CN1901228A - Semiconductor device and semiconductor device manufacturing method - Google Patents
Semiconductor device and semiconductor device manufacturing method Download PDFInfo
- Publication number
- CN1901228A CN1901228A CN 200610091231 CN200610091231A CN1901228A CN 1901228 A CN1901228 A CN 1901228A CN 200610091231 CN200610091231 CN 200610091231 CN 200610091231 A CN200610091231 A CN 200610091231A CN 1901228 A CN1901228 A CN 1901228A
- Authority
- CN
- China
- Prior art keywords
- crystal semiconductor
- semiconductor layer
- single crystal
- gate electrode
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Thin Film Transistor (AREA)
Abstract
本发明提供一种半导体装置及其制造方法。该半导体装置在单晶半导体基板(11)上形成埋入氧化膜(12),在埋入氧化膜(12)上形成有构成背栅电极的第1单晶半导体层(13)。并且,第1单晶半导体层(13)上形成埋入氧化膜(14),在埋入氧化膜(14)上,堆积被台面隔离的第2单晶半导体层(15a、15b),使第2单晶半导体层(15a、15b)的膜厚比第1单晶半导体层13的膜厚更厚,并且在第2单晶半导体层(15a、15b)上形成SOI晶体管。这样,能够抑制形成场效应晶体管的半导体层的结晶性能下降,并且在形成场效应晶体管的半导体层下面,配置低电阻化的背栅电极。
The invention provides a semiconductor device and a manufacturing method thereof. In this semiconductor device, a buried oxide film (12) is formed on a single crystal semiconductor substrate (11), and a first single crystal semiconductor layer (13) constituting a back gate electrode is formed on the buried oxide film (12). Then, a buried oxide film (14) is formed on the first single crystal semiconductor layer (13), and a second single crystal semiconductor layer (15a, 15b) separated by mesas is deposited on the buried oxide film (14), so that the first 2. The film thickness of the single crystal semiconductor layer (15a, 15b) is thicker than that of the first single crystal semiconductor layer 13, and an SOI transistor is formed on the second single crystal semiconductor layer (15a, 15b). In this way, it is possible to suppress a decrease in the crystallinity of the semiconductor layer forming the field effect transistor, and to arrange a low-resistance back gate electrode under the semiconductor layer forming the field effect transistor.
Description
技术领域technical field
本发明涉及一种半导体装置及半导体装置的制造方法,其特别适合于应用在SOI(Silicon On Insulator)晶体管的背栅(back gate)电极的形成方法中。The invention relates to a semiconductor device and a method for manufacturing the semiconductor device, which are particularly suitable for use in a method for forming a back gate electrode of an SOI (Silicon On Insulator) transistor.
背景技术Background technique
形成在SOI(Silicon On Insulator)基板上的场效应晶体管,基于其元件分离的容易性、无封闭锁定(latch up free)、源极/漏极结合电容小等特点,其有用性备受关注。Field-effect transistors formed on SOI (Silicon On Insulator) substrates have drawn much attention for their usefulness due to their ease of element isolation, no latch up free, and small source/drain junction capacitance.
另外,例如在专利文献1中,提出了如下一种方法,即:为了在大面积的绝缘膜上形成结晶性和均匀性良好的硅薄膜,通过对在绝缘膜上成膜的非晶质或多晶硅层,用紫外线射线束进行脉冲形状的照射,从而在绝缘膜上形成把近似正方形的单结晶粒配置成围棋盘格形状的多晶硅膜,然后,通过CMP(化学机械研磨),对该多晶硅膜的表面进行平坦化处理。In addition, for example, in Patent Document 1, a method is proposed in which, in order to form a silicon thin film with good crystallinity and uniformity on a large-area insulating film, an amorphous or The polysilicon layer is irradiated in a pulse shape with an ultraviolet ray beam to form a polysilicon film in which approximately square single crystal grains are arranged in a checkerboard shape on the insulating film, and then the polysilicon film is polished by CMP (Chemical Mechanical Polishing). The surface is planarized.
[专利文献1]:特开平10-261799号公报[Patent Document 1]: Japanese Unexamined Patent Application Publication No. 10-261799
然而,在绝缘膜上形成的硅薄膜中存在晶界(grain boundaries)、微型双晶(microtwins)、其它各种微小缺陷。因此,在这样的硅薄膜上形成的场效应晶体管,与在完全单晶硅薄膜上形成的场效应晶体管相比较,存在着晶体管特性劣化的问题。However, grain boundaries, microtwins, and other various minute defects exist in a silicon thin film formed on an insulating film. Therefore, a field effect transistor formed on such a silicon thin film has a problem of deterioration in transistor characteristics compared with a field effect transistor formed on a pure single crystal silicon thin film.
另外,在将形成在硅薄膜上的场效应晶体管层叠的情况下,场效应晶体管位于下层。因此存在着形成上层硅薄膜的基底绝缘膜的平坦性劣化,并且,对形成上层硅薄膜时的热处理条件等产生了制约,上层硅薄膜的结晶性比下层硅薄膜的结晶性差的问题。In addition, when stacking field effect transistors formed on a silicon thin film, the field effect transistors are located in the lower layer. Therefore, there is a problem that the flatness of the base insulating film on which the upper silicon thin film is formed is deteriorated, and the heat treatment conditions for forming the upper silicon thin film are restricted, and the crystallinity of the upper silicon thin film is lower than that of the lower silicon thin film.
而且,在以往的半导体集成电路中,随着晶体管的微细化而使沟道长度缩短时,将会使亚阈值区域的漏极电流的上升特性劣化。因此,存在着下述问题,即:影响晶体管的低电压工作性能的同时,增加了截止时的漏电流,从而不仅造成工作和待机时功率消耗的增加,而且也成为晶体管损坏的主要原因。Furthermore, in conventional semiconductor integrated circuits, when the channel length is shortened with miniaturization of transistors, the rise characteristic of the drain current in the subthreshold region is degraded. Therefore, there is a problem that while the low-voltage operation performance of the transistor is affected, the leakage current at off time is increased, which not only increases the power consumption during operation and standby, but also becomes the main cause of damage to the transistor.
发明内容Contents of the invention
因此,本发明的目的是,提供一种半导体装置及半导体装置的制造方法,其在抑制形成场效应晶体管的半导体层的结晶性的劣化的同时,能够在形成场效应晶体管的半导体层下,配置低电阻化的背栅电极。Therefore, an object of the present invention is to provide a semiconductor device and a method of manufacturing the semiconductor device, which can suppress the deterioration of the crystallinity of the semiconductor layer forming the field effect transistor, and can dispose the semiconductor layer under the semiconductor layer forming the field effect transistor. Low resistance back gate electrode.
为解决上述问题,根据本发明的一实施方式的半导体装置,具有:由形成在第1绝缘层上的第1单晶半导体层构成的背栅电极;形成在所述第1单晶半导体层上的第2绝缘层;形成在所述第2绝缘层上,且膜厚比所述第1单晶半导体层薄的第2单晶半导体层;形成在所述第2单晶半导体层上的栅电极;和形成在所述第2单晶半导体层上,且被分别配置在所述栅电极侧方的源极/漏极层。In order to solve the above problems, a semiconductor device according to an embodiment of the present invention includes: a back gate electrode formed of a first single crystal semiconductor layer formed on a first insulating layer; and a back gate electrode formed on the first single crystal semiconductor layer. a second insulating layer; a second single crystal semiconductor layer formed on the second insulating layer and having a film thickness thinner than that of the first single crystal semiconductor layer; a gate formed on the second single crystal semiconductor layer an electrode; and a source/drain layer formed on the second single crystal semiconductor layer and disposed on the sides of the gate electrode.
因此,能够提高配置背栅电极的自由度,并能够不受栅电极、源极/漏极接触电极等的配置的制约,来配置背栅电极。因而,能够提高场效应晶体管的设计自由度,并且还能够利用背栅电极偏压来控制场效应晶体管的阈值电压,或利用双栅极结构来改善亚阈值特性。Therefore, the degree of freedom in arranging the back gate electrode can be increased, and the back gate electrode can be arranged without being restricted by the arrangement of the gate electrode, source/drain contact electrodes, and the like. Therefore, the design freedom of the field effect transistor can be improved, and the threshold voltage of the field effect transistor can be controlled by using the bias voltage of the back gate electrode, or the subthreshold characteristic can be improved by using the double gate structure.
另外,通过在单晶半导体层的背面侧设置背栅电极,能够利用背栅电极屏蔽漏极电位。因此,即使在从SOI的硅薄膜表面施加了漏极电位的情况下,也能够防止在漏极的偏置层或高浓度杂质扩散层与埋入氧化膜的界面处产生高电压。其结果,能够防止在漏极的偏置层或高浓度杂质扩散层与埋入氧化膜的界面处产生局部强电场,从而可实现SOI晶体管的高耐压化。In addition, by providing the back gate electrode on the back side of the single crystal semiconductor layer, the drain potential can be shielded by the back gate electrode. Therefore, even when the drain potential is applied from the surface of the silicon thin film of SOI, it is possible to prevent a high voltage from being generated at the interface between the bias layer of the drain or the high-concentration impurity diffusion layer and the buried oxide film. As a result, it is possible to prevent a local strong electric field from being generated at the interface between the bias layer of the drain or the high-concentration impurity diffusion layer and the buried oxide film, thereby achieving a higher withstand voltage of the SOI transistor.
此外,可以通过背栅电极控制SOI晶体管的作用区域的电位,能够进行SOI晶体管的阈值控制,并且能够提高亚阈值区域的漏极电流的上升特性,同时,能够缓和漏极一侧沟道端的电场。因此,可以使晶体管能够在低电压状态下工作,能够减少在截止时的漏电流,能够降低工作或待机时的功率消耗的同时,提高SOI场效应晶体管的耐压特性。In addition, the potential of the active region of the SOI transistor can be controlled through the back gate electrode, the threshold value of the SOI transistor can be controlled, and the rising characteristics of the drain current in the subthreshold region can be improved, and at the same time, the electric field at the channel end on the drain side can be eased . Therefore, the transistor can be operated in a low-voltage state, the leakage current can be reduced when it is turned off, and the power consumption during operation or standby can be reduced, and at the same time, the withstand voltage characteristic of the SOI field effect transistor can be improved.
另外,通过将形成背栅电极的第1单晶半导体层的膜厚做得比形成SOI晶体管的第2单晶半导体层的膜厚厚,可以实现背栅电极的低电阻化。因此,能够以低电压控制SOI晶体管的阈值位置,并且可以使背栅电极的面积增大,从而能够减少与背栅电极连接的接点个数,抑制芯片尺寸的增大。In addition, by making the first single crystal semiconductor layer forming the back gate electrode thicker than the second single crystal semiconductor layer forming the SOI transistor, the resistance of the back gate electrode can be reduced. Therefore, the threshold position of the SOI transistor can be controlled at a low voltage, and the area of the back gate electrode can be increased, thereby reducing the number of contacts connected to the back gate electrode and suppressing an increase in chip size.
另外,根据本发明的一种实施方式的半导体装置,其特征在于,还具有把所述背栅电极与所述栅电极电连接的布线层。In addition, a semiconductor device according to an embodiment of the present invention further includes a wiring layer electrically connecting the back gate electrode and the gate electrode.
因此,能够将背栅电极与栅电极调控成具有相同的电位,提高沟道区域电位的控制力。为此,能抑制芯片尺寸的增大,能减少在截止时的漏电流。从而能够减少工作或待机时的功率消耗,实现场效应晶体管的高耐压化。Therefore, the back gate electrode and the gate electrode can be regulated to have the same potential, and the controllability of the potential of the channel region can be improved. For this reason, increase in chip size can be suppressed, and leakage current at the time of off can be reduced. Therefore, it is possible to reduce power consumption during operation or standby, and to achieve a higher withstand voltage of the field effect transistor.
另外,根据本发明的一种实施方式的半导体装置的制造方法,包括:在单晶半导体基板上成膜第1单晶半导体层的工序;在所述第1单晶半导体层上,成膜蚀刻速率比所述第1单晶半导体层小的第2单晶半导体层的工序;在所述第2单晶半导体层上,成膜具有与所述第1单晶半导体层同一组成的第3单晶半导体层的工序;在所述第3单晶半导体层上,成膜具有与所述第2单晶半导体层同一组成,并且膜厚比所述第2单晶半导体层薄的第4单晶半导体层的工序;形成贯通所述第1至第4单晶半导体层,并使所述单晶半导体基板露出的第1槽的工序;在所述第1槽内,形成把所述第2及第4单晶半导体层支撑在所述单晶半导体基板上的支撑体的工序;形成第2槽的工序,该第2槽使形成了所述支撑体的所述第1及第3单晶半导体层的至少一部分,从所述第2及第4单晶半导体层露出;通过经由所述第2槽对第1及第3单晶半导体层进行选择性蚀刻,从而分别将所述第1及第3单晶半导体层去除,形成第1及第2空洞部的工序;通过对所述单晶半导体基板、所述第2及第4单晶半导体层进行的热氧化,从而形成分别被埋入在所述第1及第2空洞部的埋入氧化膜的工序;通过对所述第4单晶半导体层进行热氧化,从而在所述第4单晶半导体层上形成栅极绝缘膜的工序;隔着所述栅极绝缘膜,在所述第4单晶半导体层上形成栅电极的工序;和通过把所述栅电极作为掩模进行离子注入,从而在所述第4单晶半导体层上形成分别被配置在所述栅电极侧方的源极/漏极层的工序。In addition, a method for manufacturing a semiconductor device according to an embodiment of the present invention includes: forming a first single crystal semiconductor layer on a single crystal semiconductor substrate; A step of forming a second single crystal semiconductor layer whose rate is lower than that of the first single crystal semiconductor layer; forming a third single crystal semiconductor layer having the same composition as that of the first single crystal semiconductor layer on the second single crystal semiconductor layer. A step of forming a crystalline semiconductor layer: on the third single crystalline semiconductor layer, forming a fourth single crystalline film having the same composition as that of the second single crystalline semiconductor layer and having a film thickness thinner than that of the second single crystalline semiconductor layer A step of semiconductor layer; a step of forming a first groove penetrating through the first to fourth single crystal semiconductor layers and exposing the single crystal semiconductor substrate; forming the second and second grooves in the first groove. A step of supporting the fourth single crystal semiconductor layer on the support body on the single crystal semiconductor substrate; a step of forming a second groove for the first and third single crystal semiconductors on which the support body is formed At least a part of the layer is exposed from the second and fourth single crystal semiconductor layers; by selectively etching the first and third single crystal semiconductor layers through the second groove, the first and third single crystal semiconductor layers are respectively etched. 3 A step of removing the single crystal semiconductor layer and forming the first and second cavities; by thermally oxidizing the single crystal semiconductor substrate and the second and fourth single crystal semiconductor layers, forming A step of embedding oxide films in the first and second cavities; a step of forming a gate insulating film on the fourth single crystal semiconductor layer by thermally oxidizing the fourth single crystal semiconductor layer; forming a gate electrode on the fourth single crystal semiconductor layer through the gate insulating film; and performing ion implantation using the gate electrode as a mask, thereby forming A step of forming source/drain layers respectively disposed on sides of the gate electrodes.
因此,即使在第1及第3单晶半导体层上,分别层叠了第2及第4单晶半导体层的情况下,也能够通过第2槽,使蚀刻液接触到第1及第3单晶半导体层,来去除第1及第3单晶半导体层,保留第2及第4单晶半导体层,同时,能够形成被分别埋入在第2及第4单晶半导体层下面的第1及第2空洞部内的埋入氧化膜。另外,由于在第1槽形成了被埋入的支撑体,从而即使在第2及第4单晶半导体层下面分别形成了第1及第2空洞部的情况下,也能够在单晶半导体基板上支撑第2及第4单晶半导体层,并且通过使第4单晶半导体层的膜厚比第2单晶半导体层更厚,能够稳定地支撑第4单晶半导体层。Therefore, even when the second and fourth single crystal semiconductor layers are respectively stacked on the first and third single crystal semiconductor layers, the etchant can be brought into contact with the first and third single crystal semiconductor layers through the second groove. semiconductor layer, to remove the 1st and 3rd single crystal semiconductor layer, keep the 2nd and 4th single crystal semiconductor layer, meanwhile, can form the 1st and 1st single crystal semiconductor layer buried under the 2nd and 4th single crystal semiconductor layer respectively 2 Buried oxide film in the cavity. In addition, since the embedded support is formed in the first groove, even when the first and second cavities are respectively formed under the second and fourth single crystal semiconductor layers, the single crystal semiconductor substrate can The second and fourth single crystal semiconductor layers are supported thereon, and the fourth single crystal semiconductor layer can be stably supported by making the film thickness of the fourth single crystal semiconductor layer thicker than that of the second single crystal semiconductor layer.
因此,能够在减少第2及第4单晶半导体层发生缺陷的同时,在埋入氧化膜上配置第2及第4单晶半导体层,并且不需使用SOI基板,便能够在第2单晶半导体层的背面侧配置低电阻化的背栅电极,并且能够在第2单晶半导体层上形成SOI晶体管。其结果,可降低成本、减少SOI晶体管在截止时的漏电流,可实现SOI晶体管的高耐压化。Therefore, while reducing defects in the second and fourth single crystal semiconductor layers, the second and fourth single crystal semiconductor layers can be disposed on the buried oxide film, and the second single crystal semiconductor layer can be formed without using an SOI substrate. A low-resistance back gate electrode is disposed on the back side of the semiconductor layer, and an SOI transistor can be formed on the second single crystal semiconductor layer. As a result, the cost can be reduced, the leakage current of the SOI transistor at the time of off can be reduced, and a higher withstand voltage of the SOI transistor can be realized.
另外,根据本发明的一种实施方式的半导体装置的制造方法,其特征在于,所述单晶半导体基板及所述第2、第4单晶半导体层是Si,所述第1及第3单晶半导体层是SiGe。In addition, the method of manufacturing a semiconductor device according to an embodiment of the present invention is characterized in that the single crystal semiconductor substrate and the second and fourth single crystal semiconductor layers are made of Si, and the first and third single crystal semiconductor layers are made of Si. The crystalline semiconductor layer is SiGe.
因此,能够在单晶半导体基板、第1至第4单晶半导体层之间实现晶格匹配,并且可以使第1及第3单晶半导体层的蚀刻速率比单晶半导体基板、第2及第4单晶半导体层的大。因此,能够在第1及第3单晶半导体层上分别形成结晶质量优良的第2及第4单晶半导体层,从而能够在不影响第2及第4单晶半导体层的质量的情况下,实现第2及第4单晶半导体层与单晶半导体基板之间的绝缘。Therefore, lattice matching can be realized between the single crystal semiconductor substrate and the first to fourth single crystal semiconductor layers, and the etching rate of the first and third single crystal semiconductor layers can be lower than that of the single crystal semiconductor substrate, the second and the second single crystal semiconductor layers. 4 large single crystal semiconductor layers. Therefore, the second and the fourth single crystal semiconductor layers with excellent crystal quality can be formed respectively on the first and the third single crystal semiconductor layers, so that without affecting the quality of the second and the fourth single crystal semiconductor layers, Insulation between the second and fourth single crystal semiconductor layers and the single crystal semiconductor substrate is realized.
另外,根据本发明的一种实施方式的半导体装置的制造方法,其特征在于,具有将杂质离子注入到所述第2单晶半导体层的工序,该杂质的行程距离被设定在比所述第2单晶半导体层的膜厚方向的中央更深的位置。In addition, the method of manufacturing a semiconductor device according to one embodiment of the present invention is characterized in that it includes a step of implanting impurity ions into the second single crystal semiconductor layer, and the travel distance of the impurity is set to be longer than the second single crystal semiconductor layer. A deeper position in the center of the film thickness direction of the second single crystal semiconductor layer.
因此,可以抑制对形成SOI晶体管的第4单晶半导体层所产生的损伤,实现背栅电极的低电阻化,并且能够在不使SOI晶体管的特性劣化的情况下,以低电压对SOI晶体管的阈值位置进行远距离控制。Therefore, damage to the fourth single crystal semiconductor layer forming the SOI transistor can be suppressed, the resistance of the back gate electrode can be reduced, and the SOI transistor can be applied at a low voltage without deteriorating the characteristics of the SOI transistor. Threshold position for remote control.
附图说明Description of drawings
图1是表示本发明的第1实施方式的半导体装置的概略结构的剖面图。1 is a cross-sectional view showing a schematic configuration of a semiconductor device according to a first embodiment of the present invention.
图2是表示本发明的第2实施方式的半导体装置的制造方法的图。2 is a diagram illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
图3是表示本发明的第2实施方式的半导体装置的制造方法的图。3 is a diagram illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
图4是表示本发明的第2实施方式的半导体装置的制造方法的图。4 is a diagram illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
图5是表示本发明的第2实施方式的半导体装置的制造方法的图。5 is a diagram illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
图6是表示本发明的第2实施方式的半导体装置的制造方法的图。6 is a diagram illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
图7是表示本发明的第2实施方式的半导体装置的制造方法的图。7 is a diagram illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
图8是表示本发明的第2实施方式的半导体装置的制造方法的图。8 is a diagram illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
图9是表示本发明的第2实施方式的半导体装置的制造方法的图。9 is a diagram illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
图10是表示本发明的第2实施方式的半导体装置的制造方法的图。10 is a diagram illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
图11是表示本发明的第2实施方式的半导体装置的制造方法的图。11 is a diagram illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
图12是表示本发明的第2实施方式的半导体装置的制造方法的图。12 is a diagram illustrating a method of manufacturing a semiconductor device according to a second embodiment of the present invention.
图中:11、31-单晶半导体基板;12、14、32、34-埋入氧化膜;13-第1单晶半导体层;15a、15b-第2单晶半导体层;33、35、51、52-单晶半导体层;16a、16b、41-栅极绝缘膜;17a、17b、42-栅电极;18a、18b-侧壁;19a、19b、43a-源极层;20a、20b、43b-漏极层;36、37、38-槽;39-氧化膜;44-层间绝缘层;45-埋入绝缘体;45a、45b-背栅接触电极;46a-源极接触电极;46b-漏极接触电极;53-牺牲氧化膜(sacrificial oxide film);54-防氧化膜;56-支撑体;57a、57b-空洞部。In the figure: 11, 31 - single crystal semiconductor substrate; 12, 14, 32, 34 - buried oxide film; 13 - first single crystal semiconductor layer; 15a, 15b - second single crystal semiconductor layer; 33, 35, 51 , 52-single crystal semiconductor layer; 16a, 16b, 41-gate insulating film; 17a, 17b, 42-gate electrode; 18a, 18b-side wall; 19a, 19b, 43a-source layer; 20a, 20b, 43b -drain layer; 36, 37, 38-groove; 39-oxide film; 44-interlayer insulating layer; 45-buried insulator; 45a, 45b-back gate contact electrode; 46a-source contact electrode; 46b-drain pole contact electrode; 53-sacrificial oxide film; 54-anti-oxidation film; 56-support body; 57a, 57b-cavities.
具体实施方式Detailed ways
下面,参照附图,对本发明的实施方式的半导体装置及其制造方法进行说明。Hereinafter, a semiconductor device and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings.
图1是表示本发明的第1实施方式的半导体装置的大致结构的剖面图。FIG. 1 is a cross-sectional view showing a schematic configuration of a semiconductor device according to a first embodiment of the present invention.
在图1中,在单晶半导体基板11上形成埋入氧化膜12,在埋入氧化膜12上形成构成背栅电极的第1单晶半导体层13。并且,在第1单晶半导体层13上形成埋入氧化膜14。在埋入氧化膜14上层叠被台面隔离的第2单晶半导体层15a、15b。另外,可以用Si作为单晶半导体基板11、第1单晶半导体层13及第2单晶半导体层15a、15b的材质。另外,理想的是第2单晶半导体层15a、15b的膜厚比第1单晶半导体层13的膜厚更厚。In FIG. 1 , a buried oxide film 12 is formed on a single crystal semiconductor substrate 11 , and a first single crystal semiconductor layer 13 constituting a back gate electrode is formed on the buried oxide film 12 . Furthermore, a buried oxide film 14 is formed on the first single crystal semiconductor layer 13 . On the buried oxide film 14, second single crystal semiconductor layers 15a, 15b separated by mesas are stacked. In addition, Si can be used as the material of the single crystal semiconductor substrate 11, the first single crystal semiconductor layer 13, and the second single crystal semiconductor layers 15a, 15b. In addition, it is desirable that the film thickness of the second single crystal semiconductor layers 15 a and 15 b is thicker than the film thickness of the first single crystal semiconductor layer 13 .
然后,在第2单晶半导体层15a上,隔着栅极绝缘膜16a形成栅电极17a,在栅电极17a的侧面形成侧壁18a。同时,在第2单晶半导体层15a上,形成有被配置成将栅电极17a夹在中间的源极层19a及漏极层20a。并且,在第2单晶半导体层15b上,隔着栅极绝缘膜16b形成有栅电极17b,在栅电极17b的侧面形成侧壁18b。另外,在第2单晶半导体层15b上形成有被配置成将栅电极17b夹在中间的源极层19b及漏极层20b。Then, on the second single crystal semiconductor layer 15a, a gate electrode 17a is formed via the gate insulating film 16a, and side walls 18a are formed on the side surfaces of the gate electrode 17a. Simultaneously, on the second single crystal semiconductor layer 15a, the source layer 19a and the drain layer 20a arranged to sandwich the gate electrode 17a are formed. In addition, a gate electrode 17b is formed on the second single crystal semiconductor layer 15b via a gate insulating film 16b, and side walls 18b are formed on side surfaces of the gate electrode 17b. In addition, the source layer 19b and the drain layer 20b arranged to sandwich the gate electrode 17b are formed on the second single crystal semiconductor layer 15b.
由此,在第2单晶半导体层15a、15b上可以分别形成SOI晶体管,并且,在SOI晶体管的背面侧能够配置背栅电极。因此,能够提高配置背栅电极的自由度,从而能够使背栅电极的配置不受栅电极17a、17b及源极/漏极接点等的配置的制约。Accordingly, SOI transistors can be formed on the second single crystal semiconductor layers 15a and 15b, respectively, and a back gate electrode can be arranged on the back side of the SOI transistors. Therefore, the degree of freedom in arranging the back gate electrodes can be increased, and the arrangement of the back gate electrodes can be made independent of the arrangement of the gate electrodes 17a and 17b, source/drain contacts, and the like.
因此,能够提高SOI晶体管的设计自由度,并且能够利用背栅电极偏压来控制SOI晶体管的阈值电压,或者利用双栅极结构,提高其亚阈值特性。Therefore, the design freedom of the SOI transistor can be improved, and the threshold voltage of the SOI transistor can be controlled by using the bias voltage of the back gate electrode, or its sub-threshold characteristic can be improved by using the double gate structure.
另外,通过在第1单晶半导体层15a、15b的背面侧配置背栅电极,可以用背栅电极屏蔽漏极电位。因此,即使在从SOI的硅薄膜的表面施加了漏极电位的情况下,也能够防止在漏极层20a、20b与埋入氧化膜14的界面处产生高电压。其结果,可以防止在漏极层20a、20b与埋入氧化膜14的界面产生局部强电场,从而可实现SOI晶体管的高耐压化。In addition, by disposing the back gate electrode on the back side of the first single crystal semiconductor layer 15a, 15b, the drain potential can be shielded by the back gate electrode. Therefore, even when a drain potential is applied from the surface of the silicon thin film of SOI, it is possible to prevent a high voltage from being generated at the interface between the drain layers 20 a , 20 b and the buried oxide film 14 . As a result, it is possible to prevent a local strong electric field from being generated at the interface between the drain layers 20a, 20b and the buried oxide film 14, thereby achieving a higher breakdown voltage of the SOI transistor.
并且,能够利用背栅电极控制SOI晶体管的作用区域(active region)的电位,能够进行SOI晶体管的阈值控制、提高亚阈值区域的漏极电流的上升特性,并且可缓和漏极层20a、20b一侧的沟道端的电场。因此,可以使SOI晶体管在低电压状态下工作,并且可以减少在截止时的漏电流。能够减少工作或待机时的功率消耗,同时,提高SOI晶体管的耐压特性。Moreover, the potential of the active region (active region) of the SOI transistor can be controlled by the back gate electrode, the threshold value control of the SOI transistor can be performed, the rising characteristic of the drain current in the subthreshold region can be improved, and the drain layer 20a, 20b can be relaxed. The electric field at the channel end of the side. Therefore, the SOI transistor can be made to operate in a low voltage state, and the leakage current at the time of off can be reduced. The power consumption during operation or standby can be reduced, and at the same time, the withstand voltage characteristic of the SOI transistor can be improved.
另外,通过使形成背栅电极的第1单晶半导体层13的膜厚,比形成SOI晶体管的第2单晶半导体层15a、15b的膜厚更厚,可以实现背栅电极的低电阻化。因此,能够用低电压对SOI晶体管的阈值位置进行控制,并且可以实现背栅电极的大面积化,能够减少连接于背栅电极的接点数量,可抑制芯片尺寸的增大。In addition, by making the film thickness of the first single crystal semiconductor layer 13 forming the back gate electrode thicker than the film thickness of the second single crystal semiconductor layers 15a and 15b forming the SOI transistor, the resistance of the back gate electrode can be reduced. Therefore, the threshold position of the SOI transistor can be controlled with a low voltage, the area of the back gate electrode can be increased, the number of contacts connected to the back gate electrode can be reduced, and the increase in chip size can be suppressed.
图2(a)~图12(a)是表示本发明的第2实施方式的半导体装置的制造方法的俯视图。图2(b)~图12(b)分别是沿着图2(a)~图12(a)中的A1-A1’线~A11-A11’线剖开的剖面图,图2(c)~图12(c)分别是沿着图2(a)~图12(a)中的B1-B1’线~B11-B11’线剖开的剖面图。2(a) to 12(a) are plan views showing a method of manufacturing a semiconductor device according to a second embodiment of the present invention. Figure 2(b) to Figure 12(b) are cross-sectional views cut along the A1-A1' line to A11-A11' line in Figure 2(a) to Figure 12(a) respectively, and Figure 2(c) ~ Fig. 12(c) are cross-sectional views cut along the line B1-B1' - line B11-B11' in Fig. 2(a) ~ Fig. 12(a), respectively.
在图2中,在单晶半导体基板31上,通过外延生长,将单晶半导体层51、33、52、35依次层叠。在这里,单晶半导体层33的膜厚可以比单晶半导体层35的膜厚厚。而且,单晶半导体层51、52可以使用蚀刻速率大于单晶半导体基板31及单晶半导体层33、35的材料。特别是当单晶半导体基板31是硅的情况下,作为单晶半导体层51、52优选使用SiGe作材料,作为单晶半导体层33、35优选使用Si作材料。因此,能够在单晶半导体层51、52与单晶半导体层33、35之间形成晶格匹配,同时,可以确保单晶半导体层51、52与单晶半导体层33、35之间的选择比。另外,对于单晶半导体层51、33、52、35的膜厚,可以设定为例如1~100nm的程度。In FIG. 2 , on a single
而且,通过单晶半导体层35的热氧化,在单晶半导体层35的表面形成牺牲氧化膜53。然后,通过CVD等方法,在全部牺牲氧化膜53上生成防氧化膜54。另外,作为防氧化膜54,可以使用例如氮化硅膜。Further, a
接下来,如图3所示,通过运用光刻技术和蚀刻技术,对防氧化膜54、牺牲氧化膜53、单晶半导体层35、52、33、51进行图案形成,沿规定方向形成使单晶半导体基板31露出的槽36。另外,在单晶半导体基板31被露出的情况下,既可以停止对单晶半导体基板31的表面的蚀刻,也可以通过对单晶半导体基板31进行的过度蚀刻,在单晶半导体基板31形成凹部。而且,可以使槽36的配置位置与单晶半导体层33的元件分离区域的一部分相对应。Next, as shown in FIG. 3, the
然后,通过运用光刻技术和蚀刻技术,对防氧化膜54、牺牲氧化膜53、单晶半导体层35、52进行图案形成,形成与槽36重叠的、比槽36更宽的槽37。这里,可以使槽37的配置位置,与半导体层35的元件分离区域相对应。Then, the
并且,也可以取代使单晶半导体层33的表面露出,在单晶半导体层52的表面停止蚀刻,也可以对单晶半导体层52进行过度蚀刻,直至单晶半导体层52的途中。这里,通过在途中停止单晶半导体层52的蚀刻,能够防止槽36内的单晶半导体层33的表面被曝露出来。因此,当对单晶半导体层51、52进行蚀刻去除时,可以减少槽36内的单晶半导体层33曝露在蚀刻液或蚀刻气体中的时间,能够抑制槽36内的单晶半导体层33被过度蚀刻。In addition, instead of exposing the surface of the single
下面,如图4所示,通过CVD等方法,在单晶半导体基板31的整个面形成支撑体56,该支撑体56填埋到槽36、37内,并把单晶半导体层33、35支撑在单晶半导体基板31上。并且,可以使用硅氧化膜作为支撑体56的材料。Next, as shown in FIG. 4, a
下面,如图5所示,通过运用光刻技术和蚀刻技术,对防氧化膜54、牺牲氧化膜53、单晶半导体层35、52、33、51进行图案形成,从而沿着与槽36垂直的方向,形成使单晶半导体基板31露出的槽38。而且,在使单晶半导体基板31露出的情况下,可以在单晶半导体基板31的表面停止蚀刻,也可以通过对单晶半导体基板31进行过度蚀刻,而在单晶半导体基板31形成凹部。另外,可以使槽38的配置位置,与单晶半导体层33、35的元件分离区域相对应。Next, as shown in FIG. 5, the
下面,如图6所示,借助槽38,通过使蚀刻液与单晶半导体层51、52接触,从而蚀刻去除单晶半导体层51、52,从而在单晶半导体基板31与单晶半导体层33之间形成空洞部57a,同时在单晶半导体层33、35之间也形成空洞部57b。Next, as shown in FIG. 6 , the single crystal semiconductor layers 51 and 52 are etched and removed by bringing the etchant into contact with the single crystal semiconductor layers 51 and 52 through the
这里,由于在槽36、37内设置了支撑体56,即使在单晶半导体层51、52被去除的情况下,在单晶半导体基板31上也能够支撑半导体层33、35,并且,由于除了槽36、37之外,还另外设置了槽38,从而可以使在单晶半导体层33、35之下分别配置的单晶半导体层51、52能够接触到蚀刻液。因此,能够在不影响单晶半导体层33、35的结晶质量的条件下,实现单晶半导体层33、35与单晶半导体基板31之间的绝缘。Here, since the
另外,在单晶半导体基板31、单晶半导体层33、35为Si材料,单晶半导体层51、52为SiGe材料的情况下,优选使用氢氟酸-硝酸作为单晶半导体层51、52的蚀刻液。因此,Si与SiGe的选择比可以设定在1∶100~1000之间,这样,即能够去除单晶半导体层51、52,又可以抑制对单晶半导体基板31及单晶半导体层33、35的过度蚀刻。In addition, when the single
下面,如图7所示,通过对单晶半导体基板31及单晶半导体层33、35进行热氧化,在单晶半导体基板31与单晶半导体层33之间的空洞部57a内形成埋入氧化膜32,同时也在单晶半导体层33、35之间的空洞部57b内形成埋入氧化膜34。而且,在通过单晶半导体基板31及单晶半导体层33、35的热氧化,而形成埋入氧化膜32、34的情况下,为了提高其埋入特性,优选使用可提供反应极限的低温湿式氧化的方法。这里,在通过单晶半导体基板31及单晶半导体层33、35的热氧化而形成埋入氧化膜32、34的情况下,槽38内的单晶半导体基板31及单晶半导体层33、35被氧化,在槽38内的侧壁上形成氧化膜39。Next, as shown in FIG. 7 , by thermally oxidizing the single
由此,根据在外延生长时的单晶半导体层33、35的膜厚、以及单晶半导体层33、35的热氧化时形成的埋入氧化膜32、34的膜厚,可以分别规定在元件隔离后单晶半导体层33、35的膜厚。因此,能够对单晶半导体层33、35的膜厚进行高精度地控制,在降低单晶半导体层33、35的膜厚的离散偏差的同时,可以将单晶半导体层33、35做得更薄。而且,由于在单晶半导体层35上设置了防氧化膜54,所以可以防止单晶半导体层35的表面被热氧化,并且能够在单晶半导体层35的背面侧形成埋入氧化膜34。Thus, the thickness of the single crystal semiconductor layers 33 and 35 during epitaxial growth and the thickness of the buried
另外,由于单晶半导体层33的膜厚做得比单晶半导体层35的膜厚厚,从而即使在单晶半导体层33、35下面分别形成了空洞部57a、57b的情况下,在单晶半导体基板31上也能够稳定地支撑单晶半导体层33、35,单晶半导体层33、35及埋入氧化膜32、34的膜厚可以做的更均匀。In addition, since the film thickness of the single
下面,如图8所示,采用CVD等方法,在支撑体56上堆积埋入绝缘体45,并用其将槽38填埋。另外,可以用氧化硅膜作为埋入绝缘体45的材料。Next, as shown in FIG. 8, the embedded
下面,如图9所示,通过使用CMP(化学机械研磨)等方法,对埋入绝缘体45及支撑体56实施薄膜化,并且去除防氧化膜54及牺牲氧化膜53,从而使单晶半导体层35的表面露出。然后,通过在单晶半导体层33内进行As、P、B、BF2等杂质的离子注入IP1,将杂质导入单晶半导体层33的内部。这里,对于向单晶半导体层33内进行离子注入的杂质的行程距离Rp,优选设定在较单晶半导体层33的膜厚方向的中央更深的位置。Next, as shown in FIG. 9, the embedded
这样,可以抑制对形成SOI晶体管的单晶半导体层35造成的损伤,同时还可以实现具有作为背栅电极功能的单晶半导体层33的低电阻化,能够在不使SOI晶体管的特性劣化的情况下,用低电压控制SOI晶体管的阈值位置。In this way, damage to the single
下面,如图10所示,通过对单晶半导体层35的表面进行的热氧化,在单晶半导体层35的表面形成栅极绝缘膜41。并且,通过CVD等方法,在形成有栅极绝缘膜41的单晶半导体层35上形成多晶硅层。然后,通过运用光刻技术及蚀刻技术对多晶硅层进行图案形成,从而在单晶半导体层35上形成栅电极42。Next, as shown in FIG. 10 , a
下面,如图11所示,通过把栅电极42作为掩模,在单晶半导体层35内进行As、P、B、BF2等杂质的离子注入IP2,从而在单晶半导体层35上形成将栅电极42夹在中间而进行配置的源极层43a及漏极层43b。Next, as shown in FIG. 11, ion implantation IP2 of impurities such as As, P, B, and BF 2 is performed in the single
下面,如图12所示,通过CVD等方法,在栅电极42上堆积层间绝缘层44。然后,在层间绝缘层44上形成背栅接触电极45a、45b,其被埋入层间绝缘层44及支撑体56,并与单晶半导体层33连接,并且,在层间绝缘层44上形成源极接触电极46a及漏极接触电极46b,其被埋入层间绝缘层44,并分别与源极层43a及漏极层43b连接。Next, as shown in FIG. 12 , an
这样,可以减少单晶半导体层33、35的缺陷的发生,能够在埋入氧化膜32、34上配置单晶半导体层33、35,不使用SOI基板,便可在单晶半导体层35的背面侧配置低电阻化的背栅电极,并且,可以在单晶半导体层33上形成SOI晶体管。其结果,可以抑制成本上升,能够减少SOI晶体管截止时的漏电流,并实现SOI晶体管的高耐压化。In this way, the occurrence of defects in the single crystal semiconductor layers 33, 35 can be reduced, the single crystal semiconductor layers 33, 35 can be disposed on the buried
另外,也可以通过背栅接触电极45a、45b,使栅电极42与单晶半导体层35电连接。因此,可以将背栅电极与栅电极42调控成具有相同的电位,提高控制沟道区域电位的能力。因此,可以抑制芯片尺寸的增大,减少在截止时的漏电流,能够降低工作时或待机时的功率消耗的同时,实现场效应晶体管的高耐压化。In addition, the
Claims (5)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005212746 | 2005-07-22 | ||
JP2005212746 | 2005-07-22 | ||
JP2006071328 | 2006-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1901228A true CN1901228A (en) | 2007-01-24 |
Family
ID=37657033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200610091231 Pending CN1901228A (en) | 2005-07-22 | 2006-06-07 | Semiconductor device and semiconductor device manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1901228A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101308853B (en) * | 2007-05-18 | 2011-10-05 | 株式会社半导体能源研究所 | Semiconductor device |
WO2012055201A1 (en) * | 2010-10-27 | 2012-05-03 | 中国科学院微电子研究所 | Semiconductor structure and method for forming the same |
CN102479822A (en) * | 2010-11-30 | 2012-05-30 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
CN102842618A (en) * | 2011-06-24 | 2012-12-26 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
WO2013033877A1 (en) * | 2011-09-07 | 2013-03-14 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
US8673701B2 (en) | 2011-06-24 | 2014-03-18 | Institute of Microelectronics, Chinese Academy of Sciences | Semiconductor structure and method for manufacturing the same |
US9178070B2 (en) | 2010-11-30 | 2015-11-03 | Institute of Microelectronics, Chinese Academy of Sciences | Semiconductor structure and method for manufacturing the same |
CN105489492A (en) * | 2014-09-18 | 2016-04-13 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN105489650A (en) * | 2014-09-18 | 2016-04-13 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN105489647A (en) * | 2014-09-18 | 2016-04-13 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN108054132A (en) * | 2017-12-13 | 2018-05-18 | 上海华虹宏力半导体制造有限公司 | Semiconductor devices and preparation method thereof |
-
2006
- 2006-06-07 CN CN 200610091231 patent/CN1901228A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101308853B (en) * | 2007-05-18 | 2011-10-05 | 株式会社半导体能源研究所 | Semiconductor device |
WO2012055201A1 (en) * | 2010-10-27 | 2012-05-03 | 中国科学院微电子研究所 | Semiconductor structure and method for forming the same |
CN102456737A (en) * | 2010-10-27 | 2012-05-16 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
CN102456737B (en) * | 2010-10-27 | 2016-03-30 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
US8367490B2 (en) | 2010-10-27 | 2013-02-05 | Institute of Microelectronics, Chinese Academy of Sciences | Semiconductor structure and method for manufacturing the same |
CN102479822B (en) * | 2010-11-30 | 2014-05-07 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
CN102479822A (en) * | 2010-11-30 | 2012-05-30 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
WO2012071823A1 (en) * | 2010-11-30 | 2012-06-07 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method for the same |
US9178070B2 (en) | 2010-11-30 | 2015-11-03 | Institute of Microelectronics, Chinese Academy of Sciences | Semiconductor structure and method for manufacturing the same |
CN102842618A (en) * | 2011-06-24 | 2012-12-26 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
WO2012174770A1 (en) * | 2011-06-24 | 2012-12-27 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
US8673701B2 (en) | 2011-06-24 | 2014-03-18 | Institute of Microelectronics, Chinese Academy of Sciences | Semiconductor structure and method for manufacturing the same |
CN102842618B (en) * | 2011-06-24 | 2015-02-11 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
CN102983140A (en) * | 2011-09-07 | 2013-03-20 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
CN102983140B (en) * | 2011-09-07 | 2015-07-01 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
WO2013033877A1 (en) * | 2011-09-07 | 2013-03-14 | 中国科学院微电子研究所 | Semiconductor structure and manufacturing method thereof |
US8598666B2 (en) | 2011-09-07 | 2013-12-03 | Institute of Microelectronics, Chinese Academy of Sciences | Semiconductor structure and method for manufacturing the same |
CN105489492A (en) * | 2014-09-18 | 2016-04-13 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN105489650A (en) * | 2014-09-18 | 2016-04-13 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN105489647A (en) * | 2014-09-18 | 2016-04-13 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN105489647B (en) * | 2014-09-18 | 2018-06-01 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN105489492B (en) * | 2014-09-18 | 2018-06-05 | 中国科学院微电子研究所 | Semiconductor device and manufacturing method thereof |
CN108054132A (en) * | 2017-12-13 | 2018-05-18 | 上海华虹宏力半导体制造有限公司 | Semiconductor devices and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4644577B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
CN1901228A (en) | Semiconductor device and semiconductor device manufacturing method | |
CN2704927Y (en) | Chips that can have both partially depleted and fully depleted transistors | |
TWI222711B (en) | Chip incorporating partially-depleted, fully-depleted and multiple-gate transistors and method of fabricating the multiple-gate transistor | |
CN1956199B (en) | Semiconductor structure and manufacturing method thereof | |
US7368340B2 (en) | Semiconductor device and method of making semiconductor devices | |
TWI364095B (en) | Finfet having improved carrier mobility and method of its formation | |
CN1487597A (en) | Polysilicon back-gate SOI MOSFET for dynamic threshold voltage control | |
CN101065840A (en) | Semiconductor device and method of making semiconductor device comprising multiple stacked hybrid orientation layers | |
CN1095860A (en) | Make the method for the semiconductor device of the silicon structure on the insulator | |
JP2011003797A (en) | Semiconductor device, and method for manufacturing the same | |
JP4940797B2 (en) | Manufacturing method of semiconductor device | |
US20070132011A1 (en) | Semiconductor device and method of fabricating the same background | |
KR100718178B1 (en) | Semiconductor device and semiconductor device manufacturing method | |
JP3324518B2 (en) | Method for manufacturing semiconductor device | |
JP2005109203A (en) | Semiconductor substrate, semiconductor device, semiconductor substrate manufacturing method, and semiconductor device manufacturing method | |
CN1893093A (en) | Semiconductor device and manufacturing method thereof | |
KR100516677B1 (en) | Method for manufacturing transistor | |
JP4626500B2 (en) | Manufacturing method of semiconductor device | |
US7491609B2 (en) | Semiconductor device and method for manufacturing the same | |
JP4797495B2 (en) | Manufacturing method of semiconductor device | |
JP4696821B2 (en) | Manufacturing method of semiconductor device | |
CN100511709C (en) | Semiconductor device and method for manufacturing the same | |
JP4867362B2 (en) | Manufacturing method of semiconductor device | |
JP2007266390A (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned | ||
C20 | Patent right or utility model deemed to be abandoned or is abandoned |