CN105793969A - Semiconductor device and method for manufacturing semiconductor device - Google Patents
Semiconductor device and method for manufacturing semiconductor device Download PDFInfo
- Publication number
- CN105793969A CN105793969A CN201480065559.0A CN201480065559A CN105793969A CN 105793969 A CN105793969 A CN 105793969A CN 201480065559 A CN201480065559 A CN 201480065559A CN 105793969 A CN105793969 A CN 105793969A
- Authority
- CN
- China
- Prior art keywords
- thin film
- amorphous silicon
- silicon layer
- semiconductor device
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6704—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
- H10D30/6713—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6732—Bottom-gate only TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
- H10D30/6746—Amorphous silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/62—Electrodes ohmically coupled to a semiconductor
Landscapes
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
一种半导体装置,其为具有源极、漏极、栅极和非晶硅层的半导体装置,其特征在于,在上述源极和上述漏极的一者或两者与上述非晶硅层之间,具有含有钙原子和铝原子的非晶氧化物的电子化合物的薄膜。
A semiconductor device, which is a semiconductor device having a source, a drain, a gate, and an amorphous silicon layer, characterized in that, between one or both of the source and the drain and the amorphous silicon layer In between, there is a thin film of electronic compound of amorphous oxide containing calcium atoms and aluminum atoms.
Description
技术领域technical field
本发明涉及半导体装置和半导体装置的制造方法。The present invention relates to a semiconductor device and a method of manufacturing the semiconductor device.
背景技术Background technique
近年来,通过在绝缘基板上形成源极、漏极和栅极等各电极以及半导体层而构成的薄膜晶体管等半导体装置受到关注(例如专利文献1)。这样的半导体装置例如可以应用于电光装置等各种电子器件等中。In recent years, attention has been paid to semiconductor devices such as thin film transistors formed by forming electrodes such as a source, a drain, and a gate, and a semiconductor layer on an insulating substrate (for example, Patent Document 1). Such a semiconductor device can be applied to, for example, various electronic devices such as electro-optical devices.
现有技术文献prior art literature
专利文献patent documents
专利文献1:日本特开2007-123861号公报Patent Document 1: Japanese Patent Laid-Open No. 2007-123861
发明内容Contents of the invention
发明所要解决的问题The problem to be solved by the invention
在如上所述的半导体装置中,为了进一步的高性能化和高功能化,要求进一步降低源极与半导体层之间和漏极与半导体层之间的接触电阻。In the semiconductor device as described above, further reduction in contact resistance between the source and the semiconductor layer and between the drain and the semiconductor layer is required for further improvement in performance and functionality.
本发明是鉴于这样的背景而完成的,在本发明中,目的在于提供与以往相比实现了高性能化和高功能化的半导体装置。另外,在本发明中,目的在于提供制造这样的半导体装置的方法。The present invention has been made in view of such a background, and an object of the present invention is to provide a semiconductor device that achieves higher performance and higher functionality than conventional ones. In addition, an object of the present invention is to provide a method of manufacturing such a semiconductor device.
用于解决问题的手段means of solving problems
在本发明中,提供一种半导体装置,其为具有源极、漏极、栅极和非晶硅层的半导体装置,其特征在于,In the present invention, a semiconductor device is provided, which is a semiconductor device having a source, a drain, a gate and an amorphous silicon layer, characterized in that,
在上述源极和上述漏极的一者或两者与上述非晶硅层之间,具有含有钙原子和铝原子的非晶氧化物的电子化合物的薄膜。Between one or both of the source electrode and the drain electrode and the amorphous silicon layer, there is a thin film of an electron compound of an amorphous oxide containing calcium atoms and aluminum atoms.
在此,对于本发明的半导体装置而言,在上述电子化合物的薄膜中,铝原子与钙原子的摩尔比(Ca/Al)可以在0.3~5.0的范围内。Here, in the semiconductor device of the present invention, in the thin film of the electronic compound, the molar ratio (Ca/Al) of aluminum atoms to calcium atoms may be within a range of 0.3 to 5.0.
另外,在本发明的半导体装置中,上述电子化合物的薄膜可以具有2.0×1017cm-3以上的电子密度。In addition, in the semiconductor device of the present invention, the thin film of the above-mentioned electronic compound may have an electron density of 2.0×10 17 cm −3 or more.
另外,在本发明的半导体装置中,上述电子化合物的薄膜的厚度可以为100nm以下。In addition, in the semiconductor device of the present invention, the thin film of the electronic compound may have a thickness of 100 nm or less.
另外,在本发明的半导体装置中,上述非晶硅层可以配置在上述源极与上述栅极之间,或者In addition, in the semiconductor device of the present invention, the amorphous silicon layer may be disposed between the source and the gate, or
上述非晶硅层可以配置在比上述源极更远离上述栅极的一侧。The amorphous silicon layer may be arranged on a side farther from the gate than the source.
此外,在本发明中,提供一种半导体装置的制造方法,其为具有源极、漏极、栅极和非晶硅层的半导体装置的制造方法,其特征在于,具有:In addition, in the present invention, a method for manufacturing a semiconductor device is provided, which is a method for manufacturing a semiconductor device having a source, a drain, a gate and an amorphous silicon layer, characterized in that it has:
(1)在上述源极和上述漏极的一者或两者与上述非晶硅层之间形成含有钙原子和铝原子的非晶氧化物的电子化合物的薄膜的步骤。(1) A step of forming a thin film of an electron compound of an amorphous oxide containing calcium atoms and aluminum atoms between one or both of the source electrode and the drain electrode and the amorphous silicon layer.
在此,本发明的制造方法还具有Here, the manufacturing method of the present invention also has
(a)在基板上形成非晶硅层的步骤、(a) the step of forming an amorphous silicon layer on the substrate,
(b)形成源极和漏极的步骤、和(b) the step of forming source and drain electrodes, and
(c)形成栅极的步骤,并且(c) the step of forming a gate, and
上述(1)步骤可以在上述(a)步骤与上述(b)步骤之间实施。The above (1) step may be carried out between the above (a) step and the above (b) step.
另外,本发明的制造方法还具有In addition, the manufacturing method of the present invention also has
(a)在基板上形成源极和漏极的步骤、(a) a step of forming a source electrode and a drain electrode on a substrate,
(b)形成非晶硅层的步骤、和(b) a step of forming an amorphous silicon layer, and
(c)形成栅极的步骤,并且(c) the step of forming a gate, and
上述(1)步骤可以在上述(a)步骤与上述(b)步骤之间实施。The above (1) step may be carried out between the above (a) step and the above (b) step.
另外,本发明的制造方法还具有In addition, the manufacturing method of the present invention also has
(a)在基板上形成栅极的步骤、(a) a step of forming a gate on a substrate,
(b)形成非晶硅层的步骤、和(b) a step of forming an amorphous silicon layer, and
(c)形成源极和漏极的步骤,并且(c) the step of forming source and drain electrodes, and
上述(1)步骤可以在上述(b)步骤与上述(c)步骤之间实施。The above (1) step may be carried out between the above (b) step and the above (c) step.
另外,本发明的制造方法还具有In addition, the manufacturing method of the present invention also has
(a)在基板上形成栅极的步骤、(a) a step of forming a gate on a substrate,
(b)形成源极和漏极的步骤、和(b) the step of forming source and drain electrodes, and
(c)形成非晶硅层的步骤,并且(c) the step of forming an amorphous silicon layer, and
上述(1)步骤可以在上述(b)步骤与上述(c)步骤之间实施。The above (1) step may be carried out between the above (b) step and the above (c) step.
另外,对于本发明的制造方法而言,在上述电子化合物的薄膜中,铝原子与钙原子的摩尔比(Ca/Al)可以在0.3~5.0的范围内。In addition, in the production method of the present invention, in the thin film of the electronic compound, the molar ratio (Ca/Al) of aluminum atoms to calcium atoms may be within a range of 0.3 to 5.0.
另外,在本发明的制造方法中,上述电子化合物的薄膜可以具有2.0×1017cm-3以上的电子密度。In addition, in the production method of the present invention, the thin film of the above-mentioned electronic compound may have an electron density of 2.0×10 17 cm −3 or more.
另外,在本发明的制造方法中,上述电子化合物的薄膜的厚度可以为100nm以下。In addition, in the production method of the present invention, the thickness of the thin film of the electronic compound may be 100 nm or less.
需要说明的是,在本申请中,也将“含有钙原子和铝原子的非晶氧化物的电子化合物”简称为“非晶氧化物的电子化合物”,也将“含有钙原子和铝原子的非晶氧化物的电子化合物的薄膜”简称为“电子化合物的薄膜”。It should be noted that, in this application, "the electronic compound of amorphous oxide containing calcium atoms and aluminum atoms" is also referred to simply as "the electronic compound of amorphous oxide", and "the electronic compound containing calcium atoms and aluminum atoms" is also referred to as "the electronic compound of amorphous oxide". "Thin film of electronic compound of amorphous oxide" is simply referred to as "thin film of electronic compound".
发明效果Invention effect
本发明中,可以提供与以往相比实现了高性能化和高功能化的半导体装置。另外,本发明中,可以提供制造这样的半导体装置的方法。In the present invention, it is possible to provide a semiconductor device that achieves higher performance and higher functionality than conventional ones. In addition, in the present invention, a method of manufacturing such a semiconductor device can be provided.
附图说明Description of drawings
图1是概略地表示现有的半导体装置的构成的剖视图。FIG. 1 is a cross-sectional view schematically showing the configuration of a conventional semiconductor device.
图2是表示非晶氧化物的电子化合物的概念性结构的示意图。FIG. 2 is a schematic diagram showing a conceptual structure of an electron compound of an amorphous oxide.
图3是概略地表示本发明的一个实施例的半导体装置的构成的剖视图。3 is a cross-sectional view schematically showing the structure of a semiconductor device according to an embodiment of the present invention.
图4是示意性地表示以顶栅结构-底接触方式构成的本发明的半导体装置的一例的剖视图。4 is a cross-sectional view schematically showing an example of a semiconductor device of the present invention configured in a top-gate structure-bottom contact system.
图5是示意性地表示以底栅结构-顶接触方式构成的本发明的半导体装置的一例的剖视图。5 is a cross-sectional view schematically showing an example of a semiconductor device of the present invention configured in a bottom gate structure-top contact system.
图6是示意性地表示以底栅结构-底接触方式构成的本发明的半导体装置的一例的剖视图。6 is a cross-sectional view schematically showing an example of a semiconductor device of the present invention configured in a bottom-gate structure-bottom contact system.
图7是示意性地表示制造本发明的一个实施例的半导体装置时的流程的一例的图。FIG. 7 is a diagram schematically showing an example of a flow for manufacturing a semiconductor device according to an embodiment of the present invention.
具体实施方式detailed description
以下,参照附图对本发明的一个实施方式进行详细说明。Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
首先,为了更好地理解本发明的特征,参照图1对现有的半导体装置的构成进行简单说明。First, in order to better understand the features of the present invention, the configuration of a conventional semiconductor device will be briefly described with reference to FIG. 1 .
图1中示出现有的半导体装置的概略的截面。FIG. 1 shows a schematic cross section of a conventional semiconductor device.
如图1所示,现有的半导体装置1具有基板10、非晶硅层5、源极20、漏极22和栅极24。As shown in FIG. 1 , a conventional semiconductor device 1 has a substrate 10 , an amorphous silicon layer 5 , a source 20 , a drain 22 and a gate 24 .
非晶硅层5配置于基板10的上部,源极20和漏极22配置于非晶硅层5的上部。在源极20和漏极22的上部隔着栅极绝缘层30配置有栅极24。The amorphous silicon layer 5 is disposed on the upper portion of the substrate 10 , and the source 20 and the drain 22 are disposed on the upper portion of the amorphous silicon layer 5 . A gate 24 is disposed on top of the source 20 and the drain 22 via a gate insulating layer 30 .
这样的半导体装置1可以用于例如液晶面板、电子纸等电光装置和发光显示装置等中。Such a semiconductor device 1 can be used, for example, in electro-optical devices such as liquid crystal panels and electronic paper, light-emitting display devices, and the like.
在此,在现有的半导体装置1中,为了进一步的高性能化和高功能化,要求降低源极20与非晶硅层5的界面处的接触电阻以及漏极11与非晶硅层5的界面处的接触电阻。这是因为,该界面处的接触电阻增大时,半导体装置1的工作特性下降。Here, in the conventional semiconductor device 1, in order to further improve performance and functionality, it is required to reduce the contact resistance at the interface between the source electrode 20 and the amorphous silicon layer 5 and the contact resistance between the drain electrode 11 and the amorphous silicon layer 5. The contact resistance at the interface. This is because when the contact resistance at this interface increases, the operating characteristics of the semiconductor device 1 deteriorate.
