CN106229315B - A kind of bidirectional ESD device and manufacturing method thereof - Google Patents
A kind of bidirectional ESD device and manufacturing method thereof Download PDFInfo
- Publication number
- CN106229315B CN106229315B CN201610875594.XA CN201610875594A CN106229315B CN 106229315 B CN106229315 B CN 106229315B CN 201610875594 A CN201610875594 A CN 201610875594A CN 106229315 B CN106229315 B CN 106229315B
- Authority
- CN
- China
- Prior art keywords
- high concentration
- type doping
- well
- type
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 230000002457 bidirectional effect Effects 0.000 title abstract description 33
- 239000004065 semiconductor Substances 0.000 claims abstract description 20
- 239000007943 implant Substances 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 5
- 230000002146 bilateral effect Effects 0.000 claims 3
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 15
- 238000010586 diagram Methods 0.000 description 8
- 238000002513 implantation Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Bipolar Integrated Circuits (AREA)
Abstract
本发明公开了一种双向ESD器件及其制作方法,该ESD器件包括:半导体基体和设置于所述半导体基体中的P阱;生成于所述P阱中一侧的N阱;设置于所述P阱另一侧的NPN三极管结构以及设置于所述N阱中的双向二极管结构;设置于所述NPN三极管结构的集电极和发射极下的ESD植入层,本发明通过将该ESD器件的NPN三极管的集电极和发射极下方都注入P型ESD_IMP,进一步降低了垂直方向的NPN回滞效应的触发电压,从而达到降低整个静电防护结构的触发电压的目的,本发明的NPN器件具有左右对称结构,通过外接并联的双向二极管使得本发明中的ESD器件具有双向泄流能力。
The invention discloses a bidirectional ESD device and a manufacturing method thereof. The ESD device comprises: a semiconductor base and a P well arranged in the semiconductor base; an N well formed on one side of the P well; The NPN triode structure on the other side of the P well and the bidirectional diode structure arranged in the N well; the ESD implant layer arranged under the collector and the emitter of the NPN triode structure, the present invention uses the ESD device P-type ESD_IMP is injected under the collector and emitter of the NPN transistor, which further reduces the trigger voltage of the NPN hysteresis effect in the vertical direction, thereby achieving the purpose of reducing the trigger voltage of the entire electrostatic protection structure. The NPN device of the present invention has left-right symmetry structure, the ESD device in the present invention has bidirectional current leakage capability by externally connecting parallel bidirectional diodes.
Description
技术领域technical field
本发明涉及半导体集成电路技术领域,特别是涉及一种基于NPN的双向ESD器件及其制作方法。The invention relates to the technical field of semiconductor integrated circuits, in particular to an NPN-based bidirectional ESD device and a manufacturing method thereof.
背景技术Background technique
半导体集成电路从生产到封装、测试等整个生命周期的都会面临各种难以预知的静电环境,从而容易将静电引入到半导体集成电路,进而使得半导体集成电路产生静电损失,因此,半导体集成电路的设计不仅需要满足功能需求,还要具有一定的静电防护能力。The entire life cycle of semiconductor integrated circuits from production to packaging and testing will face various unpredictable electrostatic environments, so that static electricity can be easily introduced into semiconductor integrated circuits, which will cause static electricity loss in semiconductor integrated circuits. Therefore, the design of semiconductor integrated circuits It not only needs to meet the functional requirements, but also has a certain electrostatic protection capability.
目前,在ESD(Electro-Static Discharge)保护设计领域,NPN三极管因具有ESD泄流能力强的特性而广受重视,但是该类器件存在两个严重缺陷限制了其应用:第一个缺陷是snapback(回滞效应)的触发电压很高,因为其触发电压主要受N结对P阱的反向击穿电压限制;第二个缺陷是snapback(回滞效应)的维持电压很低,很容易导致闩锁效应。正对这两个缺陷,产业界提出了各种方案来改善其snapback(回滞效应)的性能。如图1所示的静电防护结构是最接近的现有技术方案,该方案通过在N结下方注入一道P型的ESD_IMP,形成垂直的NPN,同时NPN的集电极再串联上一个并联的二极管和电阻,来提高该NPN snapback(回滞效应)的维持电压。具体地,现有技术NPN型ESD器件包括硅氧化层(OXIDE)10、高浓度N型掺杂(N+)20、高浓度N型掺杂(N+)22、高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)26、ESD植入层(ESD IMP)40、N阱(N-Well)60、P阱(P-Well)70、电阻R。At present, in the field of ESD (Electro-Static Discharge) protection design, NPN transistors are widely valued because of their strong ESD discharge capability, but there are two serious defects in this type of device that limit their application: the first defect is the snapback The trigger voltage (hysteresis effect) is very high, because its trigger voltage is mainly limited by the reverse breakdown voltage of the N junction to the P well; the second defect is that the maintenance voltage of the snapback (hysteresis effect) is very low, which can easily lead to latch lock-in effect. Facing these two defects, the industry has proposed various schemes to improve the performance of its snapback (hysteresis effect). The electrostatic protection structure shown in Figure 1 is the closest prior art solution, which injects a P-type ESD_IMP under the N junction to form a vertical NPN, and at the same time, the collector of the NPN is connected in series with a parallel diode and Resistors to increase the sustain voltage of the NPN snapback (hysteresis effect). Specifically, the prior art NPN type ESD device includes a silicon oxide layer (OXIDE) 10, a high-concentration N-type doping (N+) 20, a high-concentration N-type doping (N+) 22, a high-concentration P-type doping (P+) 24. High concentration N-type doping (N+) 26, ESD implant layer (ESD IMP) 40, N well (N-Well) 60, P well (P-Well) 70, resistor R.
整个ESD器件置于P阱(P-Well)70中,在P阱(P-Well)70中生成两个N阱(N-Well)60,两个N阱(N-Well)60间仍由P阱(P-Well)70隔离(两个N阱(N-Well)60不能重叠),高浓度N型掺杂(N+)20、高浓度N型掺杂(N+)22置于左边N阱(N-Well)60上部,高浓度N型掺杂(N+)20、左边N阱(N-Well)60与高浓度N型掺杂(N+)22构成NPN结构,高浓度N型掺杂(N+)22为NPN的集电极,高浓度N型掺杂(N+)20为NPN的发射极,高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)26置于右边N阱(N-Well)60上部,高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)26构成二极管结构,高浓度N型掺杂(N+)20、高浓度N型掺杂(N+)22、高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)26间用硅氧化层(OXIDE)10隔离,ESD植入层(ESD IMP)40置于NPN的集电极(高浓度N型掺杂(N+)22)下方;用金属连接高浓度N型掺杂(N+)22、高浓度P型掺杂(P+)24至电阻R的一端,电阻R的另一端连接至高浓度N型掺杂(N+)26即ESD阴极K,高浓度N型掺杂(N+)20为ESD器件的阳极A。The whole ESD device is placed in the P well (P-Well) 70, and two N wells (N-Well) 60 are generated in the P well (P-Well) 70, and there is still a gap between the two N wells (N-Well) 60 P-well (P-Well) 70 isolation (two N-wells (N-Well) 60 cannot overlap), high-concentration N-type doping (N+) 20, high-concentration N-type doping (N+) 22 placed in the left N-well (N-Well) 60 upper part, high-concentration N-type doping (N+) 20, left N-well (N-Well) 60 and high-concentration N-type doping (N+) 22 constitute an NPN structure, high-concentration N-type doping ( N+) 22 is the collector of NPN, high-concentration N-type doping (N+) 20 is the emitter of NPN, high-concentration P-type doping (P+) 24, high-concentration N-type doping (N+) 26 are placed on the right N Well (N-Well) 60 upper part, high-concentration P-type doping (P+) 24, high-concentration N-type doping (N+) 26 constitute a diode structure, high-concentration N-type doping (N+) 20, high-concentration N-type doping Impurity (N+) 22, high-concentration P-type doping (P+) 24, high-concentration N-type doping (N+) 26 are isolated by silicon oxide layer (OXIDE) 10, and ESD implant layer (ESD IMP) 40 is placed in NPN Below the collector (high-concentration N-type doping (N+) 22); use metal to connect high-concentration N-type doping (N+) 22, high-concentration P-type doping (P+) 24 to one end of the resistor R, and the resistor R The other end is connected to the high-concentration N-type doping (N+) 26 ie the ESD cathode K, and the high-concentration N-type doping (N+) 20 is the anode A of the ESD device.
其中,P阱(P-Well)70用于将整个ESD器件与其他器件隔离,N阱(N-Well)60用于将左边的NPN结构与右边的二极管结构隔离。Wherein, the P well (P-Well) 70 is used to isolate the entire ESD device from other devices, and the N well (N-Well) 60 is used to isolate the NPN structure on the left from the diode structure on the right.
图2为图1的等效原理图,从阳极A向右看,由于N阱(N-Well)60相对于N+掺杂可以看作P掺杂,若无ESD植入层(ESD IMP)40,NPN型ESD器件等效为一个NPN三极管串联一个二极管与电阻并联网络,在集电极N结下加入ESD植入层(ESD IMP)40减小了snapback(回滞效应)的触发电压。Fig. 2 is the equivalent schematic diagram of Fig. 1, viewed from the anode A to the right, since the N well (N-Well) 60 can be regarded as P doping relative to the N+ doping, if there is no ESD implant layer (ESD IMP) 40 , The NPN type ESD device is equivalent to an NPN transistor connected in series with a diode and a parallel network of resistors, adding an ESD implant layer (ESD IMP) 40 under the N junction of the collector to reduce the trigger voltage of snapback (hysteresis effect).
然而,上述结构中N阱和ESD_IMP的反向击穿电压仍然比较高,这导致了该NPN的snapback(回滞效应)的触发电压也仍然比较高,而且因为该NPN串联的二极管是单向的,所以该静电防护结构只具备单向泄流能力。However, the reverse breakdown voltage of the N well and ESD_IMP in the above structure is still relatively high, which leads to a relatively high trigger voltage of the NPN's snapback (hysteresis effect), and because the diode connected in series with the NPN is unidirectional , so the electrostatic protection structure only has one-way discharge capability.
发明内容Contents of the invention
为克服上述现有技术存在的不足,本发明之目的在于提供一种双向ESD器件及其制作方法,其通过将该ESD器件的NPN三极管的集电极和发射极下方都注入P型掺杂(ESD_IMP),进一步降低了垂直方向的NPN snapback(回滞效应)的触发电压,从而达到降低整个静电防护结构的触发电压的目的,另外由于该NPN结构也是左右对称结构,而且将该NPN串联的一个单向二极管换成双向二极管,使得该双向ESD器件具有双向泄流能力。For overcoming the deficiency that above-mentioned prior art exists, the object of the present invention is to provide a kind of bidirectional ESD device and manufacture method thereof, it all injects P-type doping (ESD_IMP ), which further reduces the trigger voltage of the NPN snapback (hysteresis effect) in the vertical direction, so as to achieve the purpose of reducing the trigger voltage of the entire electrostatic protection structure. In addition, because the NPN structure is also a left-right symmetrical structure, and a single NPN connected in series The bidirectional diode is replaced with a bidirectional diode, so that the bidirectional ESD device has a bidirectional leakage capability.
为达上述及其它目的,本发明提出一种双向ESD器件,该ESD器件包括:For reaching above-mentioned and other object, the present invention proposes a kind of bidirectional ESD device, and this ESD device comprises:
半导体基体和设置于所述半导体基体中的P阱;A semiconductor base and a P well disposed in the semiconductor base;
生成于所述P阱中一侧的N阱;forming an N well on one side of the P well;
设置于所述P阱另一侧的NPN三极管结构以及设置于所述N阱中的双向二极管结构;An NPN triode structure disposed on the other side of the P well and a bidirectional diode structure disposed in the N well;
设置于所述NPN三极管结构的集电极和发射极下的ESD植入层。An ESD implant layer arranged under the collector and emitter of the NPN triode structure.
进一步地,高浓度N型掺杂(20)、高浓度N型掺杂(22)设置于所述P阱另一侧的上部,所述高浓度N型掺杂(20)、所述P阱另一侧的上部与所述高浓度N型掺杂(22)构成所述NPN三极管结构。Further, high-concentration N-type doping (20) and high-concentration N-type doping (22) are arranged on the upper part of the other side of the P well, and the high-concentration N-type doping (20), the P well The upper part of the other side and the high-concentration N-type doping (22) form the NPN triode structure.
进一步地,所述高浓度N型掺杂(22)为NPN的集电极,所述高浓度N型掺杂(20)为NPN的发射极,第一ESD植入层(40)置于所述高浓度N型掺杂(20)下方,第二ESD植入层(42)置于所述高浓度N型掺杂(22)下方。Further, the high-concentration N-type doping (22) is the collector of NPN, the high-concentration N-type doping (20) is the emitter of NPN, and the first ESD implant layer (40) is placed on the Under the high-concentration N-type doping (20), the second ESD implant layer (42) is placed under the high-concentration N-type doping (22).
进一步地,高浓度P型掺杂(24)、高浓度N型掺杂(26)以及高浓度P型掺杂(28)、高浓度N型掺杂(34)置于所述N阱60上部,所述高浓度P型掺杂(24)、高浓度N型掺杂(26)构成二极管结构,所述高浓度P型掺杂(28)、高浓度N型掺杂(34)构成另一二极管结构。Further, high-concentration P-type doping (24), high-concentration N-type doping (26), high-concentration P-type doping (28), and high-concentration N-type doping (34) are placed on the upper part of the N well 60 , the high-concentration P-type doping (24) and high-concentration N-type doping (26) constitute a diode structure, and the high-concentration P-type doping (28) and high-concentration N-type doping (34) constitute another diode structure.
进一步地,所述高浓度N型掺杂(20)、高浓度N型掺杂(22)、高浓度P型掺杂(24)、高浓度N型掺杂(26)、高浓度P型掺杂(28)、高浓度N型掺杂(34)间用硅氧化层(10)隔离。Further, the high-concentration N-type doping (20), high-concentration N-type doping (22), high-concentration P-type doping (24), high-concentration N-type doping (26), high-concentration P-type doping Doping (28) and high-concentration N-type doping (34) are separated by a silicon oxide layer (10).
进一步地,利用金属连接所述高浓度N型掺杂(22)、高浓度P型掺杂(24)、高浓度N型掺杂(34)至电阻的一端,该电阻的另一端连接至所述高浓度N型掺杂(26)、高浓度P型掺杂(28),所述高浓度N型掺杂(20)为所述ESD器件的阳极。Further, use metal to connect the high-concentration N-type doping (22), high-concentration P-type doping (24), and high-concentration N-type doping (34) to one end of the resistor, and the other end of the resistor is connected to the The high-concentration N-type doping (26) and high-concentration P-type doping (28), the high-concentration N-type doping (20) is the anode of the ESD device.
进一步地,所述N阱设置于所述P阱右侧,所述NPN三极管结构形成于所述P阱的左上部。Further, the N well is arranged on the right side of the P well, and the NPN triode structure is formed on the upper left of the P well.
为达到上述目的,本发明还提供一种双向ESD器件的制作方法,包括如下步骤:To achieve the above object, the present invention also provides a method for making a bidirectional ESD device, comprising the steps of:
步骤一,提供半导体基体;Step 1, providing a semiconductor substrate;
步骤二,在半导体基体中形成P阱;Step 2, forming a P well in the semiconductor substrate;
步骤三,于所述P阱的一侧生成一N阱,于所述P阱的另一侧生成NPN三极管结构;Step 3, forming an N well on one side of the P well, and forming an NPN transistor structure on the other side of the P well;
步骤四,于所述N阱中生成双向的二极管结构;Step 4, generating a bidirectional diode structure in the N well;
步骤五,于所述NPN三极管结构的集电极和发射极下分别设置ESD植入层。Step 5, setting ESD implantation layers under the collector and emitter of the NPN triode structure respectively.
进一步地,于步骤三中,将高浓度N型掺杂(20)、高浓度N型掺杂(22)设置于所述P阱另一侧的上部,所述高浓度N型掺杂(20)、所述P阱另一侧的上部与所述高浓度N型掺杂(22)构成所述NPN三极管结构。Further, in step 3, high-concentration N-type doping (20) and high-concentration N-type doping (22) are arranged on the upper part of the other side of the P well, and the high-concentration N-type doping (20 ), the upper part of the other side of the P well and the high-concentration N-type doping (22) constitute the NPN triode structure.
进一步地,于步骤四中,将高浓度P型掺杂(24)、高浓度N型掺杂(26)以及高浓度P型掺杂(28)、高浓度N型掺杂(34)置于所述N阱60上部,所述高浓度P型掺杂(24)、高浓度N型掺杂(26)构成二极管结构,所述高浓度P型掺杂(28)、高浓度N型掺杂(34)构成另一二极管结构。Further, in step 4, the high-concentration P-type doping (24), the high-concentration N-type doping (26), the high-concentration P-type doping (28), and the high-concentration N-type doping (34) are placed in In the upper part of the N well 60, the high-concentration P-type doping (24) and high-concentration N-type doping (26) constitute a diode structure, and the high-concentration P-type doping (28), high-concentration N-type doping (34) constitute another diode structure.
与现有技术相比,本发明一种双向ESD器件及其制作方法,其通过将该ESD器件的NPN三极管的集电极和发射极下方都注入P型掺杂(ESD_IMP),进一步降低了垂直方向的NPNsnapback(回滞效应)的触发电压,从而达到降低整个静电防护结构的触发电压的目的,另外由于该NPN结构也是左右对称结构,而且将该NPN串联的一个单向二极管换成双向二极管,使得该静电防护结构具有双向泄流能力。Compared with prior art, a kind of two-way ESD device of the present invention and manufacture method thereof, it all injects P-type doping (ESD_IMP) under the collector electrode and the emitter electrode of the NPN triode of this ESD device, further reduces vertical direction The trigger voltage of the NPN snapback (hysteresis effect), so as to achieve the purpose of reducing the trigger voltage of the entire electrostatic protection structure. In addition, because the NPN structure is also a left-right symmetrical structure, and a unidirectional diode connected in series with the NPN is replaced with a bidirectional diode, so that The electrostatic protection structure has bidirectional leakage capability.
附图说明Description of drawings
图1为现有技术的静电防护结构的示意图;Fig. 1 is the schematic diagram of the electrostatic protection structure of prior art;
图2为图1的等效原理图;Fig. 2 is the equivalent schematic diagram of Fig. 1;
图3为本发明一种双向ESE器件之较佳实施例的电路结构图;Fig. 3 is the circuit structure diagram of the preferred embodiment of a kind of bidirectional ESE device of the present invention;
图4为本发明较佳实施例的等效原理图;Fig. 4 is the equivalent schematic diagram of a preferred embodiment of the present invention;
图5为本发明一种双向ESD器件的制作方法的步骤流程图;Fig. 5 is the step flowchart of the manufacture method of a kind of bidirectional ESD device of the present invention;
图6为本发明的应用场景示意图。FIG. 6 is a schematic diagram of an application scenario of the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。The implementation of the present invention is described below through specific examples and in conjunction with the accompanying drawings, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific examples, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
图3为本发明一种双向ESD器件之较佳实施例的电路结构图。如图1所示,本发明一种ESD器件,包括一NPN型三极管、与之串联的电阻R以及与电阻并联的二极管,具体地,该ESD器件包括半导体基体(未示出),和设置于半导体基体中的阱70,在本发明较佳实施例中,阱70为P阱(P-Well),在P阱(P-Well)70的右侧生成一个N阱(N-Well)60,高浓度N型掺杂(N+)20、高浓度N型掺杂(N+)22置于P阱(P-Well)70左上部,高浓度N型掺杂(N+)20、P阱(P-Well)70的左上部与高浓度N型掺杂(N+)22构成NPN三极管结构,高浓度N型掺杂(N+)22为NPN的集电极,高浓度N型掺杂(N+)20为NPN的发射极,高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)26置于右边N阱(N-Well)60上部,高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)26构成二极管结构,高浓度P型掺杂(P+)28、高浓度N型掺杂(N+)34构成另一二极管结构,高浓度N型掺杂(N+)20、高浓度N型掺杂(N+)22、高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)26、高浓度P型掺杂(P+)28、高浓度N型掺杂(N+)34间用硅氧化层(OXIDE)10隔离,ESD植入层(ESD_IMP)40置于NPN的发射极(高浓度N型掺杂(N+)20)下方,ESD植入层(ESD_IMP)42置于NPN的集电极(高浓度N型掺杂(N+)22)下方;用金属连接高浓度N型掺杂(N+)22、高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)34至电阻R的一端,电阻R的另一端连接至高浓度N型掺杂(N+)26、高浓度P型掺杂(P+)28即本发明双向ESD器件的阴极K,高浓度N型掺杂(N+)20为本发明双向ESD器件的阳极A。FIG. 3 is a circuit structure diagram of a preferred embodiment of a bidirectional ESD device of the present invention. As shown in Figure 1, a kind of ESD device of the present invention comprises an NPN type triode, the resistor R connected in series with it and the diode connected in parallel with the resistor, specifically, the ESD device includes a semiconductor substrate (not shown), and is arranged on The well 70 in the semiconductor substrate, in a preferred embodiment of the present invention, the well 70 is a P well (P-Well), and an N well (N-Well) 60 is generated on the right side of the P well (P-Well) 70, High-concentration N-type doping (N+) 20, high-concentration N-type doping (N+) 22 are placed in the upper left part of P well (P-Well) 70, high-concentration N-type doping (N+) 20, P well (P- The upper left part of Well) 70 and high-concentration N-type doping (N+) 22 constitute an NPN triode structure, high-concentration N-type doping (N+) 22 is the collector of NPN, and high-concentration N-type doping (N+) 20 is NPN Emitter, high-concentration P-type doping (P+) 24, high-concentration N-type doping (N+) 26 are placed on the upper part of the right N well (N-Well) 60, high-concentration P-type doping (P+) 24, high-concentration N-type doping (N+) 26 Concentration N-type doping (N+) 26 constitutes a diode structure, high-concentration P-type doping (P+) 28, high-concentration N-type doping (N+) 34 constitute another diode structure, high-concentration N-type doping (N+) 20 , High-concentration N-type doping (N+) 22, High-concentration P-type doping (P+) 24, High-concentration N-type doping (N+) 26, High-concentration P-type doping (P+) 28, High-concentration N-type doping The heterogeneous (N+) 34 is isolated with a silicon oxide layer (OXIDE) 10, and the ESD implant layer (ESD_IMP) 40 is placed below the emitter (high concentration N-type doping (N+) 20) of the NPN, and the ESD implant layer (ESD_IMP) ) 42 placed under the collector of NPN (high concentration N-type doping (N+) 22); use metal to connect high concentration N-type doping (N+) 22, high concentration P-type doping (P+) 24, high concentration N Type doping (N+) 34 to one end of resistance R, the other end of resistance R is connected to high concentration N type doping (N+) 26, high concentration P type doping (P+) 28 namely the negative electrode K of bidirectional ESD device of the present invention, High-concentration N-type doping (N+) 20 is the anode A of the bidirectional ESD device of the present invention.
其中,P阱(P-Well)70用于将整个ESD器件与其他器件隔离,N阱(N-Well)60用于将左边的NPN三极管结构与右边的两个二极管结构隔离。Wherein, the P well (P-Well) 70 is used to isolate the entire ESD device from other devices, and the N well (N-Well) 60 is used to isolate the NPN triode structure on the left from the two diode structures on the right.
图4为本发明较佳实施例的等效原理图,从图3的剖面图左边阳极A向右看,若无ESD植入层(ESD IMP)40、ESD植入层(ESD IMP)42,本发明双向ESD器件等效为一个NPN三极管串联一个二极管与电阻并联网络,该二极管与电阻并联网络中两个二极管反向后与电阻R并联,在发射极N结和集电极N结下分别加入ESD植入层(ESD IMP)40、ESD植入层(ESD IMP)42比集电极N结下加入ESD植入层(ESD IMP)40在进一步减小了snapback(回滞效应)的触发电压,增加双向并联二极管实现了ESD双向保护。Fig. 4 is the equivalent schematic diagram of a preferred embodiment of the present invention, sees from the anode A on the left side of Fig. 3 sectional view to the right, if there is no ESD implantation layer (ESD IMP) 40, ESD implantation layer (ESD IMP) 42, The bidirectional ESD device of the present invention is equivalent to an NPN triode connected in series with a diode and a resistor parallel network, the diode and the resistor parallel network are connected in parallel with the resistor R after the two diodes are reversed, and are respectively added under the emitter N-junction and the collector N-junction The ESD implantation layer (ESD IMP) 40 and the ESD implantation layer (ESD IMP) 42 are added to the ESD implantation layer (ESD IMP) 40 under the N junction of the collector to further reduce the trigger voltage of the snapback (hysteresis effect), Adding bidirectional parallel diodes realizes ESD bidirectional protection.
图5为本发明一种ESD器件的制作方法的步骤流程图。如图5所示,本发明一种ESD器件的制作方法,包括如下步骤:FIG. 5 is a flow chart of the steps of a manufacturing method of an ESD device according to the present invention. As shown in Figure 5, a kind of manufacture method of ESD device of the present invention comprises the following steps:
步骤501,提供半导体基体;Step 501, providing a semiconductor substrate;
步骤502,在半导体基体中形成阱70,在本发明中,在半导体基体中形成P阱70。In step 502, a well 70 is formed in the semiconductor body. In the present invention, a P-well 70 is formed in the semiconductor body.
步骤503,于P阱70的一侧生成一N阱60,于P阱70的另一侧生成NPN三极管结构。具体地说,将高浓度N型掺杂(N+)20、高浓度N型掺杂(N+)22置于P阱(P-Well)70左上部,高浓度N型掺杂(N+)20、P阱(P-Well)70的左上部与高浓度N型掺杂(N+)22构成NPN三极管结构,高浓度N型掺杂(N+)22为NPN的集电极,高浓度N型掺杂(N+)20为NPN的发射极。In step 503 , an N well 60 is formed on one side of the P well 70 , and an NPN transistor structure is formed on the other side of the P well 70 . Specifically, high-concentration N-type doping (N+) 20 and high-concentration N-type doping (N+) 22 are placed in the upper left part of P well (P-Well) 70, and high-concentration N-type doping (N+) 20, The upper left part of the P well (P-Well) 70 and the high-concentration N-type doping (N+) 22 form an NPN transistor structure, and the high-concentration N-type doping (N+) 22 is the collector of the NPN, and the high-concentration N-type doping ( N+) 20 is the emitter of the NPN.
步骤504,于N阱60中生成双向的二极管结构。具体地说,将高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)26、高浓度P型掺杂(P+)28、高浓度N型掺杂(N+)34置于右边N阱(N-Well)60上部,其中高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)26构成二极管结构,高浓度P型掺杂(P+)28、高浓度N型掺杂(N+)34构成另一二极管结构,两个二极管结构构成双向二极管,高浓度N型掺杂(N+)20、高浓度N型掺杂(N+)22、高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)26、高浓度P型掺杂(P+)28、高浓度N型掺杂(N+)34间用硅氧化层(OXIDE)10隔离。In step 504 , a bidirectional diode structure is formed in the N well 60 . Specifically, high-concentration P-type doping (P+) 24, high-concentration N-type doping (N+) 26, high-concentration P-type doping (P+) 28, and high-concentration N-type doping (N+) 34 are placed The upper part of the right N well (N-Well) 60, in which high-concentration P-type doping (P+) 24 and high-concentration N-type doping (N+) 26 form a diode structure, and high-concentration P-type doping (P+) 28, high-concentration N-type doping (N+) 34 constitutes another diode structure, two diode structures form a bidirectional diode, high-concentration N-type doping (N+) 20, high-concentration N-type doping (N+) 22, high-concentration P-type doping (P+) 24, high-concentration N-type doping (N+) 26, high-concentration P-type doping (P+) 28, and high-concentration N-type doping (N+) 34 are isolated by silicon oxide layer (OXIDE) 10 .
步骤505,将ESD植入层(ESD_IMP)40置于该NPN三极管发射极(高浓度N型掺杂(N+)20)下方,ESD植入层(ESD_IMP)42置于该NPN三极管集电极(高浓度N型掺杂(N+)22)下方。Step 505, the ESD implant layer (ESD_IMP) 40 is placed under the NPN transistor emitter (high concentration N-type doping (N+) 20), and the ESD implant layer (ESD_IMP) 42 is placed on the NPN transistor collector (high Concentration N-type doping (N+) 22) below.
步骤506,利用金属连接高浓度N型掺杂(N+)22、高浓度P型掺杂(P+)24、高浓度N型掺杂(N+)34至电阻R的一端,电阻R的另一端连接至高浓度N型掺杂(N+)26、高浓度P型掺杂(P+)28即本发明双向ESD器件的阴极K,高浓度N型掺杂(N+)20为本发明双向ESD器件的阳极AStep 506, using metal to connect high-concentration N-type doping (N+) 22, high-concentration P-type doping (P+) 24, and high-concentration N-type doping (N+) 34 to one end of the resistor R, and the other end of the resistor R is connected to High-concentration N-type doping (N+) 26, high-concentration P-type doping (P+) 28 are the cathode K of the two-way ESD device of the present invention, and high-concentration N-type doping (N+) 20 is the anode A of the two-way ESD device of the present invention
本发明是在已有的图1所示的静电防护结构的基础上,将该NPN三极管的集电极和发射极下方都注入P型ESD IMP,并且将该NPN下方的N阱转成P阱,因为集电极的N结的N型离子注入剂量比N阱的N型离子注入剂量要高很多,所以,N结对ESD IMP的反向击穿电压比N阱对ESD IMP的反向击穿电压要低很多,所以可以进一步降低垂直方向的NPN snapback(回滞效应)的触发电压,从而达到降低整个静电防护结构的触发电压,另外该NPN结构也是左右对称结构,而且将该NPN串联的一个单向二极管换成双向二极管,所以该静电防护结构具有双向泄流能力。The present invention injects P-type ESD IMP under the collector and emitter of the NPN transistor on the basis of the existing electrostatic protection structure shown in Figure 1, and converts the N well below the NPN into a P well, Because the N-type ion implantation dose of the N junction of the collector is much higher than the N-type ion implantation dose of the N well, the reverse breakdown voltage of the N junction to the ESD IMP is higher than that of the N well to the ESD IMP. It is much lower, so the trigger voltage of the NPN snapback (hysteresis effect) in the vertical direction can be further reduced, thereby reducing the trigger voltage of the entire electrostatic protection structure. In addition, the NPN structure is also a left-right symmetrical structure, and a one-way connection of the NPN in series The diode is replaced with a bidirectional diode, so the electrostatic protection structure has a bidirectional leakage capability.
可以将本发明的双向ESD器件应用到ESD保护电路中的输入输出端的保护电路中和电源对地的保护电路中,来提升芯片整体的ESD防护能力,如图6所示。The bidirectional ESD device of the present invention can be applied to the protection circuit of the input and output terminals and the protection circuit of the power supply to the ground in the ESD protection circuit to improve the overall ESD protection capability of the chip, as shown in FIG. 6 .
综上所述,本发明一种双向ESD器件及其制作方法,其通过将该ESD器件的NPN三极管的集电极和发射极下方都注入P型掺杂(ESD_IMP),进一步降低了垂直方向的NPNsnapback(回滞效应)的触发电压,从而达到降低整个静电防护结构的触发电压的目的,另外由于该NPN结构也是左右对称结构,而且将该NPN串联的一个单向二极管换成双向二极管,使得该双向ESD器件具有双向泄流能力。In summary, a kind of bidirectional ESD device of the present invention and manufacturing method thereof, it all injects P-type doping (ESD_IMP) under the collector electrode and the emitter electrode of the NPN transistor of this ESD device, further reduces the NPNsnapback of vertical direction (Hysteresis effect) trigger voltage, so as to achieve the purpose of reducing the trigger voltage of the entire electrostatic protection structure. In addition, because the NPN structure is also a left-right symmetrical structure, and a unidirectional diode connected in series with the NPN is replaced with a bidirectional diode, so that the bidirectional ESD devices have bi-directional bleed capability.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Any person skilled in the art can modify and change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be listed in the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610875594.XA CN106229315B (en) | 2016-09-30 | 2016-09-30 | A kind of bidirectional ESD device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610875594.XA CN106229315B (en) | 2016-09-30 | 2016-09-30 | A kind of bidirectional ESD device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106229315A CN106229315A (en) | 2016-12-14 |
CN106229315B true CN106229315B (en) | 2019-10-25 |
Family
ID=58076908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610875594.XA Active CN106229315B (en) | 2016-09-30 | 2016-09-30 | A kind of bidirectional ESD device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106229315B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106449635A (en) * | 2016-09-30 | 2017-02-22 | 上海华力微电子有限公司 | Novel low-trigger-voltage silicon-controlled rectifier and manufacturing method therefor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6177324B1 (en) * | 1999-10-28 | 2001-01-23 | Chartered Semiconductor Manufacturing, Ltd. | ESD protection device for STI deep submicron technology |
US6800906B2 (en) * | 2002-10-18 | 2004-10-05 | United Microelectronics Corp. | Electrostatic discharge protection circuit |
US9054521B2 (en) * | 2013-06-25 | 2015-06-09 | Hong Kong Applied Science & Technology Research Institute Company, Ltd. | Electro-static-discharge (ESD) protection structure with stacked implant junction transistor and parallel resistor and diode paths to lower trigger voltage and raise holding volatge |
-
2016
- 2016-09-30 CN CN201610875594.XA patent/CN106229315B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106229315A (en) | 2016-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108183101B (en) | Non-Hysteresis-Effect Silicon Controlled Rectifier Type ESD Protection Structure and Its Realization Method | |
CN101840918B (en) | Silicon controlled rectifier electro-static discharge protective circuit structure triggered by diode | |
TWI541974B (en) | Electrostatic discharge protection for high voltage applications | |
CN107369682B (en) | A new silicon controlled rectifier type ESD protection structure and its realization method | |
TWI739586B (en) | Electrostatic discharge protection structure and electrostatic discharge protection circuit with low parasitic capacitance thereof | |
CN103633087B (en) | A kind of strong anti-breech lock controlled LIGBT device with ESD defencive function | |
CN106449635A (en) | Novel low-trigger-voltage silicon-controlled rectifier and manufacturing method therefor | |
CN103985710B (en) | A kind of ESD protection device of two-way SCR structure | |
CN108091650B (en) | Non-Hysteresis-Effect Silicon Controlled Rectifier Type ESD Protection Structure and Its Realization Method | |
CN107248514B (en) | A Novel ESD Protection Structure and Its Implementation Method | |
CN107195630B (en) | A kind of new E SD protection structure and its implementation | |
CN106206571B (en) | Two-way high resistant plasma protection circuit and its manufacturing method | |
CN106356335B (en) | A kind of ESD device and preparation method thereof | |
CN108878417B (en) | A Transient Voltage Suppressor with High Sustained MOS Assisted Triggered SCR Structure | |
CN106229315B (en) | A kind of bidirectional ESD device and manufacturing method thereof | |
CN110867482B (en) | An ESD protection device and electronic device for IC chips | |
CN110690270A (en) | A PMOS device with embedded silicon controlled rectifier and its realization method | |
US8941959B2 (en) | ESD protection apparatus | |
CN102544068A (en) | Bidirectional controllable silicon device based on assistant triggering of PNP-type triodes | |
CN202872672U (en) | An off-line low-voltage DC output circuit and its chip | |
CN112071835B (en) | A gate-constrained silicon controlled rectifier and its implementation method | |
CN108735732A (en) | LDMOS electrostatic protection devices | |
CN107516657B (en) | A Novel ESD Protection Structure and Its Implementation Method | |
CN112563260B (en) | Bidirectional ESD protection device and electronic device | |
KR101349998B1 (en) | Electrostatic discaharge Protection Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |