[go: up one dir, main page]

CN105555847B - 聚合物膜 - Google Patents

聚合物膜 Download PDF

Info

Publication number
CN105555847B
CN105555847B CN201480051681.2A CN201480051681A CN105555847B CN 105555847 B CN105555847 B CN 105555847B CN 201480051681 A CN201480051681 A CN 201480051681A CN 105555847 B CN105555847 B CN 105555847B
Authority
CN
China
Prior art keywords
polymer film
crosslinking agent
peptide
monomer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480051681.2A
Other languages
English (en)
Other versions
CN105555847A (zh
Inventor
格雷戈里·M·克鲁斯
格洛里亚·辛卡皮
克莱顿·哈里斯
吴悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Cents America Ltd
Original Assignee
Micro Cents America Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Cents America Ltd filed Critical Micro Cents America Ltd
Publication of CN105555847A publication Critical patent/CN105555847A/zh
Application granted granted Critical
Publication of CN105555847B publication Critical patent/CN105555847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F120/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • A61L2300/604Biodegradation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B3/003Filling medical containers such as ampoules, vials, syringes or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/38Amides
    • C08F222/385Monomers containing two or more (meth)acrylamide groups, e.g. N,N'-methylenebisacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1341Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Neurosurgery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Medical Uses (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Medicinal Preparation (AREA)

Abstract

描述了可生物降解的交联聚合物膜及其制造方法。所述聚合物膜可用于防止手术后粘连和/或递送治疗剂。

Description

聚合物膜
相关专利申请的交叉引用
本申请要求2013年9月19日提交的美国临时专利申请号61/880,029的权益,所述专利申请的全部公开内容通过引用并入本文中。
领域
描述了用于防止手术后组织粘连和/或用于递送治疗剂的可生物降解的聚合物膜。
概述
本文广泛描述了可生物降解的交联膜。该膜可以是可生物降解的。该膜可用于防止手术后污染和/或用于递送治疗剂。
还可在手术期间或手术后使用这些膜,来覆盖创伤/擦伤、密封容器等。这些膜可以是聚合的,且包含一种或多种单体和对化学水解或酶促作用敏感的交联剂且/或由一种或多种单体和对化学水解或酶促作用敏感的交联剂形成。聚合物膜可用于防止手术后粘连和/或递送治疗剂。
膜可包含这样的聚合物,所述聚合物包括至少一种单体和至少一种交联剂的反应产物;其中所述聚合物容易通过化学水解或酶促作用而被降解。本文所述的膜的厚度可因具体用途而异,但通常在约5μm和约1200μm之间。
还描述了制造本文所述聚合物膜的方法。这些方法包括:制备水基预聚合物溶液,所述溶液包含至少一种单体、至少一种容易通过化学水解或酶促作用而被降解的交联剂、和引发剂;并分散水基预聚合物溶液,从而通过聚合形成聚合物膜。
其它方法可包括使预聚合物溶液反应以形成聚合物膜的步骤。预聚合物溶液可包含至少一种含至少一个官能团的单体、至少一种对降解敏感的交联剂、和引发剂。
用于形成聚合物膜的交联剂可赋予膜可生物降解性。例如,交联剂可包含至少一种容易通过化学水解或酶促作用而被降解的连接键。交联剂可以基于缩水甘油基、缩水甘油基氨基或蛋白质。基于缩水甘油基的交联剂可以是双缩水甘油基氨基醇。基于蛋白质的交联剂可以是双官能甲基丙烯酰基-Ala-Pro-Gly-Leu-AEE-甲基丙烯酸酯。
附图
图1是示出不同聚合物膜的各种特征的图表。
图2是示出不同聚合物膜的降解进程的图表。
图3是示出不同聚合物膜完全降解的时间的图表。
详细说明
本文广泛描述了聚合物膜,其由下述聚合物材料形成或包含下述聚合物材料,所述聚合物材料包含一种或多种单体和交联剂的反应产物。本文所述的聚合物膜可容易通过水解、氧化或还原而裂解;通过酶促或非酶促手段被裂解。该膜也可以是可压缩的和/或可生物降解的,以方便使用。
聚合物或聚合物膜可由预聚合物混合物或溶液形成。预聚合物溶液可包含:(i)一种或多种单体,所述单体包含单个服从聚合的官能团和(ii)一种或多种交联剂。在一些实施方式中,可利用聚合引发剂。
在一些实施方式中,如果单体和/或交联剂之一是固体,则在膜制备中可利用溶剂。如果利用液态单体和交联剂,则可以不需要溶剂。在一些实施方式中,即使使用液态单体和交联剂,仍然可使用溶剂。溶剂可包括能够溶解或实质上溶解单体、单体混合物和/或交联剂的任何液体。可以使用溶解期望的单体、交联剂和/或聚合引发剂的任何水性或有机溶剂。在一个实施方式中,溶剂可以是水。此外,可向溶剂中加入溶质(例如,氯化钠)以提高聚合速率。
预聚合物溶液中的溶剂浓度可以为溶液的约10%重量/重量(w/w)、约20%w/w、约30%w/w、约40%w/w、约50%w/w、约60%w/w、约70%w/w、约80%w/w、约90%w/w、约20%w/w到约80%w/w、约50%w/w到约80%w/w或约30%w/w到约60%w/w。
可利用任何类型的交联化学来制备所述的聚合物膜。在一些实施方式中,可使用例如交联化学,例如但不限于亲核物质/N-羟基琥珀酰亚胺酯、亲核物质/卤化物、乙烯基砜/丙烯酸酯或马来酰亚胺/丙烯酸酯。在一个示例性实施方式中,可利用自由基聚合。照此,当应用自由基聚合时,可使用具有单个烯属不饱和基团的单体,例如丙烯酸酯、丙烯酰胺、甲基丙烯酸酯、甲基丙烯酰胺和乙烯基类化合物。
可使用允许具有期望性质的期望的最终膜的任意量的单体。预聚合物溶液中溶剂中的单体浓度可以为约1%w/w、约2%w/w、约3%w/w、约4%w/w、约5%w/w、约10%w/w、约15%w/w、约20%w/w、约30%w/w、约40%w/w、约50%w/w、约60%w/w、约70%w/w、约80%w/w、约90%w/w、约100%w/w、约1%w/w到约100%w/w、约40%w/w到约60%w/w、约50%w/w到约60%w/w或约40%w/w到约50%w/w。
单体可基于赋予聚合物膜期望的化学和/或机械性质来选择。如果期望,可向膜中引入不带电荷的反应性片段。例如,可利用向单体中加入2-羟乙基丙烯酸酯、2-羟基甲基丙烯酸酯、其衍生物或其组合来将羟基引入膜中。或者,可向膜中引入不带电荷的相对不反应性片段。例如,可加入丙烯酰胺、甲基丙烯酰胺、甲基丙烯酸甲酯、其衍生物或其组合。
在一个实施方式中,可由具有单个适合聚合的官能团的单体制备膜。官能团可包括适合自由基聚合的那些,例如丙烯酸酯、丙烯酰胺、甲基丙烯酸酯和甲基丙烯酰胺。其它聚合方案可包括但不限于亲核物质/N-羟基琥珀酰亚胺酯、亲核物质/卤化物、乙烯基砜/丙烯酸酯或马来酰亚胺/丙烯酸酯。单体的选择取决于产生的膜所期望的机械性质,并使降解产物的生物效应最小化。
在一些实施方式中,单体可额外包含碱性的可电离官能团(例如,胺、其衍生物或其组合)。胺基团可在低于胺的pKa的pH下被质子化,并在高于胺的pKa的pH下被去质子化。在其它实施方式中,单体可额外包含酸性的可电离官能团(例如,羧酸、磺酸、其衍生物或其组合)。酸基团可在高于酸的pKa的pH下被去质子化,并在低于酸的pKa的pH下被质子化。
如果期望结合带正电荷的药物,则可将具有带负电荷的片段(例如羧酸或其它酸性片段)的单体聚合到膜中。酸性的可电离的烯属不饱和单体可包括但不限于丙烯酸、甲基丙烯酸、3-磺丙基丙烯酸酯、3-磺丙基甲基丙烯酸酯、其衍生物、其组合和其盐。另一方面,如果期望结合带负电荷的药物,则可包含具有带正电荷的片段(例如胺或其它碱性片段)的单体。碱性的可电离的烯属不饱和单体可包括但不限于氨乙基甲基丙烯酸酯、氨丙基甲基丙烯酸酯、其衍生物、其组合和其盐。
单体选择中的一个额外因素可以是期望引起宿主微不足道的反应的膜降解产物。在其它实施方式中,可以是期望实质上不引起宿主反应的膜降解产物。
交联剂可包含一种或多种可聚合基团,可将单体链连在一起,并允许膜的形成。可通过利用下述交联剂来赋予膜生物降解性,所述交联剂具有在生理环境中容易降解的连接键。在活体内,经过一段时间,连接键可断裂且聚合物链可能不再结合在一起。明智选择单体允许水溶性降解产物的形成,所述水溶性降解产物扩散出治疗区域并被宿主清除。生物可降解膜中可使用对水解敏感的连接键,例如酯、硫酯、氨基甲酸酯和碳酸酯,或被酶降解的肽。
在一个实施方式中,一种或多种交联剂可包含至少两种适合聚合的官能团和至少一种容易断裂的连接键以赋予膜生物降解性。在生理环境中或者活体内容易断裂的连接键可包括但不限于对水解敏感的那些(包括酯、硫酯、氨基甲酸酯和碳酸酯)和对酶促作用敏感的那些(包括被基质金属蛋白酶、胶原酶、弹性蛋白酶和组织蛋白酶裂解的肽)。在一些实施方式中,可利用多种交联剂来控制降解速率,这种方式在利用仅一种交联剂时是不可能的。在一个实施方式中,至少一种交联剂对水解敏感且至少一种交联剂对酶促降解敏感。
在一些实施方式中,至少一种连接键是可被基质金属蛋白酶裂解的肽、可被基质胶原酶裂解的肽、可被基质弹性蛋白酶裂解的肽、可被基质组织蛋白酶裂解的肽或其组合。
在一些实施方式中,用于形成膜的聚合物可包括第二交联剂,所述第二交联剂包含选自酯、硫酯、碳酸酯、氨基甲酸酯、可被基质金属蛋白酶裂解的肽、可被基质胶原酶裂解的肽、可被基质弹性蛋白酶裂解的肽和可被基质组织蛋白酶裂解的肽的第二连接键。
在其它实施方式中,用于形成膜的聚合物可包括第三交联剂、第四交联剂、第五交联剂或更多交联剂,其中每种包含相同或不同的连接键。
交联剂可包括基于肽的交联剂、基于碳酸酯的交联剂、二缩水甘油基胺交联剂、TMP gly酯交联剂、二硫酯交联剂或吉夫胺(jeffamine)缩水甘油基胺交联剂。终产物中交联剂的优选浓度可以为约0.05%w/w、约0.1%w/w、约0.5%w/w、约1.0%w/w、约2.0%w/w、约3.0%w/w、约4.0%w/w、约0.1%w/w到约4.0%w/w、约0.5%w/w到约2%w/w、或约1%w/w到约1.5%w/w。本领域技术人员知道如何基于预聚合物溶液中使用的溶剂中的量来计算终浓度。
在一个实施方式中,交联剂可以是基于肽的化合物。在一个实施方式中,基于肽的交联剂可以是
或其衍生物。在另一个实施方式中,基于肽的交联剂可以是
或其衍生物。
在一些实施方式中,基于肽的交联剂可以是双官能甲基丙烯酰基-Ala-Pro-Gly-Leu-AEE-甲基丙烯酸酯。
在另一个实施方式中,交联剂可具有以下结构
其中n为1-20;
m为1-20;且
X为O或S。
在另一个实施方式中,交联剂可具有以下结构
在另一个实施方式中,交联剂可具有以下结构
交联剂还可具有以下结构
其中o为1-20;且
p为1-20。
在一个实施方式中,该结构可以是
交联剂还可以具有以下结构
其中q为1-10。在一个实施方式中,q为1。
交联剂还可以具有以下结构
其中r为1-20;且
Y和Z各自独立地选自O、S和NH。
在一个实施方式中,交联剂可具有以下结构
此外,在另一个实施方式中,交联剂可具有以下结构
其中,G、H和J各自独立地为CH2、O、S、NH或不存在,
a、b和c各自独立地为1-20;且
g为1-20。
在另一个实施方式中,a、b和c各自独立地为1-10。在另一个实施方式中,G、H和J各自独立地为O或NH。
在一个实施方式中,交联剂具有以下结构
其中,a、b和c各自独立地为1-20。
此外,在另一个实施方式中,交联剂可具有以下结构
其中,L、M和N各自独立地为CH2、O、S、NH或不存在,
d、e和f各自独立地为1-20;且
h为1-20。
在另一个实施方式中,d、e和f各自独立地为1-10。在另一个实施方式中,L、M和N各自独立地为O或NH。
在一个实施方式中,交联剂具有以下结构
其中,d、e和f各自独立地为1-20。
交联剂还可以具有以下结构
其中s为1-20;
其中t为1-20;且
X1、X2、X3和X4各自独立地为O或S。
在一个实施方式中,该结构可以是
交联剂还可以具有以下结构
在一些实施方式中,交联剂可以是四硫、四硫酯或二硫酯。在其它实施方式中,交联剂可以是肽交联剂或碳酸酯交联剂。基于缩水甘油基的交联剂可以是双缩水甘油基氨基醇。
可通过还原氧化、辐射、热和本领域已知的任何其它方法来聚合预聚合物溶液。可使用合适的引发剂用紫外光或可见光或者使用电离辐射(例如电子束或γ射线)但不用引发剂来实现对预聚合物溶液的辐射交联。可通过使用热源(例如加热井)来常规加热溶液,或通过对单体溶液应用红外光的方式应用热来实现交联。单体和交联剂的自由基聚合是优选的,其需要引发剂来开始反应。在优选的实施方式中,交联方法利用偶氮二异丁腈(AIBN)或另外的水溶性AIBN衍生物例如(2,2’偶氮双(2-甲基丙脒)二盐酸盐)。其它交联剂或引发剂可包括但不限于N,N,N’,N’-四甲基乙二胺、过硫酸铵、过氧化苯甲酰及其组合,包括偶氮二异丁腈。优选的引发剂可以是N,N,N’,N’-四甲基乙二胺与过硫酸铵的组合。
可通过以下方法生产或形成聚合物膜,所述方法包括:使包含至少一种含有至少一种官能团的单体、至少一种对降解敏感的交联剂、和引发剂的预聚合物溶液反应;和形成聚合物膜。
制备膜之后,可任选地将其染色以允许在医师准备期间的可视化。可使用与膜共价结合的来自活性染料家族的任何染料。染料可包括但不限于活性蓝21、活性橙78、活性黄15、活性蓝No.19、活性蓝No.4、C.I.活性红11、C.I活性黄86、C.I.活性蓝163、C.I.活性红180、C.I.活性黑5、C.I.活性橙78、C.I.活性黄15、C.I.活性蓝No.19、C.I.活性蓝21、或者任何着色添加剂。一些着色添加剂被FDA部门73、子部门D批准使用。在其它实施方式中,可以使用可与膜的聚合物基质不可逆结合的染料。
如果膜不与任何上述活性染料充分结合,则可向单体溶液中加入一定量的含胺单体以实现期望的着色。在一些实施方式中,即使所公开的染料与膜充分结合,仍然可以向单体溶液中加入含胺单体。合适的含胺单体的实例包括氨丙基甲基丙烯酸酯、氨乙基甲基丙烯酸酯、氨丙基丙烯酸酯、氨乙基丙烯酸酯、其衍生物、其组合和其盐。终产物中含胺单体的优选浓度可以为低于或等于约1%w/w。
聚合物膜可通过空间分离的两块板之间的聚合来制备。板可以由金属、玻璃或塑料形成。在一个实施方式中,板由玻璃形成。板可以是平的、弯曲的或具有其它合适的形状。在一些实施方式中,板是平的。单体溶液被放置或注射在具有预放置的垫片(spacer)的平板上。垫片可形成任何期望的形状。第二平板被放置在垫片的顶部,从而为单体溶液创造了狭窄空间。
聚合完成之后,移除顶部平板并从底部平板回收聚合物膜。然后可洗涤聚合物膜以除去任何和/或所有残留的单体、溶剂或盐。洗涤液包括丙酮、醇、水及其组合。
只要需要在板之间产生具有期望弹性的膜,便可允许进行聚合。可允许聚合进行约1小时、2小时、3小时、4小时、5小时、6小时、7小时、8小时、9小时、10小时、11小时、12小时、18小时、24小时、48小时、72小时、96小时、约1小时至约12小时、约1小时至约6小时、约4小时至约12小时、约6小时至约24小时、约1小时至约96小时、约12小时至约72小时、或至少约6小时。
聚合可以在能够产生具有期望弹性的膜的温度下进行。聚合可以在约10℃、约20℃、约30℃、约40℃、约50℃、约60℃、约70℃、约80℃、约90℃、约100℃、约10℃至约100℃、约10℃至约30℃、最低约20℃、最高约100℃、或约室温的温度下进行。在一个实施方式中,聚合在室温下发生。
此外,聚合物膜可允许被孵育给定的一段时间以产生期望的弹性。可允许孵育进行约1小时、2小时、3小时、4小时、5小时、6小时、7小时、8小时、9小时、10小时、11小时、12小时、18小时、24小时、48小时、72小时、96小时、约1小时至约12小时、约1小时至约6小时、约4小时至约12小时、约6小时至约24小时、约1小时至约96小时、约12小时至约72小时、或至少约6小时。
孵育可以在能够产生具有期望弹性的膜的温度下进行。孵育可以在约10℃、约20℃、约30℃、约35℃、约37℃、约40℃、约50℃、约60℃、约70℃、约80℃、约90℃、约100℃、约10℃至约100℃、约10℃至约30℃、最低约20℃、最高约100℃、或约室温的温度下进行。
在一个实施方式中,允许聚合在室温下进行至少2小时,随后在37℃下孵育过夜。
聚合完成之后,可洗涤膜以除去任何溶质、未反应的单体和/或未结合的低聚物。可利用任何溶剂,但如果使用水溶液来洗涤包含具有对水解敏感的连接键的聚合物的膜时,应当小心。优选的洗涤液可包括但不限于丙酮、醇、水、盐水及其组合。
任选地,然后可对经洗涤的膜进行染色以允许注射入微导管之前可视化。可通过将碳酸钠和期望的染料溶解在水中来制备染色浴。将膜加入染色浴中并搅拌。染色过程之后,通过洗涤除去任何未结合的染料。染色和洗涤之后,可将膜包装在小瓶或小袋中,并灭菌。
期望的膜厚度可以为约1μm、约2μm、约3μm、约4μm、约5μm、约6μm、约7μm、约8μm、约9μm、约10μm、约15μm、约20μm、约30μm、约40μm、约50μm、约100μm、约200μm、约300μm、约400μm、约500μm、约600μm、约700μm、约800μm、约900μm、约1000μm、约1100μm、约1200μm、约1300μm、约1400μm、约1500μm、约1600μm、约5μm-约1,500μm、约10μm-约500μm、约100μm-约1000μm、至少约1μm、至少约5μm、至少约50μm、至少约80μm、至多约1500μm、或至多约1200μm。
膜可具有提供所需的生物学目的需要的任何形状。形状可以被预制包括但不限于圆形、正方形、三角形、椭圆形、五角形等。在一些实施方式中,可形成一种形状的膜,然后定制切割以适合所期望的位置。
本文所述的膜可被灭菌而不会使聚合物膜大幅降解。灭菌之后,至少约50%、约60%、约70%、约80%、约90%、约95%、约99%、或约100%的膜可保持完整。在一个实施方式中,灭菌方法可以是高压灭菌法、γ辐射或氧化乙烯并可在施用前利用。
在一些实施方式中,可能期望膜随时间降解,或者换言之,可生物降解的。在这些实施方式中,膜可在约2天、约3天、约5天、约2周、约1个月、约2个月、约6个月、约9个月、约1年、约2年、约5年、或约10年后降解到少于完整的约40%、约30%、约20%、约10%、约5%或约1%。在一个实施方式中,膜可在短于约1个月内大幅降解。在另一个实施方式中,膜可在短于约6个月内大幅降解。
本文所述的膜可以是可压缩的但仍足够耐用而不会裂开或成碎片。在递送期间,膜的大小或厚度实质上不发生变化。换言之,递送之后,本文所述的膜保留大于约60%、约70%、约80%、约90%、约95%、约99%、或约100%的完整。
此外,膜可以足够粘着以通过与组织或组织之间的摩擦力粘住组织和/或留在合适的位置。膜还可以被制备为具有粘合面以加上粘性从而粘住组织。
实施例1
制备基于缩水甘油基的交联剂
将10g(67.6mmol)2,2′-亚乙二氧基双-乙胺与10g(70.4mmol)甲基丙烯酸缩水甘油酯和3g硅胶(Aldrich 645524,60埃,200-425网目)混合。搅拌1小时之后,加入另外9g(63.4mmol)甲基丙烯酸缩水甘油酯并搅拌悬浮液另外1.5小时。用200mL氯仿稀释混合物并通过600mL烧结玻璃Buchner过滤以除去硅胶。产生的氯仿溶液的LC-MS分析显示了含量可以忽略不计的单缩水甘油基氨基醇并示出主要的双-缩水甘油基氨基醇([M+H]+m/z=433.2)。将溶液在真空中浓缩至约50g。用乙腈将产生的浓浆稀释至100mL并储存在-80℃下。
实施例2
制备基于肽的交联剂
提供异双官能四肽(甲基丙烯酰基-Ala-Pro-Gly-Leu-AEE-甲基丙烯酸酯)(Bachem,Torrance,CA)。将肽(653mg,1mmole)溶解在5mL DMF中并加入N-(3-氨丙基)甲基丙烯酰胺盐酸盐(190mg,1.1mmol)和N,N-二异丙基乙胺(174μL,1mmol)。2小时之后,加入20mg丁羟甲苯。利用200mL乙醚沉淀反应混合物。利用离心收集固体。将粒状颗粒再次溶解在氯仿/甲醇/甲醇+10%氨水的90/5/5溶液中并应用到5×20cm柱中的50g硅胶(Aldrich,60埃,200-425网目)。利用500mL氯仿/甲醇/甲醇+5%氨水的90/5/5溶液冲洗硅胶柱并在真空中浓缩含肽的洗脱液,从而产生了110mg浅黄色油。将浅黄色油溶解在10mL甲醇中并储存在-80℃下。产物的LC-MS分析显示了期望的在m/z=680的[M+H]+和在m/z=702的[M+Na]+
实施例3
MA-AEEAc-ALAL-AEEAc-MA,ALAL四肽交联剂
将841mg(1mmol)NHS酯MA-AEEAc-ALAL-AEEAc-NHS和179mg3-氨丙基甲基丙烯酸酯-HCl加入带有干燥搅拌棒和干燥隔膜的干净、干燥的15mL烧瓶中,接着加入5mL无水二甲基甲酰胺。搅拌之后产生了清澈的溶液,然后立刻加入200μl(1mmol)二异丙基乙胺。1小时后,使用3×5mL MeOH将反应混合物转移到250mL梨形烧瓶中并放置在真空线上过夜。第二天,利用2mL甲醇将反应混合物转移到闪烁管中,从而产生了约35%的固体,并储存在-80℃下。上述粗交联剂给出了单个HPLC峰,所述HPLC峰给出了m/z=869.9的[M+H]+,关于C41H72N8O12计算的分子量为868.5。
实施例4
碳酸酯交联剂
在良好搅拌下,经1小时向悬浮在500mL 1∶1的乙腈∶甲醇中的33g(100mmol)碳酸铯中加入17.2g(200mmol)甲基丙烯酸。额外搅拌2小时之后,从反应混合物中除去溶剂,然后将残余物悬浮在500mL干醚中并通过过滤收集到带有中等玻璃料(medium frit)的干燥的600mL Buchner漏斗上。用200mL干醚小心冲洗漏斗上的固体数次之后,在真空干燥箱中干燥固体过夜,从而产生了45g吸湿性米黄色粉末(化合物A),其必须被迅速放置在干燥环境中。
HEMA-1-氯乙基碳酸酯:在氩气中,在4-10℃下,向1000mL干醚中的24mL HEMA(200mmol)中加入16.8mL(213mmol)吡啶。通过搅拌经1/2小时向该溶液中逐滴加入21.3mL(200mmol)1-氯乙基氯碳酸酯。在4-10℃下搅拌%小时之后,通过过滤除去粘稠的沉淀物(化合物B)并在真空中将滤液浓缩为油,从而产生了44g(100%)。
在氩气中,在100℃下,通过良好的搅拌向40mL无水二甲基甲酰胺中的4.4g(20mmol)化合物B中加入0.9g(4.0mmol)化合物A。15分钟之后,在氩气中,在100℃下,通过良好的搅拌加入另外1.2g(5.4mmol)化合物A,随后在相同条件下加入最后的0.9g(4.0mmol),以达到共计2.9g化合物A(13.4mmol)。在100℃下加热黄褐色反应混合物额外3小时,冷却至室温之后,在真空中除去溶剂,并使残余物留在真空线上过夜。将残余物溶解在50mL 1∶1的氯仿∶己烷中,然后应用到750g金柱上并利用己烷洗脱,然后利用己烷中的0-20%乙酸乙酯洗脱。下列碳酸酯在27分钟时开始出现
且下列碳酸酯在32分钟时开始出现
实施例5
TMP Gly酯
TMP-氯乙酰胺:向250mL干燥四氢呋喃(THF)中的13.2g三氨基三羟甲基丙烷乙氧基化物中加入6.32g(80mmol)吡啶,然后在氩气中,在4-10℃下,通过良好的搅拌向该溶液中加入在250mL THF中的6.44g氯乙酰氯。搅拌15分钟之后,将反应混合物加热至室温并在真空中除去THF和其它挥发性物质。将产生的固体溶解在200mL氯仿中,接着依次用100mL饱和碳酸氢钠水溶液洗涤氯仿,然后通过硫酸镁干燥并在真空中除去溶剂。
TMP-NH-Gly-甲基丙烯酸酯:将约15g上述物质溶解在75mL无水二甲基甲酰胺中,然后向其中加入18g甲基丙烯酸铯并在40-50℃下加热产生的悬浮液2小时。
利用500mL氯仿沉淀之后,通过过滤收集无机盐并在真空中将滤液浓缩为油,从而产生了18g红棕色油。这种油可与AIBN在80℃下在异丙醇中聚合,从而产生了坚硬的颗粒。利用1200mL氯仿中的2-20%甲醇通过上述硅胶塞对6g这种油进行色谱分析,产生了6g浅红色的材料。
实施例6
离散的硫酯
向200mL四氢呋喃(THF)中的6.6mL(40mmol)2,2’-(亚乙二氧基)双乙硫醇中加入20.9mL二异丙基乙胺,然后在-5℃下,通过良好的搅拌经1小时将产生的干溶液加入200mL干燥THF中的11.5mL甲基丙烯酰氯(120mmol)中。在0℃下搅拌反应混合物1小时,然后在20℃下搅拌1小时,此时加入10mL异丙醇并在真空中除去溶剂。
在最小体积的氯仿中,将残余物应用到330g硅胶(金)柱上,然后利用二氯甲烷中的0-5%异丙醇以200mL/分的速率洗脱柱。在第13-14分钟洗脱的作为单峰的级分被分离为1.3g黄色油。50mg这种物质的AIBN引发反应展示出坚硬的颗粒。
实施例7
聚合的硫酯
在0℃下,通过快速搅拌,经5分钟向含有0.4mL(4mmol)甲基丙烯酰氯的40mL干燥四氢呋喃(THF)中逐滴加入含有2.0g(1.33mmol)聚(乙二醇)二硫醇(mw=1500)和0.7mL(4.0mmol)二异丙基乙胺的20mL干燥THF。搅拌2小时后,将反应混合物加热至室温并在真空中除去溶剂。然后,使用100mL氯仿来溶解反应混合物并在真空中除去以带走甲基丙烯酰氯。
将反应混合物放在约30μm的真空线上过夜,形成了黄色固体。50μl异丙醇中的50mg这种物质的AIBN引发反应产生了海绵状黄色凝胶。
实施例8
吉夫胺缩水甘油胺
向11g吉夫胺(25mmol)中加入10.5g甲基丙烯酸缩水甘油酯(75mmol),随后加入4g硅胶和100mg丁羟甲苯。在20℃下搅拌反应混合物。2小时之后,向稠化的反应混合物中加入50mL氯仿并继续搅拌。另外18小时之后,加入额外的200mL氯仿,然后过滤反应混合物以除去硅胶并在真空中除去大部分溶剂。将残余物溶解在20mL异丙醇中,从而产生了40mL约50%的期望化合物。
实施例9
利用基于缩水甘油基的交联剂制备的膜
通过将1.4g 2-羟丙基丙烯酸酯(HPA)、0.4g丙烯酸钠和0.015g来自实施例1的基于缩水甘油基的交联剂溶解在4.0g蒸馏水中来制备预聚合物溶液。对这种溶液进行真空除气5分钟并用氩气冲洗。
通过将0.25g过硫酸铵溶解在1.0g蒸馏水中来制备引发剂溶液。此外,利用放置在四个角落的4个小分割物(例如,玻璃插入物)制备两块玻璃板。利用异丙醇将其擦干净。
将N,N,N’,N’-四甲基乙二胺(约50μL)加入预聚合物溶液中并混合溶液。1分钟之后,将约25μL引发剂溶液加入预聚合物溶液中同时搅拌。然后将该溶液倒在一块之前制备的玻璃板上,然后用第二块玻璃板覆盖并在顶上放置一定的重量。使其聚合2小时,然后放置在37℃烘箱中过夜。
实施例10
利用肽交联剂制备的膜
通过将1.9g丙烯酰胺、1.1g丙烯酸钠和0.1g来自实施例2的基于肽的交联剂溶解在10.0g蒸馏水中来制备预聚合物溶液。对这种溶液进行真空除气5分钟并用氩气冲洗。
通过将0.25g过硫酸铵溶解在1.0g蒸馏水中来制备引发剂溶液。此外,利用放置在四个角落的4个小分割物(例如,玻璃插入物)制备两块玻璃板。利用异丙醇将其擦干净。
将N,N,N’,N’-四甲基乙二胺(约64μL)加入预聚合物溶液中并混合溶液。1分钟之后,将约25μL引发剂溶液加入预聚合物溶液中同时搅拌。然后将该溶液倒在一块之前制备的玻璃板上,然后用第二块玻璃板覆盖并在顶上放置一定的重量。使其聚合2小时,然后放置在37℃烘箱中过夜。
实施例11
纯化膜
聚合完成之后,打开板并将膜切成期望的尺寸。然后将膜放在含有溶液的塑料烧杯中洗涤。优选的洗涤方法是穿过丙酮溶液梯度放置膜。持续约2小时,将膜悬浮在75%的溶剂、80%的溶剂、85%的溶剂、90%的溶剂、95%的溶剂和100%的溶剂中。此时,允许膜留在丙酮中过夜;第二天,将液体更换为新鲜的溶液。约6小时之后,使膜保持无溶剂以空气干燥并/或放置在真空烘箱中过夜。随后,包装膜并灭菌。
实施例12
测定膜对肝脏的粘着性
为了模拟如实施例9中所制备的粘附阻挡膜的使用,将样品放置在猪或牛肝脏上。膜在干燥或预水合状态下被应用,在器官上将其湿润。随时间检测样品的易处理性、柔韧性、坚固性和粘着性。样品的分级量表被分成三个部分,且加起来达到总体满分为10点。如下所述对柔韧性进行评分:(4)再次水和后不易破裂,(2)再次水和后容易破裂,(1)僵硬、在压力下为碎屑。如下所述对易处理性进行评分:(3)容易处理、无粘性,至(1)有粘性且粘住自身。如下所述对粘着性进行评分:(3)强粘着性,(2)一定的粘着性,但容易移动,(1)无粘着性。图1阐释了用于实施例9中的聚合物膜制品的各种单体的数据。
实施例13
测定体内降解性
将如实施例9中所制备的聚合物膜的1”×1″样品放置在含有45mL 0.01M磷酸盐缓冲盐水的的50mL锥形管中。将样品放置在37℃和55℃烘箱中进行监测。视觉分析包括膜的透明度、边缘完整性、膜的坚固性和膜在溶液中的粘度。样品的分级量表包括(5)边缘清晰的坚固膜,(3)仍然维持膜结构的大凝胶状块,和(1)无明显固体块的粘性液体。图2中阐释了分级结果。
取决于膜特征例如所用交联剂的量,在某些情况下降解耗费超过160天,而在其它情况下,降解耗费少于5天。图3阐释了基于缩水甘油基的交联剂膜样品降解所需的天数。
实施例14
四酯交联剂
向200mL梨形烧瓶中加入10g(84.8mmol)琥珀酸、40g(0.689mol)烯丙醇和30μL98%H2SO4。使反应混合物回流6小时,然后通过加入25mL1M碳酸钠溶液来淬灭。利用4×50mL乙酸乙酯萃取产物琥珀酸二烯丙酯。收集有机相并利用MgSO4干燥,然后在真空中除去溶剂,从而得到了9.26g琥珀酸二烯丙酯。
将5.2g(26.3mmol)琥珀酸二烯丙酯和20g(0.116mol)间氯过氧苯甲酸(mCPBA)溶解在1L圆底烧瓶中的400mL二氯甲烷中。使反应混合物在40℃下回流过夜。然后,使反应混合物通过Amberlyst游离碱柱以除去副产物间氯苯甲酸。在真空下除去溶剂以产生粗产物。使用己烷中5%-20%的乙酸乙酯、在210nm下的色谱分析产生了纯净的二缩水甘油基琥珀酸酯。
向20mL小瓶中加入1.15g(5mmol)二缩水甘油基琥珀酸酯、950mg(11mmol)甲基丙烯酸和1.5g(7mmol)1-丁基-3-甲基咪唑溴化物([bmim]Br)。在75℃下搅拌反应混合物。1小时之后,TLC显示不存在环氧化物。将反应混合物悬浮在50mL 1M碳酸钠溶液中并利用3×50mL的乙酸乙酯萃取产物。收集有机层并经过MgSO4干燥,然后在真空中浓缩。利用50∶50的乙酸乙酯∶二氯甲烷运行的TLC仅显示出一个斑点。收集到了2g四酯交联剂,产率为99%。
实施例15
四硫酯交联剂
在冷冻为0℃的氩气中,向500mL三颈圆底烧瓶中加入100mL干燥THF。在搅拌下,加入20g(0.11mol)2,2’-(亚乙二氧基)二乙硫醇和16mL(0.09mol)二异丙基乙胺。将5mL(0.045mol)琥珀酰氯溶解在40mL干燥THF中。在氩气中,剧烈搅拌下通过加料漏斗将溶液逐滴加入到0℃的反应混合物中。加入之后,在0℃下搅拌反应混合物1小时,然后允许其回温至室温以搅拌过夜。然后在真空中浓缩反应混合物。使用DCM中0%-15%的乙酸乙酯、在254nm下的快速色谱分析产生了二硫醇酯中间物。
在冷冻为0℃的氩气中,向250mL三颈圆底烧瓶中加入50mL干燥THF。在搅拌下,加入3.17g(7.1mol)二硫醇酯中间物和3.6mL(20mmol)二异丙基乙胺。将2mL(20mmol)甲基丙烯酰氯溶解在50mL干燥THF中。在氩气中,剧烈搅拌下通过加料漏斗将溶液逐滴加入到0℃的反应混合物中。加入之后,在0℃下搅拌反应混合物1小时,然后允许其回温至室温以搅拌过夜。然后在真空中浓缩反应混合物。使用二氯甲烷中0%-10%的乙酸乙酯、在254nm下的快速色谱分析在第4-12分钟洗脱期望的四硫醇酯交联剂。对应于C24H38O8S4的计算质量的[M+Na]+,质谱分析给出了605.1。
前述公开内容是示例性实施方式。本领域技术人员应该理解:本文公开的设备、技术和方法阐明了在本公开的实践中运行良好的代表性实施方式。然而,本领域技术人员根据本说明书应该意识到:在公开的具体实施方式中可进行许多改变并仍然获得类似或相似的结果而不脱离本发明的精神和范围。
除非另有说明,本说明书和权利要求书中使用的表示成分数量,以及分子量、反应条件等性质的所有数字都应当被理解为:在所有情况下由术语“约”修饰。因此,除非有相反含义的说明,本说明书和所附权利要求书中所述的数值参数为近似值,其可以因本发明试图得到的期望性质而异。至少,并不企图限制将等同原则应用于权利要求书的范围,每个数值参数至少应按照经报导的有效数字的位数并通过应用常规约数技术解释。尽管阐述了本发明广泛范围的数值范围和参数是近似值,但是具体实施例中阐述的数值范围和参数则是尽可能精确地报导的。然而,任何数值固有地包含一定的误差,这是从它们各自的检测测量中发现的标准差必然地产生的。
在描述本发明的上下文中(特别是权利要求书的上下文中)所使用的术语“一个”、“一种”、“该”和类似的指代对象以及不使用术语应被解释为同时包括单数和复数,除非在本文中另有说明或上下文明显地否定。本文中数值范围的列举仅意欲作为分别指每个落入所述范围内的单独数值的简略表达方法,除非本文另有说明,每个单独的数值均如其在本文中被单独地引用一样纳入本说明书。本文描述的所有方法可以任意合适的顺序进行,除非本文另有说明或上下文明确地否定。本文提供的任意和所有实施例,或示例性用语(例如,“诸如”)的使用仅意欲更好地说明本发明并且不限制本发明原本要求保护的范围。本说明书中的用语不应被解释为指示实施本发明所必需的任何未要求保护的元素。
除非明确指出仅指某种替代方式或者替代方式之间互相排斥,否则权利要求中所用术语“或”用来表示“和/或”,但是说明书支持仅指某种替代方式和“和/或”的限定。
本文公开的本发明的替代要素或实施方式的分组不应被理解为限制。每个组成员可被个别提到和要求保护,或以与该组其它成员或本文中找到的其它要素的任何组合被提到和要求保护。可以预见到,为了方便和/或可专利性的理由,组中的一个或多个成员可被包括进一组或从中删除。当任何此类包括或删除发生时,说明书在此被看作为含有经过改动的组,因此满足对所附权利要求书中所用的全部马库什组的书面描述。
本文中描述了本发明的优选实施方式,其包括发明人已知用来实施本发明的最佳方式。当然,在阅读前述说明书的基础上,对这些优选实施方式的改动对于本领域普通技术人员来说将是明显的。本发明的发明人预见了本领域技术人员合适地采用此类改动,发明人预期本发明可以以除了本文具体描述的方式之外的方式被实现。因此,只要适用法律允许,本发明包括对所附权利要求中提到的主题进行的所有改动和等同物。此外,所有可能的变化中,上面提到的要素的任何组合都被包括进本发明,除非本文另有指明,或与上下文明显矛盾。
权利要求书中可使用语言“由…组成”或“基本上由…组成”进一步限制本文公开的具体实施方式。当用于权利要求书时,每书写或增加一种修改,“由……组成”这一过渡术语不包含权利要求书中没有明确的任何元件、步骤或成分。“基本上由…组成”这一过渡术语把权利要求书的范围限定到具体的材料或步骤以及那些不会实质上影响基本特性和新颖性特性的材料和步骤。本文中固有地或明确地描述和允许所要求保护的本发明的实施方式。
此外,本说明书中提到了大量参考文献,包括专利和印刷公开物。上述参考文献和印刷公开物中的每种在此都通过引用被分别并入本文中。
另外,应该理解:本文公开的本发明的实施方式说明了本发明的原理。可应用的其它修改也在本发明的范围内。因此,通过示例而非限制的方式,可根据本文的教导利用本发明的替代形式。因此,本发明并非被限制为如精确地所示和所述的。

Claims (23)

1.聚合物膜,其包含:
至少一种含有至少一种官能团的单体;和
至少一种交联剂,所述交联剂选自双-缩水甘油基氨基醇,双官能甲基丙烯酰基-Ala-Pro-Gly-Leu-AEE-甲基丙烯酸酯,
其中a、b、c、d、e和f各自独立地为1-20;
其中所述聚合物膜的厚度为40μm至1200μm且所述聚合物膜是可生物降解的。
2.权利要求1所述的聚合物膜,其中所述聚合物膜的形状选自圆形、正方形、矩形、三角形、椭圆形或五角形。
3.权利要求1所述的聚合物膜,其中所述至少一种官能团是丙烯酸酯、丙烯酰胺、甲基丙烯酸酯或甲基丙烯酰胺。
4.权利要求1所述的聚合物膜,其中所述至少一种单体包含可电离的官能团。
5.权利要求4所述的聚合物膜,其中所述可电离的官能团是碱性的。
6.权利要求4所述的聚合物膜,其中所述可电离的官能团是酸性的。
7.权利要求1所述的聚合物膜,其中所述至少一种交联剂包含至少两种官能团。
8.权利要求1所述的聚合物膜,其中所述交联剂包含至少一种容易通过水解或酶促作用而降解的连接键。
9.权利要求8所述的聚合物膜,其中所述至少一种连接键是酯、硫酯、碳酸酯、氨基甲酸酯、可被基质金属蛋白酶裂解的肽、可被基质胶原酶裂解的肽、可被基质弹性蛋白酶裂解的肽、可被基质组织蛋白酶裂解的肽或其组合。
10.权利要求9所述的聚合物膜,其包含第二交联剂,所述第二交联剂包含选自酯、硫酯、碳酸酯、氨基甲酸酯、可被基质金属蛋白酶裂解的肽、可被基质胶原酶裂解的肽、可被基质弹性蛋白酶裂解的肽和可被基质组织蛋白酶裂解的肽的第二连接键。
11.权利要求1所述的聚合物膜,其中所述聚合物膜在植入6个月内大幅降解。
12.权利要求1所述的聚合物膜,其中所述聚合物膜在植入1个月内大幅降解。
13.权利要求1所述的聚合物膜,其小所述至少一种单体是丙烯酰胺且所述至少一种交联剂是双-缩水甘油基氨基醇。
14.权利要求1所述的聚合物膜,其小所述至少一种单体是丙烯酰胺且所述至少一种交联剂是双官能甲基丙烯酰基-Ala-Pro-Gly-Leu-AEE-甲基丙烯酸酯。
15.制造聚合物膜的方法,所述方法包括:
使包含至少一种含有至少一种官能团的单体、至少一种对降解敏感的交联剂、和引发剂的预聚合物溶液反应;并
形成聚合物膜,其中所述聚合物膜的厚度为40μm至1200μm,其中所述至少一种交联剂选自双-缩水甘油基氨基醇,双官能甲基丙烯酰基-Ala-Pro-Gly-Leu-AEE-甲基丙烯酸酯,
其中a、b、c、d、e和f各自独立地为1-20。
16.权利要求15所述的方法,其中所述膜在包含至少一个垫片的两块板之间形成。
17.权利要求15所述的方法,其中所述引发剂是N,N,N’,N’-四甲基乙二胺。
18.权利要求15所述的方法,其中所述聚合物膜的形状选自圆形、正方形、矩形、三角形、椭圆形或五角形。
19.权利要求15所述的方法,其中所述至少一种官能团是丙烯酸酯、丙烯酰胺、甲基丙烯酸酯或甲基丙烯酰胺。
20.权利要求15所述的方法,其中所述聚合物膜是可生物降解的。
21.权利要求20所述的方法,其中所述聚合物膜在植入1个月内大幅降解。
22.权利要求20所述的方法,其小所述至少一种单体是丙烯酰胺且所述至少一种交联剂是双-缩水甘油基氨基醇。
23.权利要求20所述的方法,其中所述至少一种单体是丙烯酰胺且所述至少一种交联剂是双官能甲基丙烯酰基-Ala-Pro-Gly-Leu-AEE-甲基丙烯酸酯。
CN201480051681.2A 2013-09-19 2014-09-19 聚合物膜 Active CN105555847B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361880029P 2013-09-19 2013-09-19
US61/880,029 2013-09-19
PCT/US2014/056647 WO2015042462A1 (en) 2013-09-19 2014-09-19 Polymer films

Publications (2)

Publication Number Publication Date
CN105555847A CN105555847A (zh) 2016-05-04
CN105555847B true CN105555847B (zh) 2018-08-10

Family

ID=52668197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480051681.2A Active CN105555847B (zh) 2013-09-19 2014-09-19 聚合物膜

Country Status (9)

Country Link
US (3) US9408916B2 (zh)
EP (1) EP3046956B1 (zh)
JP (2) JP6641265B2 (zh)
KR (2) KR102505172B1 (zh)
CN (1) CN105555847B (zh)
AU (1) AU2014321278B2 (zh)
BR (1) BR112016005768B1 (zh)
CA (1) CA2923741C (zh)
WO (1) WO2015042462A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015042462A1 (en) 2013-09-19 2015-03-26 Microvention, Inc. Polymer films
KR102352098B1 (ko) 2013-09-19 2022-01-14 테루모 가부시키가이샤 중합체 입자
CA2929235C (en) 2013-11-08 2018-07-17 Terumo Corporation Polymer particles
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US10426497B2 (en) 2015-07-24 2019-10-01 Route 92 Medical, Inc. Anchoring delivery system and methods
CN112155656B (zh) 2015-02-04 2025-02-25 92号医疗公司 快速抽吸血栓清除系统和方法
US11065019B1 (en) 2015-02-04 2021-07-20 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US9907880B2 (en) 2015-03-26 2018-03-06 Microvention, Inc. Particles
CN113350655B (zh) 2016-02-24 2024-03-19 禾木(中国)生物工程有限公司 柔性增强的神经血管导管
US10328175B2 (en) 2016-09-28 2019-06-25 Terumo Corporation Polymer particles
KR101868113B1 (ko) * 2016-12-19 2018-06-18 주식회사 인터코스 마스크팩의 제조방법
EP3565511B1 (en) 2017-01-06 2023-10-18 Incept, LLC Thromboresistant coatings for aneurysm treatment devices
CN120168816A (zh) 2017-01-10 2025-06-20 92号医疗公司 导管、血管内导管前进装置及系统
CN119908793A (zh) 2017-01-20 2025-05-02 92号医疗公司 用于进入颅内神经脉管系统的快速交换微导管和系统
US11395665B2 (en) 2018-05-01 2022-07-26 Incept, Llc Devices and methods for removing obstructive material, from an intravascular site
CA3095844A1 (en) 2018-05-01 2019-11-07 Incept, Llc Devices and methods for removing obstructive material from an intravascular site
CN115999019B (zh) 2018-05-17 2025-05-27 92号医疗公司 抽吸导管系统和使用方法
WO2020010310A1 (en) 2018-07-06 2020-01-09 Imperative Care, Inc. Sealed neurovascular extendable catheter
US11471582B2 (en) 2018-07-06 2022-10-18 Incept, Llc Vacuum transfer tool for extendable catheter
US11766539B2 (en) 2019-03-29 2023-09-26 Incept, Llc Enhanced flexibility neurovascular catheter
JP7649438B2 (ja) 2019-10-15 2025-03-21 カンドゥー、ヘルス、インコーポレイテッド 多変量的に脳卒中を検出するためのシステム及び方法
CN113365687A (zh) 2019-12-18 2021-09-07 因普瑞缇夫护理公司 治疗静脉血栓栓塞疾病的方法和系统
US11553935B2 (en) 2019-12-18 2023-01-17 Imperative Care, Inc. Sterile field clot capture module for use in thrombectomy system
US20210315598A1 (en) 2019-12-18 2021-10-14 Imperative Care, Inc. Methods of placing large bore aspiration catheters
EP4117762A4 (en) 2020-03-10 2024-05-08 Imperative Care, Inc. NEUROVASCULAR CATHETER WITH ENHANCED FLEXIBILITY
US11207497B1 (en) 2020-08-11 2021-12-28 Imperative Care, Inc. Catheter with enhanced tensile strength
WO2022076893A1 (en) 2020-10-09 2022-04-14 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US20230046468A1 (en) 2021-08-12 2023-02-16 Imperative Care, Inc. Catheter drive system for supra-aortic access
USD1077996S1 (en) 2021-10-18 2025-06-03 Imperative Care, Inc. Inline fluid filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015913A1 (en) * 2000-08-23 2002-02-28 Phairson Medical, Inc. Treatment of trauma, and other indications
CN101018812A (zh) * 2004-09-15 2007-08-15 生化学工业株式会社 光反应性多糖,光交联的多糖产品,其制备方法和从交联多糖制备的医药材料
CN101024729A (zh) * 2001-03-13 2007-08-29 微温森公司 响应周围环境变化发生体积膨胀的水凝胶及其生产方法和应用

Family Cites Families (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070348A (en) 1973-07-25 1978-01-24 Rohm Gmbh Water-swellable, bead copolymer
US4157323A (en) 1976-06-09 1979-06-05 California Institute Of Technology Metal containing polymeric functional microspheres
US6309669B1 (en) 1984-03-16 2001-10-30 The United States Of America As Represented By The Secretary Of The Army Therapeutic treatment and prevention of infections with a bioactive materials encapsulated within a biodegradable-biocompatible polymeric matrix
FR2596399B1 (fr) 1986-03-28 1988-09-02 Univ Rennes Nanoparticules a base de polymere ou copolymere methacrylique, procede de preparation, et application comme vecteur de medicament
US4925677A (en) 1988-08-31 1990-05-15 Theratech, Inc. Biodegradable hydrogel matrices for the controlled release of pharmacologically active agents
FR2676927B1 (fr) 1991-05-29 1995-06-23 Ibf Microspheres utilisables pour les occlusions vasculaires therapeutiques et solutions injectables les contenant.
US5545423A (en) 1991-11-25 1996-08-13 Vivorx, Inc. Cytoprotective, biocompatible, retrievable macrocapsule containment systems for biologically active materials
PT627911E (pt) 1992-02-28 2001-04-30 Univ Texas Hidrogeis biodegradaveis fotopolimerizaveis como materiais de contacto de tecidos e veiculos de libertacao controlada
JPH05279416A (ja) * 1992-03-31 1993-10-26 Ajinomoto Co Inc 親水性生分解性高分子
KR100297541B1 (ko) 1992-12-13 2001-11-26 마티에우 디올라이티 방출제어형약학적제형의제조방법및이방법에의해제조된약학적제형
NO940115D0 (no) 1994-01-13 1994-01-13 Nycomed Imaging As Kontrastmidler for roentgen- og magnettomografisk avbildning
US5417982A (en) 1994-02-17 1995-05-23 Modi; Pankaj Controlled release of drugs or hormones in biodegradable polymer microspheres
GB9406094D0 (en) 1994-03-28 1994-05-18 Univ Nottingham And University Polymer microspheres and a method of production thereof
DE19543366C2 (de) 1995-11-21 1998-09-10 Stockhausen Chem Fab Gmbh Mit ungesättigten Aminoalkoholen vernetzte, wasserquellbare Polymerisate, deren Herstellung und Verwendung
US5906997A (en) 1997-06-17 1999-05-25 Fzio Med, Inc. Bioresorbable compositions of carboxypolysaccharide polyether intermacromolecular complexes and methods for their use in reducing surgical adhesions
US6048908A (en) 1997-06-27 2000-04-11 Biopore Corporation Hydrophilic polymeric material
SE9704401D0 (sv) 1997-11-28 1997-11-28 Astra Ab Matrix pellets for greasy, oily or sticky drug substances
EP1059943B1 (en) 1998-03-06 2004-12-01 Biosepra Medical Inc. Implantable particles for tissue bulking and the treatment of gastroesophageal reflux disease, urinary incontinence, and skin wrinkles
US7662409B2 (en) 1998-09-25 2010-02-16 Gel-Del Technologies, Inc. Protein matrix materials, devices and methods of making and using thereof
FR2784580B1 (fr) 1998-10-16 2004-06-25 Biosepra Inc Microspheres de polyvinyl-alcool et procedes de fabrication de celles-ci
US8802146B2 (en) 1998-11-06 2014-08-12 Neomend, Inc. Systems, methods, and compositions for prevention of tissue adhesion
US6248363B1 (en) 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
WO2000066125A1 (en) 1999-04-29 2000-11-09 Aventis Pharma S.A. Method for treating cancer using camptothecin derivatives and 5-fluorouracil
US6521431B1 (en) * 1999-06-22 2003-02-18 Access Pharmaceuticals, Inc. Biodegradable cross-linkers having a polyacid connected to reactive groups for cross-linking polymer filaments
JP2003525682A (ja) 2000-03-06 2003-09-02 シメッド ライフ システムズ インコーポレイテッド 超音波下で目視できる塞栓剤
CA2402774C (en) 2000-03-13 2011-09-06 Biocure, Inc. Microsphere hydrogel biomedical articles
US6436424B1 (en) 2000-03-20 2002-08-20 Biosphere Medical, Inc. Injectable and swellable microspheres for dermal augmentation
CN1430505A (zh) 2000-03-24 2003-07-16 生物领域医疗公司 用于主动栓塞术的微球体
US7858119B1 (en) 2000-05-09 2010-12-28 Amina Odidi Extended release pharmaceuticals
WO2002009792A1 (en) 2000-07-28 2002-02-07 Anika Therapeutics, Inc. Bioabsorbable composites of derivatized hyaluronic acid
EP1320553A4 (en) * 2000-08-23 2006-03-15 Phairson Medical Inc Novel polymer compounds
NZ528957A (en) 2001-04-18 2005-05-27 Nostrum Pharmaceuticals Inc A novel coating for a sustained release pharmaceutical composition
US6685956B2 (en) 2001-05-16 2004-02-03 The Research Foundation At State University Of New York Biodegradable and/or bioabsorbable fibrous articles and methods for using the articles for medical applications
WO2003059988A2 (en) 2002-01-14 2003-07-24 The General Hospital Corporation Biodegradable polyketal polymers and methods for their formation and use
US7770728B2 (en) 2002-01-28 2010-08-10 Coloplast A/S Package
JP2003245544A (ja) 2002-02-21 2003-09-02 Dainippon Ink & Chem Inc 吸水性材料
US7462366B2 (en) 2002-03-29 2008-12-09 Boston Scientific Scimed, Inc. Drug delivery particle
US7094369B2 (en) 2002-03-29 2006-08-22 Scimed Life Systems, Inc. Processes for manufacturing polymeric microspheres
US7838699B2 (en) 2002-05-08 2010-11-23 Biosphere Medical Embolization using degradable crosslinked hydrogels
US8258254B2 (en) 2002-06-17 2012-09-04 Nec Corporation Biodegradable resin, biodegradable resin composition, biodegradable molded object, and process for producing biodegradable resin
GB2399084B (en) 2002-07-30 2007-01-31 Univ Liverpool Porous beads and method of production thereof
AU2003259723B2 (en) 2002-08-09 2009-04-23 Boston Scientific Limited Embolization
US7842377B2 (en) 2003-08-08 2010-11-30 Boston Scientific Scimed, Inc. Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient
US7449236B2 (en) 2002-08-09 2008-11-11 Boston Scientific Scimed, Inc. Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient
CA2503949C (en) 2002-10-29 2012-10-23 Toray Industries, Inc. Embolization material
ATE531447T1 (de) 2003-01-17 2011-11-15 Cornell Res Foundation Inc Injizierbare hydrogel-microsphären aus wässrigem zwei-phasen-system
US7144588B2 (en) 2003-01-17 2006-12-05 Synovis Life Technologies, Inc. Method of preventing surgical adhesions
US20040161466A1 (en) 2003-02-14 2004-08-19 Biocompatibles Uk Limited Chemoembolisation
JP4793816B2 (ja) 2003-03-14 2011-10-12 独立行政法人産業技術総合研究所 マクロ分子識別ポリマーの製造方法
CN1845725A (zh) 2003-08-06 2006-10-11 尼马尔·穆利耶 包含水溶性药物的药物组合物
US7192693B2 (en) * 2004-02-24 2007-03-20 University Of Washington Methods for photopatterning hydrogels
US7736671B2 (en) 2004-03-02 2010-06-15 Boston Scientific Scimed, Inc. Embolization
US20050267556A1 (en) 2004-05-28 2005-12-01 Allan Shuros Drug eluting implants to prevent cardiac apoptosis
JP5221134B2 (ja) 2004-09-07 2013-06-26 バイオコンパティブルズ ユーケー リミテッド 塞栓剤からの薬物送達
US8367099B2 (en) 2004-09-28 2013-02-05 Atrium Medical Corporation Perforated fatty acid films
US7332159B2 (en) 2004-09-30 2008-02-19 Board Of Regents Of The University Of Nebraska Method and composition for inhibiting reperfusion injury in the brain
ATE503465T1 (de) 2004-10-25 2011-04-15 Celonova Biosciences Germany Gmbh Beladbare polyphosphazenhaltige teilchen für therapeutische und/oder diagnostische anwendungen sowie herstellungs- und verwendungsverfahren dafür
US9114162B2 (en) 2004-10-25 2015-08-25 Celonova Biosciences, Inc. Loadable polymeric particles for enhanced imaging in clinical applications and methods of preparing and using the same
US9107850B2 (en) 2004-10-25 2015-08-18 Celonova Biosciences, Inc. Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same
US20210299056A9 (en) 2004-10-25 2021-09-30 Varian Medical Systems, Inc. Color-Coded Polymeric Particles of Predetermined Size for Therapeutic and/or Diagnostic Applications and Related Methods
DE602006016915D1 (de) 2005-01-28 2010-10-28 Tepha Inc Embolisierung unter verwendung von poly-4-hydroxybutyrat-partikeln
US20060222596A1 (en) 2005-04-01 2006-10-05 Trivascular, Inc. Non-degradable, low swelling, water soluble radiopaque hydrogel polymer
KR100618382B1 (ko) 2005-05-03 2006-08-31 삼성전자주식회사 혈액의 핵자기 공명 종축 이완시간을 측정하는 방법 및장치
US8226926B2 (en) 2005-05-09 2012-07-24 Biosphere Medical, S.A. Compositions and methods using microspheres and non-ionic contrast agents
US8343546B2 (en) 2005-09-13 2013-01-01 Coating Place, Inc. Ion exchange resin treated to control swelling
WO2007035296A2 (en) * 2005-09-15 2007-03-29 University Of Utah Research Foundation Polymeric compositions and methods of making and using thereof
CA2636817C (en) * 2006-01-12 2015-11-03 Massachusetts Institute Of Technology Biodegradable elastomers
ATE520427T1 (de) 2006-01-30 2011-09-15 Biosphere Medical Inc Poröse intravaskuläre embolisierungsteilchen und verfahren zu deren herstellung
EP1986707A2 (en) 2006-01-30 2008-11-05 Surgica Corporation Compressible intravascular embolization particles and related methods and delivery systems
JP5238514B2 (ja) 2006-02-10 2013-07-17 バイオコンパティブルズ ユーケー リミテッド 親水性ポリマー送達システムへの疎水性薬剤の負荷
WO2007098932A2 (de) 2006-02-28 2007-09-07 Evonik Stockhausen Gmbh Biologisch abbaubare superabsorbierende polymerzusammensetzung mit guten absorptions- und retentionseigenschaften
US8252339B2 (en) 2006-04-11 2012-08-28 Massachusetts Institute Of Technology Medical treatment applications of swellable and deformable microspheres
US7838035B2 (en) 2006-04-11 2010-11-23 E. I. Du Pont De Nemours And Company Microsphere powder of high density, swellable, deformable, durable occlusion-forming microspheres
US8062673B2 (en) 2006-04-11 2011-11-22 E I Du Pont De Nemours And Company Process for embolization using swellable and deformable microspheres
US7794755B2 (en) 2006-04-11 2010-09-14 E.I. Du Pont De Nemours And Company Process for preparation of swellable and deformable microspheres
KR100722607B1 (ko) 2006-05-11 2007-05-28 주식회사 펩트론 분산성 및 주사 투여능이 향상된 서방성 미립구의 제조방법
WO2007133807A2 (en) 2006-05-15 2007-11-22 Massachusetts Institute Of Technology Polymers for functional particles
FR2906253A1 (fr) 2006-09-22 2008-03-28 Biosphere Medical Sa Nouveaux materiaux polymeres bio-compatibles, leur procede d'obtention et leurs utilisations, notamment en imagerie medicale par resonnance magnetique
WO2008057163A2 (en) 2006-10-09 2008-05-15 Carnegie Mellon University Preparation of functional gel particles with a dual crosslink network
GB0620504D0 (en) 2006-10-16 2006-11-22 Queen Mary & Westfield College Method
US7649022B2 (en) * 2007-03-30 2010-01-19 Medivas, Llc Bioabsorbable elastomeric polymer networks, cross-linkers and methods of use
EP1985286A1 (en) 2007-04-24 2008-10-29 Biocompatibles UK Limited Microspheres for treatment of brain tumours
WO2008136536A1 (ja) 2007-05-01 2008-11-13 National University Corporation Tokyo Medical And Dental University 化学架橋ヒアルロン酸誘導体を含むハイブリッドゲルおよびそれを用いた医薬組成物
KR100899147B1 (ko) 2007-05-04 2009-05-27 한양대학교 산학협력단 메타 데이터 저장 방법 및 메타 데이터 저장 시스템
US8492334B2 (en) 2007-06-21 2013-07-23 Yale University Sustained intraocular delivery of drugs from biodegradable polymeric microparticles
US8110226B2 (en) 2007-07-20 2012-02-07 Mylan Pharmaceuticals Inc. Drug formulations having inert sealed cores
WO2009015281A2 (en) 2007-07-25 2009-01-29 Basf Corporation Epoxy and hydroxy-functional acrylic resins for use in coating applications
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US7887846B2 (en) 2007-08-07 2011-02-15 E. I. Du Pont De Nemours And Company Process for preparation of swellable and degradable microspheres
GB0717516D0 (en) 2007-09-07 2007-10-17 Imp Innovations Ltd Bioactive nanocomposite material
EP2205224A1 (en) 2007-09-26 2010-07-14 DSM IP Assets B.V. Microparticle comprising cross-linked polymer
US9107828B2 (en) 2007-10-05 2015-08-18 Boston Scientific Scimed, Inc. Multi-component particles for injection and processes for forming the same
US8246998B2 (en) 2007-11-01 2012-08-21 Boston Scientific Scimed, Inc. Injectable biodegradable particles
EP2229147A2 (en) 2007-12-03 2010-09-22 The Johns Hopkins University Methods of synthesis and use of chemospheres
EP2231215B1 (en) 2007-12-21 2019-01-30 MicroVention, Inc. Hydrogel filaments for biomedical uses
US20110033608A1 (en) 2008-03-06 2011-02-10 E.I. Du Pont De Nemours And Company Process for making coated, water-swellable hydrogel microspheres
WO2009117542A2 (en) 2008-03-20 2009-09-24 E. I. Du Pont De Nemours And Company Dimensionally stable, shaped articles comprised of dried, aggregated, water-swellable hydrogel microspheres and method of making same
US8114436B2 (en) 2008-03-25 2012-02-14 Boston Scientific Scimed, Inc. Compositions and methods for delivery of embolics
US8426481B2 (en) 2008-03-28 2013-04-23 Biotage Ab Composite material
AU2009239543B2 (en) 2008-04-21 2013-09-12 Championx Llc Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
EP2265262A1 (en) 2008-04-25 2010-12-29 DSM IP Assets B.V. Particles comprising polymers with thioester bonds
US8557288B2 (en) 2008-08-15 2013-10-15 Washington University Hydrogel microparticle formation in aqueous solvent for biomedical applications
CN102131569B (zh) 2008-08-20 2015-06-03 可隆工业株式会社 多孔膜及其制备方法
CN102143996A (zh) 2008-10-30 2011-08-03 大卫·刘 微球形多孔可生物相容支架及制造该支架的方法和装置
EP2367535B1 (en) 2008-12-02 2017-02-22 Biocompatibles Uk Ltd. Pancreatic tumour treatment
BRPI0922385B1 (pt) * 2008-12-16 2019-06-18 Carlsberg A/S Método para revestimento de superfícies hidroxiladas por enxerto em fase gasosa, material com superfície revestida e item
JP2012100680A (ja) 2009-03-04 2012-05-31 Terumo Corp 血管内用処置材
JP2010227172A (ja) 2009-03-26 2010-10-14 Terumo Corp 軟組織増大材料
US8481067B2 (en) 2009-06-04 2013-07-09 Clemson University Research Foundation Methods for promoting the revascularization and reenervation of CNS lesions
US20120123355A1 (en) 2009-07-30 2012-05-17 Cook Medical Technologied Erodible embolization material
US20110033548A1 (en) 2009-08-05 2011-02-10 E.I. Du Pont De Nemours And Company Degradable crosslinked aminated dextran microspheres and methods of use
US20110038936A1 (en) 2009-08-17 2011-02-17 Kimberly Ann Griswold System and method for electrospun drug loaded biodegradable chemotherapy applications
EP2295480A1 (en) * 2009-09-10 2011-03-16 Occlugel Implantable bio-resorbable polymer
CA2777083C (en) 2009-10-06 2014-11-25 Regents Of The University Of Minnesota Bioresorbable embolization microspheres
RU2725890C2 (ru) 2009-12-04 2020-07-07 Магле Аб Микросферы гидролизованного крахмала с эндогенными заряженными лигандами
US8366661B2 (en) 2009-12-18 2013-02-05 Boston Scientific Scimed, Inc. Medical device with expandable body for drug delivery by capsules
EP2351779B1 (en) 2010-01-27 2019-04-24 Biosphere Medical, Inc. Microspheres and method of making the microspheres
SG183363A1 (en) 2010-02-22 2012-09-27 Edge Therapeutics Inc Methods and compositions to treat hemorrhagic conditions of the brain
JP2011201031A (ja) 2010-03-24 2011-10-13 Dic Corp 積層構造を有する高分子基材、及びそれを用いた医療器具
JP2011245267A (ja) 2010-04-27 2011-12-08 Dic Corp 硫酸化多糖固定化多孔性高分子基材及び医療器具
US8772355B2 (en) 2010-11-23 2014-07-08 Howard University Stealth polymeric particles for delivery of bioactive or diagnostic agents
US9724421B2 (en) 2010-11-29 2017-08-08 Centre Hospitalier Universitaire Vaudois Chemoembolization composition comprising anti-angiogenic agents
JP2012170773A (ja) 2011-02-24 2012-09-10 Hamamatsu Univ School Of Medicine 制御ラジカル重合反応を利用して得られる糖類固定化高分子基材、及び医療器具
JP5140211B2 (ja) 2011-03-04 2013-02-06 Dic株式会社 糖類固定化ウイルス除去用基材、及びウイルスの除去器具
ES2632769T3 (es) 2011-03-09 2017-09-15 Occlugel Polímero biorreabsorbible hinchable implantable
JP2012187308A (ja) 2011-03-11 2012-10-04 Hamamatsu Univ School Of Medicine 硫酸化多糖固定化基材、及びそれを用いたウイルスの除去方法
WO2012133737A1 (ja) * 2011-03-31 2012-10-04 公益財団法人地球環境産業技術研究機構 架橋性アミン化合物、該化合物を用いた高分子膜及びその製造方法
US9456823B2 (en) 2011-04-18 2016-10-04 Terumo Corporation Embolic devices
BR112013027057A2 (pt) * 2011-04-21 2020-08-11 Trustees Of Tufts College composições e métodos para a estabilização de agentes ativos
US20140171619A1 (en) * 2011-05-27 2014-06-19 The University Of Akron Peptide-crosslinked bioactive polymeric materials
US20140311347A1 (en) 2011-12-01 2014-10-23 The Regents Of The University Of California Polaniline based membranes for separation of carbon dioxide and methane
CA2866896C (en) 2012-05-24 2021-01-26 Biosphere Medical, Inc. Biomaterials suitable for use as drug eluting, magnetic resonance imaging detectable implants for vascular occlusion
CN104271171A (zh) 2012-05-30 2015-01-07 波士顿科学医学有限公司 用于受控的治疗剂释放的可注射生物可降解颗粒
WO2014034787A1 (ja) 2012-08-31 2014-03-06 Dic株式会社 ウイルス除去可能な透析装置
TWI519339B (zh) 2012-12-28 2016-02-01 財團法人工業技術研究院 過濾膜
JP6031405B2 (ja) 2013-05-01 2016-11-24 株式会社Adeka ベンゾトリアゾール化合物
KR102352098B1 (ko) * 2013-09-19 2022-01-14 테루모 가부시키가이샤 중합체 입자
WO2015042462A1 (en) 2013-09-19 2015-03-26 Microvention, Inc. Polymer films
CA2929235C (en) 2013-11-08 2018-07-17 Terumo Corporation Polymer particles
CN103709323A (zh) 2013-12-04 2014-04-09 天津工业大学 一种肝靶向温敏微球及其制备方法
CN106456836B (zh) 2014-04-29 2019-12-06 微仙美国有限公司 包含活性剂的聚合物
US9907880B2 (en) 2015-03-26 2018-03-06 Microvention, Inc. Particles
US10328175B2 (en) 2016-09-28 2019-06-25 Terumo Corporation Polymer particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015913A1 (en) * 2000-08-23 2002-02-28 Phairson Medical, Inc. Treatment of trauma, and other indications
CN101024729A (zh) * 2001-03-13 2007-08-29 微温森公司 响应周围环境变化发生体积膨胀的水凝胶及其生产方法和应用
CN101018812A (zh) * 2004-09-15 2007-08-15 生化学工业株式会社 光反应性多糖,光交联的多糖产品,其制备方法和从交联多糖制备的医药材料

Also Published As

Publication number Publication date
BR112016005768A2 (pt) 2017-11-21
KR102340388B1 (ko) 2021-12-17
KR20160060051A (ko) 2016-05-27
KR102505172B1 (ko) 2023-02-28
KR20210156300A (ko) 2021-12-24
US20190194406A1 (en) 2019-06-27
US11104772B2 (en) 2021-08-31
US10227463B2 (en) 2019-03-12
JP6641265B2 (ja) 2020-02-05
EP3046956A1 (en) 2016-07-27
CA2923741A1 (en) 2015-03-26
JP2016531955A (ja) 2016-10-13
AU2014321278A1 (en) 2016-03-17
BR112016005768B1 (pt) 2021-09-21
AU2014321278B2 (en) 2016-11-10
JP2020097740A (ja) 2020-06-25
US20150079328A1 (en) 2015-03-19
WO2015042462A1 (en) 2015-03-26
US9408916B2 (en) 2016-08-09
EP3046956B1 (en) 2019-08-28
CA2923741C (en) 2022-06-07
EP3046956A4 (en) 2017-05-17
CN105555847A (zh) 2016-05-04
US20160311990A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
CN105555847B (zh) 聚合物膜
CN105814120B (zh) 聚合物颗粒
CN1327908C (zh) 凝胶材料、医用品和方法
Kloxin et al. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms
Tsitsilianis et al. Thermoresponsive hydrogels based on telechelic polyelectrolytes: from dynamic to “frozen” networks
CN106496568B (zh) 一种清洁抗污型两亲性共聚物网络及其制备方法
Rikkou-Kalourkoti et al. Synthesis and characterization of end-linked amphiphilic copolymer conetworks based on a novel bifunctional cleavable chain transfer agent
Ros et al. Synthesis and Properties of Charge-Shifting Polycations: Poly [3-aminopropylmethacrylamide-co-2-(dimethylamino) ethyl acrylate]
CN115124804B (zh) 一种组合物
EP2164881B1 (de) Verwendung eines quellbaren polymers zum abdichten
CN103146636A (zh) 一种分级结构微载体及其制备方法和应用
Previtera et al. Preparation of DNA-crosslinked polyacrylamide hydrogels
JP4940463B2 (ja) 水除去性美爪料
JP2011254719A (ja) 細胞培養用基材、培養基材の製造方法、細胞培養方法および細胞回収方法
CN104371087B (zh) 聚氨酯光固化改性水性氯化聚丙烯bopp用涂层聚合物及其制备和应用
Sroka et al. Development of Smart Surfaces for Medicine and Biotechnology: Advances in Glass Functionalization through RDRP Techniques
Li Preparation of synthetic extracellular matrix from nanocomposite hydrogels
Alge et al. Thiol‐X Reactions in Tissue Engineering
Martin Chemoenzymatic synthesis, characterization and thermodynamic behavior of sugar-containing poly (acrylate) hydrogels
JPH07138553A (ja) 刺激応答性材料
BR112019011754B1 (pt) Polímero compreendendo carbono de origem biológica, seu processo de obtenção, seu uso e composição que o compreende

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: American California

Applicant after: Micro cents America Limited

Address before: American California

Applicant before: Microvention, INC.

GR01 Patent grant
GR01 Patent grant