CN105731352B - Micro- disk chamber of arsenones and preparation method thereof is integrated on a kind of piece - Google Patents
Micro- disk chamber of arsenones and preparation method thereof is integrated on a kind of piece Download PDFInfo
- Publication number
- CN105731352B CN105731352B CN201610116421.XA CN201610116421A CN105731352B CN 105731352 B CN105731352 B CN 105731352B CN 201610116421 A CN201610116421 A CN 201610116421A CN 105731352 B CN105731352 B CN 105731352B
- Authority
- CN
- China
- Prior art keywords
- microdisk
- layer
- photoresist
- block
- arsenic sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B1/00—Devices without movable or flexible elements, e.g. microcapillary devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00436—Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
- B81C1/00523—Etching material
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Optical Integrated Circuits (AREA)
- Micromachines (AREA)
- Manufacturing Optical Record Carriers (AREA)
Abstract
Description
技术领域technical field
本发明实施例涉及光学技术领域,尤其涉及一种片上集成硫化砷微盘腔及其制作方法。The embodiments of the present invention relate to the field of optical technology, in particular to an on-chip integrated arsenic sulfide microdisk cavity and a manufacturing method thereof.
背景技术Background technique
回音壁模式的微盘腔是一种重要的微纳光子器件,在低阈值激光器、腔光力学和生物传感等方面有着广泛的应用。特别地,在集成光学领域,由于中红外光学和非线性光学的巨大潜在应用价值,基于中红外透光高非线性系数材料的集成光学研究将对这一方向产生莫大助益。Whispering gallery mode microdisk cavity is an important micro-nanophotonic device, which has a wide range of applications in low-threshold lasers, cavity optomechanics, and biosensing. Especially in the field of integrated optics, due to the huge potential application value of mid-infrared optics and nonlinear optics, the research on integrated optics based on materials with high nonlinear coefficient of mid-infrared light transmission will be of great help to this direction.
目前中红外透光材料在集成光学上研究的主流是硫系玻璃,其中又以硫化砷和硒化砷为主。已有的硫化砷微盘腔的制备技术,由于无法解决硫化砷易于被具有氧化性物质(包括气体和液体)腐蚀的问题,均是直接生长于二氧化硅基片上。但是这样的结构由于硫化砷和二氧化硅之间折射率差异不大,光能量会有一部分分布于衬底内,衬底对光的损耗问题会降低此类微盘腔的品质因子。At present, the mainstream of research on mid-infrared light-transmitting materials in integrated optics is chalcogenide glass, among which arsenic sulfide and arsenic selenide are the main ones. The existing techniques for preparing arsenic sulfide microdisk chambers cannot solve the problem that arsenic sulfide is easily corroded by oxidizing substances (including gases and liquids), and are all directly grown on silicon dioxide substrates. However, due to the small difference in refractive index between arsenic sulfide and silicon dioxide in such a structure, part of the light energy will be distributed in the substrate, and the loss of light from the substrate will reduce the quality factor of this type of microdisk cavity.
发明内容Contents of the invention
本发明实施例提供一种片上集成硫化砷微盘腔及其制作方法,以解决现有技术中的片上集成硫化砷微盘腔品质因子较低的问题。Embodiments of the present invention provide an on-chip integrated arsenic sulfide microdisk cavity and a manufacturing method thereof, so as to solve the problem of low quality factor of the on-chip integrated arsenic sulfide microdisk cavity in the prior art.
为达此目的,本发明实施例采用以下技术方案:To achieve this purpose, the embodiments of the present invention adopt the following technical solutions:
第一方面,本发明实施例提供了一种片上集成硫化砷微盘腔,包括:自上而下层叠的微盘和支撑结构;In the first aspect, an embodiment of the present invention provides an on-chip integrated arsenic sulfide microdisk cavity, including: a top-down stacked microdisk and a support structure;
所述微盘的尺寸大于所述支撑结构的尺寸。The dimensions of the microdisks are larger than the dimensions of the support structure.
进一步地,所述支撑结构包括:自上而下层叠的中间层和支撑层。Further, the supporting structure includes: an intermediate layer and a supporting layer stacked from top to bottom.
进一步地,所述微盘的材料为硫化砷;所述中间层的材料为二氧化硅;所述支撑层的材料为硅。Further, the material of the microdisk is arsenic sulfide; the material of the intermediate layer is silicon dioxide; the material of the supporting layer is silicon.
进一步地,所述微盘的形状为圆柱形或者圆台形;Further, the shape of the microdisk is cylindrical or truncated-conical;
所述中间层的形状为圆柱形;The shape of the intermediate layer is cylindrical;
所述支撑层的形状为圆台形。The shape of the support layer is truncated cone.
进一步地,所述支撑层的中心、所述中间层的中心和所述微盘的中心在同一条直线上,且所述支撑层、所述中间层和所述微盘集成于硅片之上。Further, the center of the support layer, the center of the intermediate layer and the center of the microdisk are on the same straight line, and the support layer, the intermediate layer and the microdisk are integrated on a silicon chip.
进一步地,所述微盘的厚度大于或等于0.5微米,且小于或等于2微米。Further, the thickness of the microdisk is greater than or equal to 0.5 microns and less than or equal to 2 microns.
进一步地,所述微盘上表面的直径大于或等于20微米,且小于或等于100微米。Further, the diameter of the upper surface of the microdisk is greater than or equal to 20 microns and less than or equal to 100 microns.
进一步地,所述中间层的厚度大于或等于0.2微米,且小于或等于1微米。Further, the thickness of the intermediate layer is greater than or equal to 0.2 micron and less than or equal to 1 micron.
第二方面,本发明实施例还提供了一种如第一方面所述的微盘腔的制作方法,包括:In the second aspect, the embodiment of the present invention also provides a method for manufacturing the microdisk cavity as described in the first aspect, including:
提供商用二氧化硅片;Provide commercial silica wafers;
在所述二氧化硅片之上形成硫化砷层;forming an arsenic sulfide layer on the silicon dioxide wafer;
在所述硫化砷层之上旋涂第一光刻胶,并进行曝光、显影,形成第一光刻胶子块;spin-coating a first photoresist on the arsenic sulfide layer, exposing and developing to form a first photoresist sub-block;
刻蚀硫化砷层中除所述第一光刻胶子块所在区域之外的剩余区域的硫化砷层,形成至少一个微盘;Etching the arsenic sulfide layer in the remaining area of the arsenic sulfide layer except the area where the first photoresist sub-block is located, to form at least one microdisk;
去除剩余的第一光刻胶;removing the remaining first photoresist;
在去除掉光刻胶之后的结构之上重新旋涂第二光刻胶,并进行套刻,形成第二光刻胶子块,且所述第二光刻胶子块包围所述微盘;re-spin coating a second photoresist on the structure after removing the photoresist, and perform overlay etching to form a second photoresist sub-block, and the second photoresist sub-block surrounds the microdisk;
刻蚀二氧化硅层中除所述第二光刻胶子块所在区域之外的剩余区域的二氧化硅层,形成二氧化硅子块;Etching the silicon dioxide layer in the remaining area of the silicon dioxide layer except the area where the second photoresist sub-block is located, to form a silicon dioxide sub-block;
对硅片中除所述二氧化硅子块所在区域之外的剩余区域的硅进行刻蚀,形成支撑层;Etching the silicon in the remaining area of the silicon wafer except the area where the silicon dioxide sub-block is located, to form a supporting layer;
对二氧化硅子块的边缘进行刻蚀,形成中间层,以使所述微盘的尺寸大于所述中间层的尺寸;Etching the edge of the silicon dioxide sub-block to form an intermediate layer, so that the size of the microdisk is larger than the size of the intermediate layer;
去除剩余的第二光刻胶。The remaining second photoresist is removed.
本发明实施例提供的片上集成硫化砷微盘腔及其制作方法,通过将微盘的尺寸设置为大于支撑结构的尺寸,实现了微盘悬空设置,进而束缚在微盘中的光学模式不会受到支撑结构的影响,从而能够提高片上集成硫化砷微盘腔的品质因子,进而能够提高片上集成硫化砷微盘腔在光学器件上的性能。The on-chip integrated arsenic sulfide microdisk cavity and its manufacturing method provided by the embodiments of the present invention realize the suspension setting of the microdisk by setting the size of the microdisk to be larger than the size of the support structure, so that the optical modes bound in the microdisk will not be affected by the support structure Therefore, the quality factor of the on-chip integrated arsenic sulfide microdisk cavity can be improved, and the performance of the on-chip integrated arsenic sulfide microdisk cavity on optical devices can be improved.
附图说明Description of drawings
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1是本发明实施例提供的片上集成硫化砷微盘腔的一种实现方式的剖视示意图。FIG. 1 is a schematic cross-sectional view of an implementation of an on-chip arsenic sulfide microdisk cavity provided by an embodiment of the present invention.
图2是图1提供的片上集成硫化砷微盘腔中的微盘的俯视示意图。FIG. 2 is a schematic top view of the microdisk in the cavity of the on-chip integrated arsenic sulfide microdisk provided in FIG. 1 .
图3是图1提供的片上集成硫化砷微盘腔中的中间层的俯视示意图。FIG. 3 is a schematic top view of the intermediate layer in the cavity of the on-chip integrated arsenic sulfide microdisk provided in FIG. 1 .
图4是图1提供的片上集成硫化砷微盘腔中的支撑层的俯视示意图。FIG. 4 is a schematic top view of the support layer in the microdisk cavity integrated with arsenic sulfide on chip provided in FIG. 1 .
图5是本发明实施例提供的片上集成硫化砷微盘腔的另一种实现方式的剖视示意图。FIG. 5 is a schematic cross-sectional view of another implementation of an on-chip arsenic sulfide microdisk cavity provided by an embodiment of the present invention.
图6是图5提供的片上集成硫化砷微盘腔中的微盘的俯视示意图。FIG. 6 is a schematic top view of the microdisk in the cavity of the on-chip integrated arsenic sulfide microdisk provided in FIG. 5 .
图7是本发明实施例提供的片上集成硫化砷微盘腔的归一化透射谱示意图。Fig. 7 is a schematic diagram of a normalized transmission spectrum of an on-chip integrated arsenic sulfide microdisk cavity provided by an embodiment of the present invention.
图8是本发明实施例提供的片上集成硫化砷微盘腔的制作方法的流程示意图。FIG. 8 is a schematic flowchart of a method for fabricating an on-chip arsenic sulfide microdisk cavity provided by an embodiment of the present invention.
图9A是图8中步骤在硅片之上形成二氧化硅层的剖视示意图。FIG. 9A is a schematic cross-sectional view of forming a silicon dioxide layer on a silicon wafer during the step in FIG. 8 .
图9B是图8中步骤在二氧化硅片之上形成硫化砷层的剖视示意图。FIG. 9B is a schematic cross-sectional view of forming an arsenic sulfide layer on the silicon dioxide wafer during the step in FIG. 8 .
图9C是图8中步骤在硫化砷层之上旋涂第一光刻胶的剖视示意图。FIG. 9C is a schematic cross-sectional view of the step of spin-coating the first photoresist on the arsenic sulfide layer in FIG. 8 .