通常,在抑制金属制的源极20/漏极22与非晶硅层5的界面处的接触电阻时,利用欧姆接触是有效的。欧姆接触是指在非晶硅层侧不形成空间电荷层而使金属与半导体接合的状态,在这种情况下,在金属/半导体界面处不产生整流性(即,电子向两个方向流动)。Usually, it is effective to use an ohmic contact to suppress the contact resistance at the interface between the metal source 20 /drain 22 and the amorphous silicon layer 5 . Ohmic contact refers to the state where the metal and semiconductor are joined without forming a space charge layer on the side of the amorphous silicon layer. In this case, rectification does not occur at the metal/semiconductor interface (that is, electrons flow in two directions) .
然而,为了在金属制的源极20/漏极22与非晶硅层5的界面处表现这样的欧姆接触,需要使源极20/漏极22的功函数小于非晶硅层5的功函数。然而,通常,具有这样的功函数的金属材料并不多。另外,功函数低的金属是活性的,反应性高,容易与其它成分形成反应层,因此难以使低功函数的金属与非晶硅层直接接合。因此,在这样的应对中,产生源极20/漏极22的材质受到大幅限制这样的问题。However, in order to exhibit such an ohmic contact at the interface between the metal source 20/drain 22 and the amorphous silicon layer 5, it is necessary to make the work function of the source 20/drain 22 smaller than the work function of the amorphous silicon layer 5. . However, generally, there are not many metallic materials having such a work function. In addition, a metal with a low work function is active, has high reactivity, and easily forms a reaction layer with other components, so it is difficult to directly bond a metal with a low work function to an amorphous silicon layer. Therefore, in such countermeasures, there arises a problem that the materials of the source electrode 20 and the drain electrode 22 are greatly limited.
另一方面,在金属制的源极20/漏极22的功函数大于非晶硅层5的情况下,在金属/非晶硅的界面形成肖特基势垒。这种情况下,考虑尽可能减薄在非晶硅侧产生的空间电荷层,并通过隧道效应抑制接触电阻。然而,为了减薄空间电荷层,需要显著提高非晶硅层内的载流子密度。因此,该方法有时也不能成为现实的应对策略。On the other hand, when the work function of the metal source 20 and drain 22 is larger than that of the amorphous silicon layer 5 , a Schottky barrier is formed at the metal/amorphous silicon interface. In this case, it is considered to make the space charge layer generated on the amorphous silicon side as thin as possible, and to suppress the contact resistance through the tunnel effect. However, in order to thin the space charge layer, it is necessary to significantly increase the carrier density in the amorphous silicon layer. Therefore, this method sometimes cannot be a realistic coping strategy.
与此相对,在本发明中,提供一种半导体装置,其为具有源极、漏极、栅极和非晶硅层的半导体装置,其特征在于,In contrast, the present invention provides a semiconductor device having a source, a drain, a gate, and an amorphous silicon layer, characterized in that
在上述源极和上述漏极的一者或两者与上述非晶硅层之间,具有含有钙原子和铝原子的非晶氧化物的电子化合物的薄膜。Between one or both of the source electrode and the drain electrode and the amorphous silicon layer, there is a thin film of an electron compound of an amorphous oxide containing calcium atoms and aluminum atoms.
本发明的半导体装置具有如下特征:在上述源极和上述漏极的一者或两者与上述非晶硅层之间配置含有钙原子和铝原子的非晶氧化物的电子化合物的薄膜。The semiconductor device of the present invention is characterized in that a thin film of an electron compound of an amorphous oxide containing calcium atoms and aluminum atoms is disposed between one or both of the source electrode and the drain electrode and the amorphous silicon layer.
在此,含有钙原子和铝原子的非晶氧化物的电子化合物的薄膜具有显示半导体的电特性、功函数较低的特征。例如,该薄膜的功函数在2.4eV~4.5eV的范围(例如2.8eV~3.2eV)内。另外,该薄膜具有电子密度高的特征。薄膜的电子密度例如在2.0×1017cm-3~2.3×1021cm-3的范围内。Here, a thin film of an electronic compound of an amorphous oxide containing calcium atoms and aluminum atoms has the characteristics of exhibiting the electrical characteristics of a semiconductor and having a low work function. For example, the work function of the film is in the range of 2.4 eV to 4.5 eV (eg, 2.8 eV to 3.2 eV). In addition, this thin film is characterized by high electron density. The electron density of the thin film is, for example, in the range of 2.0×10 17 cm −3 to 2.3×10 21 cm −3 .
在本发明的半导体装置中,由于这样的薄膜的存在,可以使上述源极和上述漏极的一者或两者与上述非晶硅层之间的接触电阻显著下降。因此,本发明中,可以提供具有比以往更高的工作特性的半导体装置。In the semiconductor device of the present invention, the contact resistance between one or both of the source electrode and the drain electrode and the amorphous silicon layer can be significantly reduced due to the presence of such a thin film. Therefore, in the present invention, it is possible to provide a semiconductor device having higher operating characteristics than conventional ones.
本发明在源极的功函数和漏极的功函数大于非晶硅层的功函数的情况下更加发挥效果。The present invention is more effective when the work function of the source and the drain are larger than the work function of the amorphous silicon layer.
如上所述,通过使源极和漏极的功函数低于非晶硅层,可以表现欧姆接触。然而,功函数低的金属是活性的,反应性高,容易与其它成分形成反应层,因此难以表现欧姆接触。本发明的电子化合物的薄膜尽管具有低的功函数,但具有高的化学耐久性,还具有高的载流子密度(电子密度)。因此,可以在非晶硅层与电子化合物的薄膜之间表现欧姆接触,并可以在源极和漏极(金属)之间表现隧道效应。其结果是可以使源极和漏极的一者或两者与非晶硅层之间的接触电阻显著下降,从而可以提供比以往更高性能的半导体装置。As described above, by making the work function of the source and drain lower than that of the amorphous silicon layer, an ohmic contact can be exhibited. However, a metal with a low work function is active, has high reactivity, and easily forms a reaction layer with other components, so it is difficult to express an ohmic contact. The thin film of the electronic compound of the present invention has high chemical durability despite having a low work function, and also has a high carrier density (electron density). Therefore, an ohmic contact can be expressed between the amorphous silicon layer and the thin film of the electronic compound, and a tunnel effect can be expressed between the source and drain (metal). As a result, the contact resistance between one or both of the source and the drain and the amorphous silicon layer can be significantly reduced, thereby providing a higher-performance semiconductor device than before.
电子化合物的薄膜的功函数优选小于非晶硅层的功函数。非晶硅层的功函数与电子化合物的薄膜的功函数之差优选大于0eV且小于等于3.0eV,更优选0.1eV~2.5eV,进一步优选0.5eV~2.0eV。通过具有这样的功函数之差,可以容易地表现欧姆接触,从而可以使接触电阻显著降低。The work function of the thin film of the electron compound is preferably smaller than that of the amorphous silicon layer. The difference between the work function of the amorphous silicon layer and the work function of the thin film of the electron compound is preferably greater than 0 eV and less than or equal to 3.0 eV, more preferably 0.1 eV to 2.5 eV, and still more preferably 0.5 eV to 2.0 eV. By having such a difference in work function, ohmic contact can be easily expressed, and contact resistance can be significantly reduced.
例如,非晶硅层的功函数为4.2eV。应用铝(Al)作为源极和漏极时,包含Al的源极和漏极的功函数为4.1eV。这种情况下,使源极和漏极的一者或两者与非晶硅层直接接合时,产生反应层而不易表现欧姆接触。与此相对,在本发明中,在源极和漏极的一者或两者与非晶硅层之间配置含有钙原子和铝原子的非晶氧化物的电子化合物的薄膜。该电子化合物的薄膜的功函数在2.4eV~4.5eV的范围内,例如可以设定在2.8eV~3.2eV的范围内,可以充分低于非晶硅层的功函数。而且,该电子化合物的薄膜是化学稳定的,因此不易形成反应层。另外,在源极和漏极(金属)与电子化合物的薄膜的界面处,电子化合物的薄膜的电子密度高,因此利用隧道效应而降低接触电阻。因此,易于表现欧姆接触,从而可以使源极和漏极的一者或两者与非晶硅层之间的接触电阻下降。其结果是可以提供比以往更高性能的半导体装置。For example, the work function of the amorphous silicon layer is 4.2eV. When aluminum (Al) is used as the source and drain, the work function of the source and drain including Al is 4.1 eV. In this case, when one or both of the source electrode and the drain electrode are directly bonded to the amorphous silicon layer, a reaction layer is generated and ohmic contact is not easily expressed. In contrast, in the present invention, a thin film of an electron compound of an amorphous oxide containing calcium atoms and aluminum atoms is disposed between one or both of the source and drain electrodes and the amorphous silicon layer. The work function of the electron compound thin film is in the range of 2.4 eV to 4.5 eV, for example, can be set in the range of 2.8 eV to 3.2 eV, and can be sufficiently lower than the work function of the amorphous silicon layer. Also, the thin film of the electron compound is chemically stable, so it is not easy to form a reactive layer. In addition, at the interface between the source electrode and the drain electrode (metal) and the thin film of the electronic compound, the electron density of the thin film of the electronic compound is high, so the contact resistance is reduced by utilizing the tunneling effect. Therefore, ohmic contact is easily expressed, and the contact resistance between one or both of the source and the drain and the amorphous silicon layer can be reduced. As a result, semiconductor devices with higher performance than before can be provided.
另外,在将电子化合物的薄膜的电子亲和势与功函数之差设为ΔF、将非晶硅层的电子亲和势与功函数之差设为ΔB的情况下,优选ΔF与ΔB之差接近0。例如,ΔF与ΔB之差的绝对值优选为0.5以下,更优选为0.3以下,进一步优选为0。通过尽量减小ΔF与ΔB之差的绝对值,在将非晶硅层与电子化合物的薄膜接合时,各自的导带的底部的能级相一致,因此可以降低非晶硅层与电子化合物的薄膜之间的接触电阻。电子化合物的薄膜的电子亲和势为约2.5eV、功函数为约3.0eV的情况下,ΔF为约0.5eV。非晶硅层的电子亲和势为约3.9eV、功函数为约4.2eV~约4.8eV的情况下,ΔB为0.3eV~0.9eV。这种情况下,ΔF与ΔB之差为约0.4以下,可以形成非常低的接触电阻。通过使非晶硅层与电子化合物的薄膜之间的接触电阻下降,可以使源极和漏极的一者或两者与非晶硅层之间的接触电阻下降。其结果是可以提供比以往更高性能的半导体装置。In addition, when the difference between the electron affinity and the work function of the thin film of the electronic compound is ΔF, and the difference between the electron affinity and the work function of the amorphous silicon layer is ΔB, the difference between ΔF and ΔB is preferably close to 0. For example, the absolute value of the difference between ΔF and ΔB is preferably 0.5 or less, more preferably 0.3 or less, and still more preferably 0. By reducing the absolute value of the difference between ΔF and ΔB as much as possible, when the amorphous silicon layer and the thin film of the electronic compound are bonded, the energy levels at the bottom of the respective conduction bands are aligned, so the interaction between the amorphous silicon layer and the electronic compound can be reduced. Contact resistance between films. When the electron affinity of the thin film of the electron compound is about 2.5 eV and the work function is about 3.0 eV, ΔF is about 0.5 eV. When the electron affinity of the amorphous silicon layer is about 3.9 eV and the work function is about 4.2 eV to about 4.8 eV, ΔB is 0.3 eV to 0.9 eV. In this case, the difference between ΔF and ΔB is about 0.4 or less, and very low contact resistance can be formed. By reducing the contact resistance between the amorphous silicon layer and the electron compound thin film, the contact resistance between one or both of the source and drain electrodes and the amorphous silicon layer can be reduced. As a result, semiconductor devices with higher performance than before can be provided.
电子化合物的薄膜可以具有高的电离电位。该电子化合物的薄膜的电离电位可以为7.0eV~9.0eV,也可以为7.5eV~8.5eV。Thin films of electronic compounds can have high ionization potentials. The ionization potential of the thin film of the electronic compound may be 7.0 eV to 9.0 eV, or may be 7.5 eV to 8.5 eV.
另外,优选电子化合物的薄膜的电离电位大于非晶硅层的电离电位。电子化合物的薄膜与非晶硅层的电离电位之差可以为1.1eV~3.5eV,也可以为1.3eV~3.3eV,还可以为1.6eV~3.0eV。In addition, it is preferable that the ionization potential of the thin film of the electron compound is higher than that of the amorphous silicon layer. The ionization potential difference between the thin film of the electron compound and the amorphous silicon layer may be 1.1 eV to 3.5 eV, or may be 1.3 eV to 3.3 eV, or may be 1.6 eV to 3.0 eV.
另外,更优选电子化合物的薄膜的电离电位与功函数之差大于非晶硅层的电离电位与功函数之差。例如,将电子化合物的薄膜的电离电位(IP)与功函数(WF)之差(IP-WF)设为ΔE。将非晶硅层的电离电位(IP)与功函数(WF)之差设为ΔA。该两者之差(ΔE-ΔA)优选为1.3eV~5.8eV、更优选为2.0eV~5.0eV、特别优选为2.5eV~4.5eV。In addition, it is more preferable that the difference between the ionization potential and the work function of the thin film of the electronic compound is larger than the difference between the ionization potential and the work function of the amorphous silicon layer. For example, let the difference (IP-WF) between the ionization potential (IP) and the work function (WF) of the thin film of the electronic compound be ΔE. Let the difference between the ionization potential (IP) and the work function (WF) of the amorphous silicon layer be ΔA. The difference (ΔE−ΔA) between the two is preferably 1.3 eV to 5.8 eV, more preferably 2.0 eV to 5.0 eV, particularly preferably 2.5 eV to 4.5 eV.
例如,在本发明的半导体装置为薄膜场效应型晶体管的情况下,在晶体管关断时(栅极电压为0或施加负的电压作为栅极电压时),空穴向源极传导,有时产生截止电流(漏电流)。截止电流的产生有可能引起消耗电能的增加等。For example, when the semiconductor device of the present invention is a thin-film field-effect transistor, when the transistor is turned off (when the gate voltage is 0 or a negative voltage is applied as the gate voltage), holes are conducted to the source, sometimes generating cut-off current (leakage current). The generation of cut-off current may cause an increase in power consumption or the like.
然而,像上述那样,电子化合物的薄膜具有高电离电位、并且电离电位相对于非晶硅层充分大、尤其是电离电位与功函数之差相对于非晶硅层充分大时,可以得到优异的空穴阻挡效果。这是因为,上述的电子化合物的薄膜的电离电位之差(ΔE)和非晶硅层的电离电位与功函数之差(ΔA)的差(ΔE-ΔA)成为空穴传导中的能量势垒。通过具有充分高的能量势垒,可以阻挡空穴传导,从而可以抑制截止电流。However, as described above, the thin film of the electron compound has a high ionization potential, and the ionization potential is sufficiently large compared to the amorphous silicon layer, especially when the difference between the ionization potential and the work function is sufficiently large compared to the amorphous silicon layer, excellent performance can be obtained. hole blocking effect. This is because the difference (ΔE-ΔA) between the ionization potential difference (ΔE) of the thin film of the electron compound and the difference (ΔA) between the ionization potential and the work function of the amorphous silicon layer becomes an energy barrier in hole conduction. . By having a sufficiently high energy barrier, hole conduction can be blocked, so that off-current can be suppressed.
需要说明的是,已知如下构成:在如图1所示的现有的半导体装置1中,在源极20和漏极22中的一者或两者与非晶硅层5之间设置掺杂有高浓度的n型杂质元素的非晶硅层(n+非晶硅层)。对于n+非晶硅层而言,根据杂质元素的掺杂浓度,功函数变得比未掺杂杂质元素的非晶硅层小,但电离电位自身不变。因此,能量势垒(n+非晶硅层的电离电位与功函数之差和非晶硅层的电离电位与功函数之差的差)至多只能为约0.5eV。It should be noted that the following configuration is known: in the conventional semiconductor device 1 shown in FIG. An amorphous silicon layer (n + amorphous silicon layer) doped with a high concentration of n-type impurity elements. For the n + amorphous silicon layer, depending on the doping concentration of the impurity element, the work function becomes smaller than that of the amorphous silicon layer not doped with the impurity element, but the ionization potential itself does not change. Therefore, the energy barrier (the difference between the ionization potential and the work function of the n + amorphous silicon layer and the difference between the ionization potential and the work function of the amorphous silicon layer) can only be about 0.5 eV at most.
与此相对,通过在源极和漏极的一者或两者与非晶硅层之间设置上述那样的具有高电离电位的电子化合物的薄膜,由此可以进一步降低截止电流。On the other hand, by providing a thin film of an electronic compound having a high ionization potential as described above between one or both of the source and the drain and the amorphous silicon layer, the off-state current can be further reduced.
(关于术语的定义)(Definition of terms)
在此,提前对与本发明的半导体装置中包含的“含有钙原子和铝原子的非晶氧化物的电子化合物的薄膜”相关的术语进行说明。Here, terms related to the "thin film of an electronic compound of an amorphous oxide containing calcium atoms and aluminum atoms" included in the semiconductor device of the present invention will be described in advance.
(非晶氧化物的电子化合物)(Electronic Compound of Amorphous Oxide)
在本申请中,“含有钙原子和铝原子的非晶氧化物的电子化合物”即“非晶氧化物的电子化合物”是指包含以由钙原子、铝原子和氧原子构成的非晶为溶剂、以电子为溶质的溶剂化的非晶固体物质。非晶氧化物中的电子作为阴离子发挥作用。电子也可以作为双极化子存在。In this application, "an electronic compound of an amorphous oxide containing calcium atoms and aluminum atoms", that is, "an electronic compound of an amorphous oxide" refers to an amorphous compound composed of calcium atoms, aluminum atoms and oxygen atoms as a solvent , A solvated amorphous solid substance with electrons as the solute. The electrons in the amorphous oxide function as anions. Electrons can also exist as bipolarons.
图2中概念性地示出非晶氧化物的电子化合物的结构。The structure of the electronic compound of the amorphous oxide is conceptually shown in FIG. 2 .
如图2所示,非晶氧化物的电子化合物70以在包含由钙原子、铝原子和氧原子构成的非晶的溶剂72中分散有被称为双极化子74的特征性的部分结构的状态存在。双极化子74是两个笼76相邻接并且各笼76中包合有电子(溶质)78而构成的。但是,非晶氧化物的状态不限于上述,也可以在一个笼76中包合两个电子(溶质)78。另外,也可以是多个这些笼聚集的状态,由于聚集后的笼也可以看作微晶,因此在非晶中包含微晶的状态在本发明中也看作非晶。As shown in FIG. 2 , the electron compound 70 of an amorphous oxide has a characteristic partial structure called a bipolaron 74 dispersed in a solvent 72 including an amorphous structure composed of calcium atoms, aluminum atoms, and oxygen atoms. status exists. The bipolaron 74 is constituted by two adjacent cages 76 and electrons (solute) 78 contained in each cage 76 . However, the state of the amorphous oxide is not limited to the above, and two electrons (solutes) 78 may be included in one cage 76 . In addition, a plurality of these cages may be aggregated, and aggregated cages may also be regarded as microcrystals, so a state in which crystallites are included in amorphous is also regarded as amorphous in the present invention.
本发明中,非晶氧化物的电子化合物在保持双极化子的笼结构的范围内,除了钙原子、铝原子、氧原子以外还可以含有选自由Sr、Mg、Ba、Si、Ge、Ga、In和B构成的组中的1种以上的原子。另外,也可以含有选自由Ti、V、Cr、Mn、Fe、Co、Ni和Cu构成的组中的1种以上的原子、选自由Li、Na和K构成的组中的1种以上的原子、或选自由Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb构成的组中的1种以上的原子。In the present invention, the electronic compound of the amorphous oxide may contain a compound selected from Sr, Mg, Ba, Si, Ge, Ga, in addition to calcium atoms, aluminum atoms, and oxygen atoms within the range of maintaining the cage structure of the bipolaron. One or more atoms in the group consisting of , In and B. In addition, one or more atoms selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu, and one or more atoms selected from the group consisting of Li, Na, and K may be contained. , or one or more atoms selected from the group consisting of Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb.
另外,本发明中,非晶氧化物的电子化合物可以是两个笼中包合的两个电子被其它阴离子置换后的化合物。作为其它阴离子,可以列举例如选自由H-、H2 -、H2-、O-、O2 -、OH-、F-、Cl-和S2-构成的组中的1种以上的阴离子。In addition, in the present invention, the electron compound of the amorphous oxide may be a compound in which two electrons contained in two cages are replaced by other anions. Examples of other anions include one or more anions selected from the group consisting of H - , H 2 - , H 2- , O - , O 2 - , OH - , F - , Cl - and S 2- .
(电子化合物的薄膜)(thin films of electronic compounds)
电子化合物的薄膜显示半导体的电特性,并且具有低的功函数。功函数可以为2.4eV~4.5eV,优选为2.8eV~3.2eV。另外,电子化合物的薄膜具有高的电离电位。电离电位可以为7.0eV~9.0eV,也可以为7.5eV~8.5eV。A thin film of an electronic compound exhibits electrical characteristics of a semiconductor and has a low work function. The work function may be 2.4eV-4.5eV, preferably 2.8eV-3.2eV. In addition, thin films of electronic compounds have high ionization potentials. The ionization potential may be 7.0 eV to 9.0 eV, or may be 7.5 eV to 8.5 eV.
双极化子在光子能量为1.55eV~3.10eV的可见光的范围内几乎没有光吸收,在4.6eV附近表现出光吸收。因此,本发明的电子化合物的薄膜在可见光下是透明的。另外,测定薄膜样品的光吸收特性,通过对4.6eV附近的光吸收系数进行测定,由此可以确认在薄膜样品中是否存在双极化子,即薄膜样品是否具有非晶氧化物的电子化合物。The bipolaron hardly absorbs light in the range of visible light with photon energy of 1.55 eV to 3.10 eV, and exhibits light absorption near 4.6 eV. Therefore, the thin film of the electronic compound of the present invention is transparent under visible light. In addition, by measuring the light absorption characteristics of the thin film sample, by measuring the light absorption coefficient around 4.6eV, it can be confirmed whether there are bipolarons in the thin film sample, that is, whether the thin film sample has electron compounds of amorphous oxide.
本发明中,电子化合物的薄膜中的铝原子与钙原子的摩尔比(Ca/Al)优选在0.3~5.0的范围内。为0.3以上时,可以保持高的电子密度。另外,为5.0以下时,薄膜的耐久性优异。更优选在0.55~1.2的范围内,特别优选在0.6~1.00的范围内。薄膜的组成分析可以通过XPS法、EPMA法或EDX法等进行。膜厚为100nm以下的情况下可以用XPS法进行分析,50nm以上的情况下可以用EPMA法进行分析,3μm以上的情况下可以用EDX法进行分析。In the present invention, the molar ratio (Ca/Al) of aluminum atoms to calcium atoms in the thin film of the electronic compound is preferably in the range of 0.3 to 5.0. When it is 0.3 or more, a high electron density can be maintained. Moreover, when it is 5.0 or less, the durability of a film is excellent. More preferably, it exists in the range of 0.55-1.2, Especially preferably, it exists in the range of 0.6-1.00. The composition analysis of the thin film can be performed by XPS method, EPMA method, or EDX method. When the film thickness is less than 100nm, it can be analyzed by the XPS method, when it is more than 50nm, it can be analyzed by the EPMA method, and when it is more than 3μm, it can be analyzed by the EDX method.
本发明中的电子化合物的薄膜进行X射线衍射的测定时,观察不到峰,仅观察到光晕。本发明中,电子化合物的薄膜可以含有微晶。薄膜内是否含有微晶例如由薄膜的截面TEM(透射型电子显微镜)照片等进行判断。晶体状态中的组成由12CaO·7Al2O3、CaO·Al2O3、3CaO·Al2O3等表示。When the thin film of the electronic compound in the present invention is measured by X-ray diffraction, no peak is observed, and only a halo is observed. In the present invention, the thin film of the electronic compound may contain microcrystals. Whether or not microcrystals are contained in the thin film can be judged from, for example, a cross-sectional TEM (transmission electron microscope) photograph of the thin film. The composition in the crystal state is represented by 12CaO.7Al 2 O 3 , CaO.Al 2 O 3 , 3CaO.Al 2 O 3 and the like.
本发明中,在电子化合物的薄膜中,在上述4.6eV的位置处的光吸收值可以为100cm-1以上,也可以为200cm-1以上。In the present invention, in the thin film of the electronic compound, the light absorption value at the position of 4.6 eV may be 100 cm -1 or more, and may be 200 cm -1 or more.
