CN106238710A - The solid-liquid method of attachment of aluminum aluminum metal - Google Patents
The solid-liquid method of attachment of aluminum aluminum metal Download PDFInfo
- Publication number
- CN106238710A CN106238710A CN201610729091.1A CN201610729091A CN106238710A CN 106238710 A CN106238710 A CN 106238710A CN 201610729091 A CN201610729091 A CN 201610729091A CN 106238710 A CN106238710 A CN 106238710A
- Authority
- CN
- China
- Prior art keywords
- aluminum
- solid
- casting
- liquid
- nickel layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000007788 liquid Substances 0.000 title claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 28
- 239000002184 metal Substances 0.000 title claims abstract description 28
- VRAIHTAYLFXSJJ-UHFFFAOYSA-N alumane Chemical compound [AlH3].[AlH3] VRAIHTAYLFXSJJ-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 50
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 48
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 29
- 239000007787 solid Substances 0.000 claims abstract description 26
- 238000005266 casting Methods 0.000 claims abstract description 23
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 18
- -1 aluminum metals Chemical class 0.000 claims abstract description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims description 26
- 238000007747 plating Methods 0.000 claims description 6
- 238000001125 extrusion Methods 0.000 claims description 5
- 238000009716 squeeze casting Methods 0.000 claims description 5
- 238000009750 centrifugal casting Methods 0.000 claims description 2
- 238000009713 electroplating Methods 0.000 claims description 2
- 238000007528 sand casting Methods 0.000 claims description 2
- 238000007751 thermal spraying Methods 0.000 claims description 2
- 238000007740 vapor deposition Methods 0.000 claims description 2
- 238000007772 electroless plating Methods 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 9
- 239000002893 slag Substances 0.000 abstract description 9
- 238000004227 thermal cracking Methods 0.000 abstract description 7
- 239000002131 composite material Substances 0.000 abstract description 6
- 238000003466 welding Methods 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000003647 oxidation Effects 0.000 abstract description 4
- 238000007254 oxidation reaction Methods 0.000 abstract description 4
- 238000005204 segregation Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000004381 surface treatment Methods 0.000 abstract description 2
- 239000007769 metal material Substances 0.000 abstract 1
- 229910001094 6061 aluminium alloy Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 239000000956 alloy Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/0081—Casting in, on, or around objects which form part of the product pretreatment of the insert, e.g. for enhancing the bonding between insert and surrounding cast metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/06—Permanent moulds for shaped castings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/02—Pressure casting making use of mechanical pressure devices, e.g. cast-forging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/16—Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Forging (AREA)
Abstract
本发明提供了一种铝铝金属的固液连接方法,其包括如下步骤:对固态铝质材料的表面进行镍层保护后,置于模具型腔内;将熔融态铝质材料浇入模具型腔内,进行铸造,使铝铝金属材料之间形成冶金结合,即完成铝铝金属的固液连接。与现有技术相比,本发明具有如下的有益效果:1、与传统焊接方法相比,避免了氧化夹渣、吸气、热裂、成分偏析等问题的出现;2、与固固连接方法相比,受外形条件约束小,理论上可以实现任何形状的铝‑铝之间的连接;3、利用复合表面处理工艺很好的解决了表面氧化膜的问题,能够在固态铝预置材料表面形成均匀连续的镍层,使铝‑铝间的连接强度达到较高水平。
The invention provides a solid-liquid connection method of aluminum-aluminum metal, which comprises the following steps: after protecting the surface of the solid aluminum material with a nickel layer, placing it in a mold cavity; pouring the molten aluminum material into the mold In the cavity, casting is carried out to form a metallurgical bond between the aluminum and aluminum metal materials, that is, to complete the solid-liquid connection of the aluminum and aluminum metals. Compared with the prior art, the present invention has the following beneficial effects: 1. Compared with the traditional welding method, it avoids the occurrence of problems such as oxidation slag inclusion, gas absorption, thermal cracking, and component segregation; 2. The connection method with solid In comparison, the connection between aluminum and aluminum of any shape can be realized theoretically due to the limited shape conditions; 3. The use of composite surface treatment technology solves the problem of surface oxide film very well, and can be used on the surface of solid aluminum pre-prepared materials Forms a uniform and continuous nickel layer to achieve a high level of aluminum-aluminum bond strength.
Description
技术领域technical field
本发明涉及一种铝铝金属的固液连接方法,属于双金属复合材料的制备领域。The invention relates to a solid-liquid connection method of aluminum-aluminum metal, which belongs to the field of preparation of bimetallic composite materials.
背景技术Background technique
作为轻质材料的代表,铝合金已经广泛应用在汽车、电子、航空航天等工业中,随着工业的快速发展和技术的不断进步,单一铸造或变形材料以很难满足各个领域对于材料性能的要求,因此将不同材料通过焊接、轧制、挤压等工艺连接在一起,最大限度的发挥不同材料的优点,使其拥有良好的综合性能,是很有必要的。As a representative of lightweight materials, aluminum alloys have been widely used in automobiles, electronics, aerospace and other industries. With the rapid development of industries and continuous advancement of technology, it is difficult to meet the requirements of material properties in various fields with a single casting or deformation material. Therefore, it is necessary to connect different materials together by welding, rolling, extrusion and other processes to maximize the advantages of different materials and make them have good comprehensive performance.
然而,使用传统焊接方法连接铝-铝合金时,由于铝合金独特的物理化学特性,经常出现氧化夹渣、吸气、热裂、成分偏析等一系列的问题。经对现有技术的检索发现,除焊接方法外铝-铝间常见的连接方法按照材料状态的不同可以分为固液连接和固固连接。对于固固连接方法,有研究人员通过轧制和扩散焊等方法将铝-铝合金连接在一起,不过由于铝在大气环境下都非常容易氧化,尤其是高温条件下形成致密的氧化膜,严重阻碍金属之间的相互作用,恶化连接质量,只能形成局部的冶金结合。另外,表面上的油污、杂质等也会影响结合过程。同时固固连接经常受到设备的限制,对于材料的外形、尺寸都有非常严格的要求,这也在一定程度上限制了铝合金材料的推广和应用。However, when using traditional welding methods to join aluminum-aluminum alloys, due to the unique physical and chemical properties of aluminum alloys, a series of problems such as oxidation slag inclusions, gas absorption, thermal cracking, and composition segregation often occur. After searching the existing technology, it is found that, in addition to the welding method, the common connection methods between aluminum and aluminum can be divided into solid-liquid connection and solid-solid connection according to the different material states. For the solid-solid connection method, some researchers have connected aluminum-aluminum alloys together by rolling and diffusion welding. However, since aluminum is very easy to oxidize in the atmospheric environment, especially under high temperature conditions, a dense oxide film is formed, which is serious. It hinders the interaction between metals, deteriorates the quality of the connection, and can only form a local metallurgical bond. In addition, oil stains and impurities on the surface will also affect the bonding process. At the same time, solid connection is often limited by equipment, and there are very strict requirements on the shape and size of materials, which also limits the promotion and application of aluminum alloy materials to a certain extent.
与固固连接方法相比,固液复合技术工序简单、受外形条件约束小、工艺设备要求简单、生产效率高,是铝-铝连接的理想方法。经对现有技术的检索发现,此种方法已经被广泛的应用在钢(固态)-铸件(液态),铸铁(固态)-铝合金(液态),钢(固态)-铝合金(液态),铝合金(固态)-镁合金(液态),铜(固态)-铸铁(液态)等体系中,制备的双金属复合材料被广泛应用在各个工业领域当中,比如破碎机锤头、铝包钢芯脚线、汽车结构材料等等,被证明是制备双金属复合材料非常经济有效的方法。不过,在铝(固态)和铝(液态)之间通过固液结合形成双金属材料却很少有报导,因为铝合金表面的氧化膜会影响固态预置铝合金和液态铝材料直接的作用,导致其在工业上的应用受到限制。Compared with the solid-solid connection method, the solid-liquid composite technology has simple procedures, less constraints on shape conditions, simple process equipment requirements, and high production efficiency. It is an ideal method for aluminum-aluminum connection. After searching the prior art, it is found that this method has been widely used in steel (solid state)-casting (liquid state), cast iron (solid state)-aluminum alloy (liquid state), steel (solid state)-aluminum alloy (liquid state), Aluminum alloy (solid state)-magnesium alloy (liquid state), copper (solid state)-cast iron (liquid state) and other systems, the bimetallic composite materials prepared are widely used in various industrial fields, such as crusher hammer, aluminum clad steel core It has been proved to be a very cost-effective method for preparing bimetallic composite materials for skirting, automotive structural materials, etc. However, there are few reports on the formation of bimetallic materials through solid-liquid combination between aluminum (solid state) and aluminum (liquid state), because the oxide film on the surface of the aluminum alloy will affect the direct interaction between the solid-state aluminum alloy and the liquid aluminum material, As a result, its industrial application is limited.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种铝-铝金属的固液连接方法,解决现有铝-铝连接技术经常导致结合区域刑场氧化夹渣、吸气、热裂、成分偏析,同时氧化膜的存在会严重影响两种金属之间的相互作用以及连接件的性能等一系列的问题,使两种铝合金之间形成冶金结合,具有优良的力学性能。Aiming at the defects in the prior art, the purpose of the present invention is to provide a solid-liquid connection method of aluminum-aluminum metal, which solves the problem that the existing aluminum-aluminum connection technology often causes oxidized slag inclusion, gas absorption, thermal cracking, and composition in the joint area. At the same time, the existence of oxide film will seriously affect a series of problems such as the interaction between the two metals and the performance of the connecting parts, so that the two aluminum alloys form a metallurgical bond with excellent mechanical properties.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明提供一种铝铝金属的固液连接方法,其包括如下步骤:The invention provides a method for solid-liquid connection of aluminum-aluminum metal, which comprises the following steps:
对固态铝质材料的表面进行镍层保护后,置于模具型腔内;After the surface of the solid aluminum material is protected by a nickel layer, it is placed in the mold cavity;
将熔融态铝质材料浇入模具型腔内,进行铸造,使铝铝材料之间形成冶金结合,即完成铝铝金属的固液连接。The molten aluminum material is poured into the mold cavity and cast to form a metallurgical bond between the aluminum and aluminum materials, that is, to complete the solid-liquid connection of the aluminum and aluminum metals.
作为优选方案,所述固态铝质材料为纯铝或铝合金。As a preferred solution, the solid aluminum material is pure aluminum or aluminum alloy.
作为优选方案,所述镍层保护的方法为电镀、化学镀、热浸镀、热喷涂或气相沉积。As a preferred solution, the method for protecting the nickel layer is electroplating, chemical plating, hot-dip plating, thermal spraying or vapor deposition.
作为优选方案,所述镍层的厚度为0.1~10μm。As a preferred solution, the thickness of the nickel layer is 0.1-10 μm.
作为优选方案,所述熔融态铝质材料为纯铝、铸造铝合金或变形铝合金。As a preferred solution, the molten aluminum material is pure aluminum, cast aluminum alloy or deformed aluminum alloy.
作为优选方案,所述铸造的方法为砂型铸造、金属型铸造、低压铸造、高压铸造、真空铸造、挤压铸造或离心铸造。As a preferred solution, the casting method is sand casting, metal casting, low pressure casting, high pressure casting, vacuum casting, squeeze casting or centrifugal casting.
作为优选方案,所述挤压铸造中,浇铸温度为580~750℃,挤压的压力为0~120MPa。As a preferred solution, in the squeeze casting, the casting temperature is 580-750° C., and the extrusion pressure is 0-120 MPa.
作为优选方案,所述金属型铸造中,浇铸温度为580~750℃。As a preferred solution, in the metal mold casting, the casting temperature is 580-750°C.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、与传统焊接方法相比,避免了氧化夹渣、吸气、热裂、成分偏析等问题的出现;1. Compared with the traditional welding method, it avoids the occurrence of problems such as oxidation slag inclusion, gas absorption, thermal cracking, and composition segregation;
2、与固固连接方法相比,受外形条件约束小,理论上可以实现任何形状的铝-铝之间的连接;2. Compared with the solid connection method, it is less restricted by the shape conditions, and theoretically can realize the connection between aluminum-aluminum of any shape;
3、利用复合表面处理工艺很好的解决了表面氧化膜的问题,能够在固态铝预置材料表面形成均匀连续的镍层,使铝-铝间的连接强度达到较高水平。3. The problem of surface oxide film is well solved by using the composite surface treatment process, and a uniform and continuous nickel layer can be formed on the surface of the solid aluminum preset material, so that the connection strength between aluminum and aluminum can reach a higher level.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为本发明实施例1拉伸强度实验式样示意图;Fig. 1 is the schematic diagram of the tensile strength test pattern of embodiment 1 of the present invention;
图2为本发明实施例1中6061铝型材和铸态6061界面区域金相图;Fig. 2 is the metallographic diagram of the interface area between 6061 aluminum profiles and as-cast 6061 in Example 1 of the present invention;
图3为本发明实施例4中6061铝型材和铸态A356合金界面区域金相图;Fig. 3 is the metallographic diagram of the 6061 aluminum profile and the as-cast A356 alloy interface area in Example 4 of the present invention;
图4为本发明实施例5中6061铝型材和铸态6061界面区域金相图。Fig. 4 is a metallographic diagram of the interface area between the 6061 aluminum profile and the as-cast 6061 in Example 5 of the present invention.
具体实施方式detailed description
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
实施例1Example 1
本实施例涉及的一种铝-铝的连接方法,包括如下步骤:An aluminum-aluminum connection method related to this embodiment includes the following steps:
步骤一、对待连接6061板材进行镀镍处理,镍层厚度5μm;Step 1. Nickel plating is performed on the 6061 plate to be connected, and the thickness of the nickel layer is 5 μm;
步骤二、熔化待浇注铸态6061并精炼;Step 2, melting and refining the cast 6061 to be poured;
步骤三、将步骤一所得经过镀镍处理后的6061板材预置在模具型腔内;Step 3, presetting the nickel-plated 6061 plate obtained in step 1 in the mold cavity;
步骤四、利用金属型铸造方法,在720℃下将液态6061铝浇注到模具型腔内,使铝-铝之间形成冶金结合,即完成铝-铝金属固液连接。Step 4. Using the metal mold casting method, pour liquid 6061 aluminum into the cavity of the mold at 720°C to form a metallurgical bond between aluminum and aluminum, that is, to complete the solid-liquid connection of aluminum-aluminum metal.
图2为该条件下6061板材和铸态界面区域金相图,从图中可以观察到在结合区域没有出现氧化夹渣、吸气、热裂等缺陷;两种材料之间形成冶金结合,界面区域有连续分布的金属间氧化物,说明两金属间形成了冶金结合。经拉伸测试(样条制备成哑铃型,如图1所示,两端为液态浇铸金属部1,中间为固态金属部2,相比于基体材料的132MPa,连接处强度达到了150MPa。Figure 2 is the metallographic diagram of the 6061 plate and the as-cast interface area under this condition. From the figure, it can be observed that there are no defects such as oxidized slag inclusions, gas absorption, and hot cracks in the bonding area; a metallurgical bond is formed between the two materials, and the interface There is a continuous distribution of intermetallic oxides in the area, indicating the formation of a metallurgical bond between the two metals. After a tensile test (the spline is made into a dumbbell shape, as shown in Figure 1, the two ends are liquid cast metal parts 1, and the middle is a solid metal part 2. Compared with the base material's 132 MPa, the strength of the joint reaches 150 MPa.
实施例2Example 2
本实施例涉及一种铝合金固液连接方法,具体方案与实施例1相同,不同之处仅在于:This embodiment relates to a solid-liquid connection method for an aluminum alloy, and the specific scheme is the same as that of Embodiment 1, except that:
步骤一中镍层厚度为1μm;In step 1, the thickness of the nickel layer is 1 μm;
步骤四中的浇铸温度为680℃。The casting temperature in step 4 is 680°C.
结果显示,该条件下固态6061铝合金和6061铸造铝合金固液结合后,在结合区域没有出现氧化夹渣、吸气、热裂等缺陷;两种铝合金之间没有明显的界面,形成了冶金结合,利用表面保护锌层很好的解决了氧化膜阻碍冶金结合形成的难题。经拉伸测试,连接强度为135MPa。The results show that under this condition, after the solid-liquid combination of solid 6061 aluminum alloy and 6061 cast aluminum alloy, there are no defects such as oxidized slag inclusions, gas absorption, thermal cracking, etc. in the bonding area; there is no obvious interface between the two aluminum alloys, forming a Metallurgical bonding, using the surface protection zinc layer to solve the problem that the oxide film hinders the formation of metallurgical bonding. After tensile test, the connection strength is 135MPa.
实施例3Example 3
本实施例涉及一种铝合金固液连接方法,具体方案与实施例1相同,不同之处仅在于:This embodiment relates to a solid-liquid connection method for an aluminum alloy, and the specific scheme is the same as that of Embodiment 1, except that:
步骤一中镍层厚度为10μm;In step 1, the thickness of the nickel layer is 10 μm;
步骤四中的浇铸温度为750℃。The casting temperature in step 4 is 750°C.
结果显示,该条件下固态6061铝合金和6061铸造铝合金固液结合后,在结合区域没有出现氧化夹渣、吸气、热裂等缺陷;两种铝合金之间没有明显的界面,形成了冶金结合,利用表面保护锌层很好的解决了氧化膜阻碍冶金结合形成的难题。经拉伸测试,连接强度为145MPa。The results show that under this condition, after the solid-liquid combination of solid 6061 aluminum alloy and 6061 cast aluminum alloy, there are no defects such as oxidized slag inclusions, gas absorption, thermal cracking, etc. in the bonding area; there is no obvious interface between the two aluminum alloys, forming a Metallurgical bonding, using the surface protection zinc layer to solve the problem that the oxide film hinders the formation of metallurgical bonding. After tensile test, the connection strength is 145MPa.
实施例4Example 4
本实施例涉及A356合金和6061的连接方法,包括如下步骤:This embodiment relates to the connection method of A356 alloy and 6061, comprising the following steps:
步骤一、对待连接固态铝预置材料进行镀镍处理,镍层厚度3μm;Step 1. Nickel plating is performed on the solid aluminum preset material to be connected, and the thickness of the nickel layer is 3 μm;
步骤二、熔化待浇注纯铝并精炼;Step 2, melting and refining the pure aluminum to be poured;
步骤三、将步骤一所得经过热浸镀锌处理后的固态紫铜预置在模具型腔内;Step 3, presetting the solid red copper obtained in step 1 after the hot-dip galvanizing treatment in the mold cavity;
步骤四、利用重力铸造方法,在720℃下将A356合金液浇注到模具型腔内,使两者之间形成冶金结合,即完成铝铝固液连接。Step 4. Using the gravity casting method, the A356 alloy liquid is poured into the cavity of the mold at 720° C. to form a metallurgical bond between the two, that is, to complete the aluminum-aluminum solid-liquid connection.
图3为该条件下A356合金和纯铝界面区域金相图,从图中可以观察到两种材料之间形成冶金结合,界面区域有连续分布的金属间氧化物,说明两金属间形成了冶金结合。经拉伸测试,连接强度为128MPa。Figure 3 is the metallographic diagram of the interface area between the A356 alloy and pure aluminum under this condition. It can be observed from the figure that a metallurgical bond is formed between the two materials, and there are continuously distributed intermetallic oxides in the interface area, indicating that a metallurgical bond is formed between the two metals. combined. After tensile test, the connection strength is 128MPa.
实施例5Example 5
本实施例涉及6061铝的固液连接方法,包括如下步骤:This embodiment relates to a solid-liquid connection method for 6061 aluminum, comprising the following steps:
步骤一、对待连接6061铝预置材料进行镀镍处理,镍层厚度5μm;Step 1: Perform nickel plating on the 6061 aluminum preset material to be connected, and the thickness of the nickel layer is 5 μm;
步骤二、熔化待浇注纯铝并精炼;Step 2, melting and refining the pure aluminum to be poured;
步骤三、将步骤一所得经过镀镍处理后的固态铝预置在模具型腔内;Step 3, presetting the nickel-plated solid aluminum obtained in step 1 in the mold cavity;
步骤四、利用挤压铸造方法,在720℃下将纯铝浇注到模具型腔内,挤压压力120MPa,使铝和铝之间形成冶金结合,即完成铝铝金属固液连接。Step 4. Using the squeeze casting method, pour pure aluminum into the cavity of the mold at 720° C., and the extrusion pressure is 120 MPa to form a metallurgical bond between aluminum and aluminum, that is, to complete the solid-liquid connection of aluminum and aluminum.
图4为该条件下6061铝界面区域金相图,从图中可以观察到在结合区域没有出现氧化夹渣、吸气、热裂等缺陷。两种材料之间形成冶金结合,界面区域有连续分布的金属间氧化物,说明两金属间形成了冶金结合。经拉伸测试,连接强度为142MPa。Figure 4 is the metallographic diagram of the 6061 aluminum interface area under this condition. From the figure, it can be observed that there are no defects such as oxidation slag inclusions, gas absorption, and thermal cracks in the bonding area. A metallurgical bond is formed between the two materials, and there is a continuous distribution of intermetallic oxides in the interface area, indicating that a metallurgical bond is formed between the two metals. After tensile test, the connection strength is 142MPa.
实施例6Example 6
本实施例涉及一种铝合金固液连接方法,具体方案与实施例5相同,不同之处仅在于:This embodiment relates to a solid-liquid connection method for an aluminum alloy, and the specific scheme is the same as that of Embodiment 5, except that:
步骤一中镍层厚度0.1μm;In step 1, the thickness of the nickel layer is 0.1 μm;
步骤四中的浇铸温度为580℃,挤压压力80MPa。The casting temperature in step 4 is 580° C., and the extrusion pressure is 80 MPa.
结果显示,该条件下固态6061铝合金和6061铸造铝合金固液结合后,在结合区域没有出现氧化夹渣、吸气、热裂等缺陷;两种铝合金之间没有明显的界面,形成了冶金结合,利用表面保护锌层很好的解决了氧化膜阻碍冶金结合形成的难题。经拉伸测试,连接强度为135MPa。The results show that under this condition, after the solid-liquid combination of solid 6061 aluminum alloy and 6061 cast aluminum alloy, there are no defects such as oxidized slag inclusions, gas absorption, thermal cracking, etc. in the bonding area; there is no obvious interface between the two aluminum alloys, forming a Metallurgical bonding, using the surface protection zinc layer to solve the problem that the oxide film hinders the formation of metallurgical bonding. After tensile test, the connection strength is 135MPa.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610729091.1A CN106238710A (en) | 2016-08-25 | 2016-08-25 | The solid-liquid method of attachment of aluminum aluminum metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610729091.1A CN106238710A (en) | 2016-08-25 | 2016-08-25 | The solid-liquid method of attachment of aluminum aluminum metal |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106238710A true CN106238710A (en) | 2016-12-21 |
Family
ID=57595867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610729091.1A Pending CN106238710A (en) | 2016-08-25 | 2016-08-25 | The solid-liquid method of attachment of aluminum aluminum metal |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106238710A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107052306A (en) * | 2017-02-22 | 2017-08-18 | 吉林大学 | A kind of hypereutectic and hypoeutectic al-si alloy solid-liquid bimetal composite casting method |
CN107723650A (en) * | 2017-10-25 | 2018-02-23 | 安徽恒利增材制造科技有限公司 | A kind of casting method of aluminum-iron bimetal for engine block |
CN108149371A (en) * | 2018-02-02 | 2018-06-12 | 福建泉州日进铝制品有限公司 | A kind of compression method of single knitting machine support integral die-cast |
CN109226718A (en) * | 2018-10-08 | 2019-01-18 | 江苏鹏江电子科技有限公司 | Alumina-base material preparation process suitable for cooling body |
CN109530657A (en) * | 2018-10-08 | 2019-03-29 | 江苏鹏江电子科技有限公司 | The preparation process of cooling plate |
CN111230073A (en) * | 2020-01-16 | 2020-06-05 | 青岛力晨新材料科技有限公司 | Stainless steel/carbon steel composite board and manufacturing process thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3948309A (en) * | 1973-08-20 | 1976-04-06 | Ford Motor Company | Composite rotor housing with wear-resistant coating |
CN1270428A (en) * | 2000-01-18 | 2000-10-18 | 西安市阎良区信成特种合金铸造有限公司 | Electrically conductive terminal cast with Al-Cu alloy |
CN104275469A (en) * | 2014-09-16 | 2015-01-14 | 上海交通大学 | Solid-liquid connecting method of aluminum materials |
CN104384480A (en) * | 2014-09-16 | 2015-03-04 | 上海交通大学 | Solid-liquid connecting method of copper-aluminum dissimilar metals |
CN105562662A (en) * | 2015-12-23 | 2016-05-11 | 上海交通大学 | Method for preparing bimetallic composite through combination of solid-liquid compounding and drawing of solid aluminum materials |
-
2016
- 2016-08-25 CN CN201610729091.1A patent/CN106238710A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3948309A (en) * | 1973-08-20 | 1976-04-06 | Ford Motor Company | Composite rotor housing with wear-resistant coating |
CN1270428A (en) * | 2000-01-18 | 2000-10-18 | 西安市阎良区信成特种合金铸造有限公司 | Electrically conductive terminal cast with Al-Cu alloy |
CN104275469A (en) * | 2014-09-16 | 2015-01-14 | 上海交通大学 | Solid-liquid connecting method of aluminum materials |
CN104384480A (en) * | 2014-09-16 | 2015-03-04 | 上海交通大学 | Solid-liquid connecting method of copper-aluminum dissimilar metals |
CN105562662A (en) * | 2015-12-23 | 2016-05-11 | 上海交通大学 | Method for preparing bimetallic composite through combination of solid-liquid compounding and drawing of solid aluminum materials |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107052306A (en) * | 2017-02-22 | 2017-08-18 | 吉林大学 | A kind of hypereutectic and hypoeutectic al-si alloy solid-liquid bimetal composite casting method |
CN107723650A (en) * | 2017-10-25 | 2018-02-23 | 安徽恒利增材制造科技有限公司 | A kind of casting method of aluminum-iron bimetal for engine block |
CN108149371A (en) * | 2018-02-02 | 2018-06-12 | 福建泉州日进铝制品有限公司 | A kind of compression method of single knitting machine support integral die-cast |
CN109226718A (en) * | 2018-10-08 | 2019-01-18 | 江苏鹏江电子科技有限公司 | Alumina-base material preparation process suitable for cooling body |
CN109530657A (en) * | 2018-10-08 | 2019-03-29 | 江苏鹏江电子科技有限公司 | The preparation process of cooling plate |
CN111230073A (en) * | 2020-01-16 | 2020-06-05 | 青岛力晨新材料科技有限公司 | Stainless steel/carbon steel composite board and manufacturing process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106238710A (en) | The solid-liquid method of attachment of aluminum aluminum metal | |
CN104384480A (en) | Solid-liquid connecting method of copper-aluminum dissimilar metals | |
CN101954474B (en) | Method for preparing copper-lead alloy/steel bimetal laminated composite material | |
CN104275469A (en) | Solid-liquid connecting method of aluminum materials | |
CN102350492B (en) | A kind of preparation method of casting aluminum-magnesium alloy composite ingot | |
CN111218579A (en) | A kind of preparation method of micron SiC particle reinforced aluminum matrix composite material | |
CN106077996B (en) | Active heat resisting copper base solder and preparation method thereof for aluminium bronze/stainless steel soldering | |
CN105583628A (en) | Method for manufacturing bi-metal composite material through combination of solid aluminum solid and liquid compounding and extruding | |
CN101301710A (en) | A kind of rare earth-containing magnesium alloy medium-temperature solder and preparation method thereof | |
CN105537564A (en) | Method for preparing bimetal composite material by solid and liquid bonding and rolling on solid aluminum material in combined manner | |
CN105598420A (en) | Method for preparing double-metal compound material through combined solid-state copper solid-liquid compounding and rolling | |
CN106112391A (en) | A kind of production technology of metallurgical composite bimetal pipe | |
CN105562662A (en) | Method for preparing bimetallic composite through combination of solid-liquid compounding and drawing of solid aluminum materials | |
CN112338389B (en) | Laminated strip-shaped self-brazing solder for aluminum copper brazing and preparation method thereof | |
CN100593451C (en) | Manufacturing method of two-stage slotless mold casing for soft contact electromagnetic continuous casting | |
CN105499545A (en) | Method for preparing double-metal composite material by solid-liquid combination of solid-state steel material and rolling composition | |
CN113664185B (en) | A preparation method for preparing aluminum alloy bimetallic composite material by electromagnetic casting | |
CN101386940B (en) | Al-Mn-Mg-Cu-Ni-Ce alloy and manufacturing method thereof | |
CN105251971A (en) | Interlayer vacuum coating method during blank manufacturing process of hot rolling composite plate | |
KR101256126B1 (en) | The interlayer inserting mothod for enhancing the bonding power at that time of combining Al alloy with Fe | |
CN105478725A (en) | Method for preparing bi-metal composite through solid copper solid-liquid composite and extrusion combination | |
CN105537859A (en) | Method for preparing duplex metal composite material through solid-liquid compounding and drawing combination of solid steel | |
CN107790652A (en) | A kind of aluminium/magnesium base composite material continuously casting preparation method | |
CN112144059A (en) | Corrosion-resistant layer for galvanic corrosion protection of steel and aluminum alloy and preparation method thereof | |
CN100518996C (en) | Method for preparing strengthened coatings on the continuance casting crystallizer surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161221 |