图9D是图8中步骤进行曝光、显影,形成第一光刻胶子块的剖视示意图。FIG. 9D is a schematic cross-sectional view of the step of exposing and developing in FIG. 8 to form the first photoresist sub-block.
图9E是图8中步骤刻蚀硫化砷层中除第一光刻胶子块所在区域之外的剩余区域的硫化砷层,形成至少一个微盘的剖视示意图。9E is a schematic cross-sectional view of etching the arsenic sulfide layer in the remaining area of the arsenic sulfide layer except the area where the first photoresist sub-block is located in the step of FIG. 8 to form at least one microdisk.
图9F是图8中步骤去除剩余的第一光刻胶的剖视示意图。FIG. 9F is a schematic cross-sectional view of the step of removing the remaining first photoresist in FIG. 8 .
图9G是图8中步骤在去除掉光刻胶之后的结构之上重新旋涂第二光刻胶的剖视示意图。FIG. 9G is a schematic cross-sectional view of re-spinning a second photoresist on the structure after removing the photoresist in the step in FIG. 8 .
图9H是图8中步骤进行套刻,形成第二光刻胶子块的剖视示意图。FIG. 9H is a schematic cross-sectional view of forming a second photoresist sub-block by performing overlithography in the step in FIG. 8 .
图9I是图8中步骤刻蚀二氧化硅层中除第二光刻胶子块所在区域之外的剩余区域的二氧化硅层,形成二氧化硅子块的剖视示意图。9I is a schematic cross-sectional view of etching the silicon dioxide layer in the remaining area of the silicon dioxide layer except the area where the second photoresist sub-block is located in the step of FIG. 8 to form a silicon dioxide sub-block.
图9J是图8中步骤对硅片中除二氧化硅子块所在区域之外的剩余区域的硅进行刻蚀,形成支撑层的剖视示意图。FIG. 9J is a schematic cross-sectional view of etching the silicon in the remaining area of the silicon wafer except the area where the silicon dioxide sub-block is located in the step in FIG. 8 to form a supporting layer.
图9K是图8中步骤对二氧化硅子块的边缘进行刻蚀,形成中间层的剖视示意图。FIG. 9K is a schematic cross-sectional view of etching the edge of the silicon dioxide sub-block to form an intermediate layer in the step in FIG. 8 .
图9L是图8中步骤去除剩余的第二光刻胶的剖视示意图。FIG. 9L is a schematic cross-sectional view of the step of removing the remaining second photoresist in FIG. 8 .
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内容。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, only parts related to the present invention are shown in the drawings but not all content.
图1是本发明实施例提供的片上集成硫化砷微盘腔的一种实现方式的剖视示意图。如图1所示,本发明实施例提供的片上集成硫化砷微盘腔包括:支撑结构101和微盘102。FIG. 1 is a schematic cross-sectional view of an implementation of an on-chip arsenic sulfide microdisk cavity provided by an embodiment of the present invention. As shown in FIG. 1 , the on-chip integrated arsenic sulfide microdisk cavity provided by the embodiment of the present invention includes: a support structure 101 and a microdisk 102 .
其中,微盘102位于支撑结构101之上,且微盘102的尺寸大于支撑结构101的尺寸。Wherein, the microdisk 102 is located on the support structure 101 , and the size of the microdisk 102 is larger than that of the support structure 101 .
本发明实施例提供的片上集成硫化砷微盘腔,通过将微盘102的尺寸设置为大于支撑结构101的尺寸,实现了微盘102悬空设置,进而束缚在微盘102中的光学模式不会受到支撑结构101的影响,从而能够提高片上集成硫化砷微盘腔的品质因子,进而能够提高片上集成硫化砷微盘腔在光学器件上的性能。In the on-chip integrated arsenic sulfide microdisk chamber provided by the embodiment of the present invention, by setting the size of the microdisk 102 to be larger than the size of the support structure 101, the microdisk 102 is suspended in the air, and the optical modes bound in the microdisk 102 will not be affected by the support structure 101. Therefore, the quality factor of the on-chip integrated arsenic sulfide microdisk cavity can be improved, and the performance of the on-chip integrated arsenic sulfide microdisk cavity on optical devices can be improved.
如图1所示,支撑结构101可以包括:中间层103和支撑层104。其中,中间层103位于支撑层104的上方。As shown in FIG. 1 , the supporting structure 101 may include: an intermediate layer 103 and a supporting layer 104 . Wherein, the middle layer 103 is located above the supporting layer 104 .
其中,微盘102的材料可以为硫化砷;中间层103的材料可以为二氧化硅;支撑层104的材料可以为硅。Wherein, the material of the microdisk 102 may be arsenic sulfide; the material of the intermediate layer 103 may be silicon dioxide; the material of the supporting layer 104 may be silicon.
图2是图1提供的片上集成硫化砷微盘腔中的微盘的俯视示意图。如图1和图2所示,微盘102的形状可以为圆柱形。微盘102的厚度可以大于或等于0.5微米,且小于或等于2微米。微盘102的直径可以大于或等于20微米,且小于或等于100微米。FIG. 2 is a schematic top view of the microdisk in the cavity of the on-chip integrated arsenic sulfide microdisk provided in FIG. 1 . As shown in FIGS. 1 and 2 , the shape of the microdisk 102 can be cylindrical. The thickness of the microdisk 102 may be greater than or equal to 0.5 microns and less than or equal to 2 microns. The diameter of the microdisk 102 may be greater than or equal to 20 microns and less than or equal to 100 microns.
图3是图1提供的片上集成硫化砷微盘腔中的中间层的俯视示意图。如图1和图3所示,中间层103的形状可以为圆柱形。中间层103的厚度可以大于或等于0.2微米,且小于或等于1微米。FIG. 3 is a schematic top view of the intermediate layer in the cavity of the on-chip integrated arsenic sulfide microdisk provided in FIG. 1 . As shown in FIG. 1 and FIG. 3 , the shape of the intermediate layer 103 may be cylindrical. The thickness of the intermediate layer 103 may be greater than or equal to 0.2 micron and less than or equal to 1 micron.
图4是图1提供的片上集成硫化砷微盘腔中的支撑层的俯视示意图。如图1和图4所示,支撑层104的形状可以为圆台形。FIG. 4 is a schematic top view of the support layer in the microdisk cavity integrated with arsenic sulfide on chip provided in FIG. 1 . As shown in FIG. 1 and FIG. 4 , the shape of the support layer 104 may be a truncated cone.
如图1所示,支撑层104的中心、中间层103的中心和微盘102的中心可以在同一条直线A-A线上。As shown in FIG. 1 , the center of the support layer 104 , the center of the intermediate layer 103 and the center of the microdisk 102 may be on the same straight line A-A.
此外,支撑层104、中间层103和微盘102可集成于硅片之上(图中未示出)。In addition, the supporting layer 104, the intermediate layer 103 and the microdisk 102 can be integrated on the silicon chip (not shown in the figure).
图5是本发明实施例提供的片上集成硫化砷微盘腔的另一种实现方式的剖视示意图。如图1和图5所示,与图1示出的片上集成硫化砷微盘腔不同的是,图5示出的片上集成硫化砷微盘102的形状为圆台形。其中,微盘102上表面的直径可以大于或等于20微米,且小于或等于100微米。FIG. 5 is a schematic cross-sectional view of another implementation of an on-chip arsenic sulfide microdisk cavity provided by an embodiment of the present invention. As shown in FIGS. 1 and 5 , different from the cavity of the on-chip arsenic sulfide microdisk shown in FIG. 1 , the shape of the on-chip arsenic sulfide integrated microdisk 102 shown in FIG. 5 is a truncated cone. Wherein, the diameter of the upper surface of the microdisk 102 may be greater than or equal to 20 microns and less than or equal to 100 microns.
图6是图5提供的片上集成硫化砷微盘腔中的微盘的俯视示意图。因为图1示出的片上集成硫化砷微盘腔中的微盘102的形状为圆柱形,图5示出的片上集成硫化砷微盘腔中的微盘102的形状为圆台形,因此,如图6和图2所示,图1示出的片上集成硫化砷微盘腔中的微盘102的俯视图和图5示出的片上集成硫化砷微盘腔中的微盘102的俯视图不同。因为图1示出的片上集成硫化砷微盘腔中的中间层103以及支撑层104和图5示出的片上集成硫化砷微盘腔中的中间层103以及支撑层104相同,因此,图5示出的片上集成硫化砷微盘腔中的中间层103以及支撑层104的俯视图如图3和图4所示,在此不再赘述。FIG. 6 is a schematic top view of the microdisk in the cavity of the on-chip integrated arsenic sulfide microdisk provided in FIG. 5 . Because the shape of the microdisc 102 in the integrated arsenic sulfide microdisk cavity shown in FIG. 1 is cylindrical, the shape of the microdisc 102 in the integrated arsenic sulfide microdisk cavity shown in FIG. 2, the top view of the microdisk 102 in the on-chip arsenic sulfide microdisk cavity shown in FIG. 1 is different from the top view of the microdisk 102 in the on-chip arsenic sulfide microdisk cavity shown in FIG. Because the intermediate layer 103 and supporting layer 104 in the on-chip integrated arsenic sulfide microdisk cavity shown in FIG. The top views of the intermediate layer 103 and the support layer 104 in the on-chip integrated arsenic sulfide microdisk cavity are shown in FIG. 3 and FIG. 4 , and will not be repeated here.
图7是本发明实施例提供的片上集成硫化砷微盘腔的归一化透射谱示意图。其中,图7中所利用的微盘腔中的微盘的半径为60微米。如图7所示,横坐标为频率失谐/GHz,纵坐标为归一化透射率。由图7可知:本发明实施例提供的微盘腔的本征品质因子Q0可达8.4×105。Fig. 7 is a schematic diagram of a normalized transmission spectrum of an on-chip integrated arsenic sulfide microdisk cavity provided by an embodiment of the present invention. Wherein, the radius of the microdisk in the microdisk cavity utilized in FIG. 7 is 60 microns. As shown in FIG. 7 , the abscissa is the frequency detuning/GHz, and the ordinate is the normalized transmittance. It can be seen from FIG. 7 that the intrinsic quality factor Q 0 of the microdisk cavity provided by the embodiment of the present invention can reach 8.4×10 5 .
图8是本发明实施例提供的片上集成硫化砷微盘腔的制作方法的流程示意图。图8示出的制作方法用于制作本发明上述实施例提供的片上集成硫化砷微盘腔。如图8所示,本发明实施例提供的片上集成硫化砷微盘腔的制作方法包括:FIG. 8 is a schematic flowchart of a method for fabricating an on-chip arsenic sulfide microdisk cavity provided by an embodiment of the present invention. The fabrication method shown in FIG. 8 is used to fabricate the on-chip arsenic sulfide microdisk cavity provided by the above embodiments of the present invention. As shown in FIG. 8 , the fabrication method of the on-chip arsenic sulfide microdisk cavity provided by the embodiment of the present invention includes:
步骤701、提供商用二氧化硅片。Step 701, providing commercial silicon dioxide wafers.
本步骤701提供的商用二氧化硅片是在硅片的表面形成一层二氧化硅层得到的。其制作步骤可包括:提供硅片;在硅片之上形成二氧化硅层。The commercial silicon dioxide wafer provided in step 701 is obtained by forming a silicon dioxide layer on the surface of the silicon wafer. The manufacturing steps may include: providing a silicon chip; forming a silicon dioxide layer on the silicon chip.
图9A是图8中步骤在硅片之上形成二氧化硅层的剖视示意图。如图9A所示,在硅片801之上形成二氧化硅层802。FIG. 9A is a schematic cross-sectional view of forming a silicon dioxide layer on a silicon wafer during the step in FIG. 8 . As shown in FIG. 9A , a silicon dioxide layer 802 is formed over a silicon wafer 801 .
本步骤701中形成二氧化硅层802所利用的工艺可以是热氧化工艺,也可以是等离子体增强化学气相沉积法(PEVCD,Plasma Enhanced Chemical Vapor Deposition)。The process used to form the silicon dioxide layer 802 in step 701 may be a thermal oxidation process, or a plasma enhanced chemical vapor deposition (PEVCD, Plasma Enhanced Chemical Vapor Deposition).
本步骤701中形成的二氧化硅层802的厚度可以根据实际需要进行设计,例如:0.2微米-1微米,二氧化硅层802的具体厚度在此不做限定。The thickness of the silicon dioxide layer 802 formed in step 701 can be designed according to actual needs, for example: 0.2 μm-1 μm, and the specific thickness of the silicon dioxide layer 802 is not limited here.
需要说明的是,提供硅片之后,在硅片之上形成二氧化硅层之前,还可以包括:对硅片801进行清洗、烘干,以保证硅片801表面的清洁度。It should be noted that after the silicon wafer is provided, before forming the silicon dioxide layer on the silicon wafer, it may further include: cleaning and drying the silicon wafer 801 to ensure the cleanliness of the silicon wafer 801 surface.
步骤702、在二氧化硅片之上形成硫化砷层。Step 702, forming an arsenic sulfide layer on the silicon dioxide wafer.
图9B是图8中步骤在二氧化硅片之上形成硫化砷层的剖视示意图。如图9B所示,在二氧化硅层802之上形成硫化砷层803。FIG. 9B is a schematic cross-sectional view of forming an arsenic sulfide layer on the silicon dioxide wafer during the step in FIG. 8 . As shown in FIG. 9B , an arsenic sulfide layer 803 is formed over the silicon dioxide layer 802 .
本步骤702中形成硫化砷层803所利用的工艺可以是真空蒸发沉积工艺或者脉冲激光沉积工艺。The process used to form the arsenic sulfide layer 803 in step 702 may be a vacuum evaporation deposition process or a pulsed laser deposition process.
需要说明的是,步骤701之后,步骤702之前,还可以包括:对硅片801进行清洗、烘干,以保证硅片801表面的清洁度。步骤702之后,还可以包括:对步骤702得到的结构进行退火处理,以提高硫化砷层803的致密性。It should be noted that after step 701 and before step 702, the method may further include: cleaning and drying the silicon wafer 801 to ensure the cleanliness of the silicon wafer 801 surface. After step 702 , it may further include: annealing the structure obtained in step 702 to improve the density of the arsenic sulfide layer 803 .
步骤703、在硫化砷层之上旋涂第一光刻胶,并进行曝光、显影,形成第一光刻胶子块。Step 703 , spin-coat the first photoresist on the arsenic sulfide layer, and perform exposure and development to form the first photoresist sub-block.
图9C是图8中步骤在硫化砷层之上旋涂第一光刻胶的剖视示意图。如图9C所示,在硫化砷层803之上旋涂第一光刻胶804。FIG. 9C is a schematic cross-sectional view of the step of spin-coating the first photoresist on the arsenic sulfide layer in FIG. 8 . As shown in FIG. 9C , a first photoresist 804 is spin-coated on the arsenic sulfide layer 803 .
图9D是图8中步骤进行曝光、显影,形成第一光刻胶子块的剖视示意图。如8D所示,利用光刻技术,进行曝光、显影后,将掩膜版上的图形转移到第一光刻胶上,形成第一光刻胶子块805。FIG. 9D is a schematic cross-sectional view of the step of exposing and developing in FIG. 8 to form the first photoresist sub-block. As shown in 8D, after exposure and development are performed using photolithography technology, the pattern on the mask plate is transferred to the first photoresist to form a first photoresist sub-block 805 .
需要说明的是,本步骤703中所用到的掩膜版的形状可以为圆形。掩膜版的尺寸可以根据实际需要进行设计,例如:10微米-100微米,掩膜版的具体尺寸在此不做限定。It should be noted that the shape of the mask plate used in step 703 may be circular. The size of the mask plate can be designed according to actual needs, for example: 10 microns-100 microns, and the specific size of the mask plate is not limited here.
步骤702之后,步骤703之前还可以包括:对步骤702得到的结构进行洗净吹干处理,以保证表面的清洁度。After step 702 and before step 703, it may also include: washing and drying the structure obtained in step 702 to ensure the cleanliness of the surface.
步骤704、刻蚀硫化砷层中除第一光刻胶子块所在区域之外的剩余区域的硫化砷层,形成至少一个微盘。Step 704 , etching the arsenic sulfide layer in the remaining area of the arsenic sulfide layer except the area where the first photoresist sub-block is located, to form at least one microdisk.
