CN105489647B - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- CN105489647B CN105489647B CN201410478359.XA CN201410478359A CN105489647B CN 105489647 B CN105489647 B CN 105489647B CN 201410478359 A CN201410478359 A CN 201410478359A CN 105489647 B CN105489647 B CN 105489647B
- Authority
- CN
- China
- Prior art keywords
- semiconductor layer
- layer
- substrate
- semiconductor
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 150
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 68
- 238000005530 etching Methods 0.000 claims abstract description 37
- 239000003989 dielectric material Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000002955 isolation Methods 0.000 claims abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 230000003628 erosive effect Effects 0.000 claims 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims 2
- 229910005926 GexSi1-x Inorganic materials 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 168
- 230000008569 process Effects 0.000 description 16
- 239000011229 interlayer Substances 0.000 description 9
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
- Element Separation (AREA)
Abstract
本发明公开了一种半导体器件的制造方法,该方法包括:提供半导体衬底;在部分衬底上形成第一半导体层,在衬底及第一半导体层上形成第二半导体层,衬底上形成隔离,其中,第一半导体层包括位于部分有源区内的第一部分和向栅极端部方向延伸的第二部分,第一部分在栅宽方向与有源区同宽且在栅长方向的宽度大于或等于栅长;在第二半导体层的有源区上形成器件结构,器件结构的栅极位于第一部分之上;在第二部分之上的第二半导体层中形成贯通的刻蚀孔;通过刻蚀孔腐蚀去除第一半导体层,以形成空腔;在空腔及刻蚀孔中填充介质材料,以分别形成埋层及绝缘孔。本发明通过体衬底实现具有部分埋层的类SOI器件,埋层和沟道的厚度可调。
The invention discloses a method for manufacturing a semiconductor device. The method includes: providing a semiconductor substrate; forming a first semiconductor layer on part of the substrate; forming a second semiconductor layer on the substrate and the first semiconductor layer; Isolation is formed, wherein the first semiconductor layer includes a first part located in part of the active region and a second part extending toward the end of the gate, the first part is as wide as the active region in the gate width direction and has a width in the gate length direction greater than or equal to the gate length; forming a device structure on the active region of the second semiconductor layer, the gate of the device structure is located above the first part; forming a through etching hole in the second semiconductor layer above the second part; Etching and removing the first semiconductor layer through the etching hole to form a cavity; filling the cavity and the etching hole with a dielectric material to form a buried layer and an insulating hole respectively. The invention realizes the SOI-like device with a partially buried layer through the body substrate, and the thickness of the buried layer and the channel can be adjusted.
Description
技术领域technical field
本发明属于半导体制造领域,尤其涉及一种半导体器件及其制造方法。The invention belongs to the field of semiconductor manufacturing, and in particular relates to a semiconductor device and a manufacturing method thereof.
背景技术Background technique
随着器件的特征尺寸不断减小,在进入纳米尺度尤其是22nm以下尺寸以后,临近半导体物理器件的极限问题接踵而来,如电容损耗、漏电流增大、噪声提升、闩锁效应和短沟道效应等,为了克服这些问题,SOI(绝缘体上硅,Silicon-On-Insulator)技术应运而生。With the continuous reduction of the feature size of the device, after entering the nanometer scale, especially the size below 22nm, the problems close to the limit of semiconductor physical devices come one after another, such as capacitance loss, leakage current increase, noise promotion, latch-up effect and short channel In order to overcome these problems, SOI (Silicon-On-Insulator, Silicon-On-Insulator) technology came into being.
SOI衬底分厚层和薄层SOI,薄层SOI器件的顶层硅的厚度小于栅下最大耗尽层的宽度,当顶层硅的厚度变薄时,器件从部分耗尽(Partially Depletion)向全部耗尽(FullyDepletion)转变,当顶层硅小于50nm时,为超薄SOI(Ultra thin SOI,UTSOI),SOI器件全部耗尽,全部耗尽的器件具有较大电流驱动能力、陡直的亚阈值斜率、较小的短沟道、窄沟道效应和完全消除Kink效应等优点,特别适用于高速、低压、低功耗电路的应用,超薄SOI成为22nm以下尺寸工艺的理想解决方案。The SOI substrate is divided into thick layer and thin layer SOI. The thickness of the top layer silicon of the thin layer SOI device is smaller than the width of the maximum depletion layer under the gate. When the thickness of the top layer silicon becomes thinner, the device changes from partially depleted (Partially Depletion) to fully depleted Fully Depletion transition, when the top silicon is less than 50nm, it is ultra-thin SOI (Ultra thin SOI, UTSOI), the SOI device is completely depleted, and the fully depleted device has a large current drive capability, a steep sub-threshold slope, The advantages of smaller short channel, narrow channel effect and complete elimination of Kink effect are especially suitable for high-speed, low-voltage, low-power circuit applications. Ultra-thin SOI has become an ideal solution for processes below 22nm.
然而,目前SOI衬底的造价较高,且提供的SOI衬底的规格较为单一,无法根据器件的需要调整各层的厚度。However, currently, the cost of SOI substrates is relatively high, and the specifications of the provided SOI substrates are relatively simple, so the thickness of each layer cannot be adjusted according to the needs of the device.
发明内容Contents of the invention
本发明的目的在于克服现有技术中的不足,提供一种半导体器件及其制造方法,可利用体衬底实现具有部分埋层的类SOI器件且沟道厚度和埋层厚度可调。The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a semiconductor device and its manufacturing method, which can realize a SOI-like device with a partially buried layer by using a bulk substrate, and the thickness of the channel and the thickness of the buried layer can be adjusted.
为实现上述目的,本发明的技术方案为:To achieve the above object, the technical solution of the present invention is:
一种半导体器件的制造方法,包括步骤:A method of manufacturing a semiconductor device, comprising the steps of:
提供半导体衬底;Provide semiconductor substrates;
在部分衬底上形成第一半导体层,在衬底及第一半导体层上形成第二半导体层,衬底上形成隔离,其中,第一半导体层包括位于部分有源区内的第一部分和向栅极端部方向延伸的第二部分,第一部分在栅宽方向与有源区同宽且在栅长方向的宽度至少等于栅长;A first semiconductor layer is formed on a part of the substrate, a second semiconductor layer is formed on the substrate and the first semiconductor layer, isolation is formed on the substrate, wherein the first semiconductor layer includes a first part located in a part of the active region and The second part extending in the gate end direction, the first part has the same width as the active region in the gate width direction and the width in the gate length direction is at least equal to the gate length;
在第二半导体层的有源区上形成器件结构,器件结构的栅极位于第一半导体层的第一部分之上;forming a device structure on the active region of the second semiconductor layer, the gate of the device structure is located on the first portion of the first semiconductor layer;
在第一半导体层的第二部分之上的第二半导体层中形成贯通的刻蚀孔;forming a through etch hole in the second semiconductor layer over the second portion of the first semiconductor layer;
通过刻蚀孔腐蚀去除第一半导体层,以形成空腔;removing the first semiconductor layer by etching holes to form cavities;
在空腔及刻蚀孔中填充介质材料,以分别形成埋层及绝缘孔。Dielectric material is filled in the cavity and the etching hole to form a buried layer and an insulating hole respectively.
可选的,形成第一半导体层和第二半导体层的步骤具体包括:Optionally, the step of forming the first semiconductor layer and the second semiconductor layer specifically includes:
在衬底上形成第一掩膜层,并刻蚀部分厚度的衬底;forming a first mask layer on the substrate, and etching a partial thickness of the substrate;
进行选择性外延生长,形成第一半导体层;performing selective epitaxial growth to form a first semiconductor layer;
去除第一掩膜层;removing the first mask layer;
进行外延生长,形成第二半导体层;performing epitaxial growth to form a second semiconductor layer;
进行刻蚀,以形成隔离沟槽;performing etching to form isolation trenches;
填充隔离沟槽,以形成隔离;fill the isolation trench to form isolation;
其中,第一半导体层包括位于有源区内的第一部分和向栅极端部延伸的第二部分。Wherein, the first semiconductor layer includes a first portion located in the active region and a second portion extending toward the end of the gate.
可选的,所述衬底为硅衬底,所述第一半导体层为GexSi1-x,其中0<x<1,所述第二半导体层为硅。Optionally, the substrate is a silicon substrate, the first semiconductor layer is G x Si 1-x , where 0<x<1, and the second semiconductor layer is silicon.
可选的,通过刻蚀孔腐蚀去除第一半导体层,以形成空腔的步骤具体包括:Optionally, the step of removing the first semiconductor layer by etching holes to form a cavity specifically includes:
采用HF、H2O2、CH3COOH和H2O的刻蚀剂进行腐蚀去除第一半导体层,以形成空腔。The first semiconductor layer is etched and removed by using an etchant of HF, H 2 O 2 , CH 3 COOH and H 2 O to form a cavity.
可选的,在空腔及刻蚀孔中填充介质材料的步骤具体包括:Optionally, the step of filling the cavity and the etching hole with a dielectric material specifically includes:
采用ALD工艺或者CVD工艺,在空腔中填满第一介质层以及在刻蚀孔的内壁上形成第一介质层;在刻蚀孔中填满第二介质层。ALD process or CVD process is used to fill the cavity with the first dielectric layer and form the first dielectric layer on the inner wall of the etching hole; and fill the etching hole with the second dielectric layer.
可选的,所述第一半导体层延伸至衬底中的器件结构的部分源漏区中。Optionally, the first semiconductor layer extends to part of the source and drain regions of the device structure in the substrate.
此外,本发明还提供了由上述方法形成的半导体器件,包括:In addition, the present invention also provides a semiconductor device formed by the above method, including:
半导体衬底;semiconductor substrate;
半导体衬底上的埋层;Buried layers on semiconductor substrates;
埋层及衬底上的第二半导体层,其中,埋层包括位于部分有源区内的第一部分和向栅极端部延伸的第二部分,第一部分在栅宽方向与有源区同宽且在栅长方向的宽度大于或等于栅长;The buried layer and the second semiconductor layer on the substrate, wherein the buried layer includes a first part located in part of the active region and a second part extending toward the end of the gate, the first part is as wide as the active region in the gate width direction and The width in the direction of the gate length is greater than or equal to the gate length;
在第二半导体层的有源区上的器件结构,器件结构的栅极位于埋层的第一部分之上;a device structure on the active region of the second semiconductor layer, the gate of the device structure is located above the first portion of the buried layer;
位于埋层的第二部分之上的贯通第二半导体层的绝缘孔。An insulating hole penetrating through the second semiconductor layer over the second portion of the buried layer.
可选的,埋层为第一介质层,所述绝缘孔的介质材料包括孔内壁上的第一介质层和填充孔的第二介质层。Optionally, the buried layer is a first dielectric layer, and the dielectric material of the insulating hole includes the first dielectric layer on the inner wall of the hole and the second dielectric layer filling the hole.
可选的,所述第一介质层为高k介质材料,第二介质层为氧化硅。Optionally, the first dielectric layer is a high-k dielectric material, and the second dielectric layer is silicon oxide.
可选的,所述埋层延伸至衬底中的器件结构的部分源漏区中。Optionally, the buried layer extends to part of the source and drain regions of the device structure in the substrate.
本发明的半导体器件的制造方法,在部分的有源区内及有源区的沿栅极方向上形成了第一、第二部分的第一半导体层,而后,通过在第二部分上的第二半导体层中刻蚀出刻蚀孔来去除第一半导体层,并重新填充介质材料,可以通过体衬底实现具有部分埋层的类SOI器件,同时,埋层的厚度和沟道厚度可以通过形成的第一,第二半导体层的厚度来分别进行调节,满足不同器件的需求,工艺简单易行。In the manufacturing method of the semiconductor device of the present invention, the first and second parts of the first semiconductor layer are formed in part of the active region and along the gate direction of the active region, and then, through the first semiconductor layer on the second part Etch holes in the second semiconductor layer to remove the first semiconductor layer and refill the dielectric material, so that a SOI-like device with a partially buried layer can be realized through the bulk substrate, and at the same time, the thickness of the buried layer and the thickness of the channel can be determined by The thicknesses of the formed first and second semiconductor layers are adjusted separately to meet the requirements of different devices, and the process is simple and easy.
附图说明Description of drawings
为了更清楚地说明本发明实施的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions implemented by the present invention, the following will briefly introduce the accompanying drawings that need to be used in the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those skilled in the art Ordinary technicians can also obtain other drawings based on these drawings on the premise of not paying creative work.
图1示出了本发明的半导体器件的制造方法的流程图;Fig. 1 shows the flowchart of the manufacturing method of semiconductor device of the present invention;
图2-图11A为根据本发明实施例的制造半导体器件的各个制造过程中的俯视图及AA、BB向截面结构示意图。2-11A are top views and schematic cross-sectional structure diagrams along the directions of AA and BB in each manufacturing process of manufacturing a semiconductor device according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。In the following description, a lot of specific details are set forth in order to fully understand the present invention, but the present invention can also be implemented in other ways different from those described here, and those skilled in the art can do it without departing from the meaning of the present invention. By analogy, the present invention is therefore not limited to the specific examples disclosed below.
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。Secondly, the present invention is described in detail in combination with schematic diagrams. When describing the embodiments of the present invention in detail, for the convenience of explanation, the cross-sectional view showing the device structure will not be partially enlarged according to the general scale, and the schematic diagram is only an example, and it should not be limited here. The protection scope of the present invention. In addition, the three-dimensional space dimensions of length, width and depth should be included in actual production.
参考图1所示,本发明提供了一种半导体器件的制造方法,包括:提供半导体衬底;在部分衬底上形成第一半导体层,在衬底及第一半导体层上形成第二半导体层,衬底上形成隔离,其中,第一半导体层包括位于部分有源区内的第一部分和向栅极端部方向延伸的第二部分,第一部分在栅宽方向与有源区同宽且在栅长方向的宽度大于或等于栅长;在第二半导体层的有源区上形成器件结构,器件结构的栅极位于第一半导体层的第一部分之上;在第一半导体层第二部分之上的第二半导体层中形成贯通的刻蚀孔;通过刻蚀孔腐蚀去除第一半导体层,以形成空腔;在空腔及刻蚀孔中填充介质材料,以分别形成埋层及绝缘孔。Referring to Fig. 1, the present invention provides a method for manufacturing a semiconductor device, comprising: providing a semiconductor substrate; forming a first semiconductor layer on a part of the substrate, and forming a second semiconductor layer on the substrate and the first semiconductor layer , isolation is formed on the substrate, wherein the first semiconductor layer includes a first part located in a part of the active region and a second part extending toward the end of the gate, the first part is as wide as the active region in the gate width direction and at the gate The width in the long direction is greater than or equal to the gate length; a device structure is formed on the active region of the second semiconductor layer, and the gate of the device structure is located on the first part of the first semiconductor layer; on the second part of the first semiconductor layer A through etching hole is formed in the second semiconductor layer; the first semiconductor layer is etched and removed through the etching hole to form a cavity; a dielectric material is filled in the cavity and the etching hole to form a buried layer and an insulating hole respectively.
在本发明的制造方法中,在部分的有源区内及有源区的沿栅极方向上形成了第一、第二部分的第一半导体层,而后,通过在第二部分上的第二半导体层中刻蚀出刻蚀孔来去除第一半导体层,并重新填充介质材料,可以通过体衬底实现具有部分埋层的类SOI器件,同时,埋层厚度和沟道厚度可以通过形成的第一,第二半导体层的厚度来分别进行调节,满足不同器件的需求,工艺简单易行。In the manufacturing method of the present invention, the first and second parts of the first semiconductor layer are formed in part of the active region and along the gate direction of the active region, and then, through the second part on the second part Etching holes in the semiconductor layer to remove the first semiconductor layer and refilling the dielectric material can realize a SOI-like device with a partially buried layer through the bulk substrate. At the same time, the thickness of the buried layer and the channel thickness can be determined by the formed First, the thickness of the second semiconductor layer is adjusted separately to meet the requirements of different devices, and the process is simple and easy.
为了更好的理解本发明的技术方案和技术效果,以下将结合本发明的半导体器件的制造方法的流程图图1和具体的实施例进行详细的描述。In order to better understand the technical solutions and technical effects of the present invention, a detailed description will be given below in conjunction with the flow chart of the semiconductor device manufacturing method of the present invention FIG. 1 and specific embodiments.
首先,在步骤S01,提供半导体衬底100,参考图2、图2A(图2的AA向截面示意图)所示。First, in step S01 , a semiconductor substrate 100 is provided, as shown in FIG. 2 and FIG. 2A (a schematic cross-sectional view along the line AA of FIG. 2 ).
在本发明实施例中,所述半导体衬底100可以为Si衬底、Ge衬底等。在其他实施例中,还可以为包括其他元素半导体或化合物半导体的衬底,例如GaAs、InP或SiC等,还可以为叠层结构,例如Si/SiGe等。在本实施例中,所述半导体衬底100为体硅衬底。In the embodiment of the present invention, the semiconductor substrate 100 may be a Si substrate, a Ge substrate or the like. In other embodiments, it may also be a substrate including other elemental semiconductors or compound semiconductors, such as GaAs, InP or SiC, etc., and may also be a stacked structure, such as Si/SiGe, etc. In this embodiment, the semiconductor substrate 100 is a bulk silicon substrate.
接着,在步骤S02,在部分衬底上形成第一半导体层106,在衬底100及第一半导体层106上形成第二半导体层108,衬底上形成隔离110,其中,第一半导体层106包括位于部分有源区内的第一部分106-1和向栅极端部方向延伸的第二部分106-2,第一部分106-1在栅宽方向与有源区同宽且在栅长方向的宽度大于或等于栅长,参考图6、图6A和图6B(图6的AA和BB向截面示意图)。Next, in step S02, the first semiconductor layer 106 is formed on part of the substrate, the second semiconductor layer 108 is formed on the substrate 100 and the first semiconductor layer 106, and the isolation 110 is formed on the substrate, wherein the first semiconductor layer 106 It includes a first part 106-1 located in part of the active region and a second part 106-2 extending toward the end of the gate. The first part 106-1 is as wide as the active region in the gate width direction and has a width in the gate length direction Greater than or equal to the gate length, refer to Fig. 6, Fig. 6A and Fig. 6B (A- and BB-direction cross-sectional schematic diagrams of Fig. 6).
在本实施例中,可以采用选择性外延形成第一半导体层,而后通过外延生长工艺形成第二半导体层,以形成晶体结构的半导体层。In this embodiment, the first semiconductor layer may be formed by selective epitaxy, and then the second semiconductor layer may be formed by an epitaxial growth process, so as to form a semiconductor layer with a crystal structure.
具体的,首先,在衬底100上淀积第一掩膜层102,第一掩膜可以为氧化硅、氮化硅、氮氧化硅或他们的叠层等,并在第一掩膜层102上形成光敏刻蚀剂104,如图2和图2A所示;而后,在光敏刻蚀剂104的掩盖下进行第一掩膜层102的刻蚀,以形成图案化的第一掩膜层,并去除光敏刻蚀剂104,在第一掩膜层102的掩盖下,进一步刻蚀一定厚度的衬底100,在衬底上形成了后续形成第一半导体层的形成区域,如图3和图3A(图3的AA向截面示意图)所示。Specifically, first, a first mask layer 102 is deposited on the substrate 100, the first mask may be silicon oxide, silicon nitride, silicon oxynitride, or their stacked layers, and the first mask layer 102 Form a photoresist 104 on it, as shown in FIG. 2 and FIG. 2A; then, under the cover of the photoresist 104, etch the first mask layer 102 to form a patterned first mask layer, And remove the photoresist 104, under the cover of the first mask layer 102, further etch the substrate 100 with a certain thickness, and form the formation area for the subsequent formation of the first semiconductor layer on the substrate, as shown in Figure 3 and Figure 3 3A (A schematic cross-sectional view of AA in FIG. 3 ).
接着,进行选择性外延生长(EPI),在衬底刻蚀后的区域上形成第一半导体层,如图4和图4A(图4的AA向截面示意图)所示,该第一半导体层可以为GexSi1-x,其中0<x<1,厚度可以为1-200nm,典型的可以10nm或20nm;而后,将第一掩膜层102去除,并进行外延生长第二半导体层,这样,在衬底100及第一半导体层106都形成了第二半导体层108,如图5和图5A所示(图5的AA向截面示意图),该第二半导体层108可以为Si,厚度可以为3-200nm,典型的可以为10nm或15nm。Next, perform selective epitaxial growth (EPI), and form a first semiconductor layer on the region after substrate etching, as shown in Figure 4 and Figure 4A (A-A cross-sectional schematic view of Figure 4), the first semiconductor layer can be is G x Si 1-x , where 0<x<1, the thickness can be 1-200nm, typically 10nm or 20nm; then, the first mask layer 102 is removed, and the second semiconductor layer is epitaxially grown, thus , the second semiconductor layer 108 is formed on the substrate 100 and the first semiconductor layer 106, as shown in Figure 5 and Figure 5A (A schematic cross-sectional view of AA in Figure 5), the second semiconductor layer 108 can be Si, and the thickness can be 3-200nm, typically 10nm or 15nm.
而后,参考图6所示,在衬底上形成隔离110,具体的,先在第二半导体层108上形成图案化的第二掩膜(图未示出),并进行刻蚀,部分区域刻蚀第二半导体层和衬底,部分区域刻蚀第一和第二半导体层及衬底,直至刻蚀到一定深度的衬底,形成隔离沟槽,并进行隔离沟槽的填充,而后去除第二掩膜,从而形成隔离110。Then, referring to FIG. 6 , the isolation 110 is formed on the substrate. Specifically, a patterned second mask (not shown) is first formed on the second semiconductor layer 108 and etched, and a part of the area is etched. Etching the second semiconductor layer and the substrate, etching the first and second semiconductor layers and the substrate in some areas, until the substrate is etched to a certain depth, forming isolation trenches, and filling the isolation trenches, and then removing the first two masks to form the isolation 110 .
在本发明中,由隔离110内限定的第一和第二半导体层的区域,参考图6和6B所示,仅部分为有源区109,用于形成半导体器件结构,第一半导体层106仅有第一部分106-1形成在部分的有源区109中,第一部分106-1在栅宽方向与有源区同宽且在栅长方向的宽度大于或等于栅长,这样,在形成栅极后,使得在栅长方向上第一部分可将沟道与衬底分隔开,以便后续至少在沟道下方形成埋层,更优地,该第一部分在栅长方向的宽度可以略大于栅长,而向源漏区略有延伸。第二部分106-2形成在向栅极端部延伸的方向上,也即栅宽方向上。第二部分可以是向栅极的一端的端部或两端的端部延伸,在本实施例中,优选的,该第二部分106-2向栅极的一端的端部延伸,该端部是与形成栅极接触的相对的端部。In the present invention, the regions of the first and second semiconductor layers defined by the isolation 110, as shown in FIGS. There is a first part 106-1 formed in part of the active region 109, the first part 106-1 is as wide as the active region in the gate width direction and the width in the gate length direction is greater than or equal to the gate length, so that when forming the gate Finally, the first part in the gate length direction can separate the channel from the substrate, so that a buried layer can be formed at least below the channel. More preferably, the width of the first part in the gate length direction can be slightly larger than the gate length , and slightly extended to the source and drain regions. The second portion 106-2 is formed in the direction extending toward the end of the gate, that is, in the gate width direction. The second part may extend toward one end or both ends of the gate. In this embodiment, preferably, the second part 106-2 extends toward one end of the gate, and the end is the opposite end with which the gate contact is formed.
外延工艺可以形成晶体的半导体层,其为质量较高半导体层,以便提高后续所形成的器件的性能。当然,可以根据器件的具体需要,采用其他的方法来形成第一和第二半导体层。The epitaxial process can form a crystalline semiconductor layer, which is a higher quality semiconductor layer, so as to improve the performance of the subsequently formed device. Of course, other methods can be used to form the first and second semiconductor layers according to the specific requirements of the device.
接着,在步骤S03,在第二半导体层108的有源区109上形成器件结构200,器件结构的栅极112位于第一部分106-1之上,参考图7和图7A(图7的AA向截面示意图)所示。Next, in step S03, a device structure 200 is formed on the active region 109 of the second semiconductor layer 108, and the gate 112 of the device structure is located on the first portion 106-1, referring to FIGS. 7 and 7A (direction AA of FIG. 7 Schematic diagram of the cross-section).
可以按照传统的工艺来形成器件结构200,可以采用前栅或后栅工艺。在本实施例中,采用后栅工艺来形成器件结构,首先,在第二半导体层108上形成栅介质层和伪栅(图未示出)及其侧墙,栅介质层可以为热氧化层或其他合适的介质材料,例如氧化硅、氮化硅等,在一个实施例中,可以为二氧化硅,可以通过热氧化的方法来形成。伪栅可以为非晶硅、多晶硅或氧化硅等,在一个实施例中,可以为非晶硅。侧墙114可以具有单层或多层结构,可以由氮化硅、氧化硅、氮氧化硅、碳化硅、氟化物掺杂硅玻璃、低k电介质材料及其组合,和/或其他合适的材料形成,在一个实施例中侧墙114可以为氮化硅和氧化硅的两层结构。The device structure 200 can be formed according to a conventional process, and a gate-first or gate-last process can be used. In this embodiment, the gate-last process is used to form the device structure. First, a gate dielectric layer, a dummy gate (not shown) and its sidewalls are formed on the second semiconductor layer 108. The gate dielectric layer may be a thermal oxide layer. Or other suitable dielectric materials, such as silicon oxide, silicon nitride, etc., in one embodiment, may be silicon dioxide, which may be formed by thermal oxidation. The dummy gate can be amorphous silicon, polysilicon or silicon oxide, etc., and in one embodiment, it can be amorphous silicon. The sidewall 114 can have a single-layer or multi-layer structure, and can be made of silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, fluoride-doped silicon glass, low-k dielectric materials and combinations thereof, and/or other suitable materials In one embodiment, the spacer 114 may be a two-layer structure of silicon nitride and silicon oxide.
而后,在伪栅两侧形成源漏区,在一个实施例中,本实施例中,根据期望的器件类型,进行离子注入并激活,形成源漏区116,当然,在其他实施例中,也可以通过外延掺杂的方式在第二半导体上形成源漏区。并在源漏区116上形成金属硅化物层118。Then, the source and drain regions are formed on both sides of the dummy gate. In one embodiment, in this embodiment, ion implantation and activation are performed according to the desired device type to form the source and drain regions 116. Of course, in other embodiments, the The source and drain regions can be formed on the second semiconductor by means of epitaxial doping. And a metal silicide layer 118 is formed on the source and drain regions 116 .
接着,在伪栅两侧覆盖层间介质层并通过湿法腐蚀,去除伪栅和栅介质层,并重新形成栅堆叠112,栅堆叠112包括栅介质层和栅极,该栅介质层可以为高k介质材料(例如,和氧化硅相比,具有高介电常数的材料)或其他合适的介质材料,高k介质材料例如铪基氧化物,该栅极可以为金属栅电极可以为一层或多层结构,可以包括金属材料或多晶硅或他们的组合,金属材料例如Ti、TiAlx、TiN、TaNx、HfN、TiCx、TaCx等等。Next, the interlayer dielectric layer is covered on both sides of the dummy gate, and the dummy gate and the gate dielectric layer are removed by wet etching, and the gate stack 112 is re-formed. The gate stack 112 includes a gate dielectric layer and a gate. The gate dielectric layer can be A high-k dielectric material (for example, a material with a high dielectric constant compared with silicon oxide) or other suitable dielectric materials, such as a high-k dielectric material such as a hafnium-based oxide, the gate can be a metal gate electrode can be a layer Or multi-layer structure, may include metal material or polysilicon or their combination, metal material such as Ti, TiAl x , TiN, TaN x , HfN, TiC x , TaC x and so on.
从而,在第二半导体层上形成了器件结构,此处形成器件结构的实施例仅为示例,可以根据需要形成任意所需的器件结构。Thus, a device structure is formed on the second semiconductor layer, and the embodiment of forming the device structure here is only an example, and any desired device structure can be formed as required.
从而,在第二半导体层的有源区上形成了器件结构,如图7和7A所示,此处形成器件结构的实施例仅为示例,可以根据需要形成任意所需的器件结构。Thus, a device structure is formed on the active region of the second semiconductor layer, as shown in FIGS. 7 and 7A , the embodiment of forming the device structure here is only an example, and any desired device structure can be formed as required.
而后,在步骤S04,在第二部分106-2之上的第二半导体层108中形成贯通的刻蚀孔124,参考图8和图8B(图8的BB向截面示意图)所示。Then, in step S04 , a through etching hole 124 is formed in the second semiconductor layer 108 on the second portion 106 - 2 , as shown with reference to FIG. 8 and FIG. 8B (a schematic cross-sectional view taken along the line BB in FIG. 8 ).
在形成器件结构后,继续在器件上覆盖层间介质层120,参考图8A(图8的AA向截面示意图)所示。在本发明中,在形成接触孔的步骤之前,先形成刻蚀孔124。在本实施例中,该刻蚀孔形成在第二部分106-2之上的第二半导体层108中,贯通整个第二半导体层,以便于后续利用该贯通的刻蚀孔去除第一半导体层。具体的,在层间介质层120之上形成第三掩膜层(图未示出),如光敏刻蚀剂,在第三掩膜层的掩盖下,刻蚀层间介质层120、第二半导体层108和第一半导体层106,也可以进一步过刻蚀部分的衬底100,从而形成刻蚀孔124,并去除第三掩膜,如图8B所示。在其他实施例中,形成刻蚀孔时,也可以从层间介质层120进行刻蚀,直至暴露出第一半导体层,即并不进行第一半导体层106的刻蚀,而是在后续去除第一半导体层形成空腔的步骤中一并去除。After the device structure is formed, continue to cover the interlayer dielectric layer 120 on the device, as shown in FIG. 8A (the schematic cross-sectional view of AA in FIG. 8 ). In the present invention, the etching hole 124 is formed before the step of forming the contact hole. In this embodiment, the etching hole is formed in the second semiconductor layer 108 above the second part 106-2, and penetrates through the entire second semiconductor layer, so that the first semiconductor layer can be removed later by using the through etching hole. . Specifically, a third mask layer (not shown in the figure), such as photoresist, is formed on the interlayer dielectric layer 120. Under the cover of the third mask layer, the interlayer dielectric layer 120, the second The semiconductor layer 108 and the first semiconductor layer 106 may also further over-etch part of the substrate 100 to form an etching hole 124 and remove the third mask, as shown in FIG. 8B . In other embodiments, when forming the etching hole, etching may also be performed from the interlayer dielectric layer 120 until the first semiconductor layer is exposed, that is, the first semiconductor layer 106 is not etched, but is subsequently removed. The first semiconductor layer is removed together in the step of forming the cavity.
接着,在步骤S05,通过刻蚀孔124腐蚀去除第一半导体层106,以形成空腔130,参考图9A和9B所示(AA和BB向截面示意图,俯视图参照图8)。Next, in step S05 , the first semiconductor layer 106 is removed by etching the hole 124 to form a cavity 130 , as shown in FIGS. 9A and 9B (A-A and BB cross-sectional diagrams, top view refer to FIG. 8 ).
在本实施例中,可以采用湿法腐蚀去除第一半导体层,刻蚀剂可以采用HF、H2O2、CH3COOH和H2O的混合溶液,在一个实施例中,采用HF(49%):H2O2(30%):CH3COOH(99.8%):H2O=1:18:27:8的刻蚀剂,直至去除所有的第一半导体层,从而在器件结构下方,第二半导体层108和衬底100之间形成了空腔130,如图9A和9B所示。In this embodiment, the first semiconductor layer can be removed by wet etching, and the etchant can be a mixed solution of HF, H 2 O 2 , CH 3 COOH and H 2 O. In one embodiment, HF (49 %): H 2 O 2 (30%): CH 3 COOH (99.8%): H 2 O = 1:18:27:8 etchant, until all the first semiconductor layer is removed, thereby under the device structure , a cavity 130 is formed between the second semiconductor layer 108 and the substrate 100, as shown in FIGS. 9A and 9B.
而后,在步骤S06,在空腔130及刻蚀孔124中填充介质材料,以分别形成埋层131及绝缘孔133,参考图10A和10B所示(AA和BB向截面示意图,俯视图省略)。Then, in step S06, a dielectric material is filled in the cavity 130 and the etching hole 124 to form the buried layer 131 and the insulating hole 133 respectively, as shown in FIGS.
在本实施例中,首先,可以通过ALD(原子层沉积)或CVD(化学气相沉积)工艺,进行第一介质材料的填充,该第一介质材料可以为氧化物材料或高k介质材料或其他绝缘的介质材料,在填满空腔形成第一介质层131时,刻蚀孔124的内壁上也沉积有该第一介质层,如图10B所示(BB向截面示意图,俯视图省略);接着,以第二介质材料填充刻蚀孔124,第二介质材料可以为氧化硅等介质材料,并进行平坦化,直至暴露层间介质层120,在刻蚀孔中形成第二介质层132,从而以第一介质材料填充空腔形成了埋层131,以第一和第二介质材料填充刻蚀孔124形成了绝缘孔133,如图10B所示。In this embodiment, first, the filling of the first dielectric material can be performed by ALD (atomic layer deposition) or CVD (chemical vapor deposition) process, and the first dielectric material can be an oxide material or a high-k dielectric material or other Insulating dielectric material, when filling the cavity to form the first dielectric layer 131, the first dielectric layer is also deposited on the inner wall of the etching hole 124, as shown in Figure 10B (BB to sectional schematic diagram, top view omitted); then , fill the etching hole 124 with a second dielectric material, the second dielectric material can be a dielectric material such as silicon oxide, and planarize until the interlayer dielectric layer 120 is exposed, and form a second dielectric layer 132 in the etching hole, thereby Filling the cavity with the first dielectric material forms a buried layer 131 , and filling the etching hole 124 with the first and second dielectric materials forms an insulating hole 133 , as shown in FIG. 10B .
在本发明的实施例中,形成的第一半导体层106在沿栅长方向延伸至了源漏区116中,这样,在去除该第一半导体层并填充介质材料形成埋层131后,埋层延伸至衬底中的部分源漏区116中。这使得,该器件即拥有部分ETSOI的优点,又可以避免ETSOI流程中因RSD(提升源漏,Raised Source Drain)带来的工艺复杂性和寄生电容,并且减少了第一半导体层腐蚀的面积,对于腐蚀工艺的更容易控制。In the embodiment of the present invention, the formed first semiconductor layer 106 extends into the source and drain regions 116 along the gate length direction, so that after removing the first semiconductor layer and filling the dielectric material to form the buried layer 131, the buried layer extending to part of the source and drain regions 116 in the substrate. This makes the device not only has some of the advantages of ETSOI, but also avoids the process complexity and parasitic capacitance caused by RSD (Raised Source Drain) in the ETSOI process, and reduces the corrosion area of the first semiconductor layer. For easier control of the corrosion process.
在其他实施例中,也可以采用其他方法来进行空腔的填充,例如可以采用热氧化法进行氧化,使得衬底及第二半导体层的氧化物材料填满空腔,接着,进行刻蚀孔的填充。In other embodiments, other methods can also be used to fill the cavity, for example, thermal oxidation can be used to oxidize, so that the oxide material of the substrate and the second semiconductor layer fills the cavity, and then, the hole is etched of filling.
而后,可以进行其他必要的工艺。Then, other necessary processes can be performed.
可以按照常规工艺,在层间介质层120上形成第五掩膜层(图未示出),在第五掩膜层的掩蔽下,进行刻蚀层间介质层的刻蚀,形成接触孔(图未示出);而后,进行金属材料的填充,并进行平坦化,直至暴露层间介质层120,以形成源漏接触142和栅极接触144,参考图11和图11A(图11的AA向截面示意图)所示。A fifth mask layer (not shown) can be formed on the interlayer dielectric layer 120 according to a conventional process, and under the cover of the fifth mask layer, the etching of the interlayer dielectric layer is performed to form a contact hole ( The figure is not shown); then, the metal material is filled and planarized until the interlayer dielectric layer 120 is exposed, so as to form the source-drain contact 142 and the gate contact 144, referring to FIGS. 11 and 11A (AA of FIG. 11 to the cross-sectional diagram).
至此形成了根据本发明制造方法的半导体器件。参考图11、图11A和图10B所示,该半导体器件包括:半导体衬底100;半导体衬底100上的埋层131;埋层131及衬底100上的第二半导体层108,其中,埋层131包括位于部分有源区内的第一部分106-1和向栅极端部延伸的第二部分106-2,第一部分在栅宽方向与有源区同宽且在栅长方向的宽度大于或等于栅长;在第二半导体层108的有源区上的器件结构200,器件结构的栅极112位于埋层的第一部分106-1之上;位于埋层的第二部分106-2之上的贯通第二半导体层108的绝缘孔133。So far, the semiconductor device according to the manufacturing method of the present invention is formed. 11, shown in FIG. 11A and FIG. 10B, the semiconductor device includes: a semiconductor substrate 100; a buried layer 131 on the semiconductor substrate 100; a second semiconductor layer 108 on the buried layer 131 and the substrate 100, wherein the buried Layer 131 includes a first portion 106-1 located in part of the active region and a second portion 106-2 extending toward the end of the gate. The first portion is as wide as the active region in the gate width direction and has a width greater than or Equal to the gate length; the device structure 200 on the active region of the second semiconductor layer 108, the gate 112 of the device structure is located above the first part 106-1 of the buried layer; above the second part 106-2 of the buried layer The insulating hole 133 penetrating through the second semiconductor layer 108 .
在本发明的实施例中,埋层131为第一介质层,所述绝缘孔133的介质材料的介质材料包括刻蚀孔内壁上的第一介质层131和填充刻蚀孔的第二介质层132,例如第一介质层可以为高k介质材料,第二介质层可以为氧化硅。In an embodiment of the present invention, the buried layer 131 is a first dielectric layer, and the dielectric material of the dielectric material of the insulating hole 133 includes the first dielectric layer 131 on the inner wall of the etching hole and the second dielectric layer filling the etching hole 132. For example, the first dielectric layer may be a high-k dielectric material, and the second dielectric layer may be silicon oxide.
在本发明的实施例中,埋层131延伸至衬底100中的器件结构的部分源漏区116中。In an embodiment of the present invention, the buried layer 131 extends into part of the source and drain regions 116 of the device structure in the substrate 100 .
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any form.
虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with the art, without departing from the scope of the technical solution of the present invention, can use the methods and technical content disclosed above to make many possible changes and modifications to the technical solution of the present invention, or modify it into an equivalent implementation of equivalent changes example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the technical solution of the present invention, still fall within the protection scope of the technical solution of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410478359.XA CN105489647B (en) | 2014-09-18 | 2014-09-18 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410478359.XA CN105489647B (en) | 2014-09-18 | 2014-09-18 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105489647A CN105489647A (en) | 2016-04-13 |
CN105489647B true CN105489647B (en) | 2018-06-01 |
Family
ID=55676516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410478359.XA Active CN105489647B (en) | 2014-09-18 | 2014-09-18 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105489647B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111370306B (en) * | 2018-12-26 | 2023-04-28 | 中芯集成电路(宁波)有限公司上海分公司 | Fabrication method of transistor and structure of fully surrounded gate device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1901228A (en) * | 2005-07-22 | 2007-01-24 | 精工爱普生株式会社 | Semiconductor device and semiconductor device manufacturing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2952472B1 (en) * | 2009-11-12 | 2012-09-28 | Commissariat Energie Atomique | METHOD FOR PRODUCING FIELD-EFFECT TRANSISTORS WITH A COUNTER-ELECTRODE AND SEMICONDUCTOR DEVICE |
US8629008B2 (en) * | 2012-01-11 | 2014-01-14 | International Business Machines Corporation | Electrical isolation structures for ultra-thin semiconductor-on-insulator devices |
US9105577B2 (en) * | 2012-02-16 | 2015-08-11 | International Business Machines Corporation | MOSFET with work function adjusted metal backgate |
-
2014
- 2014-09-18 CN CN201410478359.XA patent/CN105489647B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1901228A (en) * | 2005-07-22 | 2007-01-24 | 精工爱普生株式会社 | Semiconductor device and semiconductor device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN105489647A (en) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9153657B2 (en) | Semiconductor devices comprising a fin | |
CN103325831B (en) | For the source/drain profile of FinFET | |
CN112530943A (en) | Semiconductor device and method for manufacturing the same | |
CN108511523A (en) | Semiconductor structure and forming method thereof | |
US20230387249A1 (en) | Method for fabricating gate-all-around (gaa) structure | |
CN104167393B (en) | Semiconductor device manufacturing method | |
CN203038894U (en) | Semiconductor structure | |
CN106158638B (en) | Fin formula field effect transistor and forming method thereof | |
CN111106009A (en) | Semiconductor structure and method of forming the same | |
CN110211882B (en) | Method and structure for fabricating enhanced UTBB FDSOI devices | |
CN105702680B (en) | Semiconductor device and manufacturing method thereof | |
CN105575804B (en) | Fin field effect transistor and manufacturing method thereof | |
CN105336624B (en) | Fin field effect transistor and manufacturing method of dummy gate thereof | |
CN105489647B (en) | Semiconductor device and manufacturing method thereof | |
CN106558493A (en) | The forming method of fin field effect pipe | |
CN105702618B (en) | Semiconductor device and manufacturing method thereof | |
CN104103506A (en) | Semiconductor device manufacturing method | |
CN105789050A (en) | Semiconductor device and manufacturing method thereof | |
CN105489492B (en) | Semiconductor device and manufacturing method thereof | |
CN105489477B (en) | Semiconductor device and manufacturing method thereof | |
CN105489546B (en) | Semiconductor device and manufacturing method thereof | |
CN203038895U (en) | Semiconductor structure | |
TW201335986A (en) | Fin structure and method of formation the same | |
CN105448992A (en) | Semiconductor device and manufacturing method thereof | |
CN111384173B (en) | Preparation method of fin field effect transistor, fin field effect transistor and silicon substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220317 Address after: Room 108, floor 1, building 4, No. 2 dacuodeng Hutong, Dongcheng District, Beijing 100010 Patentee after: Beijing Zhongke micro Investment Management Co.,Ltd. Address before: 100029 Beijing city Chaoyang District Beitucheng West Road No. 3 Patentee before: Institute of Microelectronics of the Chinese Academy of Sciences |