CN107369682B - A new silicon controlled rectifier type ESD protection structure and its realization method - Google Patents
A new silicon controlled rectifier type ESD protection structure and its realization method Download PDFInfo
- Publication number
- CN107369682B CN107369682B CN201710731223.9A CN201710731223A CN107369682B CN 107369682 B CN107369682 B CN 107369682B CN 201710731223 A CN201710731223 A CN 201710731223A CN 107369682 B CN107369682 B CN 107369682B
- Authority
- CN
- China
- Prior art keywords
- concentration
- type doping
- well
- type
- esd protection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
- H10D89/711—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using bipolar transistors as protective elements
- H10D89/713—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base region coupled to the collector region of the other transistor, e.g. silicon controlled rectifier [SCR] devices
Landscapes
- Thyristors (AREA)
Abstract
本发明公开一种新型硅控整流器型ESD保护结构及其实现方法,该结构包括:半导体衬底(80);生成于半导体衬底的N阱(60)和P阱(70);高浓度P型掺杂(20)、高浓度N型掺杂(28)置于N阱(60)上部,高浓度P型掺杂(20)、N阱(60)及P阱(70)构成等效PNP三极管结构,高浓度N型掺杂(24)、高浓度P型掺杂(26)置于P阱(70)上部,N阱(60)、基体(80)与高浓度N型掺杂(24)构成等效NPN三极管结构,高浓度N型掺杂(22)置于N阱(60)与P阱(70)分界处上方,高浓度N型掺杂(22)与高浓度N型掺杂(24)之间上方放置N型栅极(50),本发明可增加ESD保护结构回滞效应的维持电压。
The invention discloses a novel silicon-controlled rectifier type ESD protection structure and its realization method. The structure comprises: a semiconductor substrate (80); an N well (60) and a P well (70) formed on the semiconductor substrate; a high-concentration P Type doping (20), high-concentration N-type doping (28) is placed on the upper part of N well (60), and high-concentration P-type doping (20), N well (60) and P well (70) constitute an equivalent PNP Triode structure, high-concentration N-type doping (24), high-concentration P-type doping (26) placed on the upper part of P well (70), N well (60), matrix (80) and high-concentration N-type doping (24 ) constitutes an equivalent NPN triode structure, high-concentration N-type doping (22) is placed above the boundary between N-well (60) and P-well (70), high-concentration N-type doping (22) and high-concentration N-type doping An N-type gate (50) is placed above the (24), and the present invention can increase the sustaining voltage of the hysteresis effect of the ESD protection structure.
Description
技术领域technical field
本发明涉及半导体集成电路技术领域,特别是涉及一种低触发电压高维持电压的新型硅控整流器型ESD保护结构及其实现方法。The invention relates to the technical field of semiconductor integrated circuits, in particular to a novel silicon-controlled rectifier type ESD protection structure with low trigger voltage and high sustain voltage and its realization method.
背景技术Background technique
在静电(ESD,Electro-Static Discharge)保护设计领域,硅控整流器(SCR,Silicon Controlled Rectifier)因具有ESD泄流能力强,寄生电容小的特性而广受重视,但是该类器件存在的两个严重缺陷限制了其应用:第一个缺陷是回滞效应的触发电压很高,因为其触发电压主要受N阱对P阱之间较高的反向击穿电压决定;第二个缺陷是回滞效应的维持电压很低,很容易导致闩锁效应。In the field of electrostatic (ESD, Electro-Static Discharge) protection design, Silicon Controlled Rectifier (SCR, Silicon Controlled Rectifier) has been widely valued because of its strong ESD discharge capability and small parasitic capacitance. Serious defects limit its application: the first defect is that the trigger voltage of the hysteresis effect is very high, because its trigger voltage is mainly determined by the high reverse breakdown voltage between the N well and the P well; the second defect is that the hysteresis effect The holding voltage of the hysteresis effect is very low, which can easily lead to latch-up effect.
针对触发电压较高这个缺陷,产业界提出了各种方案来降低回滞效应的触发电压,如图1和图2所示的硅控整流器型ESD保护结构。Aiming at the defect of high trigger voltage, the industry has proposed various schemes to reduce the trigger voltage of the hysteresis effect, such as the silicon controlled rectifier type ESD protection structure shown in FIG. 1 and FIG. 2 .
图1所示的硅控整流器型ESD保护结构是在N阱和P阱之间插入一个横跨N阱和P阱的N型重掺杂,从而达到降低N阱对P阱的反向击穿电压的目的,从而降低回滞效应的触发电压。具体来说,图1所示的硅控整流器(SCR)型包括多个浅沟道隔离层(STI,Shallow TrenchIsolation)10、高浓度N型掺杂(N+)20、高浓度P型掺杂(P+)22、高浓度N型掺杂(N+)24、高浓度N型掺杂(N+)26、高浓度P型掺杂(P+)28、N阱(N-Well)50、P阱(P-Well)60、基体(Psub)70。The silicon controlled rectifier type ESD protection structure shown in Figure 1 is to insert an N-type heavy doping across the N well and P well between the N well and the P well, so as to reduce the reverse breakdown of the N well to the P well voltage purpose, thereby reducing the trigger voltage for the hysteresis effect. Specifically, the silicon-controlled rectifier (SCR) type shown in FIG. 1 includes a plurality of shallow trench isolation layers (STI, Shallow Trench Isolation) 10, high-concentration N-type doping (N+) 20, high-concentration P-type doping ( P+) 22, high-concentration N-type doping (N+) 24, high-concentration N-type doping (N+) 26, high-concentration P-type doping (P+) 28, N well (N-Well) 50, P well (P - Well) 60, Substrate (Psub) 70.
整个ESD保护结构置于基体(Psub)70上,在基体(Psub)70左边生成一个N阱(N-Well)50,在基体(Psub)70右边生成一个P阱(P-Well)60,高浓度N型掺杂(N+)20、高浓度P型掺杂(P+)22置于N阱(N-Well)50上部,高浓度P型掺杂(P+)22、N阱(N-Well)50以及基体(Psub)70构成等效PNP三极管结构,高浓度N型掺杂(N+)20与N阱(N-Well)50形成扩散电阻等效连接至该PNP三极管基极,高浓度P型掺杂(P+)22构成该PNP三极管的发射极,基体(Psub)70构成该PNP三极管之集电极,N阱(N-Well)50构成该PNP三极管之基极,高浓度N型掺杂(N+)26、高浓度P型掺杂(P+)28置于P阱(P-Well)60上部,N阱(N-Well)50、基体(Psub)70/P阱(P-Well)60与高浓度N型掺杂(N+)26构成等效NPN三极管结构,N阱(N-Well)50构成该NPN三极管之集电极,高浓度N型掺杂(N+)26构成等效NPN三极管的发射极,基体(Psub)70/P阱(P-Well)60构成等效NPN三极管的基极,高浓度N型掺杂(N+)24置于N阱(N-Well)50与P阱(P-Well)60分界处上方,高浓度N型掺杂(N+)20、高浓度P型掺杂(P+)22、高浓度N型掺杂(N+)24、高浓度N型掺杂(N+)26、高浓度P型掺杂(P+)28间用浅沟道隔离层(STI,ShallowTrench Isolation)10隔离;用金属连接高浓度N型掺杂(N+)20、高浓度P型掺杂(P+)22构成该硅控整流器(SCR)型ESD保护结构的阳极A,高浓度N型掺杂(N+)26、高浓度P型掺杂(P+)28用金属相连后连接至硅控整流器(SCR)型ESD保护结构的阴极K。The entire ESD protection structure is placed on the substrate (Psub) 70, an N well (N-Well) 50 is formed on the left side of the substrate (Psub) 70, and a P well (P-Well) 60 is formed on the right side of the substrate (Psub) 70, with a high Concentration N-type doping (N+) 20, high-concentration P-type doping (P+) 22 are placed on the upper part of N well (N-Well) 50, high-concentration P-type doping (P+) 22, N well (N-Well) 50 and the substrate (Psub) 70 form an equivalent PNP transistor structure, and the high-concentration N-type doping (N+) 20 and the N-well (N-Well) 50 form a diffusion resistance equivalently connected to the base of the PNP transistor, and the high-concentration P-type The doping (P+) 22 constitutes the emitter of the PNP transistor, the substrate (Psub) 70 constitutes the collector of the PNP transistor, and the N well (N-Well) 50 constitutes the base of the PNP transistor, and the high-concentration N-type doping ( N+) 26, high-concentration P-type doping (P+) 28 placed on the top of P well (P-Well) 60, N well (N-Well) 50, substrate (Psub) 70/P well (P-Well) 60 and High-concentration N-type doping (N+) 26 constitutes an equivalent NPN transistor structure, N well (N-Well) 50 constitutes the collector of the NPN transistor, and high-concentration N-type doping (N+) 26 constitutes an equivalent NPN transistor emitter Pole, substrate (Psub) 70/P well (P-Well) 60 constitutes the base of an equivalent NPN transistor, and high-concentration N-type doping (N+) 24 is placed in N well (N-Well) 50 and P well (P -Well) above the boundary of 60, high-concentration N-type doping (N+) 20, high-concentration P-type doping (P+) 22, high-concentration N-type doping (N+) 24, high-concentration N-type doping (N+) 26. Use shallow trench isolation (STI, Shallow Trench Isolation) 10 between high-concentration P-type doping (P+) 28 to isolate; use metal to connect high-concentration N-type doping (N+) 20, high-concentration P-type doping (P+ ) 22 constitute the anode A of the silicon controlled rectifier (SCR) type ESD protection structure, high concentration N-type doping (N+) 26, high concentration P type doping (P+) 28 are connected with metal and then connected to the silicon controlled rectifier (SCR ) type ESD protection structure cathode K.
图2所示的硅控整流器型ESD保护结构是在图1所示的硅控整流器型ESD保护结构的基础上,将右侧的高浓度N型掺杂(N+)26、高浓度P型掺杂(P+)28向右移动,在新空出来的P阱(P-Well)60的上方增加一N型栅极30,并连接至硅控整流器(SCR)之阴极K,与P阱60组成N型栅控二极管,通过引入N型gated diode(栅控二极管),从而进一步降低N阱对P阱的反向击穿电压,但是即使如此,图2所示的硅控整流器的触发电压还是比较高的,而且该触发电压也是受限于既有的工艺参数,调整自由度不大。The silicon controlled rectifier type ESD protection structure shown in Fig. 2 is based on the silicon controlled rectifier type ESD protection structure shown in Fig. Miscellaneous (P+) 28 moves to the right, and an N-type gate 30 is added above the newly vacated P-well (P-Well) 60, and is connected to the cathode K of the silicon-controlled rectifier (SCR), forming the P-well 60 N-type gate-controlled diodes, by introducing N-type gated diodes (gate-controlled diodes), thereby further reducing the reverse breakdown voltage of the N-well to the P-well, but even so, the trigger voltage of the silicon-controlled rectifier shown in Figure 2 is relatively low High, and the trigger voltage is also limited by the existing process parameters, and the degree of freedom of adjustment is not large.
而针对硅控整流器维持电压比较低的这个缺陷,产业界一般通过增加硅控整流器N阱中的P结(22)到P阱中的N结(26)的距离(c+d)来实现,如图1所示,或者通过外接二极管来实现。但这两种方法,特别是外接二极管的方法,都会大大增加硅控整流器型ESD保护结构的版图面积(Layout Area)。In view of the relatively low maintenance voltage of silicon controlled rectifiers, the industry generally realizes this by increasing the distance (c+d) from the P junction (22) in the N well of the silicon controlled rectifier to the N junction (26) in the P well, As shown in Figure 1, or through an external diode to achieve. But these two methods, especially the method of connecting external diodes, will greatly increase the layout area (Layout Area) of the silicon controlled rectifier type ESD protection structure.