本发明中,电子化合物的薄膜优选为含有电子密度为2.0×1017cm-3以上且2.3×1021cm-3以下的范围内的电子。电子密度更优选为1.0×1018cm-3以上,进一步优选为1×1019cm-3以上,特别优选为1×1020cm-3以上。In the present invention, the thin film of the electron compound preferably contains electrons with an electron density in the range of 2.0×10 17 cm −3 to 2.3×10 21 cm −3 . The electron density is more preferably 1.0×10 18 cm −3 or higher, still more preferably 1×10 19 cm −3 or higher, particularly preferably 1×10 20 cm −3 or higher.
需要说明的是,电子化合物的薄膜的电子密度可以通过碘滴定法进行测定。另外,电子化合物的薄膜中的双极化子的密度可以通过将测定的电子密度乘以1/2进行计算。In addition, the electron density of the thin film of an electron compound can be measured by the iodine titration method. In addition, the density of bipolarons in the thin film of the electron compound can be calculated by multiplying the measured electron density by 1/2.
该碘滴定法为如下方法:在5mol/l的碘水溶液中浸渍电子化合物的薄膜的样品,并加入盐酸而使之溶解,然后用硫代硫酸钠对该溶液中所含的未反应碘的量进行滴定检测。这种情况下,通过样品的溶解,碘水溶液中的碘通过以下的反应而电离:This iodine titration method is a method of immersing a sample of a thin film of an electronic compound in a 5 mol/l iodine aqueous solution, adding hydrochloric acid to dissolve it, and then measuring the amount of unreacted iodine contained in the solution with sodium thiosulfate. Perform a titration test. In this case, by the dissolution of the sample, the iodine in the iodine aqueous solution is ionized by the following reaction:
I2+2e-→2I-(1)式I 2 +2e - →2I - (1) formula
另外,用硫代硫酸钠滴定碘水溶液时,In addition, when titrating an aqueous solution of iodine with sodium thiosulfate,
通过pass
2Na2S2O3+I2→2NaI+Na2S4O6(2)式2Na 2 S 2 O 3 +I 2 →2NaI+Na 2 S 4 O 6 (2) formula
的反应,未反应的碘转变成碘化钠。从在最初的溶液中存在的碘量中减去利用(2)式滴定检测出的碘量,由此计算在(1)式的反应中消耗的碘量。由此,可以测定电子化合物的薄膜的样品中的电子密度。The unreacted iodine is converted into sodium iodide. The amount of iodine consumed in the reaction of the formula (1) was calculated by subtracting the amount of iodine detected by the titration of the formula (2) from the amount of iodine present in the initial solution. Thereby, the electron density in the sample of the thin film of the electron compound can be measured.
本发明中,电子化合物的薄膜的膜厚不限于此,例如可以为100nm以下,优选为10nm以下,更优选为5nm以下。可以为0.5nm以上。In the present invention, the thickness of the thin film of the electron compound is not limited thereto, and may be, for example, 100 nm or less, preferably 10 nm or less, more preferably 5 nm or less. It may be 0.5 nm or more.
电子化合物的薄膜通过笼中的电子的跳跃电导而具有导电性。本发明的电子化合物的薄膜在室温下的直流电导率可以为10-11S·cm-1~10-1S·cm-1,另外,也可以为10-7S·cm-1~10-3S·cm-1。Thin films of electronic compounds are electrically conductive by hopping conduction of electrons in cages. The direct current conductivity of the thin film of the electronic compound of the present invention at room temperature may be 10 -11 S·cm -1 to 10 -1 S·cm -1 , and may also be 10 -7 S·cm -1 to 10 - 3 S·cm -1 .
电子化合物的薄膜除了具有双极化子74以外,有时具有在氧缺陷中捕获有一个电子的F+中心作为局部结构。F+中心是多个Ca2+离子包围1个电子而构成的,不具有笼。F+中心以3.3eV为中心,在1.55eV~3.10eV的可见光的范围内具有光吸收。A thin film of an electron compound may have, in addition to bipolarons 74 , an F + center in which one electron is trapped in an oxygen vacancy as a local structure. The F + center is composed of multiple Ca 2+ ions surrounding one electron and does not have a cage. The F + center is centered at 3.3eV, and has light absorption in the range of visible light from 1.55eV to 3.10eV.
F+中心的浓度小于5×1018cm-3时,薄膜的透明性提高,因此是优选的。F+中心的浓度更优选为1×1018cm-3以下,进一步优选为1×1017cm-3以下。需要说明的是,F+中心的浓度可以根据ESR中的g值1.998的信号强度进行测定。When the concentration of F + centers is less than 5×10 18 cm -3 , the transparency of the film is improved, which is preferable. The concentration of F + centers is more preferably 1×10 18 cm −3 or less, still more preferably 1×10 17 cm −3 or less. It should be noted that the concentration of F + centers can be measured from the signal intensity of g value 1.998 in ESR.
电子化合物的薄膜中,3.3eV的光子能量位置的光吸收系数相对于4.6eV的光子能量位置的光吸收系数的比可以为0.35以下。In the thin film of the electron compound, the ratio of the light absorption coefficient at the photon energy position of 3.3 eV to the light absorption coefficient at the photon energy position of 4.6 eV may be 0.35 or less.
电子化合物的薄膜与多晶薄膜相比,由于不具有晶界,因而平坦性优异。本发明的电子化合物的薄膜的表面的均方根面粗糙度(RMS)可以为0.1nm~10nm,另外可以为0.2nm~5nm。RMS为2nm以下时,元件的特性提高,因此更优选。另外,RMS为10nm以上时,有可能元件的特性下降,因此产生追加研磨工序等的需要。上述的RMS例如可以使用原子力显微镜进行测定。Compared with polycrystalline thin films, thin films of electronic compounds have excellent flatness because they do not have grain boundaries. The root-mean-square roughness (RMS) of the surface of the thin film of the electronic compound of the present invention may be 0.1 nm to 10 nm, or may be 0.2 nm to 5 nm. When the RMS is 2 nm or less, the characteristics of the device are improved, which is more preferable. In addition, when the RMS is 10 nm or more, there is a possibility that the characteristics of the device may be degraded, so that an additional polishing step or the like may be required. The above RMS can be measured, for example, using an atomic force microscope.
电子化合物的薄膜的组成可以与12CaO·7Al2O3的化学计量比不同,也可以与在制造时使用的靶的组成比不同。The composition of the electron compound thin film may be different from the stoichiometric ratio of 12CaO·7Al 2 O 3 , or may be different from the composition ratio of the target used in the production.
(关于本发明的一个实施例的半导体装置)(Regarding the semiconductor device of one embodiment of the present invention)
接着,参照图3对本发明的一个实施例的半导体装置进行说明。图3中示意性地表示本发明的一个实施例的半导体装置(第一半导体装置)100的截面。Next, a semiconductor device according to an embodiment of the present invention will be described with reference to FIG. 3 . FIG. 3 schematically shows a cross section of a semiconductor device (first semiconductor device) 100 according to an embodiment of the present invention.
如图3所示,第一半导体装置100具有基板110、非晶硅层105、源极120、漏极122和栅极124。As shown in FIG. 3 , the first semiconductor device 100 has a substrate 110 , an amorphous silicon layer 105 , a source 120 , a drain 122 and a gate 124 .
非晶硅层105配置于基板110的上部,源极120和漏极122配置于非晶硅层105的上部。在源极120和漏极122的上部隔着栅极绝缘层130配置有栅极124。The amorphous silicon layer 105 is disposed on the upper portion of the substrate 110 , and the source 120 and the drain 122 are disposed on the upper portion of the amorphous silicon layer 105 . A gate 124 is disposed on top of the source 120 and the drain 122 via a gate insulating layer 130 .
在此,第一半导体装置100具有如下特征:在源极120与非晶硅层105之间、和/或漏极122与非晶硅层105之间,配置含有钙原子和铝原子的非晶氧化物的电子化合物的薄膜(电子化合物的薄膜)150。Here, the first semiconductor device 100 has the following characteristics: Between the source electrode 120 and the amorphous silicon layer 105, and/or between the drain electrode 122 and the amorphous silicon layer 105, an amorphous layer containing calcium atoms and aluminum atoms is arranged. The thin film of the electron compound of the oxide (thin film of the electron compound) 150 .
例如,在图3的例子中,在源极120与非晶硅层105之间配置第一电子化合物的薄膜150a,在漏极122与非晶硅层105之间配置第二电子化合物的薄膜150b。For example, in the example of FIG. 3, the thin film 150a of the first electron compound is arranged between the source electrode 120 and the amorphous silicon layer 105, and the thin film 150b of the second electron compound is arranged between the drain electrode 122 and the amorphous silicon layer 105. .
如上所述的那样,这样的电子化合物的薄膜150a、150b具有功函数小、电子密度高等特征。As described above, the thin films 150a and 150b of such electronic compounds have characteristics such as small work function and high electron density.
因此,在源极120与非晶硅层105之间配置有第一电子化合物的薄膜150a的情况下,可以得到能够显著抑制源极120与非晶硅层105的界面的接触电阻的效果。同样地,在漏极122与非晶硅层105之间配置有第二电子化合物的薄膜150b的情况下,可以显著抑制漏极122与非晶硅层105的界面的接触电阻。Therefore, when the thin film 150a of the first electron compound is arranged between the source electrode 120 and the amorphous silicon layer 105, the effect of significantly suppressing the contact resistance at the interface between the source electrode 120 and the amorphous silicon layer 105 can be obtained. Similarly, when the thin film 150b of the second electron compound is arranged between the drain electrode 122 and the amorphous silicon layer 105, the contact resistance at the interface between the drain electrode 122 and the amorphous silicon layer 105 can be significantly suppressed.
因此,第一半导体装置100可以发挥比以往显著高的工作特性。Therefore, the first semiconductor device 100 can exhibit significantly higher operating characteristics than conventional ones.
(关于半导体装置100的构成构件)(Constituent Members of Semiconductor Device 100)
接下来,对于构成半导体装置100的各构件进行简单说明。Next, each member constituting the semiconductor device 100 will be briefly described.
(基板110)(Substrate 110)
基板110的材质没有特别限制。基板110可以为例如玻璃基板、陶瓷基板、塑料基板和树脂基板等绝缘基板。The material of the substrate 110 is not particularly limited. The substrate 110 may be an insulating substrate such as a glass substrate, a ceramic substrate, a plastic substrate, and a resin substrate.
或者,基板110可以为半导体基板和金属基板且在表面形成有绝缘层。Alternatively, the substrate 110 may be a semiconductor substrate or a metal substrate with an insulating layer formed on the surface.
(非晶硅层105)(amorphous silicon layer 105)
非晶硅层105由通常的非晶硅构成即可。非晶硅层105例如可以由氢化非晶硅构成。另外,非晶硅层105优选为本征半导体。The amorphous silicon layer 105 may be made of ordinary amorphous silicon. The amorphous silicon layer 105 can be made of, for example, hydrogenated amorphous silicon. In addition, the amorphous silicon layer 105 is preferably an intrinsic semiconductor.
(源极120、漏极122)(source 120, drain 122)
源极120和漏极122的材质只要具有导电性就没有特别限制。源极120和漏极122例如可以由金属构成。The material of the source electrode 120 and the drain electrode 122 is not particularly limited as long as it has conductivity. The source 120 and the drain 122 can be made of metal, for example.
源极120和漏极122可以是例如包含选自Al、Ag、Au、Cr、Cu、Ta、Ti、Mo和W中的至少一种元素的合金。源极120和漏极122也可以由例如ITO、锑氧化物(Sb2O3)、锆氧化物(ZrO2)、锡氧化物(SnO2)、锌氧化物(ZnO)、IZO(IndiumZincOxide)、AZO(ZnO-Al2O3:掺杂了铝的锌氧化物)、GZO(ZnO-Ga2O3:掺杂了镓的锌氧化物)、Nb掺杂TiO2、Ta掺杂TiO2和IWZO(In2O3-WO3-ZnO:掺杂了三氧化钨和氧化锌的铟氧化物)等金属氧化物材料构成。The source electrode 120 and the drain electrode 122 may be, for example, an alloy containing at least one element selected from Al, Ag, Au, Cr, Cu, Ta, Ti, Mo, and W. The source electrode 120 and the drain electrode 122 can also be made of, for example, ITO, antimony oxide (Sb 2 O 3 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), IZO (IndiumZincOxide) , AZO (ZnO-Al 2 O 3 : zinc oxide doped with aluminum), GZO (ZnO-Ga 2 O 3 : zinc oxide doped with gallium), Nb-doped TiO 2 , Ta-doped TiO 2 And IWZO (In 2 O 3 -WO 3 -ZnO: indium oxide doped with tungsten trioxide and zinc oxide) and other metal oxide materials.
非晶硅层105的功函数可以为3.5eV~4.8eV,也可以为3.9eV~4.5eV。The work function of the amorphous silicon layer 105 may be 3.5eV˜4.8eV, or may be 3.9eV˜4.5eV.
非晶硅层105的载流子密度可以为109cm-3~1019cm-3,优选为1015cm-3~1018cm-3。The carrier density of the amorphous silicon layer 105 may be 10 9 cm -3 to 10 19 cm -3 , preferably 10 15 cm -3 to 10 18 cm -3 .
(栅极124)(gate 124)
栅极124的材质只要具有导电性就没有特别限制。The material of the gate 124 is not particularly limited as long as it has conductivity.
栅极124例如可以为选自Al、Ag、Au、Cr、Cu、Ta、Ti、Mo和W中的元素、或者以这些元素为成分的金属或合金、或者将上述元素组合成的合金等。栅极124例如可以由ITO、锑氧化物(Sb2O3)、锆氧化物(ZrO2)、锡氧化物(SnO2)、锌氧化物(ZnO)、IZO(IndiumZincOxide)、AZO(ZnO-Al2O3:掺杂了铝的锌氧化物)、GZO(ZnO-Ga2O3:掺杂了镓的锌氧化物)、Nb掺杂TiO2、Ta掺杂TiO2和IWZO(In2O3-WO3-ZnO:掺杂了三氧化钨和氧化锌的铟氧化物)等金属氧化物材料构成。The gate 124 may be, for example, an element selected from Al, Ag, Au, Cr, Cu, Ta, Ti, Mo, and W, or a metal or an alloy composed of these elements, or an alloy combining the above elements. The gate 124 can be made of, for example, ITO, antimony oxide (Sb 2 O 3 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), IZO (IndiumZincOxide), AZO (ZnO- Al 2 O 3 : zinc oxide doped with aluminum), GZO (ZnO-Ga 2 O 3 : zinc oxide doped with gallium), Nb-doped TiO 2 , Ta-doped TiO 2 and IWZO (In 2 O 3 -WO 3 -ZnO: Indium oxide doped with tungsten trioxide and zinc oxide) and other metal oxide materials.
栅极绝缘层130可以由氧化硅、氮化硅、含有氮的氧化硅和含有氧的氮化硅等无机绝缘材料或丙烯酸类或聚酰亚胺等有机绝缘材料构成。The gate insulating layer 130 may be made of inorganic insulating materials such as silicon oxide, silicon nitride, nitrogen-containing silicon oxide, and oxygen-containing silicon nitride, or organic insulating materials such as acrylic or polyimide.
或者,栅极绝缘层130也可以由如下材料构成:利用硅与氧的键合而构成骨架结构,并且具有至少含氢的有机基团(例如烷基、芳基)、氟基作为取代基,即由所谓的硅氧烷类的材料构成。Alternatively, the gate insulating layer 130 may also be made of the following material: a skeleton structure is formed by the bonding of silicon and oxygen, and at least an organic group containing hydrogen (such as an alkyl group, an aryl group) and a fluorine group are used as substituents, That is, it is composed of so-called siloxane-based materials.
栅极绝缘层130可以为单层,也可以由2层以上的层构成。The gate insulating layer 130 may be a single layer, or may be composed of two or more layers.
(关于半导体装置的结构)(About the structure of semiconductor device)
图3所示的第一半导体装置100以所谓的顶栅结构-顶接触方式构成。然而,构成半导体装置的各构件的配置结构不限于此。The first semiconductor device 100 shown in FIG. 3 has a so-called top-gate structure-top-contact structure. However, the arrangement structure of each member constituting the semiconductor device is not limited to this.
在此,半导体装置的构成构件的配置结构中存在例如:(i)顶栅结构-顶接触方式、(ii)顶栅结构-底接触方式、(iii)底栅结构-顶接触方式和(iii)底栅结构-底接触方式等。Here, there are, for example, (i) top gate structure-top contact system, (ii) top gate structure-bottom contact system, (iii) bottom gate structure-top contact system, and (iii) bottom gate structure-top contact system among the arrangement structures of the constituent members of the semiconductor device. ) Bottom gate structure - bottom contact method, etc.
以下,对这些配置结构进行简单的说明。Hereinafter, these arrangement structures will be briefly described.
上述的图3中示出以顶栅结构-顶接触方式构成的半导体装置100的一例。An example of a semiconductor device 100 configured in a top gate structure-top contact system is shown in FIG. 3 described above.
如图3所示,在该半导体装置100中,栅极124配置在非晶硅层105的上部(顶栅结构),源极120和漏极122也配置在非晶硅层105的上部(顶接触方式)。需要说明的是,在半导体装置100中,非晶硅层105可以是沟道蚀刻型,也可以是沟道保护型。As shown in FIG. 3 , in the semiconductor device 100, the gate 124 is disposed on the top of the amorphous silicon layer 105 (top gate structure), and the source 120 and the drain 122 are also disposed on the top of the amorphous silicon layer 105 (top gate structure). way of contact). It should be noted that, in the semiconductor device 100 , the amorphous silicon layer 105 may be of a channel etching type or of a channel protection type.
接下来,图4中示出以顶栅结构-底接触方式构成的半导体装置的一例。Next, FIG. 4 shows an example of a semiconductor device configured in a top gate structure-bottom contact system.
如图4所示,该半导体装置400具有在基板410上形成的非晶硅层405、源极420及漏极422、栅极绝缘层430和栅极424。As shown in FIG. 4 , the semiconductor device 400 has an amorphous silicon layer 405 formed on a substrate 410 , a source 420 and a drain 422 , a gate insulating layer 430 and a gate 424 .
在该例中,栅极424配置在非晶硅层405的上部(顶栅结构)。另一方面,源极420和漏极422配置在非晶硅层405的下侧(底接触方式)。In this example, the gate 424 is arranged on the upper portion of the amorphous silicon layer 405 (top gate structure). On the other hand, the source electrode 420 and the drain electrode 422 are arranged on the lower side of the amorphous silicon layer 405 (bottom contact method).
需要说明的是,在该图4所示的半导体装置400的例子中,在源极420与非晶硅层405之间配置了第一电子化合物的薄膜450a,在漏极422与非晶硅层405之间配置了第二电子化合物的薄膜450b。其中,第一电子化合物的薄膜450a和第二电子化合物的薄膜450b中的一者可以省略。It should be noted that, in the example of the semiconductor device 400 shown in FIG. 4 , the thin film 450a of the first electronic compound is disposed between the source electrode 420 and the amorphous silicon layer 405, and the thin film 450a of the first electron compound is disposed between the drain electrode 422 and the amorphous silicon layer. A thin film 450b of the second electron compound is disposed between 405 . Wherein, one of the thin film 450a of the first electronic compound and the thin film 450b of the second electronic compound may be omitted.
接下来,图5示出以底栅结构-顶接触方式构成的半导体元件的一例。Next, FIG. 5 shows an example of a semiconductor element configured in a bottom gate structure-top contact system.
如图5所示,该半导体装置500在基板510上具有非晶硅层505、源极520及漏极522、栅极绝缘层530和栅极524。As shown in FIG. 5 , the semiconductor device 500 has an amorphous silicon layer 505 , a source 520 and a drain 522 , a gate insulating layer 530 and a gate 524 on a substrate 510 .
在该例中,栅极524配置在非晶硅层505的下侧(底栅结构)。另一方面,源极520和漏极522配置在非晶硅层505的上侧(顶接触方式)。需要说明的是,在半导体装置500中,非晶硅层505可以是沟道蚀刻型,也可以是沟道保护型。In this example, the gate electrode 524 is arranged on the lower side of the amorphous silicon layer 505 (bottom gate structure). On the other hand, the source electrode 520 and the drain electrode 522 are arranged on the upper side of the amorphous silicon layer 505 (top contact method). It should be noted that, in the semiconductor device 500, the amorphous silicon layer 505 may be of a channel etching type or of a channel protection type.
需要说明的是,在该图5所示的半导体装置500的例子中,在源极520与非晶硅层505之间配置第一电子化合物的薄膜550a,在漏极522与非晶硅层505之间配置第二电子化合物的薄膜550b。其中,第一电子化合物的薄膜550a和第二电子化合物的薄膜550b中的一者可以省略。It should be noted that, in the example of semiconductor device 500 shown in FIG. A thin film 550b of the second electron compound is disposed therebetween. Wherein, one of the thin film 550a of the first electronic compound and the thin film 550b of the second electronic compound may be omitted.
接下来,图6中示出以底栅结构-底接触方式构成的半导体元件的一例。Next, FIG. 6 shows an example of a semiconductor element configured by a bottom gate structure-bottom contact system.
如图6所示,该半导体装置600在基板610上具有非晶硅层605、源极620及漏极622、栅极绝缘层630和栅极624。As shown in FIG. 6 , the semiconductor device 600 has an amorphous silicon layer 605 , a source 620 and a drain 622 , a gate insulating layer 630 and a gate 624 on a substrate 610 .
在该例中,栅极624配置在非晶硅层605的下侧(底栅结构)。另一方面,源极620和漏极622也配置在非晶硅层605的下侧(底接触方式)。In this example, the gate 624 is arranged on the lower side of the amorphous silicon layer 605 (bottom gate structure). On the other hand, the source electrode 620 and the drain electrode 622 are also arranged on the lower side of the amorphous silicon layer 605 (bottom contact method).
在该图6所示的半导体装置600的例子中,在源极620与非晶硅层605之间配置第一电子化合物的薄膜650a,在漏极622与非晶硅层605之间配置第二电子化合物的薄膜650b。其中,第一电子化合物的薄膜650a和第二电子化合物的薄膜650b中的一者可以省略。In the example of the semiconductor device 600 shown in FIG. 6, the thin film 650a of the first electron compound is arranged between the source electrode 620 and the amorphous silicon layer 605, and the second electron compound thin film 650a is arranged between the drain electrode 622 and the amorphous silicon layer 605. Thin film 650b of electronic compound. Wherein, one of the thin film 650a of the first electronic compound and the thin film 650b of the second electronic compound may be omitted.
可见,半导体装置的结构中存在各种方式。本发明的半导体装置可以由这些方式构成。在本发明的半导体装置中显而易见的是:在这些任一构成中,都可以得到能够在源极与非晶硅层的界面和/或漏极与非晶硅层的界面处显著抑制接触电阻的效果。It can be seen that there are various modes in the structure of the semiconductor device. The semiconductor device of the present invention can be configured in these modes. In the semiconductor device of the present invention, it is apparent that in any of these constitutions, the contact resistance can be significantly suppressed at the interface between the source electrode and the amorphous silicon layer and/or the interface between the drain electrode and the amorphous silicon layer. Effect.
另外,本发明中,半导体装置的种类没有特别限制。半导体装置例如可以为图3~图6所示的如薄膜晶体管那样的场效应型晶体管。In addition, in the present invention, the type of semiconductor device is not particularly limited. The semiconductor device may be, for example, a field effect transistor such as a thin film transistor shown in FIGS. 3 to 6 .
(关于本发明的半导体装置的制造方法)(About the manufacturing method of the semiconductor device of the present invention)
接着,参照图7,对图3所示的第一半导体装置100的制造方法的一例进行说明。Next, an example of a method of manufacturing the first semiconductor device 100 shown in FIG. 3 will be described with reference to FIG. 7 .
图7中概略地示出制造第一半导体装置时的流程的一例。如图7所示,该制造方法具有:An example of the flow at the time of manufacturing the first semiconductor device is schematically shown in FIG. 7 . As shown in Figure 7, the manufacturing method has:
在基板上形成非晶硅层的步骤(步骤S110)、The step of forming an amorphous silicon layer on the substrate (step S110),
形成含有钙原子和铝原子的非晶氧化物的电子化合物的薄膜的步骤(步骤S120)、A step of forming a thin film of an electronic compound of an amorphous oxide containing calcium atoms and aluminum atoms (step S120),
形成源极和漏极的步骤(步骤S130)、和the step of forming source and drain (step S130), and
形成栅极的步骤(步骤S140)。A step of forming a gate (step S140).
以下,对各步骤进行说明。需要说明的是,在以下的说明中,为了明确化,各构件使用图3所示的参照符号。Each step will be described below. In addition, in the following description, the reference numerals shown in FIG. 3 are used for each member for clarification.
(步骤S110)(step S110)
首先,在基板110上形成非晶硅层105。First, an amorphous silicon layer 105 is formed on a substrate 110 .
非晶硅层105的成膜方法没有特别限制,可以利用以往以来实施的方法在基板110上形成非晶硅层105。The film-forming method of the amorphous silicon layer 105 is not particularly limited, and the amorphous silicon layer 105 can be formed on the substrate 110 by a conventionally practiced method.
非晶硅层105通过例如通常的CVD法(等离子体CVD法等)、或溅射法等成膜在基板110上。The amorphous silicon layer 105 is formed on the substrate 110 by, for example, a general CVD method (plasma CVD method, etc.), a sputtering method, or the like.
成膜后的非晶硅层105被图案化成所期望的图案。例如,非晶硅层105可以通过进行光刻等而图案化成所期望的图案。The formed amorphous silicon layer 105 is patterned into a desired pattern. For example, the amorphous silicon layer 105 can be patterned into a desired pattern by performing photolithography or the like.
(步骤S120)(step S120)
接下来,在非晶硅层105上形成电子化合物的薄膜。该电子化合物的薄膜之后成为第一电子化合物的薄膜150a和/或第二电子化合物的薄膜150b。Next, a thin film of an electron compound is formed on the amorphous silicon layer 105 . The thin film of the electronic compound then becomes the thin film 150a of the first electronic compound and/or the thin film 150b of the second electronic compound.
作为一例,作为电子化合物的薄膜的成膜方法,对于具有如下工序的成膜方法进行说明:As an example, as a film-forming method of a thin film of an electronic compound, a film-forming method having the following steps will be described:
准备电子密度为2.0×1017cm-3~2.3×1021cm-3的晶质C12A7电子化合物的靶的工序(S121)、和a step of preparing a target of a crystalline C12A7 electron compound having an electron density of 2.0×10 17 cm -3 to 2.3×10 21 cm -3 (S121), and
使用上述靶在氧分压小于0.1Pa的气氛下通过气相蒸镀法在非晶硅层上进行成膜的工序(S122)。A step of forming a film on the amorphous silicon layer by vapor deposition in an atmosphere having an oxygen partial pressure of less than 0.1 Pa using the target ( S122 ).
(步骤S121)(step S121)
首先,准备在以后的工序S120中使用的成膜用的靶。First, a target for film formation to be used in the subsequent step S120 is prepared.
靶由晶质C12A7电子化合物构成。The target consists of a crystalline C12A7 electron compound.
(晶质C12A7)(Crystalline C12A7)
在本申请中,“晶质C12A7”是指,12CaO·7Al2O3的晶体、以及具有与其等同的晶体结构的同型化合物。本化合物的矿物名为“钙铝石”。In the present application, "crystalline C12A7" means a crystal of 12CaO·7Al 2 O 3 and an isotype compound having a crystal structure equivalent thereto. The mineral name of this compound is "Mayenite".
本发明中的晶质C12A7可以是在保持由晶格的骨架形成的笼结构的范围内,C12A7晶体骨架的Ca原子和/或Al原子的一部分或全部被其它原子置换的化合物、以及笼中的自由氧离子的一部分或全部被其它阴离子置换的同型化合物。需要说明的是,C12A7有时被表述为Ca12Al14O33或Ca24Al28O66。The crystalline C12A7 in the present invention may be a compound in which a part or all of the Ca atoms and/or Al atoms of the C12A7 crystal skeleton are replaced by other atoms within the scope of maintaining the cage structure formed by the skeleton of the crystal lattice, and the compound in the cage. A compound of the same type in which some or all of the free oxygen ions are replaced by other anions. In addition, C12A7 is sometimes expressed as Ca 12 Al 14 O 33 or Ca 24 Al 28 O 66 .
作为同型化合物,不限于此,例如可以例示下述的(1)~(5)的化合物。The compound of the same type is not limited thereto, and the following compounds (1) to (5) can be illustrated, for example.
(1)晶体中的Ca原子的一部分或全部被选自由Sr、Mg和Ba构成的组中的一种以上的金属原子置换的同型化合物。例如,作为Ca原子的一部分或全部被Sr置换的化合物,有铝酸锶Sr12Al14O33,作为Ca与Sr的混合比任意变化的混晶,有铝酸钙锶Ca12-xSrXAl14O33(x为1~11的整数;平均值的情况下为大于0且小于12的数)等。(1) An isotype compound in which a part or all of Ca atoms in a crystal are replaced by one or more metal atoms selected from the group consisting of Sr, Mg and Ba. For example, strontium aluminate Sr 12 Al 14 O 33 is a compound in which part or all of Ca atoms are replaced by Sr, and calcium strontium aluminate Ca 12-x Sr X is a mixed crystal in which the mixing ratio of Ca and Sr can be changed arbitrarily. Al 14 O 33 (x is an integer of 1 to 11; in the case of an average value, a number greater than 0 and less than 12) and the like.
(2)晶体中的Al原子的一部分或全部被选自由Si、Ge、Ga、In和B构成的组中的一种以上的原子置换的同型化合物。例如,可以举出Ca12Al10Si4O35等。(2) An isotype compound in which part or all of the Al atoms in the crystal are replaced by one or more atoms selected from the group consisting of Si, Ge, Ga, In, and B. For example, Ca12Al10Si4O35 etc. are mentioned .
(3)12CaO·7Al2O3的晶体(包含上述(1)、(2)的化合物)中的金属原子和/或非金属原子(其中不包括氧原子)的一部分与选自由Ti、V、Cr、Mn、Fe、Co、Ni和Cu构成的组中的一种以上的原子、选自由Li、Na和K构成的组中的一种以上的碱金属原子或选自由Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb构成的组中的一种以上的稀土原子进行置换而得到的同型化合物。(3) Part of the metal atoms and/or non-metal atoms (excluding oxygen atoms) in the crystal of 12CaO·7Al 2 O 3 (comprising the compounds of (1) and (2) above) and a part selected from Ti, V, One or more atoms selected from the group consisting of Cr, Mn, Fe, Co, Ni, and Cu, one or more alkali metal atoms selected from the group consisting of Li, Na, and K, or one or more atoms selected from the group consisting of Ce, Pr, Nd, An isotype compound obtained by substituting one or more rare earth atoms in the group consisting of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb.
(4)包合于笼中的自由氧离子的一部分或全部被其它阴离子置换而得到的化合物。作为其它阴离子,有例如选自由H-、H2 -、H2-、O-、O2 -、OH-、F-、Cl-和S2构成的组中的一种以上的阴离子、氮(N)的阴离子等。(4) A compound in which a part or all of the free oxygen ions included in the cage are replaced by other anions. As other anions, there are, for example, one or more anions selected from the group consisting of H - , H 2 - , H 2- , O - , O 2 - , OH - , F - , Cl - and S 2 , nitrogen ( N) anions, etc.
(5)笼的骨架的氧的一部分被氮(N)等置换的化合物。(5) A compound in which part of the oxygen in the skeleton of the cage is replaced by nitrogen (N) or the like.
(晶质C12A7电子化合物)(crystalline C12A7 electron compound)
在本申请中,“晶质C12A7电子化合物”是指,在上述的“晶质C12A7”中,包合于笼中的自由氧离子(在具有包合在笼中的其它阴离子的情况下为该阴离子)的一部分或全部被电子置换的化合物。In the present application, "crystalline C12A7 electronic compound" refers to, in the above-mentioned "crystalline C12A7", free oxygen ions contained in cages (in the case of other anions contained in cages, this anion) in which part or all of the electrons are replaced.
在晶质C12A7电子化合物中,包合于笼中的电子被松散地束缚在笼中,从而可以在晶体中自由移动。因此,晶质C12A7电子化合物显示出导电性。特别是,所有的自由氧离子被电子置换后的晶质C12A7有时被表述为[Ca24Al28O64]4+(4e-)。In crystalline C12A7 electron compounds, clathrate electrons are loosely bound in cages, allowing them to move freely in the crystal. Therefore, the crystalline C12A7 electronic compound exhibits electrical conductivity. In particular, crystalline C12A7 in which all free oxygen ions are replaced by electrons is sometimes expressed as [Ca 24 Al 28 O 64 ] 4+ (4e - ).
晶质C12A7电子化合物包含Ca原子、Al原子和O原子,Ca:Al的摩尔比在13:13~11:15的范围内,Ca:Al的摩尔比优选在12.5:13.5~11.5:14.5的范围内,更优选在12.2:13.8~11.8:14.2的范围内。The crystalline C12A7 electron compound contains Ca atoms, Al atoms and O atoms, the molar ratio of Ca:Al is in the range of 13:13 to 11:15, and the molar ratio of Ca:Al is preferably in the range of 12.5:13.5 to 11.5:14.5 , more preferably within the range of 12.2:13.8 to 11.8:14.2.
晶质C12A7电子化合物制的靶的制造方法没有特别限制。靶例如可以使用现有的块状的晶质C12A7电子化合物的制造方法进行制造。例如,可以通过将晶质C12A7的烧结体在Ti、Al、Ca或C等还原剂的存在下加热处理至约1150~约1460℃、优选为约1200~约1400℃,由此制造晶质C12A7电子化合物制的靶。也可以将压缩晶质C12A7电子化合物的粉体而成形得到的压粉体用作靶。将晶质C12A7的烧结体在碳和金属铝的存在下在保持烧结体与金属铝不接触的状态的同时在1230~1415℃下进行加热处理,由此可以有效制作大面积的晶质C12A7电子化合物制的靶。The method of producing the target made of crystalline C12A7 electronic compound is not particularly limited. The target can be produced, for example, using a conventional method for producing a bulk crystalline C12A7 electron compound. For example, crystalline C12A7 can be produced by heating a sintered body of crystalline C12A7 to about 1150 to about 1460°C, preferably about 1200 to about 1400°C in the presence of a reducing agent such as Ti, Al, Ca, or C. Targets made of electronic compounds. A green compact obtained by compressing a powder of a crystalline C12A7 electronic compound may also be used as a target. By heating the sintered body of crystalline C12A7 at 1230 to 1415°C in the presence of carbon and metallic aluminum while keeping the sintered body and the metallic aluminum in a non-contact state, it is possible to efficiently produce large-area crystalline C12A7 electrons. compound targets.
在此,该靶即晶质C12A7电子化合物的电子密度在2.0×1017cm-3~2.3×1021cm-3的范围内。晶质C12A7电子化合物的电子密度优选为1×1018cm-3以上,优选为1×1019cm-3以上,更优选为1×1020cm-3以上,进一步优选为5×1020cm-3以上,特别优选为1×1021cm-3以上。构成靶的晶质C12A7电子化合物的电子密度越高,则越容易得到具有低的功函数的电子化合物的薄膜。特别是,为了得到功函数为3.0eV以下的电子化合物的薄膜,晶质C12A7电子化合物的电子密度更优选为1.4×1021cm-3以上,进一步优选为1.7×1021cm-3以上、特别优选为2×1021cm-3以上。特别是,所有的自由氧离子(具有其它阴离子的情况下为该阴离子)被电子置换的情况下,晶质C12A7电子化合物的电子密度达到2.3×1021cm-3。晶质C12A7电子化合物的电子密度低于2.0×1017cm-3时,通过成膜得到的电子化合物的薄膜的电子密度减小。Here, the electron density of the crystalline C12A7 electron compound which is the target is in the range of 2.0×10 17 cm −3 to 2.3×10 21 cm −3 . The electron density of the crystalline C12A7 electron compound is preferably 1×10 18 cm -3 or more, preferably 1×10 19 cm -3 or more, more preferably 1×10 20 cm -3 or more, and even more preferably 5×10 20 cm -3 or more, particularly preferably 1×10 21 cm -3 or more. The higher the electron density of the crystalline C12A7 electron compound constituting the target, the easier it is to obtain a thin film of the electron compound having a lower work function. In particular, in order to obtain a thin film of an electron compound having a work function of 3.0 eV or less, the electron density of the crystalline C12A7 electron compound is more preferably 1.4×10 21 cm -3 or more, still more preferably 1.7×10 21 cm -3 or more, especially Preferably it is 2×10 21 cm -3 or more. In particular, the electron density of the crystalline C12A7 electron compound reaches 2.3×10 21 cm -3 when all free oxygen ions (the anions in the case of other anions) are replaced by electrons. When the electron density of the crystalline C12A7 electron compound is lower than 2.0×10 17 cm −3 , the electron density of the thin film of the electron compound obtained by film formation decreases.
晶质C12A7电子化合物的电子密度可以通过光吸收测定法进行测定。晶质C12A7电子化合物在2.8eV附近具有特有的光吸收,因而通过测定其吸收系数,可以求出电子密度。特别是,试料为烧结体的情况下,将烧结体粉碎制成粉末后,使用扩散反射法时,较简便。The electron density of the crystalline C12A7 electron compound can be measured by light absorptiometry. The crystalline C12A7 electron compound has a unique light absorption around 2.8eV, so by measuring its absorption coefficient, the electron density can be obtained. In particular, when the sample is a sintered body, it is convenient to use the diffuse reflection method after pulverizing the sintered body into powder.
所得到的靶用作在后续工序中形成电子化合物的薄膜时的原料源。The obtained target is used as a raw material source when forming a thin film of an electronic compound in a subsequent step.
需要说明的是,靶的表面可以在使用前通过机械手段等进行研磨。通常而言,以现有的方法得到的晶质C12A7电子化合物的块体有时在表面具有极薄的覆膜(异物)。直接使用在表面形成有这样的覆膜的靶实施成膜处理的情况下,有可能所得到的薄膜的组成偏离所期望的组成比。然而,通过预先实施靶表面的研磨处理,可以显著抑制这样的问题。It should be noted that the surface of the target may be polished by mechanical means or the like before use. In general, a bulk body of a crystalline C12A7 electron compound obtained by a conventional method may have an extremely thin film (foreign substance) on the surface. When the film-forming process is performed using a target having such a film formed on the surface as it is, there is a possibility that the composition of the obtained thin film deviates from the desired composition ratio. However, such problems can be remarkably suppressed by performing polishing treatment on the target surface in advance.
(步骤S122)(step S122)
接下来,使用在上述的工序S121中制作的靶,利用气相蒸镀法,在非晶硅层上进行成膜。Next, a film is formed on the amorphous silicon layer by vapor deposition using the target produced in the above-mentioned step S121.
在本申请中,“气相蒸镀法”是指包括物理气相成膜(PVD)法、PLD法、溅射法和真空蒸镀法的使靶原料气化后使该原料堆积在基板上的成膜方法的总称。In this application, the "vapor deposition method" refers to a method of vaporizing a target raw material and depositing the raw material on a substrate, including physical vapor deposition (PVD) method, PLD method, sputtering method, and vacuum evaporation method. General term for membrane methods.
“气相蒸镀法”之中,特别是优选溅射法。利用溅射法可以在大面积区域形成比较均匀的薄膜。需要说明的是,溅射法包括:DC(直流)溅射法、高频溅射法、螺旋波溅射法、离子束溅射法和磁控溅射法等。Among the "vapor-phase vapor deposition methods", the sputtering method is particularly preferable. A relatively uniform thin film can be formed over a large area by sputtering. It should be noted that the sputtering method includes: DC (direct current) sputtering method, high frequency sputtering method, helicon wave sputtering method, ion beam sputtering method, magnetron sputtering method and the like.
以下,以通过溅射法进行成膜的情况为例,对工序S122进行说明。Hereinafter, step S122 will be described by taking the case of forming a film by sputtering as an example.
形成电子化合物的薄膜时的被成膜基板的温度没有特别限制,可以采用室温~例如700℃为止的范围中的任何温度。需要说明的是,形成电子化合物的薄膜时,需要留意不一定需要“主动地”对基板进行加热。但是,可能有时由于蒸镀源的辐射热而使被成膜基板的温度“附随性”地上升。例如,被成膜基板的温度可以为500℃以下,也可以为200℃以下。The temperature of the substrate to be filmed when forming the thin film of the electronic compound is not particularly limited, and any temperature in the range of room temperature to 700° C., for example, can be employed. It should be noted that when forming a thin film of an electronic compound, it is necessary to pay attention that it is not necessarily necessary to "actively" heat the substrate. However, the temperature of the substrate to be filmed may sometimes rise "accidentally" due to radiant heat from the vapor deposition source. For example, the temperature of the substrate to be filmed may be 500°C or lower, or may be 200°C or lower.
在不“主动地”对被成膜基板进行加热的情况下,可以使用例如玻璃、塑料这样的在大于700℃的高温下耐热性下降的材料作为基板的材料。When the substrate to be filmed is not "actively" heated, materials such as glass and plastic whose heat resistance decreases at high temperatures exceeding 700° C. can be used as the substrate material.
成膜时的氧分压(腔室内的氧分压)优选为小于0.1Pa。氧分压优选为0.01Pa以下,更优选为1×10-3Pa以下,进一步优选为1×10-4Pa以下,特别优选为1×10-5Pa以下。氧分压为0.1Pa以上时,有可能氧进入到成膜后的薄膜中,从而使电子密度下降。The oxygen partial pressure during film formation (oxygen partial pressure in the chamber) is preferably less than 0.1 Pa. The oxygen partial pressure is preferably 0.01 Pa or less, more preferably 1×10 -3 Pa or less, still more preferably 1×10 -4 Pa or less, particularly preferably 1×10 -5 Pa or less. When the oxygen partial pressure is 0.1 Pa or more, there is a possibility that oxygen enters the thin film after film formation, thereby reducing the electron density.
另一方面,成膜时的氢分压优选小于0.004Pa。为0.004Pa以上时,有可能氢或OH成分进入到成膜后的薄膜中,从而使电子化合物的薄膜的电子密度下降。On the other hand, the hydrogen partial pressure during film formation is preferably less than 0.004 Pa. When it is 0.004 Pa or more, there is a possibility that hydrogen or OH components enter into the thin film after film formation, thereby reducing the electron density of the thin film of the electron compound.
作为使用的溅射气体,没有特别限制。溅射气体可以是惰性气体或稀有气体。作为惰性气体,可以列举例如N2气体。另外,作为稀有气体,可以列举He(氦)、Ne(氖)、Ar(氩)、Kr(氪)和Xe(氙)。这些可以单独使用,也可以与其它气体合用。或者,溅射气体可以是NO(一氧化氮)这样的还原性气体。The sputtering gas used is not particularly limited. The sputtering gas can be an inert gas or a rare gas. As an inert gas, N2 gas is mentioned, for example. In addition, examples of the rare gas include He (helium), Ne (neon), Ar (argon), Kr (krypton), and Xe (xenon). These can be used alone or in combination with other gases. Alternatively, the sputtering gas may be a reducing gas such as NO (nitrogen monoxide).
溅射气体(腔室内的压力)的压力没有特别限制,可以自由选择以得到所期望的薄膜。特别是在将基板与靶之间的距离设为t(m)、将气体分子的直径设为d(m)时,溅射气体(腔室内的压力)的压力P(Pa)The pressure of the sputtering gas (pressure in the chamber) is not particularly limited, and can be freely selected to obtain a desired thin film. In particular, when the distance between the substrate and the target is t (m) and the diameter of the gas molecule is d (m), the pressure P (Pa) of the sputtering gas (pressure in the chamber)
可以以满足can satisfy
8.9×10-22/(td2)<P<4.5×10-20/(td2)(3)式8.9×10 -22 /(td 2 )<P<4.5×10 -20 /(td 2 )(3) formula
的方式进行选择。这种情况下,溅射粒子的平均自由程与靶~被成膜基板间的距离大致相等,溅射粒子与残留氧的反应被抑制。另外,这种情况下,可以使用背压比较高、廉价且简易的真空装置作为溅射法的装置。way to choose. In this case, the mean free path of the sputtered particles is substantially equal to the distance between the target and the film-forming substrate, and the reaction between the sputtered particles and the residual oxygen is suppressed. Also, in this case, an inexpensive and simple vacuum device with a relatively high back pressure can be used as the device for the sputtering method.
以上,以溅射法为例,对于形成电子化合物的薄膜的方法进行了简单说明。然而,电子化合物的薄膜的成膜方法不限于此,显然可以适当变更上述两个工序(工序S121和S122)、或者追加各种工序。In the above, the method of forming a thin film of an electronic compound has been briefly described by taking the sputtering method as an example. However, the film-forming method of the electronic compound thin film is not limited to this, and it is obvious that the above-mentioned two steps (steps S121 and S122 ) can be appropriately changed or various steps can be added.
例如,在上述的工序S122中,可以通过溅射法在开始电子化合物的薄膜的成膜前,对靶实施预溅射处理(靶的干式蚀刻处理)。For example, in the above-mentioned step S122, the target may be subjected to pre-sputtering treatment (dry etching treatment of the target) by the sputtering method before starting the formation of the thin film of the electron compound.
通过实施预溅射处理,由此靶的表面变清洁,之后的成膜处理(正式成膜)中,容易形成所期望的组成的薄膜。By performing the pre-sputtering treatment, the surface of the target is cleaned, and a thin film having a desired composition can be easily formed in the subsequent film formation treatment (main film formation).
例如,长时间使用靶时,有时氧进入靶的表面,从而构成靶的晶质C12A7电子化合物的电子密度下降。使用这样的靶的情况下,即使在成膜后的薄膜中,也有可能电子密度下降。另外,长时间使用靶时,由于构成靶(即晶质C12A7电子化合物)的各成分的溅射速度的差异,有可能靶的组成偏离最初的组成。使用这样的靶的情况下,即使在成膜后的薄膜中,也有可能组成偏离所期望的值。然而,通过实施预溅射处理,可以抑制这样的问题。For example, when the target is used for a long time, oxygen may enter the surface of the target, and the electron density of the crystalline C12A7 electron compound constituting the target may decrease. When such a target is used, there is a possibility that the electron density may decrease even in the formed thin film. In addition, when the target is used for a long time, the composition of the target may deviate from the original composition due to the difference in the sputtering speed of each component constituting the target (that is, the crystalline C12A7 electron compound). When such a target is used, there is a possibility that the composition may deviate from the desired value even in the formed thin film. However, such problems can be suppressed by performing pre-sputtering treatment.
需要说明的是,在预溅射处理中使用的气体可以与正式成膜时使用的溅射气体相同,也可以不同。特别是,在预溅射处理中使用的气体优选为He(氦)、Ne(氖)、N2(氮)、Ar(氩)和/或NO(一氧化氮)。It should be noted that the gas used in the pre-sputtering treatment may be the same as or different from the sputtering gas used in the actual film formation. In particular, the gas used in the pre-sputtering treatment is preferably He (helium), Ne (neon), N 2 (nitrogen), Ar (argon), and/or NO (nitrogen monoxide).
以这样的方法在图案化后的非晶硅层105的上部形成电子化合物的薄膜。In this way, a thin film of an electron compound is formed on the patterned amorphous silicon layer 105 .
之后,通过光刻处理等将电子化合物的薄膜图案化成所期望的图案,由此可以形成第一和/或第二电子化合物的薄膜150a、150b。Thereafter, the thin film of the electron compound is patterned into a desired pattern by photolithography or the like, whereby the first and/or second thin film of the electron compound 150a, 150b can be formed.
电子化合物的薄膜优选在图案化后进行热处理。热处理温度优选为300℃以上、更优选为500℃以上。设定为覆膜和被成膜基板的可耐受温度以下,优选为700℃以下。规定温度下的保持时间可以为1分钟~2小时,也可以为10分钟~1小时。另外,热处理的时机可以在将电子化合物的薄膜图案化后,也可以在电子化合物的薄膜上形成源极和漏极后(例如图3的例子),还可以在电子化合物的薄膜上形成非晶硅层后(例如图4的例子))。通过进行热处理,在进行图案化时等中电子化合物的薄膜受到损伤的情况下可以实现恢复。The thin film of the electronic compound is preferably heat-treated after patterning. The heat treatment temperature is preferably 300°C or higher, more preferably 500°C or higher. The temperature is set to be lower than the tolerable temperature of the coating film and the film-forming substrate, preferably 700° C. or lower. The retention time at the predetermined temperature may be 1 minute to 2 hours, or may be 10 minutes to 1 hour. In addition, the timing of the heat treatment can be after patterning the thin film of the electronic compound, or after forming the source and drain electrodes on the thin film of the electronic compound (such as the example in Figure 3), or forming an amorphous layer on the thin film of the electronic compound. After the silicon layer (such as the example in Figure 4)). By performing heat treatment, recovery can be achieved when the thin film of the neutral electron compound is damaged during patterning or the like.
(步骤S130)(step S130)
接下来,在第一和/或第二电子化合物的薄膜150a、150b的上部形成源极120和漏极122。Next, the source electrode 120 and the drain electrode 122 are formed on the upper portions of the first and/or second electron compound thin films 150a, 150b.
源极120和漏极122的形成中可以利用以往以来实施的各种方法。For the formation of the source electrode 120 and the drain electrode 122 , various conventional methods can be used.
通过将形成源极120和漏极122的导电层成膜后进行膜的光刻处理等,可以形成源极120和漏极122。The source electrode 120 and the drain electrode 122 can be formed by forming a conductive layer for forming the source electrode 120 and the drain electrode 122 into a film, and then performing a film photolithography process or the like.
在此,源极120配置在第一电子化合物的薄膜150a之上,和/或漏极122配置在第二电子化合物的薄膜150b之上。Here, the source electrode 120 is arranged on the thin film 150a of the first electron compound, and/or the drain electrode 122 is arranged on the thin film 150b of the second electron compound.
由此,降低源极120与非晶硅层105的界面和/或漏极122与非晶硅层105的界面的接触电阻。Thus, the contact resistance of the interface between the source electrode 120 and the amorphous silicon layer 105 and/or the interface between the drain electrode 122 and the amorphous silicon layer 105 is reduced.
在图3的剖视图中,示意性地示出非晶硅层105与源极102和/或漏极122没有直接接触的部分的例子。然而,本发明中,只要通过电子化合物的薄膜的存在而能够实现接触电阻的降低,则也可以具有非晶硅层与源极和/或漏极直接接触的部分。例如,连续形成非晶硅层与电子化合物的薄膜,通过光刻处理统一进行图案化。非晶硅层的图案的侧面容易形成不被电子化合物的薄膜覆盖的构成。接下来,在电子化合物的薄膜上形成源极和漏极。此时,非晶硅层的图案的侧面可以形成为与源极和漏极接触的构成。In the cross-sectional view of FIG. 3 , an example of a portion of the amorphous silicon layer 105 not in direct contact with the source electrode 102 and/or the drain electrode 122 is schematically shown. However, in the present invention, as long as the contact resistance can be reduced by the presence of the electron compound thin film, there may be a portion where the amorphous silicon layer is in direct contact with the source and/or drain. For example, a thin film of an amorphous silicon layer and an electronic compound is continuously formed and patterned collectively by photolithography. The side surfaces of the pattern of the amorphous silicon layer are easily formed so that they are not covered with the thin film of the electron compound. Next, source and drain electrodes are formed on the thin film of the electron compound. At this time, the side surfaces of the pattern of the amorphous silicon layer may be formed to be in contact with the source and the drain.
(步骤S140)(step S140)
接下来,形成栅极绝缘膜130以覆盖源极120和漏极122。Next, a gate insulating film 130 is formed to cover the source electrode 120 and the drain electrode 122 .
栅极绝缘膜130可以通过浸渍法、旋涂法、液滴喷出法、浇铸法、旋转法[スピナー]、印刷法等涂布法、CVD法、溅射法等方法进行成膜。The gate insulating film 130 can be formed by a coating method such as a dipping method, a spin coating method, a droplet discharge method, a casting method, a spin method, a printing method, a CVD method, or a sputtering method.
之后,在栅极绝缘膜130上形成栅极124。栅极124的形成中可以利用以往以来实施的各种方法。例如,栅极124可以通过溅射法和蒸镀法等形成。通过将形成栅极124的导电层成膜后进行膜的光刻处理等,由此可以形成栅极124。After that, the gate electrode 124 is formed on the gate insulating film 130 . For the formation of the gate electrode 124, various methods conventionally practiced can be utilized. For example, the gate electrode 124 can be formed by a sputtering method, an evaporation method, or the like. The gate electrode 124 can be formed by forming a conductive layer for forming the gate electrode 124 into a film, and then performing a photolithography process of the film or the like.
通过以上的工序,可以制造第一半导体装置100。Through the above steps, the first semiconductor device 100 can be manufactured.
需要说明的是,在以上的记载中,以图3所示的第一半导体装置100为例,对制造本发明的半导体装置的方法的一例进行了说明。It should be noted that, in the above description, an example of the method of manufacturing the semiconductor device of the present invention has been described by taking the first semiconductor device 100 shown in FIG. 3 as an example.
然而,根据同样的方法可以制造半导体装置400、半导体装置500、以及半导体装置600,这对于本领域技术人员而言是显而易见的。即,可以通过改变图7所示的各步骤的顺序来制造各结构的半导体装置。However, it is obvious to those skilled in the art that the semiconductor device 400 , the semiconductor device 500 , and the semiconductor device 600 can be manufactured according to the same method. That is, semiconductor devices of various structures can be manufactured by changing the order of the steps shown in FIG. 7 .
产业实用性Industrial applicability
本发明可以应用于例如在电光装置等各种电子器件等中使用的半导体装置等。例如,可以用于电视等显示器、洗涤机、冰箱等电器产品、移动电话、计算机等信息处理设备等电子设备。另外,本发明的半导体装置也可以用于汽车、各种产业设备等所具备的电子设备。The present invention can be applied to, for example, semiconductor devices and the like used in various electronic devices such as electro-optical devices. For example, it can be used in electronic equipment such as monitors such as televisions, electrical appliances such as washing machines and refrigerators, and information processing equipment such as mobile phones and computers. In addition, the semiconductor device of the present invention can also be used in electronic equipment included in automobiles, various industrial equipment, and the like.
本申请主张基于在2013年12月26日提出的日本专利申请2013-268342号的优先权,并通过参照将该日本申请的全部内容援引至本申请中。This application claims the priority based on the JP Patent application 2013-268342 for which it applied on December 26, 2013, The whole content of this JP application is used for this application by reference.
附图标记reference sign
1现有的半导体装置1 Existing semiconductor devices
5非晶硅层5 layer of amorphous silicon
10基板10 substrates
20源极20 source
22漏极22 drain
24栅极24 gates
30栅极绝缘层30 gate insulating layer
70非晶氧化物的电子化合物70 Electron compounds of amorphous oxides
72溶剂(非晶)72 solvent (amorphous)
74双极化子74 bipolarons
76笼76 cages
78电子(溶质)78 electrons (solute)
100第一半导体装置100The first semiconductor device
105非晶硅层105 amorphous silicon layer
110基板110 substrate
120源极120 source
122漏极122 drain
124栅极124 grid
130栅极绝缘层130 grid insulating layer
150a、150b电子化合物的薄膜Thin films of 150a, 150b electronic compounds
400、500、600半导体装置400, 500, 600 semiconductor devices
405、505、605非晶硅层405, 505, 605 amorphous silicon layer
410、510、610基板410, 510, 610 substrate
420、520、620源极420, 520, 620 source
422、522、622漏极422, 522, 622 drain
424、524、624栅极424, 524, 624 grid
430、530、630栅极绝缘层430, 530, 630 gate insulating layer
450a、450b、550a、550b、650a、650b电子化合物的薄膜Thin films of 450a, 450b, 550a, 550b, 650a, 650b electronic compounds
Claims (13)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013268342 | 2013-12-26 | ||
JP2013-268342 | 2013-12-26 | ||
PCT/JP2014/076422 WO2015098225A1 (en) | 2013-12-26 | 2014-10-02 | Semiconductor device and method for manufacturing semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105793969A true CN105793969A (en) | 2016-07-20 |
Family
ID=53478105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480065559.0A Pending CN105793969A (en) | 2013-12-26 | 2014-10-02 | Semiconductor device and method for manufacturing semiconductor device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2015098225A1 (en) |
KR (1) | KR20160101904A (en) |
CN (1) | CN105793969A (en) |
TW (1) | TW201526118A (en) |
WO (1) | WO2015098225A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6517535B2 (en) * | 2015-02-25 | 2019-05-22 | エルジー ディスプレイ カンパニー リミテッド | Silicon-based thin film semiconductor device and method of manufacturing silicon-based thin film semiconductor device |
WO2018066483A1 (en) * | 2016-10-03 | 2018-04-12 | 国立大学法人東京工業大学 | Semiconductor element |
JP6903503B2 (en) * | 2017-07-05 | 2021-07-14 | 三菱電機株式会社 | Manufacturing method of thin film transistor substrate, liquid crystal display device and thin film transistor substrate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020086190A1 (en) * | 2000-11-13 | 2002-07-04 | Minolta Co., Ltd. | Thin film of aluminate including rare earth elements, method of producing same, and light-accumulation optical element |
CN101673770A (en) * | 2008-09-09 | 2010-03-17 | 富士胶片株式会社 | Thin film field-effect transistor and display using the same |
US20100163863A1 (en) * | 2008-06-24 | 2010-07-01 | Fujifilm Corporation | Thin film field effect transistor and display |
CN102307812A (en) * | 2009-02-05 | 2012-01-04 | 旭硝子株式会社 | Method for manufacturing mayenite-containing oxides and method for manufacturing conductive mayenite-containing oxides |
CN102842619A (en) * | 2012-09-03 | 2012-12-26 | 南京中电熊猫液晶显示科技有限公司 | Semiconductor device and manufacturing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5064747B2 (en) | 2005-09-29 | 2012-10-31 | 株式会社半導体エネルギー研究所 | Semiconductor device, electrophoretic display device, display module, electronic device, and method for manufacturing semiconductor device |
JP2008294129A (en) * | 2007-05-23 | 2008-12-04 | Daikin Ind Ltd | THERMOELECTRIC POWER GENERATOR AND THERMOELECTRIC POWER GENERATOR HAVING THE THERMOELECTRIC POWER GENERATOR |
JP2014214075A (en) * | 2013-04-30 | 2014-11-17 | 旭硝子株式会社 | Method for producing thin film of electride of amorphous oxide |
WO2015044980A1 (en) * | 2013-09-26 | 2015-04-02 | 国立大学法人東北大学 | Organic semiconductor element and cmis semiconductor device provided with same |
-
2014
- 2014-10-02 CN CN201480065559.0A patent/CN105793969A/en active Pending
- 2014-10-02 WO PCT/JP2014/076422 patent/WO2015098225A1/en active Application Filing
- 2014-10-02 JP JP2015554615A patent/JPWO2015098225A1/en active Pending
- 2014-10-02 KR KR1020167014096A patent/KR20160101904A/en not_active Withdrawn
- 2014-11-03 TW TW103138104A patent/TW201526118A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020086190A1 (en) * | 2000-11-13 | 2002-07-04 | Minolta Co., Ltd. | Thin film of aluminate including rare earth elements, method of producing same, and light-accumulation optical element |
US20100163863A1 (en) * | 2008-06-24 | 2010-07-01 | Fujifilm Corporation | Thin film field effect transistor and display |
CN101673770A (en) * | 2008-09-09 | 2010-03-17 | 富士胶片株式会社 | Thin film field-effect transistor and display using the same |
CN102307812A (en) * | 2009-02-05 | 2012-01-04 | 旭硝子株式会社 | Method for manufacturing mayenite-containing oxides and method for manufacturing conductive mayenite-containing oxides |
CN102842619A (en) * | 2012-09-03 | 2012-12-26 | 南京中电熊猫液晶显示科技有限公司 | Semiconductor device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201526118A (en) | 2015-07-01 |
KR20160101904A (en) | 2016-08-26 |
JPWO2015098225A1 (en) | 2017-03-23 |
WO2015098225A1 (en) | 2015-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6296463B2 (en) | Thin film transistor and manufacturing method thereof | |
JP6482694B2 (en) | Method for manufacturing semiconductor device | |
Bukke et al. | Lanthanum doping in zinc oxide for highly reliable thin-film transistors on flexible substrates by spray pyrolysis | |
CN102386071B (en) | The manufacture method of electronic device, electronic device and sputtering target | |
TWI442570B (en) | Semiconductor thin film and its manufacturing method and thin film transistor | |
JP5951442B2 (en) | Semiconductor device | |
JP6338361B2 (en) | Semiconductor material, thin film transistor including the same, and electronic device including the thin film transistor | |
US8207530B2 (en) | Oxide semiconductor and thin film transistor including the same | |
TW201413977A (en) | Semiconductor device | |
TW202414844A (en) | Semiconductor device | |
JP6149725B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP6217196B2 (en) | Semiconductor material, thin film transistor, and method of manufacturing thin film transistor | |
CN105793969A (en) | Semiconductor device and method for manufacturing semiconductor device | |
JPWO2018066483A1 (en) | Semiconductor device | |
JP6308583B2 (en) | Thin film transistor, thin film transistor manufacturing method, and semiconductor device | |
WO2015115330A1 (en) | Thin-film transistor, oxide semiconductor, and method for producing same | |
JP2015076540A (en) | Semiconductor element and diode | |
JP6252903B2 (en) | Thin film transistor and manufacturing method thereof | |
JP6261125B2 (en) | Oxide thin film transistor and method for manufacturing the same | |
Seo et al. | Low-temperature n-type doping of insulating ultrathin amorphous indium oxide using H plasma-assisted annealing | |
JP2015144172A (en) | Oxide semiconductor and its production method | |
JP2014007311A (en) | Thin film transistor and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160720 |