEEE Trans.Microw.Theory Tech.,vol.54,no.5,pp.2061-2067,2006)。因此,复合沟道结构在提高线性度方面十分有限,而且会导致沟道热阻增加,器件输出功率、频率、效率等性能显著退化。The transconductance of the traditional GaN planar structure exhibits typical peak characteristics, that is, the transconductance is seriously degraded under high current, resulting in rapid compression of device gain under high input power, poor intermodulation characteristics, and low linearity. In order to overcome this defect, the Hong Kong University of Science and Technology proposed an Al 0.05 Ga 0.95 N/GaN composite channel in 2005, which improved the transconductance to a certain extent by reducing the vertical electric field of the channel (see the literature Jie Liu et al., Highly Linear Al 0.3 Ga 0.7 N–Al 0.05 Ga 0.95 N–GaN Composite-Channel HEMTs, IEEE Electron Device Lett., vol.26, no.3, pp.145-147, 2005). Subsequently, North Carolina State University in the United States found that the nonlinear source resistance caused by space charge limitation is the main factor limiting the linearity of GaN devices (see Robert J.Trew et al., Nonlinear Source Resistance in High-Voltage Microwave AlGaN/GaN HFETs, IEEE Trans. Microw. Theory Tech., vol.54, no.5, pp.2061-2067, 2006). Therefore, the composite channel structure is very limited in improving linearity, and will lead to an increase in channel thermal resistance, and a significant degradation of device output power, frequency, and efficiency.
GaN FinFET(或三维鳍式结构)近来受到国内外研究机构的密切关注,它通过在沟道两侧引入额外侧栅,增强了对沟道电子的控制能力,相对传统结构,表现出更好的亚阈值特性、关态特性,短沟道效应也得到极大抑制(参见文献Kota Ohi et al.,CurrentStability in Multi-Mesa-Channel AlGaN/GaN HEMTs,IEEE Trans.Electron Devices.,vol.60,no.10,pp.2997-3004,2013)。随后,MIT报道了具有高跨导和fT线性度的GaNFinFET器件(参见文献Kota Ohi Dong Seup Lee et al.,Nanowire Channel InAlN/GaNHEMTs With High Linearity of gm and fT,IEEE Electron Devices.,vol.34,no.8,pp.969-971,2013),并指出跨导高线性度的根本原因在于三维鳍片完全被栅金属包裹。然而,为达到此目的,鳍片的制备采用了自对准方式,工艺复杂,与传统GaN器件工艺兼容性差;最重要的是,通过此工艺制备的器件栅电极为直栅结构,栅电阻大,导致最高振荡频率低,最终限制了其在微波功率电路的应用。GaN FinFET (or three-dimensional fin structure) has recently received close attention from research institutions at home and abroad. It enhances the ability to control channel electrons by introducing additional side gates on both sides of the channel. Compared with traditional structures, it shows better Sub-threshold characteristics, off-state characteristics, and short-channel effects are also greatly suppressed (see the literature Kota Ohi et al., CurrentStability in Multi-Mesa-Channel AlGaN/GaN HEMTs, IEEE Trans. Electron Devices., vol.60, no .10, pp.2997-3004, 2013). Subsequently, MIT reported GaNFinFET devices with high transconductance and f T linearity (see literature Kota Ohi Dong Seup Lee et al., Nanowire Channel InAlN/GaNHEMTs With High Linearity of g m and f T , IEEE Electron Devices., vol .34, no.8, pp.969-971, 2013), and pointed out that the fundamental reason for the high linearity of the transconductance is that the three-dimensional fins are completely wrapped by the gate metal. However, in order to achieve this goal, the preparation of fins adopts a self-alignment method, the process is complex, and the compatibility with traditional GaN device processes is poor; the most important thing is that the gate electrode of the device prepared by this process is a straight gate structure, and the gate resistance is large. , resulting in a low maximum oscillation frequency, which ultimately limits its application in microwave power circuits.
中国专利申请公开了一种多沟道鳍式结构的AlGaN/GaN高电子迁移率晶体管结构和制作方法,主要解决现有多沟道器件栅控能力差及FinFET器件电流低的问题。该器件的结构自下而上依次包括衬底(1)、第一层AlGaN/GaN异质结(2)、SiN钝化层(4)和源漏栅电极,源电极和漏电极分别位于SiN钝化层两侧顶层AlGaN势垒层上,其中:第一层AlGaN/GaN异质结与SiN钝化层之间设有GaN层和AlGaN势垒层,形成第二层AlGaN/GaN异质结(3);栅电极覆盖在第二层异质结顶部和第一层及第二层异质结的两侧壁。该器件栅控能力强,饱和电流大,亚阈特性好,可用于短栅长的低功耗低噪声微波功率器件。The Chinese patent application discloses a multi-channel fin structure AlGaN/GaN high electron mobility transistor structure and manufacturing method, which mainly solves the problems of poor gate control capability of existing multi-channel devices and low current of FinFET devices. The structure of the device includes substrate (1), the first layer of AlGaN/GaN heterojunction (2), SiN passivation layer (4) and source-drain-gate electrodes from bottom to top. On the top AlGaN barrier layers on both sides of the passivation layer, among them: a GaN layer and an AlGaN barrier layer are arranged between the first layer of AlGaN/GaN heterojunction and the SiN passivation layer to form the second layer of AlGaN/GaN heterojunction (3); the gate electrode covers the top of the heterojunction in the second layer and the sidewalls of the heterojunction in the first layer and the second layer. The device has strong gate control capability, large saturation current, and good subthreshold characteristics, and can be used for microwave power devices with short gate length, low power consumption and low noise.
中国专利申请公开了一种T栅N面GaN/AlGaN鳍式高电子迁移率晶体管,主要解决现有微波功率器件的最高振荡频率小,欧姆接触电阻大,短沟道效应严重的问题。该器件的结构自下而上包括:衬底(1)、GaN缓冲层(2)、AlGaN势垒层(3)、GaN沟道层(4)、栅介质层(5)、钝化层(6)和源、漏、栅电极,其中缓冲层和沟道层采用N面GaN材料;GaN沟道层和AlGaN势垒层组成GaN/AlGaN异质结;栅电极采用T型栅,且包裹在GaN/AlGaN异质结的两侧和上方,形成三维立体栅结构。该器件具有栅控能力好,欧姆接触电阻小及最高振荡频率高的优点,可用作小尺寸的微波功率器件。The Chinese patent application discloses a T-gate N-plane GaN/AlGaN fin-type high electron mobility transistor, which mainly solves the problems of low maximum oscillation frequency, large ohmic contact resistance and serious short channel effect of existing microwave power devices. The structure of the device includes from bottom to top: substrate (1), GaN buffer layer (2), AlGaN barrier layer (3), GaN channel layer (4), gate dielectric layer (5), passivation layer ( 6) and the source, drain, and gate electrodes, wherein the buffer layer and the channel layer are made of N-face GaN material; the GaN channel layer and the AlGaN barrier layer form a GaN/AlGaN heterojunction; the gate electrode uses a T-shaped gate and is wrapped in On both sides and above the GaN/AlGaN heterojunction, a three-dimensional grid structure is formed. The device has the advantages of good gate control ability, small ohmic contact resistance and high maximum oscillation frequency, and can be used as a small-sized microwave power device.
虽然上述两个方案分别解决了GaN多沟道以及N面结构存在的问题,但还存在明显不足:主要为采用传统GaN基鳍式结构与制备方式,即先制备GaN基三维鳍片再制备凹槽,三维鳍片除了位于凹槽内,还位于凹槽以外区域,如“N面GaN基鳍式高电子迁移率晶体管及制作方法”的图1所示。研究表明,三维鳍片完全被栅金属包裹是器件跨导高线性度的关键所在,而上述两个方案都还不能满足此要求,因此,现有器件均不具有高的跨导高线性度。Although the above two solutions solve the problems of GaN multi-channel and N-surface structures respectively, there are still obvious deficiencies: the main reason is to adopt the traditional GaN-based fin structure and preparation method, that is, to prepare GaN-based three-dimensional fins first and then prepare concaves. The groove, the three-dimensional fin is not only located in the groove, but also in the area outside the groove, as shown in Figure 1 of "N-plane GaN-based fin-type high electron mobility transistor and its manufacturing method". Studies have shown that the key to the high linearity of transconductance of the device is that the three-dimensional fins are completely wrapped by the gate metal, and the above two solutions cannot meet this requirement. Therefore, the existing devices do not have high transconductance and high linearity.
如何克服现有技术所存在的不足已成为当今半导体器件制备技术领域中亟待解决的重点难题之一。How to overcome the shortcomings of the prior art has become one of the key problems to be solved urgently in the field of semiconductor device preparation technology.
发明内容Contents of the invention
本发明的目的是为克服现有技术所存在的不足而提供一种具有高线性度的GaN鳍式高电子迁移率晶体管及其制造方法,本发明以简化的制备工艺,使器件兼有高的线性度与最高振荡频率,能够满足GaN高线性度微波功率器件的应用需要。The purpose of the present invention is to provide a GaN fin-type high electron mobility transistor with high linearity and its manufacturing method in order to overcome the deficiencies in the prior art. The present invention uses a simplified preparation process to make the device have both high The linearity and the highest oscillation frequency can meet the application needs of GaN high linearity microwave power devices.
根据本发明提出的一种具有高线性度的GaN鳍式高电子迁移率晶体管,该晶体管的结构自下而上依次包括衬底、缓冲层、势垒层、钝化层;所述势垒层上方的一端设有源极和另一端设有漏极;位于所述源极和漏极之间的势垒层上方设有钝化层,所述钝化层中设有凹槽,所述凹槽内设有T型栅极,其特征在于,仅限于所述凹槽下方区域内的势垒层与缓冲层上刻蚀有周期性排列的GaN基三维鳍片,所述GaN基三维鳍片的长度与凹槽的长度相等,在相邻的GaN基三维鳍片之间设有刻蚀形成的隔离槽。According to a GaN fin-type high electron mobility transistor with high linearity proposed by the present invention, the structure of the transistor includes a substrate, a buffer layer, a barrier layer, and a passivation layer in order from bottom to top; the barrier layer One end above is provided with a source electrode and the other end is provided with a drain electrode; a passivation layer is provided above the barrier layer between the source electrode and the drain electrode, and a groove is provided in the passivation layer. There is a T-shaped gate in the groove, which is characterized in that periodically arranged GaN-based three-dimensional fins are etched on the barrier layer and buffer layer only in the area below the groove, and the GaN-based three-dimensional fins The length is equal to the length of the groove, and an isolation groove formed by etching is provided between adjacent GaN-based three-dimensional fins.
本发明提出的一种具有高线性度的GaN鳍式高电子迁移率晶体管的进一步的优选方案是:A further preferred solution of a GaN fin-type high electron mobility transistor with high linearity proposed by the present invention is:
所述GaN基三维鳍片(8)的高度为10~300nm、宽度为10~1000nm。The GaN-based three-dimensional fins (8) have a height of 10-300 nm and a width of 10-1000 nm.
所述T型栅极(9)的一部分覆盖在所述GaN基三维鳍片(8)上方的两侧,T型栅极(9)的另一部分覆盖在相邻GaN基三维鳍片(8)之间的隔离槽的上方,T型栅极(9)的再一部分覆盖在所述钝化层(6)的上方。A part of the T-shaped gate (9) covers both sides above the GaN-based three-dimensional fin (8), and another part of the T-shaped gate (9) covers the adjacent GaN-based three-dimensional fin (8) On the top of the isolation groove between them, another part of the T-shaped gate (9) covers the top of the passivation layer (6).
本发明提出的一种具有高线性度的GaN鳍式高电子迁移率晶体管及优选方案的制备方法,包括如下具体步骤:A GaN fin-type high electron mobility transistor with high linearity proposed by the present invention and a method for preparing a preferred solution include the following specific steps:
1)在衬底上依次生长缓冲层和势垒层;1) growing a buffer layer and a barrier layer sequentially on the substrate;
2)在所述势垒层上光刻源漏图形,并淀积源漏金属,然后在N2氛围中进行热退火,分别制作源极和漏极;2) Photoetching source and drain patterns on the barrier layer, depositing source and drain metals, and then performing thermal annealing in N2 atmosphere to make source and drain respectively;
3)在势垒层上沉积钝化层;3) depositing a passivation layer on the barrier layer;
4)在所述钝化层上制作有源区掩模,随后采用刻蚀或离子注入等方式进行器件隔离,形成有源区;4) making an active area mask on the passivation layer, and then performing device isolation by means of etching or ion implantation to form an active area;
5)在所述钝化层上制作栅脚掩模,随后通过RIE、ICP等方式刻蚀钝化层,形成凹槽;5) making a pin mask on the passivation layer, and then etching the passivation layer by means of RIE, ICP, etc. to form grooves;
6)在仅限于所述凹槽下方区域内的势垒层上定义GaN基三维鳍片掩模,随后干法刻蚀势垒层和缓冲层,形成周期排列的GaN基三维鳍片;6) defining a GaN-based three-dimensional fin mask on the barrier layer limited to the region below the groove, and then dry-etching the barrier layer and the buffer layer to form periodically arranged GaN-based three-dimensional fins;
7)在所述钝化层上定义栅帽掩模,通过蒸发或溅射方式沉积栅金属,剥离形成T型栅;7) Defining a gate cap mask on the passivation layer, depositing gate metal by evaporation or sputtering, and peeling off to form a T-shaped gate;
8)在所述钝化层上定义互联开孔区掩模,刻蚀形成互联开孔;8) defining an interconnection opening area mask on the passivation layer, and etching to form interconnection openings;
9)在所述钝化层上定义互联金属区掩模,通过蒸发与剥离工艺形成互联金属。9) Defining an interconnection metal area mask on the passivation layer, and forming interconnection metal through evaporation and stripping processes.
本发明的实现原理:本发明基于现有GaN凹槽栅器件制造工艺,在钝化层开出凹槽后,在所述凹槽内部制作鳍片光刻掩模,随后通过刻蚀形成GaN基三维鳍片,最后制备T型栅完全包裹GaN基三维鳍片。本发明的制备工艺能够可靠地确保GaN基三维鳍片仅限于凹槽下方且完全被栅极包裹,其它区域无三维鳍片,因此根据跨导高线性原理,本发明器件的线性度高,由于采用与传统工艺相同的T型栅,栅电阻小,因此器件的最高振荡频率高。Implementation principle of the present invention: the present invention is based on the existing GaN groove gate device manufacturing process. After the passivation layer is opened with a groove, a fin photolithography mask is made inside the groove, and then a GaN substrate is formed by etching. For three-dimensional fins, the T-shaped gate is finally prepared to completely wrap the GaN-based three-dimensional fins. The preparation process of the present invention can reliably ensure that the GaN-based three-dimensional fins are limited to the bottom of the groove and are completely wrapped by the gate, and there are no three-dimensional fins in other areas. Therefore, according to the principle of high transconductance linearity, the linearity of the device of the present invention is high, because Using the same T-shaped gate as the traditional process, the gate resistance is small, so the maximum oscillation frequency of the device is high.
本发明与现有技术相比其显著优点在于:Compared with the prior art, the present invention has significant advantages in that:
1、本发明的工艺方法简单可靠,仅需在现有GaN凹槽栅工艺基础上添加一步鳍片制备工艺即可实现本发明的目的。1. The process method of the present invention is simple and reliable, and only needs to add a fin preparation process on the basis of the existing GaN grooved gate process to achieve the purpose of the present invention.
2、本发明的器件采用T栅结构,不仅具有高的线性度,而且最高振荡频率高,能够满足微波功率电路需求。2. The device of the present invention adopts a T-gate structure, which not only has high linearity, but also has a high maximum oscillation frequency, which can meet the requirements of microwave power circuits.
3、由于跨导在高栅压下的退化得到抑制,使得本发明的器件具有更高的电流驱动能力与输出功率能力;3. Since the degradation of transconductance under high gate voltage is suppressed, the device of the present invention has higher current driving capability and output power capability;
4、由于GaN基三维鳍片提供了辅助的侧壁散热,因此本发明所述器件热阻较低,适用于大功率高线性微波功率器件。4. Since the GaN-based three-dimensional fins provide auxiliary sidewall heat dissipation, the device of the present invention has low thermal resistance and is suitable for high-power and high-linear microwave power devices.
附图说明Description of drawings
图1是本发明的一种具有高线性度的GaN鳍式高电子迁移率晶体管的三维立体结构的示意图。FIG. 1 is a schematic diagram of a three-dimensional structure of a GaN fin-type high electron mobility transistor with high linearity according to the present invention.
图2包括图2a、图2b、图2c、图2d、图2e、图2f、图2g,是本发明的一种具有高线性度的GaN鳍式高电子迁移率晶体管的制造流程的示意图。Fig. 2 includes Fig. 2a, Fig. 2b, Fig. 2c, Fig. 2d, Fig. 2e, Fig. 2f, Fig. 2g, which is a schematic diagram of the manufacturing process of a GaN fin-type high electron mobility transistor with high linearity in the present invention.
图3是常规GaN平面器件的直流转移特性的示意图。Fig. 3 is a schematic diagram of the DC transfer characteristics of a conventional GaN planar device.
图4是依据本发明制造的高线性GaN鳍式器件的直流转移特性的示意图。FIG. 4 is a schematic diagram of the DC transfer characteristics of a highly linear GaN fin device manufactured according to the present invention.
具体实施方式detailed description
下面结合附图和实施例对本发明的具体实施方式进一步进行详细说明。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
参照图1,本发明提出的一种具有高线性度的GaN鳍式高电子迁移率晶体管是基于III族氮化物半导体,其结构自下而上包括衬底1、缓冲层2、势垒层3、钝化层6;所述势垒层3上方的一端设有源极4和另一端设有漏极5;位于源极4和漏极5之间的势垒层3的上方设有钝化层6,所述钝化层6中设有凹槽7,所述凹槽7内设有T型栅极9,在仅限于所述凹槽7下方区域内的势垒层3与缓冲层2上刻蚀有若干个周期性排列的GaN基三维鳍片8,所述GaN基三维鳍片8仅存在于凹槽7下方,其它区域无鳍片,所述GaN基三维鳍片8的长度与凹槽7的长度相等,在相邻的GaN基三维鳍片之间设有刻蚀形成的隔离槽。其中:Referring to Fig. 1, a GaN fin-type high electron mobility transistor with high linearity proposed by the present invention is based on Group III nitride semiconductors, and its structure includes a substrate 1, a buffer layer 2, and a barrier layer 3 from bottom to top. , passivation layer 6; one end above the barrier layer 3 is provided with a source 4 and the other end is provided with a drain 5; the top of the barrier layer 3 between the source 4 and the drain 5 is provided with passivation layer 6, the passivation layer 6 is provided with a groove 7, and the groove 7 is provided with a T-shaped gate 9, and the barrier layer 3 and the buffer layer 2 in the area only under the groove 7 Several GaN-based three-dimensional fins 8 arranged periodically are etched on the top, and the GaN-based three-dimensional fins 8 only exist below the groove 7, and there are no fins in other regions. The length of the GaN-based three-dimensional fins 8 is the same as The lengths of the grooves 7 are equal, and isolation grooves formed by etching are provided between adjacent GaN-based three-dimensional fins. in:
所述GaN基三维鳍片8的高度为10~300nm(包括选择10nm、100nm、150nm、200nm、250nm或300nm等)、宽度为10~1000nm(包括选择10nm、100nm、300nm、600nm或1000nm等),其中所述GaN基三维鳍片8的高度大于势垒层3厚度。The GaN-based three-dimensional fin 8 has a height of 10-300nm (including selection of 10nm, 100nm, 150nm, 200nm, 250nm or 300nm, etc.), and a width of 10-1000nm (including selection of 10nm, 100nm, 300nm, 600nm or 1000nm, etc.) , wherein the height of the GaN-based three-dimensional fin 8 is greater than the thickness of the barrier layer 3 .
所述T型栅极9的一部分覆盖在所述三维鳍片8上方的两侧,T型栅极9的另一部分覆盖在相邻GaN基三维鳍片8之间的隔离槽的上方,T型栅极9的再一部分覆盖在所述钝化层6的上方。A part of the T-shaped grid 9 covers both sides above the three-dimensional fins 8, and the other part of the T-shaped grid 9 covers the upper part of the isolation groove between adjacent GaN-based three-dimensional fins 8. Another part of the gate 9 is covered above the passivation layer 6 .
参照图2,本发明提出的一种具有高线性度的GaN鳍式高电子迁移率晶体管的制备方法,包括如下具体步骤:Referring to Fig. 2, a kind of preparation method of GaN fin type high electron mobility transistor with high linearity proposed by the present invention comprises the following specific steps:
1)在衬底1上依次生长缓冲层2和势垒层3,如图2a;其中:所述衬底1的材质为蓝宝石、SiC、Si、金刚石或GaN自支撑衬底中的任一种;缓冲层2为GaN、AlGaN、AlN、InGaN中一种或几种组合;势垒层3为AlGaN、InAlN、InAlGaN、AlN中一种或几种组合。1) Growing buffer layer 2 and barrier layer 3 sequentially on substrate 1, as shown in Figure 2a; wherein: the material of substrate 1 is any one of sapphire, SiC, Si, diamond or GaN self-supporting substrate ; The buffer layer 2 is one or a combination of GaN, AlGaN, AlN, and InGaN; the barrier layer 3 is one or a combination of AlGaN, InAlN, InAlGaN, and AlN.
2)在所述势垒层3上光刻源漏图形,并淀积源漏金属,然后在N2氛围中进行热退火,分别制作源极4和漏极5,如图2b;其中:所述源极4和所述漏极5的金属均包含但不限于Ti/Al、Ti/Au、Ti/Al/W、Ti/Al/Mo/Au、Ti/Al/Ni/Au、Si/Ti/Al/Ni/Au、Ti/Al/TiN中的任一种多层金属。2) Photoetching source and drain patterns on the barrier layer 3, and depositing source and drain metals, and then performing thermal annealing in N2 atmosphere to make source 4 and drain 5 respectively, as shown in Figure 2b; wherein: The metals of the source 4 and the drain 5 include but are not limited to Ti/Al, Ti/Au, Ti/Al/W, Ti/Al/Mo/Au, Ti/Al/Ni/Au, Si/Ti Any multilayer metal in /Al/Ni/Au, Ti/Al/TiN.
3)在所述势垒层3上沉积钝化层6,如图2c;其中:所述钝化层6的材质为SiN、SiO2、SiON、AlN中的一种或几种组合,厚度为30~300nm(包括选择30nm、100nm、150nm、200nm、250nm或300nm等),生长方法为等离子体增强化学气相淀积(PECVD)、原子层淀积沉积(ALD)或低压力化学气相淀积(LPCVD)。3) Deposit a passivation layer 6 on the barrier layer 3, as shown in Figure 2c; wherein: the material of the passivation layer 6 is one or more combinations of SiN, SiO 2 , SiON, AlN, with a thickness of 30-300nm (including selection of 30nm, 100nm, 150nm, 200nm, 250nm or 300nm, etc.), the growth method is plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD) or low pressure chemical vapor deposition ( LPCVD).
4)在所述钝化层6上制作有源区掩模,随后采用刻蚀或离子注入等方式进行器件隔离,形成有源区;4) making an active area mask on the passivation layer 6, and then performing device isolation by means of etching or ion implantation to form an active area;
5)在所述钝化层6上制作栅脚掩模,随后通过RIE、ICP等方式刻蚀去除钝化层6,形成凹槽7,如图2d;5) making a pin mask on the passivation layer 6, and then etching and removing the passivation layer 6 by means of RIE, ICP, etc., to form a groove 7, as shown in Figure 2d;
6)在仅限于所述凹槽7下方区域内的势垒层3上定义GaN基三维鳍片掩模,如图2e,随后干法刻蚀势垒层3和缓冲层2,形成周期排列的GaN基三维鳍片8,如图2f;其中:GaN基鳍片掩模的制作采用光学光刻或电子束直写方式,势垒层3和缓冲层2的刻蚀采用RIE、ICP等干法刻蚀方式;6) Define a GaN-based three-dimensional fin mask on the barrier layer 3 limited to the region below the groove 7, as shown in Figure 2e, and then dry-etch the barrier layer 3 and the buffer layer 2 to form a periodically arranged GaN-based three-dimensional fins 8, as shown in Figure 2f; wherein: the fabrication of GaN-based fin masks adopts optical lithography or electron beam direct writing, and the etching of barrier layer 3 and buffer layer 2 adopts dry methods such as RIE and ICP etching method;
7)在所述钝化层6上定义栅帽掩模,通过蒸发或溅射方式沉积栅金属,剥离形成T型栅9,如图2g;其中:栅金属包含但不限于Ni/Au、Ni/Au/Ni、Pt/Au、Ni/Pt/Au,W/Ti/Au、Ni/Pt/Au/Pt/Ti、TiN/Ti/Al/Ti/TiN中的任一种多层金属,所述栅金属的厚度为50~700nm(包括选择50nm、100nm、300nm、500nm或700nm等)。7) Define a gate cap mask on the passivation layer 6, deposit a gate metal by evaporation or sputtering, and peel off to form a T-shaped gate 9, as shown in Figure 2g; wherein: the gate metal includes but is not limited to Ni/Au, Ni Any multilayer metal in /Au/Ni, Pt/Au, Ni/Pt/Au, W/Ti/Au, Ni/Pt/Au/Pt/Ti, TiN/Ti/Al/Ti/TiN, so The thickness of the gate metal is 50-700nm (including selection of 50nm, 100nm, 300nm, 500nm or 700nm, etc.).
8)在所述钝化层6上定义互联开孔区掩模,刻蚀形成互联开孔;8) defining an interconnection opening area mask on the passivation layer 6, and etching to form interconnection openings;
9)在所述钝化层6上定义互联金属区掩模,通过蒸发与剥离工艺形成互联金属。9) Defining an interconnection metal area mask on the passivation layer 6, and forming interconnection metal by evaporation and lift-off processes.
根据以上本发明所述的结构和制造方法,本发明给出以下两种实施例,但并不限于这些实施例。According to the structures and manufacturing methods described above, the present invention provides the following two embodiments, but is not limited to these embodiments.
实施例1:制备SiC衬底,缓冲层为AlN/GaN,势垒层为AlGaN,钝化层为SiN,:GaN基三维鳍片宽度为100nm,栅金属为Ni/Au/Ni的具有高线性度的GaN鳍式高电子迁移率晶体管,其过程是:Example 1: Preparation of SiC substrate, the buffer layer is AlN/GaN, the barrier layer is AlGaN, the passivation layer is SiN, the width of GaN-based three-dimensional fins is 100nm, and the gate metal is Ni/Au/Ni, which has high linearity degree of GaN fin high electron mobility transistors, the process is:
1)在SiC衬底1上,利用金属有机物化学气相淀积技术MOCVD,先在1050℃下生长100nm的AlN,再在1000℃下生长2μm的非故意掺杂的GaN层,形成缓冲层2,随后在缓冲层2上生长厚度为22nm的AlGaN势垒层3,Al组分为30%。1) On the SiC substrate 1, using metal organic chemical vapor deposition technology MOCVD, first grow 100nm AlN at 1050°C, and then grow a 2μm unintentionally doped GaN layer at 1000°C to form a buffer layer 2, Subsequently, an AlGaN barrier layer 3 with a thickness of 22 nm is grown on the buffer layer 2 with an Al composition of 30%.
2)在势垒层3上制作光刻掩膜,然后采用电子束蒸发淀积金属叠层,经过剥离工艺在其两端得到孤立的金属块,最后在N2气氛中进行快速热退火形成源极4和漏极5。所淀积的金属自下而上分别为Ti、Al、Ni和Au,其厚度分别为20nm、150nm、60nm和50nm。电子束蒸发采用的条件为:真空度≦2.0×10-6Torr,淀积速率小于快速热退火的工艺条件为:温度840℃,时间30s。2) Make a photolithographic mask on the barrier layer 3, then use electron beam evaporation to deposit a metal stack, and obtain isolated metal blocks at both ends of it through a lift-off process, and finally perform rapid thermal annealing in an N2 atmosphere to form a source pole 4 and drain 5. The deposited metals are respectively Ti, Al, Ni and Au from bottom to top, and their thicknesses are 20nm, 150nm, 60nm and 50nm respectively. The conditions used for electron beam evaporation are: vacuum degree≦2.0×10 -6 Torr, deposition rate less than The process conditions of rapid thermal annealing are: temperature 840°C, time 30s.
3)利用PECVD技术在势垒层3上淀积SiN形成钝化层6;淀积工艺条件为:气体分别为SiH4、NH3、He和N2,流量分别为8sccm、2sccm、100sccm和200sccm,压力为500mTorr,温度260℃,功率25W,该钝化层的厚度为100nm。3) Using PECVD technology to deposit SiN on the barrier layer 3 to form a passivation layer 6; the deposition process conditions are: the gases are respectively SiH 4 , NH 3 , He and N 2 , and the flow rates are 8 sccm, 2 sccm, 100 sccm and 200 sccm respectively , the pressure is 500mTorr, the temperature is 260°C, the power is 25W, and the thickness of the passivation layer is 100nm.
4)钝化层6上制作有源区掩模,随后采用离子注入方式进行器件隔离,形成有源区。注入条件为:离子为B+,电流10μA,能量100KeV,剂量5e14。4) Fabricate an active area mask on the passivation layer 6, and then use ion implantation to isolate devices to form an active area. The implantation conditions are: B + ions, current 10μA, energy 100KeV, dose 5e14.
5)在钝化层6的上部制作掩膜,利用等离子增强刻蚀技术RIE在源极4和漏极5之间的钝化层6上开出凹槽7。刻蚀凹槽的工艺条件为:气体为SF6,流量为20sccm,压力0.2pa,时间200s。5) A mask is made on the upper part of the passivation layer 6, and a groove 7 is opened on the passivation layer 6 between the source 4 and the drain 5 by using the plasma enhanced etching technique RIE. The process conditions for etching the groove are as follows: the gas is SF 6 , the flow rate is 20 sccm, the pressure is 0.2 Pa, and the time is 200 s.
6)采用ZEP520胶在凹槽7内部制作GaN基三维鳍片掩膜,通过ICP干法刻蚀AlGaN/GaN,去除ZEP520胶掩模,形成宽度为100nm的GaN基三维鳍片8;其中:刻蚀工艺条件为:气体分别为BCl3和Cl2,流量分别为25sccm和5sccm,压力为30mTorr,温度25℃,上电极功率100W,下电极3W,刻蚀时间5分钟,刻蚀深度50nm。6) Use ZEP520 glue to make a GaN-based three-dimensional fin mask inside the groove 7, etch AlGaN/GaN by ICP dry method, remove the ZEP520 glue mask, and form a GaN-based three-dimensional fin 8 with a width of 100 nm; where: The etching process conditions are as follows: the gases are BCl 3 and Cl 2 , the flow rates are 25 sccm and 5 sccm respectively, the pressure is 30 mTorr, the temperature is 25°C, the upper electrode power is 100 W, the lower electrode is 3 W, the etching time is 5 minutes, and the etching depth is 50 nm.
7)在钝化层6的上部制作栅极掩膜,利用电子束蒸发技术淀积金属叠层,并利用剥离工艺形成T型栅9;其中:淀积金属叠层的工艺条件为:真空度≦1.5×10-6Torr,淀积速率小于其中:所淀积的金属叠层自下而上为Ni、Au、Ni,厚度分别为20nm、500nm和30nm。7) Make a gate mask on the upper part of the passivation layer 6, deposit a metal stack by electron beam evaporation technology, and form a T-shaped gate 9 by using a lift-off process; wherein: the process conditions for depositing a metal stack are: vacuum degree ≦1.5×10 -6 Torr, the deposition rate is less than Wherein: the deposited metal stacks are Ni, Au and Ni from bottom to top, and the thicknesses are 20nm, 500nm and 30nm respectively.
8)在钝化层6上定义互联开孔区光刻掩模,通过RIE干法刻蚀形成互联开孔。刻蚀工艺条件为:气体为SF6,流量为20sccm,压力0.2pa,时间200s。8) Defining a photolithography mask for the interconnection opening area on the passivation layer 6, and forming interconnection openings by RIE dry etching. The etching process conditions are as follows: the gas is SF 6 , the flow rate is 20 sccm, the pressure is 0.2 Pa, and the time is 200 s.
9)在钝化层6上定义互联金属区掩模,通过蒸发与剥离工艺形成互联金属。淀积金属叠层的工艺条件为:真空度≦1.5×10-6Torr,淀积速率小于所淀积的金属叠层自下而上为Ti、Au,厚度分别为30nm、500nm。9) Define an interconnection metal region mask on the passivation layer 6, and form interconnection metal through evaporation and lift-off processes. The process conditions for depositing metal stacks are: vacuum degree≦1.5×10 -6 Torr, deposition rate less than The deposited metal stacks are Ti and Au from bottom to top, and the thicknesses are 30nm and 500nm respectively.
实施例2:制备Si衬底,缓冲层为AlN/AlGaN/GaN层,势垒层为AlN/InAlN,钝化层为SiO2,GaN基三维鳍片宽度为400nm,栅金属为TiN/Ti/Al/Ti/TiN的具有高线性度的GaN鳍式高电子迁移率晶体管,其过程是:Example 2: Prepare Si substrate, the buffer layer is AlN/AlGaN/GaN layer, the barrier layer is AlN/InAlN, the passivation layer is SiO 2 , the GaN-based three-dimensional fin width is 400nm, and the gate metal is TiN/Ti/ Al/Ti/TiN GaN fin-type high electron mobility transistor with high linearity, the process is:
1)在Si衬底上,利用金属有机物化学气相淀积技术MOCVD,先在1050℃下生长200nm的AlN,再在1000℃下生长1μm的非故意掺杂的AlGaN层(Al组15%)和500nm GaN层,形成缓冲层2,随后在800℃下在缓冲层2上生长厚度为1nm的AlN层和8nm InAlN,形成势垒层3,Al组分为83%。1) On the Si substrate, using metal organic chemical vapor deposition technology MOCVD, first grow 200nm AlN at 1050°C, and then grow a 1μm unintentionally doped AlGaN layer (Al group 15%) and 500nm GaN layer to form a buffer layer 2, and then grow an AlN layer with a thickness of 1nm and 8nm InAlN on the buffer layer 2 at 800°C to form a barrier layer 3 with an Al composition of 83%.
2)在势垒层3上制作光刻掩膜,然后采用电子束蒸发淀积金属叠层,经过剥离工艺在其两端得到孤立的金属块,最后在N2气氛中进行快速热退火形成源极4和漏极5;所淀积的金属自下而上为Ti、Al和TiN,其厚度分别为20nm、200nm和100nm;电子束蒸发采用的条件为:真空度≦2.0×10-6Torr,淀积速率小于快速热退火的工艺条件为:温度550℃,时间90s。2) Make a photolithographic mask on the barrier layer 3, then use electron beam evaporation to deposit a metal stack, and obtain isolated metal blocks at both ends of it through a lift-off process, and finally perform rapid thermal annealing in an N2 atmosphere to form a source Electrode 4 and drain 5; the deposited metals are Ti, Al, and TiN from bottom to top, and their thicknesses are 20nm, 200nm, and 100nm respectively; the conditions used for electron beam evaporation are: vacuum degree≦2.0×10 -6 Torr , the deposition rate is less than The technological conditions of rapid thermal annealing are: temperature 550° C., time 90 s.
3)利用PECVD技术在势垒层3上淀积SiO2形成钝化层6。淀积工艺条件为:气体分别为SiH4、N2O,流量分别为120sccm、200sccm,压力为500mTorr,温度320℃,功率35W,该钝化层的厚度为150nm。3) Depositing SiO 2 on the barrier layer 3 to form a passivation layer 6 by using PECVD technology. The deposition process conditions are: the gases are SiH 4 and N 2 O respectively, the flow rates are 120 sccm and 200 sccm respectively, the pressure is 500 mTorr, the temperature is 320° C., the power is 35 W, and the thickness of the passivation layer is 150 nm.
4)实施例2的第4步与实施例1的第4步相同。4) The 4th step of embodiment 2 is the same as the 4th step of embodiment 1.
5)在钝化层6的上部制作掩膜,利用等离子增强刻蚀技术RIE在源极4和漏极5之间的钝化层6上开出凹槽7;其中:刻蚀凹槽的工艺条件为:气体为SF6,流量为20sccm,压力0.2pa,时间600s。5) Make a mask on the top of the passivation layer 6, and use the plasma enhanced etching technology RIE to open a groove 7 on the passivation layer 6 between the source electrode 4 and the drain electrode 5; wherein: the process of etching the groove The conditions are: the gas is SF 6 , the flow rate is 20 sccm, the pressure is 0.2 Pa, and the time is 600 s.
6)采用深紫外光刻在凹槽7内部制作鳍片掩膜,通过ICP干法刻蚀AlGaN/GaN,去除光刻胶掩模,形成宽度为400nm的鳍片8。其中:刻蚀工艺条件为:气体分别为BCl3和Cl2,流量分别为25sccm和5sccm,压力为30mTorr,温度25℃,上电极功率100W,下电极3W,刻蚀时间5分钟,刻蚀深度50nm。6) Fabricate a fin mask inside the groove 7 by deep ultraviolet lithography, and dry-etch AlGaN/GaN by ICP, remove the photoresist mask, and form a fin 8 with a width of 400nm. Among them: the etching process conditions are: the gas is BCl 3 and Cl 2 respectively, the flow rate is 25sccm and 5sccm respectively, the pressure is 30mTorr, the temperature is 25°C, the upper electrode power is 100W, the lower electrode is 3W, the etching time is 5 minutes, and the etching depth 50nm.
7)在钝化层6的上部制作栅极掩膜,利用电子束蒸发技术淀积金属叠层,并利用剥离工艺形成T型栅9。其中:淀积金属叠层的工艺条件为:真空度≦1.5×10-6Torr,淀积速率小于所淀积的金属叠层自下而上为TiN/Ti/Al/Ti/TiN,厚度分别为20nm、30nm、300nm、30nm和100nm。7) Fabricate a gate mask on the upper part of the passivation layer 6, deposit a metal stack by using electron beam evaporation technology, and form a T-shaped gate 9 by using a lift-off process. Among them: the process conditions for depositing metal stacks are: vacuum degree≦1.5×10 -6 Torr, deposition rate less than The deposited metal stacks are TiN/Ti/Al/Ti/TiN from bottom to top, and the thicknesses are 20nm, 30nm, 300nm, 30nm and 100nm respectively.
8)在钝化层6上定义互联开孔区光刻掩模,通过RIE干法刻蚀形成互联开孔;其中:刻蚀工艺条件为:气体为SF6,流量为20sccm,压力0.2pa,时间600s。8) On the passivation layer 6, define a photolithography mask for the interconnection opening area, and form interconnection openings by RIE dry etching; wherein: the etching process conditions are: the gas is SF 6 , the flow rate is 20 sccm, and the pressure is 0.2 Pa. The time is 600s.
9)实施例2的第9步与实施例1的第9步相同。9) The 9th step of embodiment 2 is the same as the 9th step of embodiment 1.
本发明的效果可以通过图3和图4进一步说明。The effect of the present invention can be further illustrated by Fig. 3 and Fig. 4 .
图3为GaN平面器件的直流转移特性,可以看出,器件跨导呈现典型的峰值特性,最大电流为1.2A/mm,最大跨导Gm为0.48S/mm。图4为依据本发明制备的高线性GaN鳍式器件的直流转移特性,器件跨导Gm更加平坦,线性度大幅提高,且最大电流为2A/mm,最大跨导Gm为0.74S/mm。以上对比可知,本发明的高线性GaN鳍式器件的最大电流、跨导值都较平面器件有较大提高,并且跨导线性度得到极大改善。Figure 3 shows the DC transfer characteristics of GaN planar devices. It can be seen that the transconductance of the device exhibits typical peak characteristics, the maximum current is 1.2A/mm, and the maximum transconductance G m is 0.48S/mm. Figure 4 shows the DC transfer characteristics of the highly linear GaN fin device prepared according to the present invention. The transconductance Gm of the device is flatter, the linearity is greatly improved, and the maximum current is 2A/mm, and the maximum transconductance Gm is 0.74S / mm . From the above comparison, it can be seen that the maximum current and transconductance of the highly linear GaN fin device of the present invention are much higher than those of the planar device, and the transconductance linearity is greatly improved.
本发明的具体实施方式中未涉及的说明属于本领域公知的技术,可参考公知技术加以实施。The descriptions not involved in the specific embodiments of the present invention belong to the well-known technologies in the art, and may be implemented with reference to the known technologies.
本发明经反复实验验证,取得了满意的试用效果。The invention has been verified through repeated experiments and has achieved satisfactory trial results.
以上具体实施方式及实施例是对本发明提出的一种具有高线性度的GaN鳍式高电子迁移率晶体管及其制造方法技术思想的具体支持,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在本技术方案基础上所做的任何等同变化或等效的改动,均仍属于本发明技术方案保护的范围。The above specific implementation methods and examples are specific support for the technical idea of a GaN fin-type high electron mobility transistor with high linearity and its manufacturing method proposed by the present invention, and cannot limit the protection scope of the present invention. The technical ideas proposed by the invention and any equivalent changes or equivalent changes made on the basis of the technical solution still belong to the scope of protection of the technical solution of the present invention.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611122851.9A CN106684141A (en) | 2016-12-08 | 2016-12-08 | High linearity GaN fin-type high electron mobility transistor and manufacture method thereof |
PCT/CN2017/114456 WO2018103606A1 (en) | 2016-12-08 | 2017-12-04 | Gan fin-typed transistor having high linearity and high electron mobility, and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611122851.9A CN106684141A (en) | 2016-12-08 | 2016-12-08 | High linearity GaN fin-type high electron mobility transistor and manufacture method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106684141A true CN106684141A (en) | 2017-05-17 |
Family
ID=58868468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611122851.9A Pending CN106684141A (en) | 2016-12-08 | 2016-12-08 | High linearity GaN fin-type high electron mobility transistor and manufacture method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106684141A (en) |
WO (1) | WO2018103606A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107919386A (en) * | 2017-11-21 | 2018-04-17 | 中国科学院微电子研究所 | Strain regulation-based enhanced GaN-based FinFET structure |
WO2018103606A1 (en) * | 2016-12-08 | 2018-06-14 | 中国电子科技集团公司第五十五研究所 | Gan fin-typed transistor having high linearity and high electron mobility, and manufacturing method thereof |
CN110098255A (en) * | 2018-01-29 | 2019-08-06 | 中国电子科技集团公司第五十五研究所 | A kind of field effect transistor and preparation method thereof of localization channel |
CN110504316A (en) * | 2019-07-19 | 2019-11-26 | 中国电子科技集团公司第五十五研究所 | A GaN high electron mobility transistor with split sub-devices and method of making the same |
CN111430456A (en) * | 2020-03-13 | 2020-07-17 | 西安电子科技大学 | Fin-like side wall modulation HEMT device based on transconductance compensation method and preparation method thereof |
CN111584619A (en) * | 2020-05-28 | 2020-08-25 | 浙江大学 | GaN device and preparation method |
CN113451402A (en) * | 2020-03-24 | 2021-09-28 | 顶诺微电子(北京)有限公司 | Power transistor |
US20220020743A1 (en) * | 2020-07-15 | 2022-01-20 | Nexgen Power Systems, Inc. | Self-aligned isolation for self-aligned contacts for vertical fets |
CN116825830A (en) * | 2023-06-19 | 2023-09-29 | 西安电子科技大学 | Multi-dimensional grid-control high-linearity N-face GaN-based radio frequency power device and preparation method thereof |
WO2023237001A1 (en) * | 2022-06-09 | 2023-12-14 | 华为技术有限公司 | Semiconductor device and electronic equipment |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109524462B (en) * | 2018-12-29 | 2024-03-22 | 苏州汉骅半导体有限公司 | A fin type field effect tube |
CN111430457B (en) * | 2020-04-27 | 2024-10-01 | 华南理工大学 | A GaN/two-dimensional AlN heterojunction rectifier on a silicon substrate and a preparation method thereof |
CN112713185B (en) * | 2020-12-21 | 2022-07-22 | 西安电子科技大学 | T-type gate with support structure and preparation method thereof, and semiconductor power device |
CN113725288B (en) * | 2021-08-03 | 2024-07-26 | 中国科学院微电子研究所 | Gate structure of high electron mobility transistor and preparation method thereof |
CN114725094B (en) * | 2022-01-26 | 2024-04-30 | 西安电子科技大学广州研究院 | A Si-GaN monolithic heterogeneous integrated inverter and a method for manufacturing the same |
CN115274845B (en) * | 2022-07-11 | 2023-03-21 | 成都功成半导体有限公司 | A recessed Fin-MESFET gate structure HEMT and its manufacturing method |
CN115831745A (en) * | 2022-11-30 | 2023-03-21 | 扬州扬杰电子科技股份有限公司 | A Fabrication Method of Vertical Conduction Channel Enhanced Si-based GaN-HEMT Device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6207511B1 (en) * | 1997-04-30 | 2001-03-27 | Texas Instruments Incorporated | Self-aligned trenched-channel lateral-current-flow transistor |
CN102945860A (en) * | 2012-11-21 | 2013-02-27 | 西安电子科技大学 | AlGaN/GaN heterojunction enhancement-mode device with in-situ SiN cap layer and production method thereof |
US20150372081A1 (en) * | 2013-02-28 | 2015-12-24 | Massachusetts Institute Of Technology | Improving linearity in semiconductor devices |
CN105914232A (en) * | 2016-05-06 | 2016-08-31 | 西安电子科技大学 | T-gate and N-surface GaN/AlGaN fin-type high electron mobility transistor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9006789B2 (en) * | 2013-01-08 | 2015-04-14 | International Business Machines Corporation | Compressive strained III-V complementary metal oxide semiconductor (CMOS) device |
CN105140123B (en) * | 2014-05-30 | 2018-03-06 | 中芯国际集成电路制造(上海)有限公司 | The forming method of fin formula field effect transistor |
CN106684141A (en) * | 2016-12-08 | 2017-05-17 | 中国电子科技集团公司第五十五研究所 | High linearity GaN fin-type high electron mobility transistor and manufacture method thereof |
-
2016
- 2016-12-08 CN CN201611122851.9A patent/CN106684141A/en active Pending
-
2017
- 2017-12-04 WO PCT/CN2017/114456 patent/WO2018103606A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6207511B1 (en) * | 1997-04-30 | 2001-03-27 | Texas Instruments Incorporated | Self-aligned trenched-channel lateral-current-flow transistor |
CN102945860A (en) * | 2012-11-21 | 2013-02-27 | 西安电子科技大学 | AlGaN/GaN heterojunction enhancement-mode device with in-situ SiN cap layer and production method thereof |
US20150372081A1 (en) * | 2013-02-28 | 2015-12-24 | Massachusetts Institute Of Technology | Improving linearity in semiconductor devices |
CN105914232A (en) * | 2016-05-06 | 2016-08-31 | 西安电子科技大学 | T-gate and N-surface GaN/AlGaN fin-type high electron mobility transistor |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018103606A1 (en) * | 2016-12-08 | 2018-06-14 | 中国电子科技集团公司第五十五研究所 | Gan fin-typed transistor having high linearity and high electron mobility, and manufacturing method thereof |
CN107919386B (en) * | 2017-11-21 | 2021-05-28 | 中国科学院微电子研究所 | Enhancement-mode GaN-based FinFET structure based on strain control |
CN107919386A (en) * | 2017-11-21 | 2018-04-17 | 中国科学院微电子研究所 | Strain regulation-based enhanced GaN-based FinFET structure |
CN110098255A (en) * | 2018-01-29 | 2019-08-06 | 中国电子科技集团公司第五十五研究所 | A kind of field effect transistor and preparation method thereof of localization channel |
CN110504316A (en) * | 2019-07-19 | 2019-11-26 | 中国电子科技集团公司第五十五研究所 | A GaN high electron mobility transistor with split sub-devices and method of making the same |
CN111430456A (en) * | 2020-03-13 | 2020-07-17 | 西安电子科技大学 | Fin-like side wall modulation HEMT device based on transconductance compensation method and preparation method thereof |
CN111430456B (en) * | 2020-03-13 | 2021-09-14 | 西安电子科技大学 | Fin-like side wall modulation HEMT device based on transconductance compensation method and preparation method thereof |
CN113451402A (en) * | 2020-03-24 | 2021-09-28 | 顶诺微电子(北京)有限公司 | Power transistor |
CN113451402B (en) * | 2020-03-24 | 2025-04-01 | 顶诺微电子(北京)有限公司 | A power transistor |
CN111584619A (en) * | 2020-05-28 | 2020-08-25 | 浙江大学 | GaN device and preparation method |
US20220020743A1 (en) * | 2020-07-15 | 2022-01-20 | Nexgen Power Systems, Inc. | Self-aligned isolation for self-aligned contacts for vertical fets |
US11996407B2 (en) * | 2020-07-15 | 2024-05-28 | Semiconductor Components Industries, Llc | Self-aligned isolation for self-aligned contacts for vertical FETS |
WO2023237001A1 (en) * | 2022-06-09 | 2023-12-14 | 华为技术有限公司 | Semiconductor device and electronic equipment |
CN116825830A (en) * | 2023-06-19 | 2023-09-29 | 西安电子科技大学 | Multi-dimensional grid-control high-linearity N-face GaN-based radio frequency power device and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2018103606A1 (en) | 2018-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106684141A (en) | High linearity GaN fin-type high electron mobility transistor and manufacture method thereof | |
CN105762078B (en) | GaN base nano-channel high electron mobility transistor and production method | |
CN102130159B (en) | High electron mobility transistor | |
CN111430458B (en) | AlGaAs/GaAs high electron mobility transistor with multi-channel insulating fin gate composite groove gate and preparation method thereof | |
CN111900203B (en) | GaN-based high-hole mobility transistor and preparation method thereof | |
CN107680998A (en) | A kind of GaN base p-type grid HFET devices and preparation method thereof | |
CN106684151A (en) | GaN side wall insulated gate fin-type high-electron mobility transistor and manufacturing method thereof | |
CN102881722A (en) | Source-field-plate heterojunction field-effect transistor and manufacturing method thereof | |
CN105932041A (en) | N-face GaN-based fin high electron mobility transistor and manufacturing method | |
CN105810728A (en) | Enhanced Fin Insulated Gate High Electron Mobility Transistor | |
CN102646705A (en) | MIS gate GaN-based enhanced HEMT device and manufacturing method | |
CN104393035A (en) | Heterojunction field effect transistor of composite source field plate based on medium modulation | |
CN113555430B (en) | HEMT device and preparation method for realizing multi-threshold modulation technology through gradient gate | |
CN111509042A (en) | A kind of MIS structure GaN high electron mobility transistor and preparation method thereof | |
CN104393048A (en) | Medium-modulation power device of composite overlapping gate | |
CN108321200B (en) | A three-dimensional enhancement mode high electron mobility transistor based on p-GaN structure and its manufacturing method | |
CN110504316B (en) | GaN high electron mobility transistor with split sub-device and method of manufacture | |
CN108321199B (en) | GaN high electron mobility transistor based on three-dimensional composite drain electrode and manufacturing method thereof | |
CN114883407B (en) | HEMT based on Fin-FET gate structure and its fabrication method | |
CN104409482B (en) | GaN-based T-shaped source field plate power device and manufacture method thereof | |
CN107170821A (en) | Floating type leakage field plate current apertures device and preparation method thereof | |
CN111599857A (en) | Two-dimensional material device and GaN device hetero-integrated structure and preparation method | |
CN117133806A (en) | A natural superjunction GaN HEMT device and its preparation method | |
CN109285880A (en) | Enhancement Fin-Insulated Gate High Electron Mobility Transistor | |
CN110676166B (en) | FinFET enhancement mode device with P-GaN cap layer and fabrication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170517 |
|
RJ01 | Rejection of invention patent application after publication |