CN105637620B - Nitride-based semiconductor - Google Patents
Nitride-based semiconductor Download PDFInfo
- Publication number
- CN105637620B CN105637620B CN201480056167.8A CN201480056167A CN105637620B CN 105637620 B CN105637620 B CN 105637620B CN 201480056167 A CN201480056167 A CN 201480056167A CN 105637620 B CN105637620 B CN 105637620B
- Authority
- CN
- China
- Prior art keywords
- layer
- composition
- mentioned
- buffer layer
- algan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
- H01L21/02507—Alternating layers, e.g. superlattice
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
- H10D30/4732—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/351—Substrate regions of field-effect devices
- H10D62/357—Substrate regions of field-effect devices of FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/81—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
- H10D62/815—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW]
- H10D62/8161—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices
- H10D62/8162—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices having quantum effects only in the vertical direction, i.e. layered structures having quantum effects solely resulting from vertical potential variation
- H10D62/8164—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices having quantum effects only in the vertical direction, i.e. layered structures having quantum effects solely resulting from vertical potential variation comprising only semiconductor materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
- Recrystallisation Techniques (AREA)
Abstract
氮化物半导体包括:形成于衬底(1)上的初始生长层(2);形成于上述初始生长层(2)上的缓冲层(3);形成于上述缓冲层(3)上的超晶格缓冲层(4);形成于上述超晶格缓冲层(4)的由多层构成的沟道层(5);和形成于上述沟道层(5)上的势垒层(8),上述超晶格缓冲层(4)通过交替层叠由AlxGa1‑xN(0.5≤x≤1.0)的组成构成的厚度a的高含Al层和由AlyGa1‑yN(0≤y≤0.3)的组成构成的厚度b的低含Al层而形成,上述沟道层(5),与上述超晶格缓冲层(4)接合,并且通过从超晶格缓冲层(4)侧起依次层叠AlzGa1‑zN层(6)和GaN层(7)而形成,上述AlzGa1‑z层(6)的Al组成与上述超晶格缓冲层(4)的平均Al组成相同。
The nitride semiconductor includes: an initial growth layer (2) formed on a substrate (1); a buffer layer (3) formed on the above initial growth layer (2); a supercrystalline layer formed on the above buffer layer (3) A lattice buffer layer (4); a channel layer (5) formed of multiple layers formed on the above-mentioned superlattice buffer layer (4); and a barrier layer (8) formed on the above-mentioned channel layer (5), The above-mentioned superlattice buffer layer (4) is alternately laminated by Al x Ga 1-x N (0.5 ≤ x ≤ 1.0) composition of high Al-containing layer of thickness a and Al y Ga 1-y N (0 ≤ y≤0.3) composed of a low Al-containing layer of thickness b, the above-mentioned channel layer (5) is joined to the above-mentioned superlattice buffer layer (4), and passes through from the superlattice buffer layer (4) side Al z Ga 1-z N layer (6) and GaN layer (7) are stacked in order to form, the Al composition of above-mentioned Al z Ga 1-z layer (6) and the average Al of above-mentioned superlattice buffer layer (4) The composition is the same.
Description
技术领域technical field
本发明涉及氮化物半导体。详细而言,涉及用于改善氮化物半导体器件的寿命的沟道层的构造。The present invention relates to nitride semiconductors. Specifically, it relates to the structure of a channel layer for improving the lifetime of a nitride semiconductor device.
背景技术Background technique
作为使用氮化物半导体的电子器件,一般采用使用了由AlGaN和GaN构成的异质结的构造。As an electronic device using a nitride semiconductor, a structure using a heterojunction composed of AlGaN and GaN is generally employed.
具体的构造如下,包括:形成于蓝宝石或者Si等衬底上的由氮化物半导体构成的缓冲层;形成于上述缓冲层上的一般由GaN构成的沟道层;形成于上述GaN沟道层上的由AlGaN构成的势垒层;与形成于上述AlGaN势垒层与上述GaN沟道层的界面的二维电子气区域形成欧姆接触的源极和漏极;形成于上述源极与上述漏极之间的栅极。The specific structure is as follows, including: a buffer layer composed of nitride semiconductor formed on a substrate such as sapphire or Si; a channel layer generally composed of GaN formed on the above buffer layer; a channel layer formed on the above GaN channel layer A barrier layer made of AlGaN; a source and a drain forming ohmic contact with the two-dimensional electron gas region formed at the interface of the AlGaN barrier layer and the GaN channel layer; formed between the source and the drain between the gates.
在蓝宝石衬底或者SiC衬底上形成氮化物半导体的情况下,虽然不会有大问题,但是在使用热膨胀系数比氮化物半导体小的Si衬底的情况下,氮化物半导体层的生长后向下弯曲为凸的形状,进而结晶本身因应力而形成裂纹。因此,不适于电子器件的形成。In the case of forming a nitride semiconductor on a sapphire substrate or a SiC substrate, although there is no major problem, in the case of using a Si substrate with a smaller thermal expansion coefficient than a nitride semiconductor, the growth of the nitride semiconductor layer is backward. The downward bending becomes a convex shape, and the crystal itself forms cracks due to stress. Therefore, it is not suitable for the formation of electronic devices.
作为缓和Si衬底与氮化物半导体的热膨胀系数差的方法,有日本特开2005-85852号公报(专利文献1)公开的“半导体电子器件”。该半导体电子器件中,在形成于硅衬底上的GaN插入层之上,依次层叠有缓冲层、GaN电子迁移层(500nm)、AlGaN电子供给层(20nm)和GaN接触层。此处,上述缓冲层是依次层叠由GaN形成的单层或者多层的第一层和由AlGaN形成的单层或者多层的第二层而构成的。如此,通过插入材质不同的第一层和第二层作为上述缓冲层,使从下侧传播的位错缺陷的方向弯曲来抑制向生长方向的传播。As a method for alleviating the difference in thermal expansion coefficient between the Si substrate and the nitride semiconductor, there is "semiconductor electronic device" disclosed in JP-A-2005-85852 (Patent Document 1). In this semiconductor electronic device, a buffer layer, a GaN electron transfer layer (500nm), an AlGaN electron supply layer (20nm), and a GaN contact layer are sequentially stacked on a GaN insertion layer formed on a silicon substrate. Here, the above-mentioned buffer layer is composed of a single-layer or multi-layer first layer made of GaN and a single-layer or multi-layer second layer made of AlGaN in this order. In this way, by inserting the first layer and the second layer of different materials as the buffer layer, the direction of the dislocation defect propagating from the lower side is bent to suppress propagation in the growth direction.
但是,在上述现有技术的专利文献1中公开的半导体电子器件中存在以下的问题。However, the semiconductor electronic device disclosed in Patent Document 1 of the above-mentioned prior art has the following problems.
此处,图6表示氮化物半导体的二维电子气生成机理。图6中,在应力被缓和而具有大致整体的晶格常数的GaN层(上述专利文献1中的GaN电子迁移层)之上,形成有不会引起应力缓和的薄度的晶格常数小的AlGaN层(上述专利文献1中的AlGaN电子供给层)。该情况下,由于GaN层与AlGaN层的自发极化Psp之差,和GaN层上的AlGaN层在面内因应力+σ而变形,产生压电极化Ppe。其结果是,在界面形成二维电子气(2DEG:2-dimensional electrongas)。Here, FIG. 6 shows a two-dimensional electron gas generation mechanism of a nitride semiconductor. In FIG. 6 , on the GaN layer (the GaN electron transport layer in the above-mentioned Patent Document 1) whose stress is relaxed and has a substantially overall lattice constant, a thin layer with a small lattice constant that does not cause stress relaxation is formed. AlGaN layer (AlGaN electron supply layer in Patent Document 1 mentioned above). In this case, the piezoelectric polarization Ppe occurs due to the difference in spontaneous polarization Psp between the GaN layer and the AlGaN layer and the in-plane deformation of the AlGaN layer on the GaN layer due to stress +σ. As a result, two-dimensional electron gas (2DEG: 2-dimensional electrons) is formed at the interface.
根据相同的原理,如图7所示,在将交替生长了具有不同的Al组成的AlGaN层的缓冲层(上述专利文献1中的GaN(Al组成=0)/AlGaN(1≥Al组成>0)缓冲层)作为一个平均的块来考虑的情况下,可以考虑为与应力缓和了的AlGaN层等效。因此,形成于该应力缓和了的AlGaN层之上的GaN层(上述专利文献1中的GaN电子迁移层)与AlGaN层相比晶格常数大,所以与图6的情况相反,因应力-σ而变形,在界面形成二维空穴气(2DHG:2-dimensionalhole gas)。According to the same principle, as shown in FIG. 7, in the buffer layer (GaN(Al composition=0)/AlGaN(1≥Al composition>0 ) buffer layer) as an average block, it can be considered equivalent to a stress-relaxed AlGaN layer. Therefore, the GaN layer formed on the stress-relaxed AlGaN layer (the GaN electron transport layer in the aforementioned Patent Document 1) has a larger lattice constant than the AlGaN layer. While deforming, two-dimensional hole gas (2DHG: 2-dimensional hole gas) is formed at the interface.
这样,电子器件中产生的二维空穴气成为漏电流的原因,存在引起器件特性降低这样的问题。In this way, the two-dimensional hole gas generated in the electronic device becomes a cause of leakage current, causing a problem in that device characteristics are degraded.
现有技术文献prior art literature
专利文献patent documents
专利文献1:日本特开2005-85852号公报Patent Document 1: Japanese Patent Laid-Open No. 2005-85852
发明内容Contents of the invention
发明要解决的技术问题The technical problem to be solved by the invention
于是,本发明的技术问题是提供抑制在使用交替反复层叠不同组成的AlGaN层而构成的超晶格缓冲层的情况下产生二维空穴气的氮化物半导体。Therefore, the technical problem of the present invention is to provide a nitride semiconductor that suppresses the generation of two-dimensional hole gas when using a superlattice buffer layer formed by alternately and repeatedly stacking AlGaN layers of different compositions.
用于解决问题的技术方案Technical solutions for problem solving
为了解决上述问题,本发明的氮化物半导体的特征在于,包括:In order to solve the above problems, the nitride semiconductor of the present invention is characterized in that it includes:
衬底;Substrate;
形成于上述衬底上的初始生长层;an initial growth layer formed on the substrate;
形成于上述初始生长层上的缓冲层;a buffer layer formed on the initial growth layer;
形成于上述缓冲层上的超晶格缓冲层;a superlattice buffer layer formed on the buffer layer;
形成于上述超晶格缓冲层上的由多层构成的沟道层;和a channel layer composed of multiple layers formed on the above-mentioned superlattice buffer layer; and
形成于上述沟道层上的势垒层,a barrier layer formed on the above-mentioned channel layer,
上述超晶格缓冲层通过交替层叠由AlxGa1-xN(0.5≤x≤1.0)的组成形成的厚度a的高含Al层和由AlyGa1-yN(0≤y≤0.3)的组成形成的厚度b的低含Al层而形成,The above-mentioned superlattice buffer layer is alternately laminated with Al x Ga 1 -y N (0. ) is formed by forming a low Al-containing layer of thickness b,
上述沟道层,与上述超晶格缓冲层接合,并且通过从上述超晶格缓冲层侧起依次至少层叠AlzGa1-zN层和GaN层而形成,The channel layer is joined to the superlattice buffer layer, and is formed by stacking at least an AlzGa1 -zN layer and a GaN layer sequentially from the superlattice buffer layer side,
上述AlzGa1-zN层的Al组成与上述超晶格缓冲层的平均Al组成相同。The Al composition of the above-mentioned AlzGa1 -zN layer is the same as the average Al composition of the above-mentioned superlattice buffer layer.
此外,一实施方式的氮化物半导体中,In addition, in the nitride semiconductor according to one embodiment,
上述沟道层的上述AlzGa1-zN层中的Al组成z由以下式子决定,The Al composition z in the above-mentioned AlzGa1 -zN layer of the above-mentioned channel layer is determined by the following formula,
z=(a×x+b×y)/(a+b)。z=(a×x+b×y)/(a+b).
此外,一实施方式的氮化物半导体中,In addition, in the nitride semiconductor according to one embodiment,
上述势垒层包括AlwGa1-wN层,The barrier layer above includes an AlwGa1 -wN layer,
上述AlwGa1-wN层中的Al组成w是大于上述沟道层的上述AlzGa1-zN层中的Al组成z的值。The Al composition w in the Al w Ga 1-w N layer is a value larger than the Al composition z in the Al z Ga 1-z N layer of the channel layer.
此外,一实施方式的氮化物半导体中,In addition, in the nitride semiconductor according to one embodiment,
上述超晶格缓冲层中的上述高含Al层的厚度a的范围是1nm≤a≤5nm,上述低含Al层的厚度b的范围是22nm≤b≤30nm。The thickness a of the high Al-containing layer in the superlattice buffer layer is in the range of 1nm≤a≤5nm, and the thickness b of the low Al-containing layer is in the range of 22nm≤b≤30nm.
发明效果Invention effect
根据以上说明可知,本发明的氮化物半导体中,从上述AlGaN超晶格缓冲层侧起依次层叠AlzGa1-zN层和GaN层而形成与AlGaN超晶格缓冲层接合的沟道层,并且使上述AlzGa1- zN层的Al组成与上述AlGaN超晶格缓冲层的平均Al组成相同。因此,上述AlzGa1-zN层的晶格常数能够看做大致等于应力缓和了的与一个AlGaN层等效的上述AlGaN超晶格缓冲层的晶格常数。因此,能够抑制在上述AlGaN超晶格缓冲层与上述AlzGa1-zN层的界面产生由-σ的应力引起的变形而形成二维空穴气。As can be seen from the above description, in the nitride semiconductor of the present invention, the channel layer joined to the AlGaN superlattice buffer layer is formed by laminating an AlzGa1 -zN layer and a GaN layer in this order from the AlGaN superlattice buffer layer side. , and make the Al composition of the above-mentioned Al z Ga 1- z N layer the same as the average Al composition of the above-mentioned AlGaN superlattice buffer layer. Therefore, the lattice constant of the above-mentioned AlzGa1 -zN layer can be regarded as approximately equal to the lattice constant of the above-mentioned AlGaN superlattice buffer layer equivalent to one AlGaN layer in which stress is relaxed. Therefore, it is possible to suppress the formation of two-dimensional hole gas due to deformation caused by -σ stress at the interface between the AlGaN superlattice buffer layer and the Al z Ga 1-z N layer.
因此,通过形成于上述超晶格缓冲层之上的AlzGa1-zN层,进行在上述超晶格缓冲层与GaN层之间形成的二维空穴气的补偿,能够降低漏电流。Therefore, the two-dimensional hole gas formed between the superlattice buffer layer and the GaN layer is compensated by the AlzGa1 -zN layer formed on the superlattice buffer layer, and the leakage current can be reduced. .
附图说明Description of drawings
图1是本发明的作为氮化物半导体的氮化物半导体外延片的截面图。FIG. 1 is a cross-sectional view of a nitride semiconductor epitaxial wafer as a nitride semiconductor according to the present invention.
图2是表示使用图1所示的氮化物半导体外延片的HEMT(High Electron MobilityTransistor:高电子迁移率晶体管)的C-V测量结果的图。FIG. 2 is a graph showing C-V measurement results of a HEMT (High Electron Mobility Transistor: High Electron Mobility Transistor) using the nitride semiconductor epitaxial wafer shown in FIG. 1 .
图3是表示C-V测量方法的图。Fig. 3 is a diagram showing a C-V measurement method.
图4是与图1不同的氮化物半导体外延片的截面图。FIG. 4 is a cross-sectional view of a nitride semiconductor epitaxial wafer different from FIG. 1 .
图5是表示使用图4所示的氮化物半导体外延片的HEMT的C-V测量结果的图。FIG. 5 is a graph showing C-V measurement results of a HEMT using the nitride semiconductor epitaxial wafer shown in FIG. 4 .
图6是表示二维电子气生成的机理的图。Fig. 6 is a diagram showing the mechanism of two-dimensional electron gas generation.
图7是表示二维空穴气生成的机理的图。Fig. 7 is a diagram showing the mechanism of two-dimensional cavitation gas generation.
具体实施方式Detailed ways
以下,利用图示的实施方式详细说明本发明。Hereinafter, the present invention will be described in detail using the illustrated embodiments.
·第1实施方式· The first embodiment
图1是本实施方式的作为上述氮化物半导体的氮化物半导体外延片的截面图。图1中,在Si衬底1上依次形成有由AlN形成的厚度100nm的AlN初始生长层2和厚度20nm的Al0.2Ga0.8N缓冲层3。接着,形成有交替反复层叠4nm厚度的AlN层和23nm厚度的Al0.1Ga0.9N层的反复周期为100周期的超晶格缓冲层4。FIG. 1 is a cross-sectional view of a nitride semiconductor epitaxial wafer that is the aforementioned nitride semiconductor according to the present embodiment. In FIG. 1 , an AlN initial growth layer 2 made of AlN with a thickness of 100 nm and an Al 0.2 Ga 0.8 N buffer layer 3 with a thickness of 20 nm are sequentially formed on a Si substrate 1 . Next, a superlattice buffer layer 4 was formed in which an AlN layer with a thickness of 4 nm and an Al 0.1 Ga 0.9 N layer with a thickness of 23 nm were laminated alternately and repeatedly at a cycle of 100 cycles.
然后,在上述超晶格缓冲层4上形成有由多层构成的沟道层5。该沟道层5是依次层叠AlzGa1-zN层6和作为上述GaN层的GaN沟道区域7而构成的。Then, channel layer 5 composed of multiple layers is formed on superlattice buffer layer 4 . The channel layer 5 is formed by sequentially laminating an AlzGa1 -zN layer 6 and a GaN channel region 7 as the GaN layer.
此处,在超晶格缓冲层4是交替层叠由AlxGa1-xN(0.5≤x≤1.0)的组成形成的厚度为“a(nm)”的高含Al层和由AlyGa1-yN(0≤y≤0.3)的组成形成的厚度为“b(nm)”的低含Al层而形成的情况下,上述沟道层5的AlzGa1-zN层6中的Al组成z由下述式(1)决定。Here, in the superlattice buffer layer 4, a high Al-containing layer with a thickness of "a (nm)" formed of AlxGa1 - xN (0.5≤x≤1.0) and AlyGa In the case where the composition of 1-y N (0≤y≤0.3) forms a low Al-containing layer with a thickness of “b (nm)”, in the Al z Ga 1-z N layer 6 of the above-mentioned channel layer 5 The Al composition z of is determined by the following formula (1).
z=(a×x+b×y)/(a+b)…(1)z=(a×x+b×y)/(a+b)…(1)
因此,本实施方式中,AlzGa1-zN层6的Al组成z为z=(4×1+23×0.1)/(4+23)=0.23,Al0.23Ga0.77N层6以厚度1μm生长。Therefore, in this embodiment, the Al composition z of the Al z Ga 1-z N layer 6 is z=(4×1+23×0.1)/(4+23)=0.23, and the thickness of the Al 0.23 Ga 0.77 N layer 6 is 1 μm growth.
之后,在上述Al0.23Ga0.77N层6上以厚度20nm生长GaN沟道区域7,形成沟道层5。Thereafter, a GaN channel region 7 was grown to a thickness of 20 nm on the above-mentioned Al 0.23 Ga 0.77 N layer 6 to form a channel layer 5 .
此处,期望上述超晶格缓冲层4中的作为上述高含Al层的AlxGa1-xN层(0.5≤x≤1.0)的厚度“a”为1nm≤a≤5nm,作为上述低含Al层的AlyGa1-yN层(0≤y≤0.3)的厚度“b”为22nm≤b≤30nm。其理由如下所述。Here, it is desirable that the thickness "a" of the AlxGa1 - xN layer (0.5≤x≤1.0) as the above-mentioned high Al-containing layer in the above-mentioned superlattice buffer layer 4 is 1nm≤a≤5nm, as the above-mentioned low The thickness "b" of the AlyGa1 -yN layer (0≤y≤0.3) containing the Al layer is 22nm≤b≤30nm. The reason for this is as follows.
即,在反复层叠上述作为高含Al层的AlxGa1-xN层和作为低含Al层的AlyGa1-yN层而形成超晶格缓冲层4的情况下,为了有效地抑制得到的氮化物半导体外延片的弯曲,上述高含Al层的厚度“a”与上述低含Al层的厚度“b”之差需要至少为17nm以上。进而,需要使易弯曲的上述高含Al层的厚度“a”比难弯曲的上述低含Al层的厚度“b”薄。该情况下,上述高含Al层的厚度“a”低于1nm时,超晶格缓冲层4接近于与上述低含Al层为单层膜的情况同等的构成,不能有效地抑制弯曲。此外,上述低含Al层的厚度“b”超过30nm时,超晶格缓冲层4接近与上述低含Al层的单层膜同等的构成,不能有效地抑制弯曲。因此,从上述的范围内设定上述高含Al层的厚度“a”和上述低含Al层的厚度“b”是有效的。That is, in the case where the superlattice buffer layer 4 is formed by repeatedly laminating the above-mentioned AlxGa1 -xN layer as a high Al-containing layer and the AlyGa1- yN layer as a low Al-containing layer, in order to effectively To suppress warping of the obtained nitride semiconductor epitaxial wafer, the difference between the thickness "a" of the high Al-containing layer and the thickness "b" of the low Al-containing layer needs to be at least 17 nm or more. Furthermore, it is necessary to make the thickness "a" of the easily bendable high-Al-containing layer thinner than the thickness "b" of the difficult-bend low-Al-containing layer. In this case, when the thickness "a" of the high Al-containing layer is less than 1 nm, the superlattice buffer layer 4 has a structure close to the same as the case where the low Al-containing layer is a single-layer film, and warpage cannot be effectively suppressed. In addition, when the thickness "b" of the low-Al-containing layer exceeds 30 nm, the superlattice buffer layer 4 has a structure close to the same as that of the single-layer film of the low-Al-containing layer, and warpage cannot be effectively suppressed. Therefore, it is effective to set the thickness "a" of the high Al-containing layer and the thickness "b" of the low Al-containing layer within the above ranges.
这样之后,在上述沟道层5的GaN沟道区域7上接着以厚度15nm生成有Al0.4Ga0.6N的AlGaN势垒层8。此处,期望AlwGa1-wN势垒层8的Al组成“w”大于沟道层5的AlzGa1-zN层6的Al组成“z”。其理由如下所述。After this, an AlGaN barrier layer 8 of Al 0.4 Ga 0.6 N was formed with a thickness of 15 nm on the GaN channel region 7 of the channel layer 5 . Here, it is desirable that the Al composition “w” of the Al w Ga 1-w N barrier layer 8 is larger than the Al composition “z” of the Al z Ga 1-z N layer 6 of the channel layer 5 . The reason for this is as follows.
即,在使用由本实施方式得到的氮化物半导体外延片形成HEMT(High ElectronMobility Transistor:高电子迁移率晶体管)的情况下,如图6所示,在AlwGa1-wN势垒层8与GaN沟道区域7的界面产生由应力+σ引起的变形而需要在上述界面形成二维电子气。该情况下,由于在AlzGa1-zN层6上层叠有GaN沟道区域7,所以如图7所示,在GaN沟道区域7与AlzGa1- zN层6的界面产生由应力-σ引起的变形。因此,需要在AlwGa1-wN势垒层8与GaN沟道区域7的界面产生比GaN沟道区域7与AlzGa1-zN层6的界面大的变形。因此,需要使AlwGa1-wN势垒层8的Al组成“w”比沟道层5的AlzGa1-zN层6的Al组成“z”大。That is, when a HEMT (High ElectronMobility Transistor: High Electron Mobility Transistor) is formed using the nitride semiconductor epitaxial wafer obtained in this embodiment, as shown in FIG. The interface of the GaN channel region 7 is deformed by stress +σ, and it is necessary to form a two-dimensional electron gas at the interface. In this case, since the GaN channel region 7 is stacked on the AlzGa1 -zN layer 6, as shown in FIG . Deformation caused by stress - σ. Therefore, the interface between the AlwGa1 -wN barrier layer 8 and the GaN channel region 7 needs to be deformed more than the interface between the GaN channel region 7 and the AlzGa1 -zN layer 6 . Therefore, the Al composition "w" of the Al w Ga 1-w N barrier layer 8 needs to be larger than the Al composition "z" of the Al z Ga 1-z N layer 6 of the channel layer 5 .
根据情况,为了改善迁移率,也可以使由AlN形成的AlN中间层(未图示)在GaN沟道区域7与AlGaN势垒层8之间生长。此外,也可以在AlGaN势垒层8之上使由GaN形成的GaN覆盖层(未图示)生长。In some cases, an AlN intermediate layer (not shown) made of AlN may be grown between the GaN channel region 7 and the AlGaN barrier layer 8 in order to improve mobility. In addition, a GaN cladding layer (not shown) made of GaN may be grown on the AlGaN barrier layer 8 .
这样,能够得到如下所述的氮化物半导体外延片,即,在交替层叠厚度为a的AlxGa1-xN(0.5≤x≤1.0)高含Al层和厚度为b的AlyGa1-yN(0≤y≤0.3)低含Al层而形成的AlGaN超晶格缓冲层4上,形成有Al组成由上述式(1)决定的AlzGa1-zN层6和GaN沟道区域7依次生长而成的沟道层5,换言之,能够得到在AlGaN超晶格缓冲层4上形成有具有与上述超晶格的平均Al组成相同的Al组成的AlGaN层6的氮化物半导体外延片。In this way, it is possible to obtain a nitride semiconductor epitaxial wafer in which AlxGa1 - xN (0.5≤x≤1.0) high-Al-containing layers having a thickness a and AlyGa1 layers having a thickness b are alternately stacked -y N (0≤y≤0.3) AlGaN superlattice buffer layer 4 formed by a low-Al content layer is formed with an Al z Ga 1-z N layer 6 and a GaN trench whose Al composition is determined by the above formula (1) In other words, a nitride semiconductor in which an AlGaN layer 6 having the same Al composition as the average Al composition of the superlattice is formed on the AlGaN superlattice buffer layer 4 can be obtained. Epiwafer.
另外,在本实施方式中,作为上述沟道层5使用AlGaN层6与GaN沟道区域7的组合,但是不限定于该组合。In addition, in this embodiment, the combination of the AlGaN layer 6 and the GaN channel region 7 is used as the above-mentioned channel layer 5 , but it is not limited to this combination.
图2表示使用所得到的氮化物半导体外延片而形成的上述HEMT中的C-V测量(容量测量)结果。其中,图2(a)是作为沟道层5使用GaN沟道区域7与AlGaN层6的组合的本实施方式的情况。此外,图2(b)是作为沟道层仅使用GaN层的比较例的情况。另外,图中的横軸“au”表示以上述晶片的表面为基准的向衬底方向的相对距离。FIG. 2 shows the results of C-V measurement (capacitance measurement) in the above HEMT formed using the obtained nitride semiconductor epitaxial wafer. Of these, FIG. 2( a ) shows the case of this embodiment in which a combination of a GaN channel region 7 and an AlGaN layer 6 is used as the channel layer 5 . In addition, FIG. 2( b ) is a case of a comparative example using only a GaN layer as a channel layer. In addition, the horizontal axis "au" in the figure represents the relative distance to the substrate direction based on the surface of the above-mentioned wafer.
此处,上述C-V测量中,如图3所示,在HEMT10的栅极G与基台11之间,由LCR测量器12施加偏压。Here, in the above-mentioned C-V measurement, as shown in FIG. 3 , a bias voltage is applied between the gate G of the HEMT 10 and the submount 11 by the LCR measuring device 12 .
从图2(b)可知,在仅使用GaN作为上述沟道层的情况下,在上述GaN层与超晶格层之间可见载流子浓度的峰值13,暗示存在二维空穴气。与此相对,在超晶格缓冲层4上形成有具有与上述超晶格的平均Al组成相同的Al组成的AlGaN层6的图2(a)的情况下,没有产生由二维空穴气引起的载流子的峰值,表示抑制了二维空穴气的产生。It can be seen from FIG. 2( b ) that when only GaN is used as the channel layer, a carrier concentration peak 13 can be seen between the GaN layer and the superlattice layer, implying the presence of two-dimensional hole gas. On the other hand, in the case of FIG. 2(a) in which the AlGaN layer 6 having the same Al composition as the average Al composition of the superlattice is formed on the superlattice buffer layer 4, no two-dimensional hole gas is generated. The peak of the induced carriers indicates that the generation of two-dimensional hole gas is suppressed.
如上所述,根据本实施方式的氮化物半导体外延片,在上述AlGaN超晶格缓冲层4与GaN沟道区域7之间形成有具有与上述超晶格的平均Al组成相同的Al组成的AlGaN层6。As described above, according to the nitride semiconductor epitaxial wafer of this embodiment, the AlGaN layer having the same Al composition as the average Al composition of the superlattice is formed between the AlGaN superlattice buffer layer 4 and the GaN channel region 7 . Layer 6.
该情况下,能够考虑交替生长了具有不同的Al组成的AlGaN层的上述AlGaN超晶格缓冲层4与应力缓和了的一个AlGaN层等效。而且,形成于该应力缓和了的一个AlGaN层之上的AlGaN层6,具有与等效于上述应力缓和了的一个AlGaN层的超晶格缓冲层4的平均Al组成相同的Al组成,所以能够看作晶格常数与超晶格缓冲层4大致相等。因此,能够抑制在超晶格缓冲层4与AlGaN层6的界面产生由应力-σ引起的变形而形成二维空穴气。In this case, it can be considered that the AlGaN superlattice buffer layer 4 in which AlGaN layers having different Al compositions are alternately grown is equivalent to one AlGaN layer whose stress has been relaxed. Furthermore, the AlGaN layer 6 formed on the one stress-relaxed AlGaN layer has the same Al composition as the average Al composition of the superlattice buffer layer 4 equivalent to the above-mentioned one stress-relaxed AlGaN layer. It is considered that the lattice constant is approximately equal to that of the superlattice buffer layer 4 . Therefore, it is possible to suppress the formation of two-dimensional hole gas due to deformation caused by stress −σ at the interface between the superlattice buffer layer 4 and the AlGaN layer 6 .
因此,通过形成于上述超晶格缓冲层4之上的AlGaN层6,进行在超晶格缓冲层4与GaN层之间形成的二维空穴气的补偿,能够降低漏电流。Therefore, the AlGaN layer 6 formed on the superlattice buffer layer 4 compensates for the two-dimensional hole gas formed between the superlattice buffer layer 4 and the GaN layer, thereby reducing leakage current.
·第2实施方式·Second Embodiment
图4是作为本实施方式的上述氮化物半导体的氮化物半导体外延片的截面图。图4中,在Si衬底21上依次形成有由AlN形成的厚度100nm的AlN初始生长层22、厚度20nm的Al0.2Ga0.8N缓冲层23。接着,形成交替反复层叠3nm厚度的AlN层和25nm厚度的Al0.1Ga0.9N层的反复周期是100周期的超晶格缓冲层24。FIG. 4 is a cross-sectional view of a nitride semiconductor epitaxial wafer as the nitride semiconductor of the present embodiment. In FIG. 4 , an AlN initial growth layer 22 made of AlN with a thickness of 100 nm and an Al 0.2 Ga 0.8 N buffer layer 23 with a thickness of 20 nm are sequentially formed on a Si substrate 21 . Next, a superlattice buffer layer 24 was formed in which AlN layers with a thickness of 3 nm and Al 0.1 Ga 0.9 N layers with a thickness of 25 nm were laminated alternately and repeatedly at a cycle of 100 cycles.
紧接着,在上述超晶格缓冲层24上形成由多层构成的沟道层25。该沟道层25是依次层叠AlzGa1-zN层26、Al组成倾斜AlGaN层27和作为上述GaN层的GaN沟道区域28而构成的。Next, the channel layer 25 composed of multiple layers is formed on the above-mentioned superlattice buffer layer 24 . The channel layer 25 is formed by laminating an AlzGa1 -zN layer 26, an AlGaN layer 27 with a gradient Al composition, and a GaN channel region 28 as the GaN layer in this order.
此处,在超晶格缓冲层24是交替层叠由AlxGa1-xN(0.5≤x≤1.0)的组成形成的厚度“a(nm)”的高含Al层和由AlyGa1-yN(0≤y≤0.3)的组成形成的厚度“b(nm)”的低含Al层而形成的情况下,上述沟道层25的AlzGa1-zN层26中的Al组成z由上述式(1)决定。Here, in the superlattice buffer layer 24, a high Al-containing layer having a thickness "a (nm)" formed of a composition of Al x Ga 1-x N (0.5≤x≤1.0) and a layer of Al y Ga 1 -y N (0 ≤ y ≤ 0.3) in the case of forming a low Al-containing layer with a thickness of "b (nm)", Al in the Al z Ga 1-z N layer 26 of the above-mentioned channel layer 25 The composition z is determined by the above formula (1).
因此,在本实施方式中,AlzGa1-zN层26的Al组成z为:Therefore, in the present embodiment, the Al composition z of the Al z Ga 1-z N layer 26 is:
z=(3×1+25×0.1)/(3+25)=0.20z=(3×1+25×0.1)/(3+25)=0.20
Al0.2Ga0.8N层26以厚度1μm生长。The Al 0.2 Ga 0.8 N layer 26 is grown to a thickness of 1 μm.
之后,在上述Al0.2Ga0.8N层26上使Al组成从Si衬底21侧起依次从0.2到0地倾斜(倾斜分布),使厚度100nm的Al组成倾斜AlGaN层27生长,进而,使GaN沟道区域28以厚度20nm生长,形成沟道层25。Thereafter, on the above-mentioned Al 0.2 Ga 0.8 N layer 26, the Al composition is inclined from 0.2 to 0 in order from the Si substrate 21 side (inclined distribution), and an Al composition-inclined AlGaN layer 27 with a thickness of 100 nm is grown, and further, the GaN The channel region 28 is grown to a thickness of 20 nm to form the channel layer 25 .
此处,在本实施方式中,上述超晶格缓冲层24中的上述高含Al层即AlxGa1-xN(0.5≤x≤1.0)的厚度“a”为1nm≤a≤5nm,上述低含Al层即AlyGa1-yN(0≤y≤0.3)的厚度“b”为22nm≤b≤30nm。因此,使高含Al层的厚度“a”与低含Al层的厚度“b”之差至少为17nm以上,能够有效地抑制所得到的氮化物半导体外延片的弯曲。Here, in the present embodiment, the thickness "a" of the AlxGa1 - xN (0.5≤x≤1.0) high Al-containing layer in the superlattice buffer layer 24 is 1nm≤a≤5nm, The thickness "b" of the above-mentioned low Al-containing layer, that is, AlyGa1 -yN (0≤y≤0.3) is 22nm≤b≤30nm. Therefore, making the difference between the thickness "a" of the high Al-containing layer and the thickness "b" of the low Al-containing layer at least 17 nm can effectively suppress warping of the obtained nitride semiconductor epitaxial wafer.
这样之后,在上述沟道层25的GaN沟道区域28上,接着以厚度15nm生长有Al0.4Ga0.6N的AlGaN势垒层29。After this, an AlGaN barrier layer 29 of Al 0.4 Ga 0.6 N was grown to a thickness of 15 nm on the GaN channel region 28 of the above-mentioned channel layer 25 .
根据情况,为了改善迁移率,也可以在GaN沟道区域28与AlGaN势垒层29之间生长由AlN形成的AlN中间层(未图示)。此外,也可以在AlGaN势垒层29之上形成由GaN形成的GaN覆盖层(未图示)。In some cases, an AlN intermediate layer (not shown) made of AlN may be grown between the GaN channel region 28 and the AlGaN barrier layer 29 in order to improve mobility. In addition, a GaN cladding layer (not shown) made of GaN may be formed on the AlGaN barrier layer 29 .
这样,能够得到如下所述的氮化物半导体外延片,即:在厚度为a的AlxGa1-xN(0.5≤x≤1.0)高含Al层和厚度为b的AlyGa1-yN(0≤y≤0.3)低含Al层交替层叠而形成的AlGaN超晶格缓冲层24上,形成有依次生长Al组成由上述式(1)决定的AlGaN层26、Al组成倾斜AlGaN层27和GaN沟道区域28而成的沟道层25,换言之,能够得到在AlGaN超晶格缓冲层24上形成有具有与上述超晶格的平均Al组成相同的Al组成的AlGaN层26的氮化物半导体外延片。In this way, it is possible to obtain a nitride semiconductor epitaxial wafer as follows: an Al x Ga 1-x N (0.5≤x≤1.0) high Al-containing layer with a thickness a and an Aly Ga 1-y layer with a thickness b On the AlGaN superlattice buffer layer 24 formed by alternate lamination of N (0≤y≤0.3) low-Al-containing layers, there are formed AlGaN layers 26 whose Al composition is determined by the above formula (1) and AlGaN layers 27 with Al composition gradients grown sequentially. The channel layer 25 formed of the GaN channel region 28, in other words, a nitride in which the AlGaN layer 26 having the same Al composition as the average Al composition of the superlattice is formed on the AlGaN superlattice buffer layer 24 can be obtained. Semiconductor epitaxial wafers.
另外,在本实施方式中,作为上述沟道层25使用AlGaN层26、Al组成倾斜AlGaN层27和GaN沟道区域28的组合,但是不限定于该组合。In addition, in this embodiment, a combination of the AlGaN layer 26 , the Al composition gradient AlGaN layer 27 and the GaN channel region 28 is used as the channel layer 25 , but the combination is not limited to this.
图5表示使用所得到的氮化物半导体外延片而形成的上述HEMT中的上述C-V测量结果。其中,图5(a)是作为沟道层25使用GaN沟道区域28、Al组成倾斜AlGaN层27和AlGaN层26的组合的本实施方式的情况。此外,图5(b)是作为沟道层仅使用GaN层的比较例的情况。FIG. 5 shows the above-mentioned C-V measurement results in the above-mentioned HEMT formed using the obtained nitride semiconductor epitaxial wafer. Of these, FIG. 5( a ) shows the case of this embodiment in which a combination of a GaN channel region 28 , an Al composition gradient AlGaN layer 27 , and an AlGaN layer 26 is used as the channel layer 25 . In addition, FIG. 5( b ) is a case of a comparative example using only a GaN layer as a channel layer.
此处,上述C-V测量方法与上述第1实施方式的情况(图3)相同。Here, the above-mentioned C-V measurement method is the same as that of the above-mentioned first embodiment ( FIG. 3 ).
从图5(b)可知,在作为上述沟道层仅使用GaN的情况下,在上述GaN层与超晶格层之间可见载流子浓度的峰值30,暗示存在二维空穴气。与此相对,在超晶格缓冲层24上形成有具有与上述超晶格的平均Al组成相同的Al组成的AlGaN层26的图5(a)的情况下,没有产生由二维空穴气引起的载流子的峰值,表示抑制二维空穴气的产生。As can be seen from FIG. 5( b ), when only GaN is used as the channel layer, a carrier concentration peak 30 is seen between the GaN layer and the superlattice layer, suggesting the presence of two-dimensional hole gas. On the other hand, in the case of FIG. 5(a) in which the AlGaN layer 26 having the same Al composition as the average Al composition of the superlattice is formed on the superlattice buffer layer 24, no two-dimensional hole gas is generated. The peak of the induced carriers, indicating the suppression of two-dimensional hole gas generation.
如上述,本实施方式的氮化物半导体外延片中,在上述AlGaN超晶格缓冲层24上形成有具有与上述超晶格的平均Al组成相同的Al组成z的AlzGa1-zN层26。因此,与上述第1实施方式的情况同样,通过形成于超晶格缓冲层24之上的AlGaN层26,进行在超晶格缓冲层24与GaN层之间形成的二维空穴气的补偿,能够降低漏电流。As described above, in the nitride semiconductor epitaxial wafer of the present embodiment, the AlzGa1 -zN layer having the same Al composition z as the average Al composition of the superlattice is formed on the AlGaN superlattice buffer layer 24. 26. Therefore, as in the case of the above-mentioned first embodiment, the two-dimensional hole gas formed between the superlattice buffer layer 24 and the GaN layer is compensated by the AlGaN layer 26 formed on the superlattice buffer layer 24. , can reduce the leakage current.
而且,在本实施方式中,作为上述沟道层25,在AlGaN层26与GaN沟道区域28之间形成有Al组成倾斜AlGaN层27。由于在沟道层25生成二维电子气,所以如图6所示需要不会引起应力缓和的薄度的、晶格常数小的AlGaN层(AlGaN势垒层29)和具有形成异质结的体积的晶格常数的GaN层(GaN沟道区域28)。该情况下,在AlGaN层26上层叠GaN沟道区域28,成为图7所示那样的能形成二维空穴气的构造。Furthermore, in the present embodiment, as the above-mentioned channel layer 25 , an Al composition gradient AlGaN layer 27 is formed between the AlGaN layer 26 and the GaN channel region 28 . Since two-dimensional electron gas is generated in the channel layer 25, as shown in FIG. GaN layer (GaN channel region 28 ) with a lattice constant of volume. In this case, the GaN channel region 28 is stacked on the AlGaN layer 26 to form a structure capable of forming two-dimensional hole gas as shown in FIG. 7 .
因此,在上述AlzGa1-zN层26与GaN沟道区域28之间,形成使Al组成从Si衬底21侧起依次从z到0地倾斜(倾斜分布)的Al组成倾斜AlGaN层27,由此缓和在GaN沟道区域28产生的变形,抑制在界面产生二维空穴气。Therefore, between the above-mentioned AlzGa1 -zN layer 26 and the GaN channel region 28, an Al composition gradient AlGaN layer in which the Al composition is inclined from z to 0 in order from the Si substrate 21 side (inclined distribution) is formed. 27, thereby relieving the deformation generated in the GaN channel region 28, and suppressing the generation of two-dimensional hole gas at the interface.
因此,根据本实施方式,能够与上述第1实施方式的情况相比更加降低漏电流。Therefore, according to the present embodiment, the leakage current can be further reduced compared to the case of the first embodiment described above.
如上述,本实施方式中,通过在上述AlzGa1-zN层26与GaN沟道区域28之间形成Al组成倾斜AlGaN层27,来缓和在GaN沟道区域28产生的变形。因此,能够在AlwGa1-wN势垒层29与GaN沟道区域28的界面产生比GaN沟道区域28与Al组成倾斜AlGaN层27的界面大的变形,能够产生二维电子气。As described above, in the present embodiment, the strain generated in the GaN channel region 28 is alleviated by forming the Al composition gradient AlGaN layer 27 between the AlzGa1 -zN layer 26 and the GaN channel region 28 . Therefore, larger deformation can be generated at the interface between the AlwGa1 -wN barrier layer 29 and the GaN channel region 28 than at the interface between the GaN channel region 28 and the AlGaN layer 27 with an Al composition gradient, and two-dimensional electron gas can be generated.
但是,在产生二维电子气方面优选与上述第1实施方式的情况同样,使上述AlwGa1-wN势垒层29的Al组成“w”大于沟道层25中的AlzGa1-zN层26的Al组成“z”。However, it is preferable to make the Al composition "w" of the Al w Ga 1-w N barrier layer 29 larger than the Al z Ga 1 in the channel layer 25 as in the case of the first embodiment above in terms of generating two-dimensional electron gas. -z The Al composition of the N layer 26 is "z".
另外,通过上述各实施方式的氮化物半导体外延片切片,能够得到作为上述氮化物半导体的其他例的氮化物半导体片。In addition, by slicing the nitride semiconductor epitaxial wafer according to each of the above-mentioned embodiments, a nitride semiconductor wafer as another example of the above-mentioned nitride semiconductor can be obtained.
如上所述,本发明的氮化物半导体的特征在于,包括:As described above, the nitride semiconductor of the present invention is characterized by including:
衬底1、21;Substrate 1, 21;
形成于上述衬底1、21上的初始生长层2、22;The initial growth layer 2, 22 formed on the above-mentioned substrate 1, 21;
形成于上述初始生长层2、22上的缓冲层3、23;buffer layers 3, 23 formed on the initial growth layers 2, 22;
形成于上述缓冲层3、23上的超晶格缓冲层4、24;superlattice buffer layers 4, 24 formed on the above buffer layers 3, 23;
形成于上述超晶格缓冲层4、24上的由多层构成的沟道层5、25;和Channel layers 5, 25 formed of multiple layers formed on the above-mentioned superlattice buffer layers 4, 24; and
形成于上述沟道层5、25上的势垒层8、29,The barrier layers 8, 29 formed on the above-mentioned channel layers 5, 25,
上述超晶格缓冲层4、24通过交替层叠由AlxGa1-xN(0.5≤x≤1.0)的组成形成的厚度a的高含Al层和由AlyGa1-yN(0≤y≤0.3)的组成形成的厚度b的低含Al层而形成,The above-mentioned superlattice buffer layers 4 and 24 are alternately laminated with Al x Ga 1-y N (0.5 ≤ x ≤ 1.0) and Al y Ga 1-y N (0 ≤ y≤0.3) formed by the low Al-containing layer of thickness b formed,
上述沟道层5、25,与上述超晶格缓冲层4、24接合,并且通过从上述超晶格缓冲层4、24侧起依次至少层叠AlzGa1-zN层6、26和GaN层7、28而形成,The channel layers 5, 25 are bonded to the superlattice buffer layers 4, 24, and at least AlzGa1 -zN layers 6, 26 and GaN layers are stacked sequentially from the superlattice buffer layer 4, 24 side Layers 7, 28 are formed,
上述AlzGa1-z层6、26的Al组成与上述超晶格缓冲层4、24的平均Al组成相同。The Al composition of the AlzGa1 -z layer 6, 26 is the same as the average Al composition of the superlattice buffer layer 4, 24 above.
可以考虑AlGaN超晶格缓冲层4、24与应力缓和了的AlGaN层等效。因此,在仅由GaN层形成与AlGaN超晶格缓冲层4、24接合的沟道层5、25的情况下,形成于上述应力缓和了的AlGaN层之上的GaN沟道层,由于晶格常数比AlGaN层大,所以因应力-σ在张紧侧变形,在界面形成二维空穴气(2DHG)。It can be considered that the AlGaN superlattice buffer layers 4 and 24 are equivalent to a stress-relaxed AlGaN layer. Therefore, when the channel layers 5, 25 joined to the AlGaN superlattice buffer layers 4, 24 are formed of only the GaN layer, the GaN channel layer formed on the above-mentioned stress-relaxed AlGaN layer has a The constant is larger than that of the AlGaN layer, so it deforms on the tension side due to the stress -σ, and forms two-dimensional hole gas (2DHG) at the interface.
根据上述构成,从上述超晶格缓冲层4、24侧起依次层叠AlzGa1-z层6、26和GaN层7、28而形成与超晶格缓冲层4、24接合的沟道层5、25,并且使上述AlzGa1-z层6、26的Al组成与AlGaN超晶格缓冲层4、24的平均Al组成相同。因此,上述AlzGa1-z层6、26能够看作晶格常数与应力缓和了的等效于一个AlGaN层的上述AlGaN超晶格缓冲层4、24大致相等。因此,能够抑制因应力-σ在上述AlGaN超晶格缓冲层4、24与AlzGa1-z层6、26的界面产生变形而形成二维空穴气。According to the above configuration, AlzGa1 -z layers 6, 26 and GaN layers 7, 28 are sequentially stacked from the superlattice buffer layer 4, 24 side to form a channel layer joined to the superlattice buffer layer 4, 24 5, 25, and make the Al composition of the above-mentioned AlzGa1 -z layer 6, 26 the same as the average Al composition of the AlGaN superlattice buffer layer 4, 24. Therefore, the above-mentioned AlzGa1 -z layers 6, 26 can be regarded as having substantially the same lattice constant as the above-mentioned AlGaN superlattice buffer layers 4, 24 equivalent to one AlGaN layer whose stress has been relaxed. Therefore, it is possible to suppress the formation of two-dimensional hole gas due to deformation at the interface between the AlGaN superlattice buffer layers 4, 24 and the AlzGa1 -z layers 6, 26 due to the stress -σ.
因此,通过形成于上述超晶格缓冲层4、24之上的AlzGa1-z层6、26,进行在上述超晶格缓冲层4、24与GaN层7、28之间形成的二维空穴气的补偿,能够降低漏电流。Therefore, the two layers formed between the above-mentioned superlattice buffer layer 4, 24 and the GaN layer 7, 28 are performed through the AlzGa1 -z layer 6, 26 formed on the above-mentioned superlattice buffer layer 4, 24. Dimensional hole gas compensation can reduce leakage current.
此外,一实施方式的氮化物半导体中,上述沟道层5、25的上述AlzGa1-z层6、26中的Al组成z由下式决定,In addition, in the nitride semiconductor according to one embodiment, the Al composition z in the AlzGa1 -z layer 6, 26 of the channel layer 5, 25 is determined by the following formula,
z=(a×x+b×y)/(a+b)。z=(a×x+b×y)/(a+b).
根据该实施方式,使上述沟道层5、25中的上述AlzGa1-z层6、26的Al组成z由式“z=(a×x+b×y)/(a+b)”决定。因此,能够使上述AlzGa1-z层6、26的Al组成与上述超晶格缓冲层4、24的平均Al组成相同。According to this embodiment, the Al composition z of the above-mentioned AlzGa1 -z layer 6, 26 in the above-mentioned channel layer 5, 25 is expressed by the formula "z=(a×x+b×y)/(a+b) "Decide. Therefore, the Al composition of the above-mentioned AlzGa1 -z layer 6, 26 can be made the same as the average Al composition of the above-mentioned superlattice buffer layer 4, 24.
此外,一实施方式的氮化物半导体中,上述势垒层8包含AlwGa1-wN层8,上述AlwGa1- wN层8中的Al组成w是比上述沟道层5的上述AlzGa1-z层6中的Al组成z大的值。In addition, in the nitride semiconductor according to one embodiment, the barrier layer 8 includes an AlwGa1 -wN layer 8, and the Al composition w in the AlwGa1 - wN layer 8 is lower than that of the channel layer 5. The Al composition in the above-mentioned Al z Ga 1-z layer 6 has a large value of z.
在使用所得到的氮化物半导体形成HEMT的情况下,需要在上述势垒层8的AlwGa1- wN层8与上述沟道层5的GaN层7的界面通过应力+σ来产生变形而在上述界面形成二维电子气。该情况下,由于上述沟道层5是在AlzGa1-z层6上层叠GaN层7而形成的,所以在上述GaN层7与AlzGa1-z层6的界面因应力-σ而产生变形。因此,需要在上述势垒层8的AlwGa1-wN层8与上述沟道层5的GaN层7的界面产生比上述GaN层7与上述AlzGa1-z层6的界面大的变形。When forming a HEMT using the obtained nitride semiconductor, it is necessary to deform the interface between the Al w Ga 1- w N layer 8 of the barrier layer 8 and the GaN layer 7 of the channel layer 5 by stress +σ And a two-dimensional electron gas is formed at the above-mentioned interface. In this case, since the channel layer 5 is formed by laminating the GaN layer 7 on the AlzGa1 - z layer 6, the stress - σ resulting in deformation. Therefore, it is necessary to produce a larger gap at the interface between the AlwGa1 -wN layer 8 of the barrier layer 8 and the GaN layer 7 of the channel layer 5 than the interface between the GaN layer 7 and the AlzGa1 -z layer 6. deformation.
根据该实施方式,上述AlwGa1-wN层8中的Al组成w设定为比上述沟道层5的上述AlzGa1-z层6中的Al组成z大的值。因此,在上述势垒层8的AlwGa1-wN层8与上述沟道层5的GaN层7的界面,能够产生比上述GaN层7与上述AlzGa1-z层6的界面大的变形,能够在上述界面形成二维电子气。According to this embodiment, the Al composition w in the Al w Ga 1-w N layer 8 is set to a larger value than the Al composition z in the Al z Ga 1-z layer 6 of the channel layer 5 . Therefore, at the interface between the AlwGa1 -wN layer 8 of the barrier layer 8 and the GaN layer 7 of the channel layer 5, the interface between the GaN layer 7 and the AlzGa1 -z layer 6 can be produced. A large deformation can form a two-dimensional electron gas at the above-mentioned interface.
此外,一实施方式的氮化物半导体中,上述超晶格缓冲层4、24中的上述高含Al层的厚度a的范围是1nm≤a≤5nm,上述低含Al层的厚度b的范围是22nm≤b≤30nm。In addition, in the nitride semiconductor according to one embodiment, the thickness a of the high Al-containing layer in the superlattice buffer layers 4 and 24 is in the range of 1nm≤a≤5nm, and the thickness b of the low Al-containing layer is in the range of 22nm≤b≤30nm.
根据该实施方式,使上述AlGaN超晶格缓冲层4、24中的上述高含Al层的厚度“a”与上述低含Al层的厚度“b”之差至少为17nm以上,并且使易弯曲的上述高含Al层的厚度“a”比难弯曲的上述低含Al层的厚度“b”薄,而能够有效地抑制所得到的氮化物半导体动弯曲。According to this embodiment, the difference between the thickness "a" of the above-mentioned high Al-containing layer and the thickness "b" of the above-mentioned low Al-containing layer in the above-mentioned AlGaN superlattice buffer layer 4, 24 is at least 17 nm or more, and the flexible The thickness "a" of the above-mentioned high-Al-containing layer is thinner than the thickness "b" of the above-mentioned low-Al-containing layer that is difficult to bend, so that dynamic bending of the obtained nitride semiconductor can be effectively suppressed.
符号说明Symbol Description
1、21…Si衬底1, 21...Si substrate
2、22…AlN初始生长层2. 22...AlN initial growth layer
3、23…AlGaN缓冲层3. 23...AlGaN buffer layer
4、24…超晶格缓冲层4. 24... superlattice buffer layer
5、25…沟道层5, 25... channel layer
6、26…AlzGa1-zN层6. 26...Al z Ga 1-z N layer
7、28…GaN沟道区域7, 28...GaN channel region
8、29…AlGaN势垒层8, 29... AlGaN barrier layer
10…HEMT10…HEMT
11…基台11…Abutment
12…LCD表12…LCD meter
13、30…载流子浓度峰值13, 30...Peak carrier concentration
27…Al组成倾斜AlGaN层。27... Al composition sloped AlGaN layer.
Claims (4)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013230356 | 2013-11-06 | ||
JP2013-230356 | 2013-11-06 | ||
PCT/JP2014/072883 WO2015068448A1 (en) | 2013-11-06 | 2014-09-01 | Nitride semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105637620A CN105637620A (en) | 2016-06-01 |
CN105637620B true CN105637620B (en) | 2018-11-20 |
Family
ID=53041232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480056167.8A Active CN105637620B (en) | 2013-11-06 | 2014-09-01 | Nitride-based semiconductor |
Country Status (4)
Country | Link |
---|---|
US (1) | US9660068B2 (en) |
JP (1) | JP6064051B2 (en) |
CN (1) | CN105637620B (en) |
WO (1) | WO2015068448A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170207303A1 (en) * | 2015-04-03 | 2017-07-20 | Hermes-Epitek Corp. | Semiconductor multilayer structure |
WO2017145199A1 (en) * | 2016-02-26 | 2017-08-31 | サンケン電気株式会社 | Semiconductor base body and semiconductor device |
US9768258B1 (en) * | 2016-03-17 | 2017-09-19 | Infineon Technologies Austria Ag | Substrate structure, semiconductor component and method |
WO2018120363A1 (en) * | 2016-12-31 | 2018-07-05 | 华南理工大学 | Gan-based enhanced hemt device based on si substrate and manufacturing method therefor |
CN106711212B (en) * | 2016-12-31 | 2018-12-11 | 华南理工大学 | Enhanced HEMT device based on Si substrate AlGaN/GaN heterojunction base and its manufacturing method |
KR20210045835A (en) | 2019-10-17 | 2021-04-27 | 삼성전자주식회사 | Semiconductor thin film structure and electronic device including the same |
JP2021144993A (en) * | 2020-03-10 | 2021-09-24 | 富士通株式会社 | Semiconductor device |
CN111599854A (en) * | 2020-06-04 | 2020-08-28 | 芜湖启迪半导体有限公司 | A 3C-SiC epitaxial structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2538434A1 (en) * | 2010-02-16 | 2012-12-26 | NGK Insulators, Ltd. | Epitaxial substrate and method for producing same |
CN102870196A (en) * | 2010-06-08 | 2013-01-09 | 日本碍子株式会社 | Epitaxial substrate and method for producing epitaxial substrate |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3960957B2 (en) | 2003-09-05 | 2007-08-15 | 古河電気工業株式会社 | Semiconductor electronic device |
JP5473445B2 (en) * | 2009-07-17 | 2014-04-16 | シャープ株式会社 | Epitaxial wafer |
JP5580009B2 (en) * | 2009-08-28 | 2014-08-27 | 日本碍子株式会社 | Epitaxial substrate for semiconductor element, semiconductor element, and method for producing epitaxial substrate for semiconductor element |
EP2498293B1 (en) * | 2009-11-06 | 2018-08-01 | NGK Insulators, Ltd. | Epitaxial substrate for semiconductor element and method for producing epitaxial substrate for semiconductor element |
EP2555232A4 (en) * | 2010-03-24 | 2014-12-10 | Ngk Insulators Ltd | EPITACTICAL SUBSTRATE FOR A SEMICONDUCTOR ELEMENT AND SEMICONDUCTOR ELEMENT |
JP2011258782A (en) * | 2010-06-10 | 2011-12-22 | Covalent Materials Corp | Nitride semiconductor substrate |
EP2600394B1 (en) * | 2010-07-29 | 2017-12-27 | NGK Insulators, Ltd. | Epitaxial substrate for semiconductor element and production method thereof |
WO2012026396A1 (en) * | 2010-08-25 | 2012-03-01 | 日本碍子株式会社 | Epitaxial substrate for semiconductor element, semiconductor element, method for fabricating epitaxial substrate for semiconductor element, and method for fabricating semiconductor element |
JP2012109344A (en) * | 2010-11-16 | 2012-06-07 | Rohm Co Ltd | Nitride semiconductor element and nitride semiconductor package |
KR101933230B1 (en) * | 2012-08-10 | 2018-12-27 | 엔지케이 인슐레이터 엘티디 | Semiconductor device, hemt device, and method of manufacturing semiconductor device |
JP2014072431A (en) * | 2012-09-28 | 2014-04-21 | Fujitsu Ltd | Semiconductor device |
-
2014
- 2014-09-01 JP JP2015546317A patent/JP6064051B2/en active Active
- 2014-09-01 CN CN201480056167.8A patent/CN105637620B/en active Active
- 2014-09-01 US US15/032,398 patent/US9660068B2/en active Active
- 2014-09-01 WO PCT/JP2014/072883 patent/WO2015068448A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2538434A1 (en) * | 2010-02-16 | 2012-12-26 | NGK Insulators, Ltd. | Epitaxial substrate and method for producing same |
CN102870196A (en) * | 2010-06-08 | 2013-01-09 | 日本碍子株式会社 | Epitaxial substrate and method for producing epitaxial substrate |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015068448A1 (en) | 2017-03-09 |
CN105637620A (en) | 2016-06-01 |
JP6064051B2 (en) | 2017-01-18 |
US20160254378A1 (en) | 2016-09-01 |
US9660068B2 (en) | 2017-05-23 |
WO2015068448A1 (en) | 2015-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105637620B (en) | Nitride-based semiconductor | |
JP5706102B2 (en) | Nitride semiconductor device | |
JP5891650B2 (en) | Compound semiconductor device and manufacturing method thereof | |
CN103715245B (en) | Semiconductor device | |
CN104425584A (en) | Semiconductor device | |
JP2005085852A (en) | Semiconductor electronic device | |
CN107004579B (en) | Epitaxial wafer, semiconductor element, method for manufacturing epitaxial wafer, and method for manufacturing semiconductor element | |
CN112242435B (en) | Semiconductor epitaxial structure and method for forming the same | |
JP2009260296A (en) | Nitride semiconductor epitaxial wafer and nitride semiconductor element | |
JP5689245B2 (en) | Nitride semiconductor device | |
JP2012023314A (en) | Group iii nitride epitaxial substrate | |
JP5064808B2 (en) | Semiconductor electronic device | |
KR101599618B1 (en) | Semiconductor device | |
JP6142893B2 (en) | Compound semiconductor device and manufacturing method thereof | |
JP5776344B2 (en) | Semiconductor device | |
JP2015103665A (en) | Nitride semiconductor epitaxial wafer and nitride semiconductor | |
JP2017163050A (en) | Semiconductor device | |
JP2015115429A (en) | Nitride semiconductor epitaxial substrate and nitride semiconductor device | |
JP6264485B2 (en) | Compound semiconductor device and manufacturing method thereof | |
JP5712721B2 (en) | Semiconductor device | |
CN106057882B (en) | Semiconductor assembly | |
JP6288187B2 (en) | Compound semiconductor device and manufacturing method thereof | |
KR20160100182A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211110 Address after: Kyoto Japan Patentee after: Roma Co., Ltd Address before: Osaka, Japan Patentee before: Sharp Corporation |