图9E是图8中步骤刻蚀硫化砷层中除第一光刻胶子块所在区域之外的剩余区域的硫化砷层,形成至少一个微盘的剖视示意图。如图9E所示,在光刻胶的遮挡作用下,刻蚀液体(或气体)只能从上往下刻蚀硫化砷层中除第一光刻胶子块805所在区域之外的剩余区域的硫化砷层,形成至少一个微盘806。9E is a schematic cross-sectional view of etching the arsenic sulfide layer in the remaining area of the arsenic sulfide layer except the area where the first photoresist sub-block is located in the step of FIG. 8 to form at least one microdisk. As shown in FIG. 9E , under the shielding effect of the photoresist, the etching liquid (or gas) can only etch the remaining area of the arsenic sulfide layer from top to bottom except the area where the first photoresist sub-block 805 is located. The arsenic sulfide layer forms at least one microdisk 806 .
本步骤704中,刻蚀硫化砷层所利用的方法可以是:使用含氨液体进行湿法腐蚀或者使用三氟甲烷等气体进行干法刻蚀。In step 704, the method used to etch the arsenic sulfide layer may be: wet etching with liquid containing ammonia or dry etching with gas such as trifluoromethane.
可以理解的是,在刻蚀过程中,理想情况下不会对微盘806造成刻蚀。但是,实际情况下,由于刻蚀液体和气体除了纵向扩散之外,还存在横向扩散,故而会造成对微盘806上边沿和下边沿的刻蚀深度不一致的情况,此时,形成的结构为图5示出的结构。It can be understood that, ideally, the microdisk 806 will not be etched during the etching process. However, in actual situations, since the etching liquid and gas also have lateral diffusion in addition to vertical diffusion, the etching depths of the upper edge and the lower edge of the microdisk 806 are inconsistent. At this time, the formed structure is as shown in FIG. 5 shows the structure.
需要说明的是,此处的微盘806即为图1和图5中的微盘102。It should be noted that the microdisk 806 here is the microdisk 102 in FIG. 1 and FIG. 5 .
步骤705、去除剩余的第一光刻胶。Step 705 , removing the remaining first photoresist.
图9F是图8中步骤去除剩余的第一光刻胶的剖视示意图。如图9F所示,本步骤705中得到的结构中没有第一光刻胶。FIG. 9F is a schematic cross-sectional view of the step of removing the remaining first photoresist in FIG. 8 . As shown in FIG. 9F , there is no first photoresist in the structure obtained in step 705 .
步骤706、在去除掉光刻胶之后的结构之上重新旋涂第二光刻胶,并进行套刻,形成第二光刻胶子块,且第二光刻胶子块包围微盘。Step 706 , re-spin coat a second photoresist on the structure after removing the photoresist, and perform overlithography to form a second photoresist sub-block, and the second photoresist sub-block surrounds the microdisk.
图9G是图8中步骤在去除掉光刻胶之后的结构之上重新旋涂第二光刻胶的剖视示意图。如图9G所示,在去除掉光刻胶之后的结构之上重新旋涂第二光刻胶807。其中,第二光刻胶807不仅覆盖微盘806,还覆盖相邻两个微盘806之间的二氧化硅802。FIG. 9G is a schematic cross-sectional view of re-spinning a second photoresist on the structure after removing the photoresist in the step in FIG. 8 . As shown in FIG. 9G , a second photoresist 807 is re-spinned on the structure after the photoresist is removed. Wherein, the second photoresist 807 not only covers the microdisks 806 , but also covers the silicon dioxide 802 between two adjacent microdisks 806 .
图9H是图8中步骤进行套刻,形成第二光刻胶子块的剖视示意图。如图9H所示,通过套刻工艺,形成第二光刻胶子块808。其中,第二光刻胶子块808包围微盘806。FIG. 9H is a schematic cross-sectional view of forming a second photoresist sub-block by performing overlithography in the step in FIG. 8 . As shown in FIG. 9H , a second photoresist sub-block 808 is formed through an overlay process. Wherein, the second photoresist sub-block 808 surrounds the microdisk 806 .
需要说明的是,若要第二光刻胶子块808包围微盘806,则:第二光刻胶子块808不仅覆盖微盘806的上表面,还包围微盘806的侧面一周。另,第二光刻胶子块808的形状应当与微盘806的形状相同。且第二光刻胶子块808的半径可以比微盘806的直径大20微米,且第二光刻胶子块808的的圆心和微盘806的圆心可以同心。It should be noted that if the second photoresist sub-block 808 is to surround the microdisk 806 , then: the second photoresist sub-block 808 not only covers the upper surface of the microdisk 806 , but also surrounds the side of the microdisk 806 for a week. In addition, the shape of the second photoresist sub-block 808 should be the same as that of the microdisk 806 . In addition, the radius of the second photoresist sub-block 808 may be 20 microns larger than the diameter of the microdisk 806 , and the center of the circle of the second photoresist subblock 808 and the center of the microdisk 806 may be concentric.
步骤707、刻蚀二氧化硅层中除第二光刻胶子块所在区域之外的剩余区域的二氧化硅层,形成二氧化硅子块。Step 707 , etching the silicon dioxide layer in the remaining area of the silicon dioxide layer except the area where the second photoresist sub-block is located, to form a silicon dioxide sub-block.
图9I是图8中步骤刻蚀二氧化硅层中除第二光刻胶子块所在区域之外的剩余区域的二氧化硅层,形成二氧化硅子块的剖视示意图。如图9I所示,刻蚀二氧化硅中除第二光刻胶子块808所在区域之外的剩余区域的二氧化硅层,形成二氧化硅子块809。此时形成的结构中,第二光刻胶子块808和二氧化硅子块809构成微盘806的包覆层。9I is a schematic cross-sectional view of etching the silicon dioxide layer in the remaining area of the silicon dioxide layer except the area where the second photoresist sub-block is located in the step of FIG. 8 to form a silicon dioxide sub-block. As shown in FIG. 9I , the silicon dioxide layer in the remaining area of the silicon dioxide except the area where the second photoresist sub-block 808 is located is etched to form a silicon dioxide sub-block 809 . In the structure formed at this time, the second photoresist sub-block 808 and the silicon dioxide sub-block 809 constitute the cladding layer of the microdisk 806 .
本步骤707中刻蚀二氧化硅层所利用的工艺可以是湿法腐蚀,所利用的液体可以是氢氟酸溶液。The process used to etch the silicon dioxide layer in step 707 may be wet etching, and the liquid used may be hydrofluoric acid solution.
步骤708、对硅片中除二氧化硅子块所在区域的剩余的硅进行刻蚀,形成支撑层。Step 708 , etching the remaining silicon in the silicon wafer except the area where the silicon dioxide sub-block is located, to form a supporting layer.
图9J是图8中步骤对硅片中除二氧化硅子块所在区域的剩余的硅进行刻蚀,形成支撑层的剖视示意图。如图9J所示,对硅片中除二氧化硅子块所在区域之外的剩余的硅进行刻蚀,形成支撑层810。此处形成的支撑层810即为图1和图5中的支撑层104。FIG. 9J is a schematic cross-sectional view of etching the remaining silicon in the silicon wafer except the area where the silicon dioxide sub-block is located in the step in FIG. 8 to form a supporting layer. As shown in FIG. 9J , the remaining silicon in the silicon wafer except the area where the silicon dioxide sub-block is located is etched to form a supporting layer 810 . The support layer 810 formed here is the support layer 104 in FIGS. 1 and 5 .
本步骤708中刻蚀硅所利用的工艺可以为干法刻蚀工艺,也可以为湿法刻蚀工艺,所利用的刻蚀物质可以为六氟化硫。The silicon etching process in step 708 may be a dry etching process or a wet etching process, and the etching substance used may be sulfur hexafluoride.
需要说明的是,由于步骤707中第二光刻胶子块808和二氧化硅子块809构成微盘806的包覆层,因此,本步骤708中刻蚀二氧化硅时,不会造成对微盘806的刻蚀。It should be noted that since the second photoresist sub-block 808 and the silicon dioxide sub-block 809 constitute the cladding layer of the microdisk 806 in step 707, therefore, when silicon dioxide is etched in this step 708, no damage to the microdisk 806 will be caused. of etching.
步骤709、对二氧化硅子块的边缘进行刻蚀,形成中间层,以使微盘的尺寸大于中间层的尺寸。Step 709 , etching the edge of the silicon dioxide sub-block to form an intermediate layer, so that the size of the microdisk is larger than that of the intermediate layer.
图9K是图8中步骤对二氧化硅子块的边缘进行刻蚀,形成中间层811的剖视示意图。此处形成的中间层811即为图1和图5示出的中间层103。FIG. 9K is a schematic cross-sectional view of etching the edge of the silicon dioxide sub-block to form the intermediate layer 811 in the step in FIG. 8 . The intermediate layer 811 formed here is the intermediate layer 103 shown in FIGS. 1 and 5 .
本步骤709可以利用氢氟酸对二氧化硅子块的边缘进行刻蚀。In step 709, hydrofluoric acid may be used to etch the edge of the silicon dioxide sub-block.
需要说明的是,由于步骤707中第二光刻胶子块808和二氧化硅子块809构成微盘806的包覆层,因此,本步骤709中刻蚀二氧化硅子块时,不会造成对微盘806的刻蚀。It should be noted that, since the second photoresist sub-block 808 and the silicon dioxide sub-block 809 constitute the cladding layer of the microdisk 806 in step 707, when the silicon dioxide sub-block is etched in this step 709, no damage to the microdisk will be caused. 806 etching.
步骤710、去除剩余的第二光刻胶。Step 710, removing the remaining second photoresist.
图9L是图8中步骤去除剩余的第二光刻胶的剖视示意图。如图9K所示,步骤710得到的结构中没有第二光刻胶。FIG. 9L is a schematic cross-sectional view of the step of removing the remaining second photoresist in FIG. 8 . As shown in FIG. 9K , there is no second photoresist in the structure obtained in step 710 .
需要说明的是,在图9L示出的结构中,沿着B-B线进行切割,可以得到图1示出的结构。It should be noted that, in the structure shown in FIG. 9L , the structure shown in FIG. 1 can be obtained by cutting along the line B-B.
本发明实施例提供的片上集成硫化砷微盘腔的制作方法,通过将微盘806的尺寸设置为大于支撑结构(支撑结构包括自下而上层叠的支撑层810和中间层811)的尺寸,实现了微盘806悬空设置,进而束缚在微盘806中的光学模式不会受到支撑结构的影响,从而能够提高片上集成硫化砷微盘腔的品质因子,进而能够提高片上集成硫化砷微盘腔在光学器件上的性能。此外,本发明实施例提供的片上集成硫化砷微盘腔的制作方法与传统的集成电路工艺相兼容,具有操作简单、重复率高和易于集成的优点。The method for fabricating the on-chip arsenic sulfide microdisk cavity provided by the embodiment of the present invention realizes the realization of the microdisk 806 by setting the size of the microdisk 806 to be larger than the size of the support structure (the support structure includes a support layer 810 and an intermediate layer 811 stacked from bottom to top). The microdisk 806 is set in the air, so that the optical modes bound in the microdisk 806 will not be affected by the support structure, so that the quality factor of the on-chip integrated arsenic sulfide microdisk cavity can be improved, and the performance of the on-chip integrated arsenic sulfide microdisk cavity on optical devices can be improved. . In addition, the manufacturing method of the on-chip integrated arsenic sulfide microdisk cavity provided by the embodiment of the present invention is compatible with traditional integrated circuit technology, and has the advantages of simple operation, high repetition rate and easy integration.
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and that various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention, and the present invention The scope is determined by the scope of the appended claims.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610116421.XA CN105731352B (en) | 2016-03-01 | 2016-03-01 | Micro- disk chamber of arsenones and preparation method thereof is integrated on a kind of piece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610116421.XA CN105731352B (en) | 2016-03-01 | 2016-03-01 | Micro- disk chamber of arsenones and preparation method thereof is integrated on a kind of piece |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105731352A CN105731352A (en) | 2016-07-06 |
CN105731352B true CN105731352B (en) | 2018-03-16 |
Family
ID=56248956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610116421.XA Active CN105731352B (en) | 2016-03-01 | 2016-03-01 | Micro- disk chamber of arsenones and preparation method thereof is integrated on a kind of piece |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105731352B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108923245B (en) * | 2018-07-27 | 2021-04-20 | 南京大学 | Microdisk Raman laser and manufacturing method thereof |
CN109557049A (en) * | 2018-11-21 | 2019-04-02 | 暨南大学 | A kind of hydrogen gas sensor and preparation method thereof |
CN109799002B (en) * | 2019-03-21 | 2020-07-10 | 中山大学 | A kind of all-optical tunable temperature sensor and preparation method thereof |
CN110212078B (en) * | 2019-06-14 | 2020-10-27 | 厦门大学 | A kind of electric injection microdisk resonator cavity light-emitting device and preparation method thereof |
CN111103740B (en) * | 2019-11-19 | 2021-03-30 | 中山大学 | Batch preparation method of high-quality factor chalcogenide suspended microdisk |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7236664B2 (en) * | 2003-09-29 | 2007-06-26 | California Institute Of Technology | Replica micro-resonator and method of fabrication |
CN1629663A (en) * | 2003-12-18 | 2005-06-22 | 中国科学院半导体研究所 | Silicon-on-insulator ridge optical waveguide with new cross-sectional shape and its manufacturing method |
CN102718180A (en) * | 2012-06-28 | 2012-10-10 | 中国科学院苏州纳米技术与纳米仿生研究所 | Concentric ring core nano silicon micro-disk micro-cavity device and preparation method thereof |
CN103022896A (en) * | 2012-12-17 | 2013-04-03 | 南京大学 | Miniature composite structure laser |
CN103708405A (en) * | 2013-11-08 | 2014-04-09 | 南京大学 | On-chip large-dig-angle silicon oxide micro-disc resonant cavity and manufacturing method for same |
CN104101945A (en) * | 2014-07-23 | 2014-10-15 | 宁波屹诺电子科技有限公司 | Horizontal slit optical waveguide based microdisk resonant cavity and production method thereof |
CN104556691B (en) * | 2015-01-16 | 2017-02-22 | 浙江大学 | Optical micro-cavity based on tellurate glass and preparation method of optical micro-cavity |
CN104868351B (en) * | 2015-04-27 | 2018-08-03 | 清华大学 | A method of adjusting Whispering-gallery-mode microcavity resonant frequency |
CN105337168A (en) * | 2015-10-16 | 2016-02-17 | 南京邮电大学 | Optical pumping nitride echo wall laser performing emission in single direction and preparation method thereof |
-
2016
- 2016-03-01 CN CN201610116421.XA patent/CN105731352B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105731352A (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105731352B (en) | Micro- disk chamber of arsenones and preparation method thereof is integrated on a kind of piece | |
TWI533024B (en) | Sample collection device and sample collection device array | |
CN103708405A (en) | On-chip large-dig-angle silicon oxide micro-disc resonant cavity and manufacturing method for same | |
TW201339090A (en) | Method for forming MEMS nanostructure | |
JP5152874B2 (en) | Photodetector manufacturing method | |
CN108923245B (en) | Microdisk Raman laser and manufacturing method thereof | |
CN103941313B (en) | Optical element structure and for its Optical element manufacturing technique | |
CN103018827A (en) | High-Q-value miniature circular resonant cavity device and preparation method thereof | |
CN114725774A (en) | Two-dimensional photonic crystal microcavity | |
Borselli et al. | Surface encapsulation for low-loss silicon photonics | |
CN105384145A (en) | Embedded nano forest structure and preparation method thereof | |
CN102004281A (en) | Manufacture method of optical waveguide device with low roughness | |
CN112925059B (en) | A micro-disk cavity with integrated waveguide on chip and preparation method thereof | |
CN215494219U (en) | Micro-disk cavity of on-chip integrated waveguide | |
WO2014201964A1 (en) | Ring cavity device and manufacturing method therefor | |
CN102593718A (en) | Preparation method for intermediate infrared laser | |
CN213866216U (en) | DNA sequencing device and solid-state nanopore assembly | |
CN103955023B (en) | Method for preparing surface plasmon polariton nanophotonic device | |
JP4681644B2 (en) | Optical waveguide fabrication method | |
JP6130284B2 (en) | Optical waveguide fabrication method | |
CN112251343A (en) | A DNA sequencing device, solid-state nanopore assembly and preparation method thereof | |
CN111103740B (en) | Batch preparation method of high-quality factor chalcogenide suspended microdisk | |
CN115993682B (en) | A method for manufacturing lithium niobate optical waveguide | |
CN222259620U (en) | Selective epitaxial silicon-based ridge optical waveguide | |
RU2819863C1 (en) | Method of making small-size atomic cell with alkali metal vapours |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |