CN106158666A - Manufacturing method of high-heat-conductivity assembly - Google Patents
Manufacturing method of high-heat-conductivity assembly Download PDFInfo
- Publication number
- CN106158666A CN106158666A CN201510154292.9A CN201510154292A CN106158666A CN 106158666 A CN106158666 A CN 106158666A CN 201510154292 A CN201510154292 A CN 201510154292A CN 106158666 A CN106158666 A CN 106158666A
- Authority
- CN
- China
- Prior art keywords
- heat
- manufacture method
- conductive assembly
- viscosity
- glycidyl ether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 239000000835 fiber Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 238000005470 impregnation Methods 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract 6
- 239000011159 matrix material Substances 0.000 claims description 48
- 239000003822 epoxy resin Substances 0.000 claims description 15
- 229920000647 polyepoxide Polymers 0.000 claims description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 13
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- 239000004917 carbon fiber Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 8
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims description 7
- 239000007769 metal material Substances 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229920001568 phenolic resin Polymers 0.000 claims description 4
- 239000005011 phenolic resin Substances 0.000 claims description 4
- 229920005749 polyurethane resin Polymers 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 claims description 3
- QNYBOILAKBSWFG-UHFFFAOYSA-N 2-(phenylmethoxymethyl)oxirane Chemical compound C1OC1COCC1=CC=CC=C1 QNYBOILAKBSWFG-UHFFFAOYSA-N 0.000 claims description 3
- SHKUUQIDMUMQQK-UHFFFAOYSA-N 2-[4-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COCCCCOCC1CO1 SHKUUQIDMUMQQK-UHFFFAOYSA-N 0.000 claims description 3
- KUAUJXBLDYVELT-UHFFFAOYSA-N 2-[[2,2-dimethyl-3-(oxiran-2-ylmethoxy)propoxy]methyl]oxirane Chemical compound C1OC1COCC(C)(C)COCC1CO1 KUAUJXBLDYVELT-UHFFFAOYSA-N 0.000 claims description 3
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 3
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 claims description 2
- CYXMOAZSOPXQOD-UHFFFAOYSA-N 1-methyl-2-(2-methylphenoxy)benzene Chemical compound CC1=CC=CC=C1OC1=CC=CC=C1C CYXMOAZSOPXQOD-UHFFFAOYSA-N 0.000 claims description 2
- WTYYGFLRBWMFRY-UHFFFAOYSA-N 2-[6-(oxiran-2-ylmethoxy)hexoxymethyl]oxirane Chemical compound C1OC1COCCCCCCOCC1CO1 WTYYGFLRBWMFRY-UHFFFAOYSA-N 0.000 claims description 2
- -1 polysilicone Polymers 0.000 claims description 2
- 150000005846 sugar alcohols Polymers 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims 4
- 239000001294 propane Substances 0.000 claims 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims 1
- 229920000914 Metallic fiber Polymers 0.000 claims 1
- 239000004743 Polypropylene Substances 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 238000005087 graphitization Methods 0.000 claims 1
- 238000012423 maintenance Methods 0.000 claims 1
- ULSIYEODSMZIPX-UHFFFAOYSA-N phenylethanolamine Chemical compound NCC(O)C1=CC=CC=C1 ULSIYEODSMZIPX-UHFFFAOYSA-N 0.000 claims 1
- 229920005989 resin Polymers 0.000 claims 1
- 239000011347 resin Substances 0.000 claims 1
- 238000004886 process control Methods 0.000 abstract 1
- 239000002861 polymer material Substances 0.000 description 15
- 239000004034 viscosity adjusting agent Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 230000017525 heat dissipation Effects 0.000 description 9
- 229910002065 alloy metal Inorganic materials 0.000 description 5
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000007849 furan resin Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- KFUSXMDYOPXKKT-VIFPVBQESA-N (2s)-2-[(2-methylphenoxy)methyl]oxirane Chemical compound CC1=CC=CC=C1OC[C@H]1OC1 KFUSXMDYOPXKKT-VIFPVBQESA-N 0.000 description 2
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
- H01L21/4803—Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种导热组件的制作方法,特别是涉及一种高导热组件的制作方法。The invention relates to a method for manufacturing a thermally conductive component, in particular to a method for manufacturing a high thermally conductive component.
背景技术Background technique
随着半导体制程技术发展愈来愈成熟,半导体组件的集成化程度愈来愈高,因此,“散热”已成为半导体组件重要的技术之一。特别是对高功率组件而言,由于组件作动时产生的热能大幅增加,使得电子产品的温度会急速上升。而电子组件的平均工作温度每升高10℃时,组件寿命就会减少50%。因此,如何发展出更适用于高功率组件需求的散热方法,则为相关厂商亟待克服的难题。With the development of semiconductor manufacturing technology becoming more and more mature, the integration level of semiconductor components is getting higher and higher. Therefore, "heat dissipation" has become one of the important technologies of semiconductor components. Especially for high-power components, the temperature of electronic products will rise rapidly due to the substantial increase of heat energy generated when the components operate. When the average operating temperature of electronic components increases by 10°C, the life of the components will be reduced by 50%. Therefore, how to develop a heat dissipation method that is more suitable for high-power components is a difficult problem for related manufacturers to overcome.
一般组件的散热大都是在组件上设置一散热结构(例如散热鳍片、散热片),再利用该散热结构将功率组件产生的废热导出。前述该散热结构的构成材料一般是利用具有高导热性的金属,或是利用掺有高导热性无机材料,例如氮化硼、氮化铝等的高分子复合材料,或是,直接以具有高导热性的碳纤维或石墨片所制成。然而,金属的导热性虽佳,但是比重较重,因此会增加组件整体的重量,而用于与高分子材料掺混的高导热性无机材料,因为会被导热性较差的高分子包覆,而会减低其散热性。Generally, the heat dissipation of components is mostly provided with a heat dissipation structure (such as heat dissipation fins, heat sinks) on the components, and then the heat dissipation structure is used to dissipate the waste heat generated by the power components. The constituent materials of the aforementioned heat dissipation structure are generally metals with high thermal conductivity, or polymer composite materials doped with high thermal conductivity inorganic materials, such as boron nitride, aluminum nitride, etc., or directly with high thermal conductivity. Made of thermally conductive carbon fiber or graphite sheet. However, although metal has good thermal conductivity, its specific gravity is relatively heavy, so it will increase the overall weight of the component, and the high thermal conductivity inorganic material used for blending with polymer materials will be covered by polymers with poor thermal conductivity , which will reduce its heat dissipation.
发明内容Contents of the invention
本发明的目的在于提供一种具有高导热性的高导热组件的制作方法。The object of the present invention is to provide a method for manufacturing a high thermal conductivity component with high thermal conductivity.
本发明高导热组件的制作方法,包含:一准备步骤、一含浸步骤,及一固化步骤。The manufacturing method of the high thermal conductivity component of the present invention comprises: a preparation step, an impregnation step, and a curing step.
该准备步骤是准备一种液态的成形基质,并控制令该成形基质的黏度介于1000~30000cps。该含浸步骤是将多个具预定长度的导热纤维,以其中一端浸入该成形基质中,并维持令所述导热纤维的另一端位于该成形基质外。该固化步骤,将含有所述导热纤维的成形基质固化成一个支撑体,而制得该高导热组件。The preparation step is to prepare a liquid forming matrix, and control the viscosity of the forming matrix to be between 1000-30000cps. The impregnating step is to immerse one end of a plurality of heat-conducting fibers with a predetermined length into the forming matrix, and keep the other end of the heat-conducting fibers outside the forming matrix. In the curing step, the forming matrix containing the thermally conductive fibers is solidified into a support body to obtain the high thermally conductive component.
较佳地,前述,其中该成形基质包含一选自高分子材料、金属材料。Preferably, as mentioned above, wherein the forming matrix comprises a material selected from polymer materials and metal materials.
较佳地,前述高导热组件的制作方法,其中该高分子材料选自下列群组其中之一:酚醛树脂、呋喃树脂、环氧树脂、聚硅氧树脂、聚胺酯树脂。Preferably, in the manufacturing method of the aforementioned high thermal conductivity component, the polymer material is selected from one of the following groups: phenolic resin, furan resin, epoxy resin, silicone resin, polyurethane resin.
较佳地,前述高导热组件的制作方法,其中该成形基质还包含一种黏度调整剂。Preferably, in the manufacturing method of the aforementioned high thermal conductivity component, the forming matrix further includes a viscosity modifier.
较佳地,前述高导热组件的制作方法,其中该高分子材料为环氧树脂,该黏度调整剂选自可与该环氧树脂反应的反应型黏度调整剂,或不与该环氧树脂反应的非反应型黏度调整剂。Preferably, in the manufacturing method of the aforementioned high thermal conductivity component, wherein the polymer material is epoxy resin, and the viscosity regulator is selected from reactive viscosity regulators that can react with the epoxy resin, or do not react with the epoxy resin non-reactive viscosity modifier.
较佳地,前述高导热组件的制作方法,其中该反应型黏度调整剂选自下列群组其中之一:丁基缩水甘油醚、1,4-丁二醇二缩水甘油醚、乙二醇二缩水甘油醚、苯基缩水甘油醚、聚丙二醇二缩水甘油醚、C12-C14脂肪缩水甘油醚、苄基缩水甘油醚、1,6-已二醇二缩水甘油醚、环氧丙烷邻甲苯基醚、环氧丙烷邻甲苯基缩水甘油醚、新戊二醇二缩水甘油醚。Preferably, in the manufacturing method of the aforementioned high thermal conductivity component, wherein the reactive viscosity modifier is selected from one of the following groups: butyl glycidyl ether, 1,4-butanediol diglycidyl ether, ethylene glycol diol Glycidyl ether, phenyl glycidyl ether, polypropylene glycol diglycidyl ether, C 12 -C 14 fatty glycidyl ether, benzyl glycidyl ether, 1,6-hexanediol diglycidyl ether, propylene oxide o-toluene base ether, propylene oxide o-cresyl glycidyl ether, neopentyl glycol diglycidyl ether.
较佳地,前述高导热组件的制作方法,其中该非反应型黏度调整剂选自下列群组其中之一:丙酮、无水乙醇、甲苯、二甲苯、苯乙烯、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、苯甲醇、多元醇。Preferably, in the method for manufacturing the aforementioned high thermal conductivity component, wherein the non-reactive viscosity modifier is selected from one of the following groups: acetone, absolute ethanol, toluene, xylene, styrene, ethyl acetate, butyl acetate , dimethylformamide, benzyl alcohol, polyols.
较佳地,前述高导热组件的制作方法,其中该金属材料选自下列群组其中之一:银、铝、铜、铝合金。Preferably, in the manufacturing method of the aforementioned high thermal conductivity component, the metal material is selected from one of the following groups: silver, aluminum, copper, and aluminum alloy.
较佳地,前述高导热组件的制作方法,其中所述导热纤维选自金属纤维、高导热碳纤维,或石墨化气相沉积碳纤维。Preferably, in the manufacturing method of the aforementioned high thermal conductivity component, the thermal conductive fiber is selected from metal fibers, high thermal conductive carbon fibers, or graphitized vapor deposition carbon fibers.
本发明的有益效果在于:利用直接将导热纤维以含浸方式浸置于一液态的成形基质中,令该成形基质于固化的同时即令所述导热纤维裸露于外,制程简便容易控制,且可直接制得具有导热纤维外露的高导热组件。The beneficial effect of the present invention is that the heat-conducting fiber is directly impregnated into a liquid forming matrix by impregnation, so that the forming matrix is solidified and the heat-conducting fiber is exposed to the outside, the manufacturing process is simple and easy to control, and can be directly A highly thermally conductive component with exposed thermally conductive fibers is produced.
附图说明Description of drawings
图1是一示意图,说明本发明高导热组件的制作方法的实施例中,该高导热组件的示意结构;及Fig. 1 is a schematic diagram illustrating the schematic structure of the high thermal conductivity component in an embodiment of the manufacturing method of the high thermal conductivity component of the present invention; and
图2是一文字流程图,说明该实施例的制作流程。FIG. 2 is a text flow chart illustrating the production process of this embodiment.
具体实施方式detailed description
下面结合附图及实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
本发明的高导热组件可用于与一会产生热能的电子组件100接触,而将该电子组件100的热能导出。The high thermal conductivity component of the present invention can be used for contacting with an electronic component 100 that generates heat, so as to dissipate the heat energy of the electronic component 100 .
参阅图1,本发明该高导热组件2的一实施例包含:一支撑体21及多个导热纤维22。Referring to FIG. 1 , an embodiment of the high thermal conductivity component 2 of the present invention includes: a support body 21 and a plurality of thermal conductivity fibers 22 .
该支撑体21具有一与该电子组件100接触的底面211,及一反向于该底面211的基面212,且该支撑体21的构成材料可选自金属、合金金属、热固性高分子材料,或热塑性高分子材料。较佳地,该支撑体21的构成材料是选自银、铝、铜、铝合金、酚醛树脂、环氧树脂、聚硅氧树脂、聚胺酯树脂,或呋喃树脂。The support body 21 has a bottom surface 211 in contact with the electronic component 100, and a base surface 212 opposite to the bottom surface 211, and the material of the support body 21 can be selected from metals, alloy metals, thermosetting polymer materials, or thermoplastic polymer materials. Preferably, the material of the support body 21 is selected from silver, aluminum, copper, aluminum alloy, phenolic resin, epoxy resin, silicone resin, polyurethane resin, or furan resin.
所述导热纤维22具有预定长度,且是以与该支撑体21的基面212实质垂直的方向排列分布,其中,所述导热纤维22的一端被该支撑体21包覆,另一端则经由该基面212裸露于该支撑体21外,而与外界环境直接接触。The heat-conducting fibers 22 have a predetermined length and are arranged in a direction substantially perpendicular to the base surface 212 of the support 21, wherein one end of the heat-conducting fibers 22 is covered by the support 21, and the other end passes through the support 21. The base surface 212 is exposed outside the support body 21 and is in direct contact with the external environment.
具体的说,所述导热纤维22是选自具有预定长度,且导热系数介于380~2000W/m·K的导热材料构成,适用于本实施例的导热纤维22可选自金属纤维(metal fiber)、高导热碳纤维(high thermalconductivity carbon fiber)、石墨化气相沉积碳纤维(GraphitizedVGCF)。Specifically, the thermally conductive fiber 22 is selected from a thermally conductive material having a predetermined length and a thermal conductivity of 380-2000 W/m·K. The thermally conductive fiber 22 suitable for this embodiment can be selected from metal fiber (metal fiber) ), high thermal conductivity carbon fiber (high thermal conductivity carbon fiber), graphitized vapor deposition carbon fiber (GraphitizedVGCF).
兹将前述该高导热组件2的实施例的制作方法说明如下。The manufacturing method of the aforementioned embodiment of the high thermal conductivity component 2 is described as follows.
参阅图2,本发明该高导热组件2的制作方法,包含:一准备步骤31、一含浸步骤32,及一固化步骤33。Referring to FIG. 2 , the manufacturing method of the high thermal conductivity component 2 of the present invention includes: a preparation step 31 , an impregnation step 32 , and a curing step 33 .
该准备步骤31是准备一液态的成形基质,并控制令该成形基质的黏度介于1000~30000cps。The preparation step 31 is to prepare a liquid forming matrix, and control the viscosity of the forming matrix to be between 1000-30000 cps.
该成形基质包含一主要是选自高分子材料、金属材料,该成形基质还包含一种黏度调整剂。利用将固态的高分子材料、金属,或是合金金属材料熔融或是溶解于黏度调整剂中,令该高分子材料、金属,或是合金金属成液态即可。具体的说,该金属可选自下列群组其中之一:银、铝、铜、锡、锑、铝合金;该高分子材料可选自下列群组其中之一:酚醛树脂、环氧树脂、呋喃树脂、聚胺酯树脂,或聚硅氧树脂等。The forming matrix includes a material mainly selected from polymer materials and metal materials, and the forming matrix also includes a viscosity regulator. Melting or dissolving the solid polymer material, metal, or alloy metal material in the viscosity regulator makes the polymer material, metal, or alloy metal into a liquid state. Specifically, the metal can be selected from one of the following groups: silver, aluminum, copper, tin, antimony, aluminum alloy; the polymer material can be selected from one of the following groups: phenolic resin, epoxy resin, Furan resin, polyurethane resin, or silicone resin, etc.
为了避免液态的成形基质的黏度过高,导致后续导热纤维22无法浸入该成形基质中,或是黏度过低,而使成形基质于所述导热纤维22的浸置过程中,因毛细现象而吸附至所述导热纤维22预定裸露的表面,因此,较佳地,该成形基质的黏度应控制在1000~30000cps。In order to avoid that the viscosity of the liquid forming matrix is too high, resulting in that the subsequent thermally conductive fibers 22 cannot be immersed in the forming matrix, or the viscosity is too low, so that the forming matrix is adsorbed due to capillary phenomenon during the immersion process of the heat conducting fibers 22 The surface of the heat-conducting fiber 22 is intended to be exposed. Therefore, preferably, the viscosity of the forming matrix should be controlled at 1000-30000 cps.
详细的说,当该成形基质的组成为选自高分子材料时,可利用将具有不同熔融黏度的高分子材料掺混,调整该成形基质的整体黏度,或是利用将高分子材料溶于黏度调整剂中,利用黏度调整剂调整该成形基质的整体黏度,其中,该黏度调整剂可选自可与所选择该高分子材料反应的反应型黏度调整剂,或是不与该高分子材料反应的非反应型黏度调整剂。Specifically, when the composition of the forming matrix is selected from polymer materials, the overall viscosity of the forming matrix can be adjusted by mixing polymer materials with different melt viscosities, or by dissolving the polymer materials in the viscosity In the regulator, the overall viscosity of the forming matrix is adjusted by using a viscosity regulator, wherein the viscosity regulator can be selected from a reactive viscosity regulator that can react with the selected polymer material, or not react with the polymer material non-reactive viscosity modifier.
以环氧树脂为例,该黏度调整剂可选自可与环氧树脂反应的反应型黏度调整剂,例如选自下列群组其中之一:丁基缩水甘油醚、1,4-丁二醇二缩水甘油醚、乙二醇二缩水甘油醚、苯基缩水甘油醚、聚丙二醇二缩水甘油醚、C12-C14脂肪缩水甘油醚、苄基缩水甘油醚、1,6-已二醇二缩水甘油醚、环氧丙烷邻甲苯基醚、环氧丙烷邻甲苯基缩水甘油醚、新戊二醇二缩水甘油醚,或是不与环氧树脂反应的非反应型黏度调整剂(即一般可溶解高分子材料的溶剂),例如选自下列群组其中之一:丙酮、无水乙醇、甲苯、二甲苯、苯乙烯、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、苯甲醇、多元醇。而当该成形基质是选自合金或合金金属材料时,则是加热让金属或合金金属融熔成液状。Taking epoxy resin as an example, the viscosity modifier can be selected from reactive viscosity modifiers that can react with epoxy resin, such as one of the following groups: butyl glycidyl ether, 1,4-butanediol Diglycidyl ether, ethylene glycol diglycidyl ether, phenyl glycidyl ether, polypropylene glycol diglycidyl ether, C 12 -C 14 fatty glycidyl ether, benzyl glycidyl ether, 1,6-hexanediol diol Glycidyl ether, propylene oxide o-cresyl ether, propylene oxide o-cresyl glycidyl ether, neopentyl glycol diglycidyl ether, or non-reactive viscosity modifiers that do not react with epoxy resins (that is, generally available Solvents for dissolving polymer materials), for example, one of the following groups selected from: acetone, absolute ethanol, toluene, xylene, styrene, ethyl acetate, butyl acetate, dimethylformamide, benzyl alcohol, polyhydric alcohol. And when the forming matrix is selected from alloy or alloy metal material, heating is used to melt the metal or alloy metal into a liquid state.
于本实施例中,该成形基质是以环氧树脂(EPONTM Resin 828,熔融黏度:15000cps)为例,该非反应型黏度调整剂是选自缩水甘油(C12-C14)烷基醚(ALKYL(C12-C14)GLYCIDYL ETHER,AGE)。该准备步骤31是于室温下,将环氧树脂溶于该非反应型黏度调整剂中,并调整令该成形基质的黏度为<2000cps(25℃),将该成形基质置入一具有预定高度的模具(图未示)中。要说明的是,当该步骤31是利用加热方式,而让该成形基质熔融成液态时,则较佳地,该准备步骤31应在惰性气体条件下操作,以避免该成形基质因高温氧化而劣化。In this embodiment, the molding matrix is taken as an example of epoxy resin (EPON ™ Resin 828, melt viscosity: 15000cps), and the non-reactive viscosity modifier is selected from glycidyl (C 12 -C 14 ) alkyl ether (ALKYL(C12-C14)GLYCIDYL ETHER, AGE). The preparation step 31 is to dissolve the epoxy resin in the non-reactive viscosity modifier at room temperature, and adjust the viscosity of the forming matrix to <2000cps (25°C), and place the forming matrix in a predetermined height mold (not shown). It should be noted that when the step 31 utilizes heating to melt the forming matrix into a liquid state, then preferably, the preparation step 31 should be operated under inert gas conditions to avoid the formation of the forming matrix due to high temperature oxidation. deteriorating.
该含浸步骤32是将多个具预定长度的导热纤维22,以其中一端浸入该成形基质中,并维持令所述导热纤维22的另一端位于该成形基质外。The impregnating step 32 is to immerse one end of a plurality of heat-conducting fibers 22 with a predetermined length into the forming matrix, and keep the other end of the heat-conducting fiber 22 outside the forming matrix.
详细的说,该含浸步骤32是将具有预定长度的导热纤维22成束固定后,再将多束的导热纤维束集中,并将所述导热纤维束的其中一端夹持固定后,以另一端浸入该成形基质中。In detail, the impregnating step 32 is to fix the thermally conductive fibers 22 with a predetermined length in bundles, then gather multiple bundles of thermally conductive fiber bundles, clamp and fix one end of the thermally conductive fiber bundles, and use the other end Dip into the forming matrix.
更具体的说,为了避免所述导热纤维22于浸入该成形基质时,因该成形基质的黏度过高导致导热纤维22无法顺利进入该成形基质中,或是因为该成形基质的黏度过低,使得所述导热纤维22于浸入该成形基质后,因为所述导热纤维22间的间隔隙缝所造成的毛细现象,而让该成形基质沿着所述导热纤维22吸附至所述导热纤维22原预定要外露的表面,而造成导热纤维22外露部分被包覆的问题,因此,该成形基质的黏度须要控制在一预定的范围;此外,为了提升该含浸步骤32的操作性,所述导热纤维22的长度不小于0.1mm,较佳地,所述导热纤维22为选自长度不小于0.1mm,且导热系数不低于1800W/m·K的石墨化气相沉积碳纤维。More specifically, in order to avoid that when the thermally conductive fibers 22 are immersed in the forming matrix, the thermally conductive fibers 22 cannot smoothly enter the forming matrix because the viscosity of the forming matrix is too high, or because the viscosity of the forming matrix is too low, After the heat-conducting fibers 22 are immersed in the forming matrix, the forming matrix is adsorbed to the heat-conducting fibers 22 along the heat-conducting fibers 22 due to the capillary phenomenon caused by the gaps between the heat-conducting fibers 22. The surface to be exposed causes the problem that the exposed part of the heat-conducting fiber 22 is covered. Therefore, the viscosity of the forming matrix must be controlled within a predetermined range; in addition, in order to improve the operability of the impregnating step 32, the heat-conducting fiber 22 The length is not less than 0.1 mm. Preferably, the thermally conductive fiber 22 is selected from graphitized vapor deposition carbon fibers with a length not less than 0.1 mm and a thermal conductivity not lower than 1800 W/m·K.
最后进行该固化步骤33,将含有所述导热纤维的该成形基质固化,令固化后的成形基质形成该支撑体21,即可制得如图1所示的高导热组件2。Finally, the curing step 33 is performed to solidify the forming matrix containing the thermally conductive fibers, and make the cured forming matrix form the support body 21 to obtain the high thermal conductivity component 2 as shown in FIG. 1 .
具体的说,当该准备步骤31是以加热熔融方式令该成形基质成液态时,则该固化步骤33可以冷却方式,重新令该成形基质固化即可;而当该准备步骤31是利用添加黏度调整剂,而让该成形基质溶解成液态时,该固化步骤33则可利用加热方式,移除该非反应型黏度调整剂,令该成形基质固化,或是藉由让反应型黏度调整剂与成型基质反应,而令其固化;此外,要说明的是,当该黏度调整剂为反应型黏度调整剂时,该固化步骤33可在加热条件或是室温下维持一预定时间,令该反应型黏度调整剂与成型基质反应固化即可。Specifically, when the preparation step 31 is to heat and melt the forming matrix into a liquid state, the solidifying step 33 can be cooled to re-solidify the forming matrix; When dissolving the forming matrix into a liquid state, the curing step 33 can use heating to remove the non-reactive viscosity adjusting agent to solidify the forming matrix, or by letting the reactive viscosity adjusting agent and The molding matrix reacts to make it solidify; in addition, it should be noted that when the viscosity modifier is a reactive viscosity modifier, the curing step 33 can be maintained at a heating condition or at room temperature for a predetermined time, so that the reactive type The viscosity modifier can be cured by reacting with the molding matrix.
本发明利用浸置固化方式,将导热纤维22浸入液态的成形基质中,因此,在该支撑体21成形的过程中即可控制令导热纤维22外露,而不须藉由后段加工让导热纤维22外露,且在制程的同时即可控制导热纤维22外露的长度,因此,可大面积且以简便的方式制得具有导热纤维22外露的该高导热组件2。In the present invention, the heat-conducting fiber 22 is immersed in the liquid forming matrix by dipping and solidifying. Therefore, the exposure of the heat-conducting fiber 22 can be controlled during the forming process of the support body 21, without the need for subsequent processing to make the heat-conducting fiber 22 exposed. 22 are exposed, and the exposed length of the thermally conductive fibers 22 can be controlled during the manufacturing process. Therefore, the high thermally conductive component 2 with the exposed thermally conductive fibers 22 can be manufactured in a large area and in a simple manner.
此外,要再说明的是,该高导热组件2也可藉由后加工方式,进一步移除其它部分的该支撑体21,增加所述导热纤维22与外界接触的面积,而提升该高导热组件2的散热性。例如,可进一步再自该支撑体21的底面211移除部分的该支撑体21,令所述导热纤维22可自该支撑体21反向于该基面212的方向露出;或是可将该支撑体21的其它部分移除,形成镂空的结构,而令所述导热纤维22可自该支撑体21的其它位置裸露。前述该支撑体21的镂空结构,只要是可让所述导热纤维22裸露于该支撑体21外即可,并无特别限制,而该支撑体21的移除方式可以利用激光或砂磨方式移除。In addition, it should be further explained that the high thermal conductivity component 2 can also further remove other parts of the support body 21 through post-processing, so as to increase the contact area of the thermal conductive fiber 22 with the outside, thereby improving the high thermal conductivity component. 2 heat dissipation. For example, part of the support body 21 can be further removed from the bottom surface 211 of the support body 21, so that the heat-conducting fiber 22 can be exposed from the support body 21 against the direction of the base surface 212; Other parts of the support body 21 are removed to form a hollow structure, so that the heat-conducting fibers 22 can be exposed from other positions of the support body 21 . The aforementioned hollow structure of the support body 21 is not particularly limited as long as the heat-conducting fiber 22 can be exposed outside the support body 21, and the removal method of the support body 21 can be removed by laser or sanding. remove.
此外,要再说明的是,于本较佳实施中该电子组件100的表面为以一平坦的面做说明,因此,该高导热组件2与该电子组件100接触的表面也会成一平坦面,但是要说明的是,该电子组件100的表面也可以是具有弧面或曲面等不同表面型态,此时,该高导热组件2与该电子组件100接触的表面也可以配合该电子组件100的表面型态而具有弧面或曲面,以提升与该电子组件100间的接触密合性。In addition, it should be further explained that, in this preferred implementation, the surface of the electronic component 100 is described as a flat surface, therefore, the surface of the high thermal conductivity component 2 in contact with the electronic component 100 will also be a flat surface, However, it should be noted that the surface of the electronic component 100 can also have different surface types such as arc surface or curved surface. At this time, the surface of the high thermal conductivity component 2 in contact with the electronic component 100 can also match the The surface type has an arc or a curved surface, so as to improve the contact adhesion with the electronic component 100 .
综上所述,本发明直接将导热纤维22以含浸方式浸置于液态的成形基质中,令该成形基质于固化的同时即令所述导热纤维22裸露于外,制程简便容易控制,且可直接制得具有导热纤维22外露的高导热组件2。To sum up, the present invention directly impregnates the thermally conductive fibers 22 into the liquid forming matrix in an impregnating manner, so that the forming matrix is cured and at the same time the thermally conductive fibers 22 are exposed to the outside, the manufacturing process is simple and easy to control, and can be directly A highly thermally conductive component 2 with exposed thermally conductive fibers 22 is produced.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510154292.9A CN106158666A (en) | 2015-04-02 | 2015-04-02 | Manufacturing method of high-heat-conductivity assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510154292.9A CN106158666A (en) | 2015-04-02 | 2015-04-02 | Manufacturing method of high-heat-conductivity assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106158666A true CN106158666A (en) | 2016-11-23 |
Family
ID=57338210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510154292.9A Pending CN106158666A (en) | 2015-04-02 | 2015-04-02 | Manufacturing method of high-heat-conductivity assembly |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106158666A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109817829A (en) * | 2019-01-31 | 2019-05-28 | 武汉华星光电半导体显示技术有限公司 | Heat dissipation film and display panel |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000344919A (en) * | 1999-06-02 | 2000-12-12 | Denki Kagaku Kogyo Kk | Method for producing thermally conductive silicone molding |
JP2001156227A (en) * | 1999-11-30 | 2001-06-08 | Polymatech Co Ltd | Anisotropic thermal-conductive sheet |
JP2001160607A (en) * | 1999-12-02 | 2001-06-12 | Polymatech Co Ltd | Anisotropic heat conducting sheet |
CN1501483A (en) * | 2002-11-14 | 2004-06-02 | 清华大学 | A kind of thermal interface material and its manufacturing method |
DE102007039905A1 (en) * | 2007-08-23 | 2008-08-28 | Siemens Ag | Heat conducting material layer production method for use in solar technology, involves elongation of multiple nodular fibers in longitudinal direction having heat conductivity more than in another direction |
CN101309576A (en) * | 2007-03-29 | 2008-11-19 | 保力马科技株式会社 | Heat conduction sheet and manufacturing method thereof |
CN100454526C (en) * | 2005-06-30 | 2009-01-21 | 鸿富锦精密工业(深圳)有限公司 | Thermo-interface material producing method |
TW201307042A (en) * | 2011-08-05 | 2013-02-16 | Advanced Int Multitech Co Ltd | Preparation method of fiber reinforced composite product |
JP2013098245A (en) * | 2011-10-28 | 2013-05-20 | Fujitsu Ltd | Heat dissipation sheet and method for manufacturing the same |
-
2015
- 2015-04-02 CN CN201510154292.9A patent/CN106158666A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000344919A (en) * | 1999-06-02 | 2000-12-12 | Denki Kagaku Kogyo Kk | Method for producing thermally conductive silicone molding |
JP2001156227A (en) * | 1999-11-30 | 2001-06-08 | Polymatech Co Ltd | Anisotropic thermal-conductive sheet |
JP2001160607A (en) * | 1999-12-02 | 2001-06-12 | Polymatech Co Ltd | Anisotropic heat conducting sheet |
CN1501483A (en) * | 2002-11-14 | 2004-06-02 | 清华大学 | A kind of thermal interface material and its manufacturing method |
CN100454526C (en) * | 2005-06-30 | 2009-01-21 | 鸿富锦精密工业(深圳)有限公司 | Thermo-interface material producing method |
CN101309576A (en) * | 2007-03-29 | 2008-11-19 | 保力马科技株式会社 | Heat conduction sheet and manufacturing method thereof |
DE102007039905A1 (en) * | 2007-08-23 | 2008-08-28 | Siemens Ag | Heat conducting material layer production method for use in solar technology, involves elongation of multiple nodular fibers in longitudinal direction having heat conductivity more than in another direction |
TW201307042A (en) * | 2011-08-05 | 2013-02-16 | Advanced Int Multitech Co Ltd | Preparation method of fiber reinforced composite product |
JP2013098245A (en) * | 2011-10-28 | 2013-05-20 | Fujitsu Ltd | Heat dissipation sheet and method for manufacturing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109817829A (en) * | 2019-01-31 | 2019-05-28 | 武汉华星光电半导体显示技术有限公司 | Heat dissipation film and display panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160324031A1 (en) | Heat sink | |
KR101280663B1 (en) | Polymer thermal interface materials | |
US20100172101A1 (en) | Thermal interface material and method for manufacturing the same | |
WO2011104996A1 (en) | Thermosetting resin composition, b-stage thermally conductive sheet, and power module | |
CN101760035B (en) | The using method of thermal interfacial material and this thermal interfacial material | |
JP6000749B2 (en) | Thermosetting resin composition, method for producing thermally conductive resin sheet, thermally conductive resin sheet, and power semiconductor device | |
CN106304780B (en) | Manufacturing process for high thermal conductivity graphite film | |
CN104918468A (en) | Thermally conductive pad and electronic device | |
JP5171798B2 (en) | Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module | |
EP3315573B1 (en) | Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same | |
CN105829450A (en) | Curable thermally conductive grease, heat dissipation structure, and method for producing heat dissipation structure | |
JP2014152299A (en) | Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same | |
CN104609405A (en) | Preparation method of vertically arrayed graphene thin films | |
CN108728046A (en) | A kind of heat conduction heat accumulation composite material and preparation method, heat conduction heat accumulation radiator | |
JP2009130251A (en) | Method of manufacturing heat sink with insulation layer | |
CN106158666A (en) | Manufacturing method of high-heat-conductivity assembly | |
JP5424984B2 (en) | Manufacturing method of semiconductor module | |
CN105038374A (en) | Cooling coating, cooling fin and manufacturing method | |
CN103722804B (en) | A kind of Quaternary liquid metal heat interface material with two melting point character | |
TWI582370B (en) | Method for Making High Thermal Conductivity Elements | |
CN106163213A (en) | High-heat-conductivity cover and manufacturing method thereof | |
JP4260426B2 (en) | heatsink | |
CN207911211U (en) | Novel ray machine cooling fin | |
CN105990278A (en) | Heat conducting element and manufacturing method thereof | |
JP2018095541A (en) | Graphite resin composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20161123 |