半导体业界进一步提出了如图3所示的现有新型硅控整流器型ESD保护结构,和传统的硅控整流器型ESD保护结构(如图2)相比较,该新型硅控整流器型ESD保护结构的阳极A直接和N阱(N-Well)60中的P型掺杂(P+)22以及右侧的N阱(N-Well)50和P阱(P-Well)60界面之间的N型掺杂(N+)24相连,而且把图2中N阱(N-Well)50中P型掺杂(P+)22左侧的N型掺杂(N+)20去掉。因为该新型硅控整流器中N阱(N-Well)50和P阱(P-Well)60界面之间的N型掺杂(N+)24和阳极A直接相连,所以该新型硅控整流器回滞效应的触发电压直接由N型掺杂(N+)24/P阱(P-Well)60的击穿电压决定而大大降低,另外,N型掺杂(N+)24因为直接和阳极A相连所施加的正压会降低空穴从P型掺杂(P+)22入射到达N阱(N-Well)50/P阱(P-Well)60界面的几率,所以该硅控整流器型ESD保护结构中的寄生三极管P型掺杂(P+)22/N阱(N-Well)50/P阱(P-Well)60的电流增益会降低,所以该新型硅控整流器回滞效应的维持电压也会提高。The semiconductor industry has further proposed the existing novel silicon-controlled rectifier-type ESD protection structure as shown in Figure 3. Compared with the traditional silicon-controlled rectifier-type ESD protection structure (as shown in Figure 2), the new silicon-controlled rectifier-type ESD protection structure The anode A is directly connected to the P-type doping (P+) 22 in the N well (N-Well) 60 and the N-type doping between the N well (N-Well) 50 on the right side and the P well (P-Well) 60 interface. The impurity (N+) 24 is connected, and the N-type doping (N+) 20 on the left side of the P-type doping (P+) 22 in the N well (N-Well) 50 in FIG. 2 is removed. Because the N-type doping (N+) 24 between the N well (N-Well) 50 and the P well (P-Well) 60 interface in the novel silicon controlled rectifier is directly connected with the anode A, so the hysteresis of the novel silicon controlled rectifier The trigger voltage of the effect is directly determined by the breakdown voltage of the N-type doping (N+) 24/P well (P-Well) 60 and is greatly reduced. In addition, the N-type doping (N+) 24 is applied because it is directly connected to the anode A The positive pressure will reduce the probability of holes from P-type doping (P+) 22 incident to N well (N-Well) 50/P well (P-Well) 60 interface, so the silicon controlled rectifier type ESD protection structure The current gain of the parasitic triode P-type doped (P+) 22/N-well (N-Well) 50/P-well (P-Well) 60 will be reduced, so the holding voltage of the hysteresis effect of the novel silicon controlled rectifier will also be increased.
在某低压工艺平台中验证比较如图2和图3所示两种硅控整流器型ESD保护结构的实际的回滞效应曲线比较结果如图4所示,小正方形的连线(NovelLVTSCR)为图3所示的硅控整流器型ESD保护结构回滞效应曲线,小菱形的连线(STDLVTSCR)为图2所示的硅控整流器型ESD保护结构回滞效应曲线。该回滞效应曲线比较图显示:如图3所示的新型硅控整流器型ESD保护结构回滞效应的触发电压从11.2V降低到8.4V,远小于该低压工艺平台的外围接口电路器件的栅极氧化层瞬态击穿电压(约11.6V);但其回滞效应的维持电压仅从2.7V提升到3.2V,已经大于该低压工艺平台2.5V外围接口电路的最大工作电压(Vddmax=2.75V),但是仍小于该低压工艺平台3.3V IO外围接口电路的最大工作电压(Vddmax=3.65V)。Verify and compare the actual hysteresis effect curve comparison results of the two silicon-controlled rectifier-type ESD protection structures shown in Figure 2 and Figure 3 in a low-voltage process platform, as shown in Figure 4, and the small square connection (NovelLVTSCR) is shown in Figure 4. 3 shows the hysteresis effect curve of the silicon controlled rectifier type ESD protection structure, and the small rhombus connection (STDLVTSCR) is the hysteresis effect curve of the silicon controlled rectifier type ESD protection structure shown in FIG. 2 . The hysteresis effect curve comparison chart shows that the trigger voltage of the hysteresis effect of the new silicon-controlled rectifier type ESD protection structure shown in Figure 3 is reduced from 11.2V to 8.4V, which is much smaller than the gate voltage of the peripheral interface circuit device of the low-voltage process platform. The transient breakdown voltage of the extreme oxide layer (about 11.6V); but the maintenance voltage of its hysteresis effect is only raised from 2.7V to 3.2V, which is already greater than the maximum operating voltage of the low-voltage process platform 2.5V peripheral interface circuit (Vddmax=2.75 V), but still less than the maximum operating voltage (Vddmax=3.65V) of the 3.3V IO peripheral interface circuit of the low-voltage process platform.
这表明如图3所示的新型硅控整流器型已经完全适用于该低压工艺平台2.5V外围接口电路的ESD保护电路设计,但对于外围接口电路的ESD保护电路设计,还需要进一步提高其维持电压至4V以上。This shows that the new silicon-controlled rectifier type shown in Figure 3 is fully suitable for the ESD protection circuit design of the 2.5V peripheral interface circuit of this low-voltage process platform, but for the ESD protection circuit design of the peripheral interface circuit, it is necessary to further increase its maintenance voltage to above 4V.
发明内容Contents of the invention
为克服上述现有技术存在的不足,本发明之目的在于提供一种新型硅控整流器型ESD保护结构及其实现方法,其可增加ESD保护结构回滞效应的维持电压。In order to overcome the disadvantages of the prior art, the object of the present invention is to provide a novel silicon controlled rectifier type ESD protection structure and its implementation method, which can increase the sustaining voltage of the hysteresis effect of the ESD protection structure.
为达上述及其它目的,本发明提出一种新型硅控整流器型ESD保护结构,其特征在于,该ESD保护结构包括:For reaching above-mentioned and other purpose, the present invention proposes a kind of novel silicon controlled rectifier type ESD protection structure, it is characterized in that, this ESD protection structure comprises:
半导体衬底(80);a semiconductor substrate (80);
生成于所述半导体衬底中的N阱(60)和P阱(70);N well (60) and P well (70) formed in the semiconductor substrate;
第一高浓度P型掺杂(20)、第一高浓度N型掺杂(28)置于N阱(60)上部,第一高浓度P型掺杂(20)、N阱(60)以及P阱(70)构成等效PNP三极管结构,第三高浓度N型掺杂(24)、第二高浓度P型掺杂(26)置于P阱(70)上部,N阱(60)、半导体衬底(80)与第三高浓度N型掺杂(24)构成等效NPN三极管结构,第二高浓度N型掺杂(22)置于N阱(60)与P阱(70)分界处上方,第二高浓度N型掺杂(22)与第三高浓度N型掺杂(24)之间的上方放置N型栅极(50)。The first high-concentration P-type doping (20), the first high-concentration N-type doping (28) are placed on the upper part of the N well (60), the first high-concentration P-type doping (20), the N well (60) and The P well (70) constitutes an equivalent PNP triode structure, the third high-concentration N-type doping (24), the second high-concentration P-type doping (26) are placed on the top of the P well (70), and the N well (60), The semiconductor substrate (80) and the third high-concentration N-type doping (24) form an equivalent NPN transistor structure, and the second high-concentration N-type doping (22) is placed at the boundary between the N well (60) and the P well (70) Above, an N-type gate (50) is placed between the second high-concentration N-type doping (22) and the third high-concentration N-type doping (24).
进一步地,利用金属连接所述第一高浓度P型掺杂(20)、第一高浓度N型掺杂(28)、第二高浓度N型掺杂(22)构成该ESD保护结构的阳极A,利用金属连接所述N型栅极(50)、第三高浓度N型掺杂(24)、第二高浓度P型掺杂(26)构成该ESD保护结构的阴极K。Further, connecting the first high-concentration P-type doping (20), the first high-concentration N-type doping (28), and the second high-concentration N-type doping (22) to form the anode of the ESD protection structure by using metal A, using metal to connect the N-type gate (50), the third high-concentration N-type doping (24), and the second high-concentration P-type doping (26) to form the cathode K of the ESD protection structure.
进一步地,所述第一高浓度P型掺杂(20)、第一高浓度N型掺杂(28)、第二高浓度N型掺杂(22)间用浅沟道隔离层STI(10)隔离,所述第三高浓度N型掺杂(24)、第二高浓度P型掺杂(26)间用浅沟道隔离层STI(10)隔离。Further, the shallow trench isolation layer STI (10 ) isolation, the third high-concentration N-type doping (24) and the second high-concentration P-type doping (26) are isolated by a shallow trench isolation layer STI (10).
进一步地,所述第一高浓度P型掺杂(20)左侧设置浅沟道隔离层STI(10)。Further, a shallow trench isolation layer STI (10) is provided on the left side of the first high-concentration P-type doping (20).
进一步地,所述第二高浓度P型掺杂(26)右侧放置浅沟道隔离层STI(10)。Further, a shallow trench isolation layer STI (10) is placed on the right side of the second high-concentration P-type doping (26).
进一步地,通过调节该第一高浓度N型掺杂(28)的大小、深度以及该第一高浓度N型掺杂(28)与第一高浓度P型掺杂(20)之间的距离来调节回滞效应的维持电压,该第一高浓度N型掺杂(28)与所述第一高浓度P型掺杂(20)之间的距离范围为0.5~20um。Further, by adjusting the size and depth of the first high-concentration N-type doping (28) and the distance between the first high-concentration N-type doping (28) and the first high-concentration P-type doping (20) To adjust the sustain voltage of the hysteresis effect, the distance between the first high-concentration N-type doping (28) and the first high-concentration P-type doping (20) ranges from 0.5 to 20um.
进一步地,所述N型栅极(50)置于所述第二高浓度N型掺杂(22)与第三高浓度N型掺杂(24)上方。Further, the N-type gate (50) is placed above the second high-concentration N-type doping (22) and the third high-concentration N-type doping (24).
为达到上述目的,本发明还提供一种新型ESD保护结构的实现方法,包括如下步骤:In order to achieve the above object, the present invention also provides a kind of realization method of novel ESD protection structure, comprises the steps:
步骤一,提供一半导体衬底(80);Step 1, providing a semiconductor substrate (80);
步骤二,于该半导体衬底(80)中生成N阱(60)与P阱(70);Step 2, forming an N well (60) and a P well (70) in the semiconductor substrate (80);
步骤三,将第一高浓度P型掺杂(20)、第一高浓度N型掺杂(28)置于N阱(60)上部,第一高浓度P型掺杂(20)、N阱(60)以及P阱(70)构成等效PNP三极管结构,第三高浓度N型掺杂(24)、第二高浓度P型掺杂(26)置于P阱(70)上部,N阱(60)、半导体衬底(80)与第三高浓度N型掺杂(24)构成等效NPN三极管结构,第二高浓度N型掺杂(22)置于N阱(60)与P阱(70)分界处上方,第二高浓度N型掺杂(22)与第三高浓度N型掺杂(24)之间的上方放置N型栅极(50)。Step 3, placing the first high-concentration P-type doping (20), the first high-concentration N-type doping (28) on the upper part of the N well (60), the first high-concentration P-type doping (20), the N well (60) and the P well (70) form an equivalent PNP transistor structure, the third high-concentration N-type doping (24), the second high-concentration P-type doping (26) are placed on the top of the P well (70), and the N well (60), the semiconductor substrate (80) and the third high-concentration N-type doping (24) form an equivalent NPN transistor structure, and the second high-concentration N-type doping (22) is placed in the N well (60) and the P well (70) An N-type gate (50) is placed above the boundary and between the second high-concentration N-type doping (22) and the third high-concentration N-type doping (24).
进一步地,于步骤三之后,还包括:利用金属连接所述第一高浓度P型掺杂(20)、第一高浓度N型掺杂(28)、第二高浓度N型掺杂(22)构成该ESD保护结构的阳极A;利用金属连接所述N型栅极(50)、第三高浓度N型掺杂(24)、第二高浓度P型掺杂(26)构成该ESD保护结构的阴极K。Further, after step three, it also includes: using metal to connect the first high-concentration P-type doping (20), the first high-concentration N-type doping (28), the second high-concentration N-type doping (22 ) forming the anode A of the ESD protection structure; using metal to connect the N-type gate (50), the third high-concentration N-type doping (24), and the second high-concentration P-type doping (26) to form the ESD protection structure of the cathode K.
进一步地,所述第一高浓度P型掺杂(20)、第一高浓度N型掺杂(28)、第二高浓度N型掺杂(22)间用浅沟道隔离层STI(10)隔离,所述第三高浓度N型掺杂(24)、第二高浓度P型掺杂(26)间用浅沟道隔离层STI(10)隔离。Further, the shallow trench isolation layer STI (10 ) isolation, the third high-concentration N-type doping (24) and the second high-concentration P-type doping (26) are isolated by a shallow trench isolation layer STI (10).
与现有技术相比,本发明一种硅控整流器型新型ESD保护结构及其实现方法,其通过在如图3所示的现有硅控整流器型ESD保护结构基础上,在现有ESD保护结构阳极A的第一高浓度P型掺杂(P+)20和第二高浓度N型掺杂(N+)22之间再插入一个第一高浓度N型掺杂(N+)28,该新加入的第一高浓度N型掺杂(N+)28同样连接到阳极A,因为新加入的第一高浓度N型掺杂(N+)28在工作时因连接至阳极具有很高的正电压,可以大大降低该新型硅控整流器型ESD保护结构中寄生的PNP三极管(高浓度P型掺杂(P+)20/N阱(N-Well)60/P阱(P-Well)70)的空穴从第一高浓度P型掺杂(P+)20注入到N阱(N-Well)60中并到达N阱(N-Well)60和P阱(P-Well)70界面的几率,从而降低了该寄生的三极管的电流增益,从而达到进一步增大维持电压的目的,此处新加入的第一高浓度N型掺杂(N+)28实际上起着保护环(GuardRing)的作用。Compared with the prior art, a novel silicon-controlled rectifier type ESD protection structure and its implementation method of the present invention, it is based on the existing silicon-controlled rectifier type ESD protection structure as shown in Figure 3, in the existing ESD protection A first high-concentration N-type doping (N+) 28 is inserted between the first high-concentration P-type doping (P+) 20 and the second high-concentration N-type doping (N+) 22 of the structure anode A, and the newly added The first high-concentration N-type doping (N+) 28 of the first high-concentration N-type doping (N+) 28 is also connected to the anode A, because the first high-concentration N-type doping (N+) 28 newly added has a very high positive voltage due to being connected to the anode during work, it can Greatly reduce the holes from the parasitic PNP transistor (high concentration P-type doping (P+) 20/N well (N-Well) 60/P well (P-Well) 70) in the novel silicon controlled rectifier type ESD protection structure The first high-concentration P-type doping (P+) 20 is implanted into the N well (N-Well) 60 and reaches the probability of the N well (N-Well) 60 and the P well (P-Well) 70 interface, thereby reducing the probability of the N well (N-Well) 60 and the P well (P-Well) 70 interface The current gain of the parasitic triode, so as to achieve the purpose of further increasing the holding voltage, here the newly added first high-concentration N-type doping (N+) 28 actually acts as a guard ring (GuardRing).
附图说明Description of drawings
图1为一现有技术的ESD保护结构的示意图;1 is a schematic diagram of a prior art ESD protection structure;
图2为另一现有硅控整流器型的ESD保护结构的示意图;2 is a schematic diagram of another existing silicon controlled rectifier type ESD protection structure;
图3为又一现有新型硅控整流器型的ESD保护结构的示意图;FIG. 3 is a schematic diagram of another existing novel silicon-controlled rectifier-type ESD protection structure;
图4为图3和图2两种硅控整流器型ESD保护结构的回滞效应曲线比较示意图;Fig. 4 is a schematic diagram comparing the hysteresis effect curves of the two silicon controlled rectifier ESD protection structures in Fig. 3 and Fig. 2;
图5为本发明一种新型硅控整流器型ESD保护结构之较佳实施例的电路结构图;Fig. 5 is the circuit structure figure of the preferred embodiment of a kind of novel silicon controlled rectifier type ESD protection structure of the present invention;
图6为本发明一种新型硅控整流器型ESD保护结构的实现方法的步骤流程图;Fig. 6 is the step flowchart of the realization method of a kind of novel silicon controlled rectifier type ESD protection structure of the present invention;
图7为本发明的应用场景示意图。FIG. 7 is a schematic diagram of an application scenario of the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。The implementation of the present invention will be described below through specific examples and in conjunction with the accompanying drawings, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific examples, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
图5为本发明一种新型硅控整流器型ESD保护结构之较佳实施例的电路结构图。如图5所示,本发明一种新型硅控整流器型ESD保护结构,包括多个浅沟道隔离层(STI,Shallow Trench Isolation)10、第一高浓度P型掺杂(P+)20、第二高浓度N型掺杂(N+)22、第三高浓度N型掺杂(N+)24、第二高浓度P型掺杂(P+)26、第一高浓度N型掺杂(N+)28、N阱(N-Well)60、P阱(P-Well)70、基体(Psub)80以及N型栅极50。FIG. 5 is a circuit structure diagram of a preferred embodiment of a novel silicon controlled rectifier type ESD protection structure of the present invention. As shown in Figure 5, a novel silicon-controlled rectifier type ESD protection structure of the present invention comprises a plurality of shallow trench isolation layers (STI, Shallow Trench Isolation) 10, the first high-concentration P-type doping (P+) 20, the first Second high-concentration N-type doping (N+) 22, third high-concentration N-type doping (N+) 24, second high-concentration P-type doping (P+) 26, first high-concentration N-type doping (N+) 28 , N well (N-Well) 60 , P well (P-Well) 70 , substrate (Psub) 80 and N-type gate 50 .
整个ESD保护结构置于基体(Psub)80上,在基体(Psub)80左边生成一个N阱(N-Well)60,在基体(Psub)80右边生成一个P阱(P-Well)70,第一高浓度P型掺杂(P+)20、第一高浓度N型掺杂(N+)28置于N阱(N-Well)60上部,第一高浓度P型掺杂(P+)20、N阱(N-Well)60以及P阱(P-Well)70构成等效PNP三极管结构,第三高浓度N型掺杂(N+)24、第二高浓度P型掺杂(P+)26置于P阱(P-Well)70上部,N阱(N-Well)60、基体(Psub)80/P阱(P-Well)70与第三高浓度N型掺杂(N+)24构成等效NPN三极管结构,第二高浓度N型掺杂(N+)22置于N阱(N-Well)60与P阱(P-Well)70分界处上方,第一高浓度P型掺杂(P+)20、第一高浓度N型掺杂(N+)28、第二高浓度N型掺杂(N+)22间用浅沟道隔离层(STI,Shallow Trench Isolation)10隔离,第一高浓度P型掺杂(P+)20左侧放置浅沟道隔离层(STI,Shallow TrenchIsolation)10,第三高浓度N型掺杂(N+)24、第二高浓度P型掺杂(P+)26间用浅沟道隔离层(STI,Shallow Trench Isolation)10隔离,第二高浓度P型掺杂(P+)26右侧放置浅沟道隔离层(STI,Shallow Trench Isolation)10,第二高浓度N型掺杂(N+)22与第三高浓度N型掺杂(N+)24间为P阱(P-Well)70的一部分,在该部分P阱上方放置N型栅极50,N型栅极50置于第二高浓度N型掺杂(N+)22与第三高浓度N型掺杂(N+)24上方;用金属连接第一高浓度P型掺杂(P+)20、第一高浓度N型掺杂(N+)28、第二高浓度N型掺杂(N+)22构成该新型低触发电压高维持电压硅控整流器型ESD保护结构的阳极A,用金属连接N型栅极50、第三高浓度N型掺杂(N+)24、第二高浓度P型掺杂(P+)26构成该新型低触发电压高维持电压硅控整流ESD器件的阴极K。The entire ESD protection structure is placed on the substrate (Psub) 80, an N well (N-Well) 60 is formed on the left side of the substrate (Psub) 80, and a P well (P-Well) 70 is formed on the right side of the substrate (Psub) 80. A high-concentration P-type doping (P+) 20, a first high-concentration N-type doping (N+) 28 are placed on the top of the N well (N-Well) 60, the first high-concentration P-type doping (P+) 20, N The well (N-Well) 60 and the P-well (P-Well) 70 constitute an equivalent PNP transistor structure, and the third high-concentration N-type doping (N+) 24 and the second high-concentration P-type doping (P+) 26 are placed The upper part of the P well (P-Well) 70, the N well (N-Well) 60, the substrate (Psub) 80/P well (P-Well) 70 and the third high-concentration N-type doping (N+) 24 constitute an equivalent NPN Triode structure, the second high-concentration N-type doping (N+) 22 is placed above the boundary between the N well (N-Well) 60 and the P well (P-Well) 70, and the first high-concentration P-type doping (P+) 20 , the first high-concentration N-type doping (N+) 28, and the second high-concentration N-type doping (N+) 22 are separated by a shallow trench isolation layer (STI, Shallow Trench Isolation) 10, and the first high-concentration P-type doping A shallow trench isolation layer (STI, Shallow Trench Isolation) 10 is placed on the left side of the impurity (P+) 20, and a shallow trench is used between the third high-concentration N-type doping (N+) 24 and the second high-concentration P-type doping (P+) 26 The channel isolation layer (STI, Shallow Trench Isolation) 10 is isolated, and the second high concentration P-type doping (P+) 26 is placed on the right side of the shallow trench isolation layer (STI, Shallow Trench Isolation) 10, and the second high concentration N-type doping Between the (N+) 22 and the third high-concentration N-type doping (N+) 24 is a part of the P well (P-Well) 70, and the N-type gate 50 is placed above the part of the P-well, and the N-type gate 50 is placed Above the second high-concentration N-type doping (N+) 22 and the third high-concentration N-type doping (N+) 24; use metal to connect the first high-concentration P-type doping (P+) 20, the first high-concentration N-type doping Miscellaneous (N+) 28 and second high-concentration N-type doping (N+) 22 constitute the anode A of the novel low-triggering voltage and high-sustaining voltage silicon-controlled rectifier type ESD protection structure, and connect the N-type gate 50 and the third high Concentration N-type doping (N+) 24 and second high-concentration P-type doping (P+) 26 constitute the cathode K of the novel low trigger voltage and high sustain voltage silicon-controlled rectifier ESD device.
可见,本发明之ESD保护结构是在已有的如图3所示的硅控整流器型ESD的基础上实现的,本发明之ESD保护结构实际上在原有硅控整流器阳极A的高浓度P型掺杂(P+)20和高浓度N型掺杂(N+)22之间再插入一个第一高浓度N型掺杂(N+)28,该新加入的第一高浓度N型掺杂(N+)28同样连接到阳极A,因为新加入的第一高浓度N型掺杂(N+)28在工作时具有很高的正电压,可以降低该新型硅控整流器型ESD中寄生的PNP三极管(P型掺杂(P+)20/N阱(N-Well)60/P阱(P-Well)70)的空穴从第一高浓度P型掺杂(P+)20注入到N阱(N-Well)60中并到达N阱(N-Well)60和P阱(P-Well)70界面的几率,从而降低了该寄生的三极管的电流增益,从而达到进一步增大维持电压的目的,此处新加入的第一高浓度N型掺杂(N+)28实际上起着保护环(Guard Ring)的作用。It can be seen that the ESD protection structure of the present invention is realized on the basis of the existing silicon-controlled rectifier type ESD as shown in Figure 3, and the ESD protection structure of the present invention is actually in the high concentration P-type of the original silicon-controlled rectifier anode A A first high-concentration N-type doping (N+) 28 is inserted between the doping (P+) 20 and the high-concentration N-type doping (N+) 22, and the newly added first high-concentration N-type doping (N+) 28 is also connected to anode A, because the newly added first high-concentration N-type doping (N+) 28 has a very high positive voltage during work, which can reduce the parasitic PNP triode (P-type transistor) in this novel silicon controlled rectifier type ESD Doped (P+) 20/N well (N-Well) 60/P well (P-Well) 70) holes are injected into the N well (N-Well) from the first high-concentration P-type doped (P+) 20 60 and reach the probability of N well (N-Well) 60 and P well (P-Well) 70 interface, thereby reducing the current gain of the parasitic triode, so as to achieve the purpose of further increasing the maintenance voltage, here is a new addition The first high-concentration N-type doping (N+) 28 actually functions as a guard ring.
同时,本发明可以通过调节该新型硅控整流器型ESD结构第一高浓度N型掺杂(N+)28的大小、深度以及该第一高浓度N型掺杂(N+)28与第一高浓度P型掺杂(P+)20之间的距离a来调节回滞效应的维持电压,该第一高浓度N型掺杂(28)与所述第一高浓度P型掺杂20之间的距离a典型范围为0.5~20um。Simultaneously, the present invention can adjust the size and depth of the first high-concentration N-type doping (N+) 28 of the novel silicon controlled rectifier type ESD structure and the relationship between the first high-concentration N-type doping (N+) 28 and the first high-concentration The distance a between the P-type doping (P+) 20 is used to adjust the sustain voltage of the hysteresis effect, the distance between the first high-concentration N-type doping (28) and the first high-concentration P-type doping 20 a typical range is 0.5 ~ 20um.
图6为本发明一种新型硅控整流器型ESD保护结构的实现方法的步骤流程图。如图6所示,本发明一种新型硅控整流器型ESD保护结构的实现方法,包括如下步骤:FIG. 6 is a flow chart of the implementation method of a novel silicon controlled rectifier type ESD protection structure of the present invention. As shown in Figure 6, the realization method of a kind of novel silicon-controlled rectifier type ESD protection structure of the present invention comprises the following steps:
步骤601,提供一半导体衬底,在本发明具体实施例中,提供一P型衬底(P-Sub)80。Step 601, providing a semiconductor substrate, in a specific embodiment of the present invention, providing a P-type substrate (P-Sub) 80 .
步骤602,于该半导体衬底中生成N阱与P阱,即N阱(N-Well)60、P阱(P-Well)70,在本发明具体实施例中,在P型基体(P-Sub)80左边生成一个N阱(N-Well)60,在基体(Psub)80右边生成一个P阱(P-Well)70。In step 602, an N well and a P well are formed in the semiconductor substrate, that is, an N well (N-Well) 60 and a P well (P-Well) 70. An N well (N-Well) 60 is formed on the left of Sub) 80, and a P well (P-Well) 70 is formed on the right of substrate (Psub) 80.
步骤603,将第一高浓度P型掺杂(P+)20、第一高浓度N型掺杂(N+)28置于N阱(N-Well)60上部,第一高浓度P型掺杂(P+)20、N阱(N-Well)60以及P阱(P-Wel)70构成等效PNP三极管结构,第三高浓度N型掺杂(N+)24、第二高浓度P型掺杂(P+)26置于P阱(P-Well)70上部,N阱(N-Well)60、基体(Psub)80与第三高浓度N型掺杂(N+)24构成等效NPN三极管结构,第二高浓度N型掺杂(N+)22置于N阱(N-Well)60与P阱(P-Well)70分界处上方,第一高浓度P型掺杂(P+)20、第一高浓度N型掺杂(N+)28、第二高浓度N型掺杂(N+)22间用浅沟道隔离层(STI,Shallow Trench Isolation)10隔离,第一高浓度P型掺杂(P+)20左侧放置浅沟道隔离层(STI,Shallow Trench Isolation)10,第三高浓度N型掺杂(N+)24、第二高浓度P型掺杂(P+)26间用浅沟道隔离层(STI,Shallow Trench Isolation)10隔离,第二高浓度P型掺杂(P+)26右侧放置浅沟道隔离层(STI,Shallow Trench Isolation)10,第二高浓度N型掺杂(N+)22与第三高浓度N型掺杂(N+)24间为P阱(P-Wel)70的一部分,在该部分P阱上方放置N型栅极50,N型栅极50置于第二高浓度N型掺杂(N+)22与第三高浓度N型掺杂(N+)24上方。Step 603, placing the first high-concentration P-type doping (P+) 20 and the first high-concentration N-type doping (N+) 28 on the upper part of the N well (N-Well) 60, and the first high-concentration P-type doping ( P+) 20, N well (N-Well) 60 and P well (P-Well) 70 constitute an equivalent PNP transistor structure, the third high-concentration N-type doping (N+) 24, the second high-concentration P-type doping ( P+) 26 is placed on the top of P well (P-Well) 70, N well (N-Well) 60, substrate (Psub) 80 and third high-concentration N-type doping (N+) 24 form an equivalent NPN triode structure, the first The second high-concentration N-type doping (N+) 22 is placed above the boundary between the N-well (N-Well) 60 and the P-well (P-Well) 70, the first high-concentration P-type doping (P+) 20, the first high-concentration Concentration N-type doping (N+) 28, second high-concentration N-type doping (N+) 22 are isolated by shallow trench isolation layer (STI, Shallow Trench Isolation) 10, first high-concentration P-type doping (P+) Shallow trench isolation layer (STI, Shallow Trench Isolation) 10 is placed on the left side of 20, shallow trench isolation layer is used between the third high-concentration N-type doping (N+) 24 and the second high-concentration P-type doping (P+) 26 (STI, Shallow Trench Isolation) 10 isolation, the second high concentration P-type doping (P+) 26 is placed on the right side shallow trench isolation layer (STI, Shallow Trench Isolation) 10, the second high concentration N-type doping (N+) 22 and the third high-concentration N-type doping (N+) 24 is a part of the P well (P-Wel) 70, and the N-type gate 50 is placed above the part of the P well, and the N-type gate 50 is placed on the second highest Concentration N-type doping (N+) 22 and a third high concentration N-type doping (N+) 24 are above.
步骤604,利用金属连接第一高浓度P型掺杂(P+)20、第一高浓度N型掺杂(N+)28、第二高浓度N型掺杂(N+)22构成该硅控整流器型ESD保护结构的阳极A,利用金属连接N型栅极50、第三高浓度N型掺杂(N+)24、第二高浓度P型掺杂(P+)26构成该硅控整流器型ESD保护结构的阴极K。Step 604, use metal to connect the first high-concentration P-type doping (P+) 20, the first high-concentration N-type doping (N+) 28, and the second high-concentration N-type doping (N+) 22 to form the silicon controlled rectifier type The anode A of the ESD protection structure uses metal to connect the N-type gate 50, the third high-concentration N-type doping (N+) 24, and the second high-concentration P-type doping (P+) 26 to form the silicon controlled rectifier type ESD protection structure. The cathode K.
可以将本发明的新型ESD应用到ESD保护电路中的输入输出端的保护电路中和电源对地的保护电路中,来提升芯片整体的ESD防护能力,如图7所示。The new ESD of the present invention can be applied to the protection circuit of the input and output terminals and the protection circuit of the power supply to the ground in the ESD protection circuit to improve the overall ESD protection capability of the chip, as shown in FIG. 7 .
综上所述,本发明一种新型硅控整流器型ESD保护结构及其实现方法,其通过在现有如图3所示的硅控整流器型ESD保护结构的基础上,在现有ESD保护结构阳极A的P型掺杂(P+)20(图4,对应图3为22)和N型掺杂(N+)22(图4,对应图3为24)之间再插入一个第一N型重掺杂(N+)28(图4),该新加入的第一N型重掺杂(N+)28同样连接到阳极A,因为新加入的第一N型重掺杂(N+)28在工作时具有很高的正电压,可以降低该新型硅控整流器型ESD中寄生的PNP三极管(P型掺杂(P+)20/N阱(N-Well)60/P阱(P-Well)70)的空穴从高浓度P型掺杂(P+)20注入到N阱(N-Well)60中并到达N阱(N-Well)60和P阱(P-Well)70界面的几率,从而降低了该寄生的三极管的电流增益,从而达到进一步增大维持电压的目的,此处新加入的N型掺杂(N+)28实际上起着保护环(Guard Ring)的作用。In summary, a novel silicon-controlled rectifier type ESD protection structure and its implementation method of the present invention, it is by on the basis of existing silicon-controlled rectifier type ESD protection structure as shown in Figure 3, in existing ESD protection structure anode A first N-type heavy doping is inserted between the P-type doping (P+) 20 (Fig. 4, corresponding to Fig. 3 as 22) and the N-type doping (N+) 22 (Fig. 4, corresponding to Fig. 3 as 24) of A Miscellaneous (N+) 28 (Fig. 4), the newly added first N-type heavily doped (N+) 28 is also connected to the anode A, because the newly added first N-type heavily doped (N+) 28 has Very high positive voltage can reduce the empty space of the parasitic PNP triode (P-type doping (P+) 20/N well (N-Well) 60/P well (P-Well) 70) in this novel silicon controlled rectifier type ESD. Holes are injected from high-concentration P-type doping (P+) 20 into N well (N-Well) 60 and reach the probability of N well (N-Well) 60 and P well (P-Well) 70 interfaces, thereby reducing this The current gain of the parasitic triode, so as to achieve the purpose of further increasing the holding voltage, the newly added N-type doping (N+) 28 here actually plays the role of a guard ring (Guard Ring).
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Any person skilled in the art can modify and change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be listed in the claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710731223.9A CN107369682B (en) | 2017-08-23 | 2017-08-23 | A new silicon controlled rectifier type ESD protection structure and its realization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710731223.9A CN107369682B (en) | 2017-08-23 | 2017-08-23 | A new silicon controlled rectifier type ESD protection structure and its realization method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107369682A CN107369682A (en) | 2017-11-21 |
CN107369682B true CN107369682B (en) | 2019-10-25 |
Family
ID=60310617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710731223.9A Active CN107369682B (en) | 2017-08-23 | 2017-08-23 | A new silicon controlled rectifier type ESD protection structure and its realization method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107369682B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109037203A (en) * | 2018-07-13 | 2018-12-18 | 上海华力微电子有限公司 | Thyristor type esd protection structure and implementation method |
CN109065535A (en) * | 2018-08-20 | 2018-12-21 | 上海华力微电子有限公司 | A kind of silicon-controlled rectifier structure and its manufacturing method |
CN110518011B (en) * | 2019-08-29 | 2021-10-26 | 上海华力微电子有限公司 | Grid-constrained silicon controlled rectifier ESD device and implementation method thereof |
CN110504254B (en) * | 2019-08-29 | 2021-11-12 | 上海华力微电子有限公司 | Grid-constrained silicon controlled rectifier ESD device and implementation method thereof |
CN110518012B (en) * | 2019-08-29 | 2021-11-12 | 上海华力微电子有限公司 | Grid-constrained silicon controlled rectifier ESD device and implementation method thereof |
CN110649016B (en) * | 2019-10-12 | 2023-04-18 | 上海华力微电子有限公司 | Silicon controlled rectifier type ESD (electro-static discharge) protection structure without hysteresis effect and implementation method thereof |
CN111696982B (en) * | 2020-06-09 | 2023-10-03 | 深圳能芯半导体有限公司 | Substrate separation N-type power tube ESD circuit and setting method |
CN112397505B (en) * | 2020-11-12 | 2023-04-14 | 泉芯集成电路制造(济南)有限公司 | A silicon controlled rectifier and electrostatic discharge protection device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1841873A (en) * | 2005-03-28 | 2006-10-04 | 台湾积体电路制造股份有限公司 | Electrostatic discharge protection circuit and its layout |
CN101202279A (en) * | 2006-12-12 | 2008-06-18 | 台湾积体电路制造股份有限公司 | Electrostatic discharge protection circuits and integrated circuits |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW419808B (en) * | 1999-07-31 | 2001-01-21 | Winbond Electronics Corp | Electrostatic discharge device capable of avoiding latch up effect |
KR102238544B1 (en) * | 2014-12-08 | 2021-04-09 | 삼성전자주식회사 | Electrostatic discharge protection device and electronic device having the same |
-
2017
- 2017-08-23 CN CN201710731223.9A patent/CN107369682B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1841873A (en) * | 2005-03-28 | 2006-10-04 | 台湾积体电路制造股份有限公司 | Electrostatic discharge protection circuit and its layout |
CN101202279A (en) * | 2006-12-12 | 2008-06-18 | 台湾积体电路制造股份有限公司 | Electrostatic discharge protection circuits and integrated circuits |
Also Published As
Publication number | Publication date |
---|---|
CN107369682A (en) | 2017-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107369682B (en) | A new silicon controlled rectifier type ESD protection structure and its realization method | |
CN108183101B (en) | Non-Hysteresis-Effect Silicon Controlled Rectifier Type ESD Protection Structure and Its Realization Method | |
CN110649016B (en) | Silicon controlled rectifier type ESD (electro-static discharge) protection structure without hysteresis effect and implementation method thereof | |
CN107564906B (en) | A kind of novel thyristor type esd protection structure and its implementation | |
CN109037203A (en) | Thyristor type esd protection structure and implementation method | |
US20150187749A1 (en) | Silicon-controlled rectifier electrostatic discharge protection device and method for forming the same | |
CN108091650B (en) | Non-Hysteresis-Effect Silicon Controlled Rectifier Type ESD Protection Structure and Its Realization Method | |
CN106449635A (en) | Novel low-trigger-voltage silicon-controlled rectifier and manufacturing method therefor | |
CN107248514B (en) | A Novel ESD Protection Structure and Its Implementation Method | |
CN110491875B (en) | Bidirectional thyristor electrostatic protection device | |
US20190109128A1 (en) | Series connected esd protection circuit | |
CN107680965B (en) | A Double MOS Auxiliary Trigger ESD Protection Device Based on SCR Structure | |
CN107195630B (en) | A kind of new E SD protection structure and its implementation | |
CN102315258B (en) | Parasitic thyristor and electrostatic protection circuit | |
CN110518012B (en) | Grid-constrained silicon controlled rectifier ESD device and implementation method thereof | |
CN105957833A (en) | Low trigger positive and negative voltage resistant silicon controlled rectifier (SCR) electro-static discharge (ESD) protection device and technology method thereof | |
CN214848632U (en) | Bidirectional thyristor electrostatic protection device with low trigger and high holding voltage | |
CN110504325A (en) | A new gate-controlled P-i-N diode ESD device and its realization method | |
CN111341844B (en) | Symmetrical bidirectional silicon controlled rectifier electrostatic protection device with narrow design window and manufacturing method thereof | |
CN110504254B (en) | Grid-constrained silicon controlled rectifier ESD device and implementation method thereof | |
CN107516657B (en) | A Novel ESD Protection Structure and Its Implementation Method | |
CN110504253A (en) | A Novel Gate-Constrained Silicon Controlled Rectifier ESD Device and Its Realization Method | |
CN102315259B (en) | Parasitic thyristor and electrostatic protection circuit | |
CN215815877U (en) | High-maintenance high-failure bidirectional thyristor electrostatic protection device | |
CN211858654U (en) | A high protection grade one-way thyristor electrostatic protection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |