CN105336967A - Bipolar plate structures of fuel cell - Google Patents
Bipolar plate structures of fuel cell Download PDFInfo
- Publication number
- CN105336967A CN105336967A CN201510820686.3A CN201510820686A CN105336967A CN 105336967 A CN105336967 A CN 105336967A CN 201510820686 A CN201510820686 A CN 201510820686A CN 105336967 A CN105336967 A CN 105336967A
- Authority
- CN
- China
- Prior art keywords
- reducing agent
- oxidant
- water conservancy
- conservancy diversion
- diversion runner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
本发明公开了一种燃料电池双极板结构,采用多个还原剂极板、多个氧化剂极板及多层膜电极组件组成上述燃料电池双极板结构。本发明设计的双极板结构能够合理地利用还原剂极板、氧化剂极板形成的空腔,为冷却剂提供了流动流场,能够实现两张基板组合中冷却剂进入活性区域;同时巧妙地将冷却剂通过冷却剂导流流道引入导流区域流道。并且可以在很大程度上减小冷却剂在双极板中的流动阻力,降低系统能耗。本发明提供的燃料电池双极板结构能够降低双极板重量、体积,该提高燃料电池的能力密度。
The invention discloses a fuel cell bipolar plate structure. The fuel cell bipolar plate structure is composed of a plurality of reducing agent plates, a plurality of oxidant plates and a multilayer membrane electrode assembly. The bipolar plate structure designed in the present invention can rationally utilize the cavity formed by the reducing agent plate and the oxidant plate to provide a flow field for the coolant, enabling the coolant to enter the active area in the combination of two substrates; The coolant is introduced into the diversion area flow channel through the coolant diversion channel. Moreover, the flow resistance of the coolant in the bipolar plate can be reduced to a large extent, and the energy consumption of the system can be reduced. The fuel cell bipolar plate structure provided by the invention can reduce the weight and volume of the bipolar plate, so as to improve the capacity density of the fuel cell.
Description
技术领域 technical field
本发明涉及能源电池领域,具体涉及一种燃料电池双极板结构。 The invention relates to the field of energy batteries, in particular to a fuel cell bipolar plate structure.
背景技术 Background technique
质子交换膜燃料电池(PEMFC)是一种把燃料中的化学能通过化学反应转化为电能的发电装置,具有高功率密度、低环境污染等优点,在固定电源、电动车、军用特种电源盒可以动电源方面具有广阔的应用前景,引起越来越多国家和企业的重视。目前,国内外均已成功地将PEMFC应用到载人的公共汽车和轿车上。 Proton exchange membrane fuel cell (PEMFC) is a power generation device that converts chemical energy in fuel into electrical energy through chemical reaction. It has the advantages of high power density and low environmental pollution. The dynamic power source has a broad application prospect, which has attracted more and more countries and enterprises' attention. At present, PEMFC has been successfully applied to passenger buses and cars at home and abroad.
尽管目前有关PEMFC的基础与应用研究已取得了长足进展,但离商业化仍有相当的距离,成本和寿命是关键制约因素。双极板是燃料电池的核心部件之一,占整个电池重量的70%~80%和成本的45%以上,在控制整个电池的成本和重量方面起着非常重要的作用。因此,开发易于实现大规模生产的轻型、薄层双极板对于提高电堆比功率、降低电堆成本,进而推动PEMFC商业化具有很重要的意义。 Although great progress has been made in basic and applied research on PEMFC, there is still a considerable distance from commercialization, and cost and life are the key constraints. Bipolar plates are one of the core components of fuel cells, accounting for 70% to 80% of the weight of the entire battery and more than 45% of the cost, and play a very important role in controlling the cost and weight of the entire battery. Therefore, the development of light-weight, thin-layer bipolar plates that are easy to achieve mass production is of great significance for improving the specific power of the stack, reducing the cost of the stack, and promoting the commercialization of PEMFC.
双极板具有隔离并均匀分配反应气体、收集并导出电流、串联各个单电池等功能。其材料主要包括金属材料、石墨材料和复合材料。由于石墨类材料具有良好的导电性和化学稳定性,是目前PEMFC广泛采用的极板材料。但石墨材料脆、气密性差、机械强度低以及加工费用高等缺点不易大规模生产,限制了其工业化应用。与石墨材料相比,金属材料具有机械强度高、良好的导电与导热性能,同时易于被加工成薄板,可大幅度提高电堆的比能量,使极具竞争力的双极板材料。 The bipolar plate has the functions of isolating and evenly distributing the reaction gas, collecting and exporting current, and connecting individual cells in series. Its materials mainly include metal materials, graphite materials and composite materials. Due to the good electrical conductivity and chemical stability of graphite materials, they are currently widely used plate materials in PEMFC. However, the shortcomings of graphite materials such as brittleness, poor air tightness, low mechanical strength, and high processing costs are not easy to mass-produce, which limits its industrial application. Compared with graphite materials, metal materials have high mechanical strength, good electrical and thermal conductivity, and are easy to be processed into thin plates, which can greatly increase the specific energy of the stack, making them very competitive bipolar plate materials.
双极板由于极板材料不同,其设计也不尽相同。石墨双极板通常是由氢板和氧板组成,冷却水的流场是由氢板和氧板背部的流场组合形成。冷却水的流场深度等可以根据要求采用机铣或压模的方式加工得到。因而,冷却水的流动阻力可以控制在较小的范围内。采用其他耐腐蚀的薄型金属材料时,极板加工采用冲压的机械工艺进行。为了减少电堆重量,与石墨板相同,金属双极板可以采用两张、三张或更多的金属板组合而成。两张金属板的冷却水的流场由氢板和氧板的背面组合而成,而三张或更多的金属板组合的双极板则是有单独的冷却剂极板。但三张及以上的金属双极板组合方式由于极板数量较多,因而极板的重量和体积较大,电堆的重量比功率比两张极板组合方式低25%以上,体积比功率低40%左右。两张极板组合方式较三张及以上数量极板组合方式在结构上复杂,且加工难度较大。由于金属板采用冲压工艺加工而成,因而极板背面不能经过二次加工形成冷却水的流场,冷却剂的流场和导流场由两张极板的背面流道组成。由于金属材料本身的限制,极板流场的槽深一般不会太深(<0.75mm),特别是在导流场部分。造成了燃料电池各介质的流场深度较浅,介质在各流场中的阻力加大,增加了介质在流场中的分配难度以及系统能耗。 Bipolar plates have different designs due to different plate materials. The graphite bipolar plate is usually composed of a hydrogen plate and an oxygen plate, and the flow field of the cooling water is formed by the combination of the flow field on the back of the hydrogen plate and the oxygen plate. The flow field depth of the cooling water can be processed by machine milling or compression molding according to requirements. Therefore, the flow resistance of cooling water can be controlled within a small range. When other corrosion-resistant thin metal materials are used, the plate processing is carried out by stamping mechanical technology. In order to reduce the weight of the stack, the same as the graphite plate, the metal bipolar plate can be composed of two, three or more metal plates. The cooling water flow field of two metal plates is composed of the hydrogen plate and the back side of the oxygen plate, while the bipolar plate combined with three or more metal plates has a separate coolant plate. However, due to the large number of plates in the combination of three or more metal bipolar plates, the weight and volume of the plates are relatively large, and the weight-to-power ratio of the stack is more than 25% lower than that of the combination of two plates, and the volume-to-power ratio About 40% lower. The combination of two pole plates is more complicated in structure than the combination of three or more pole plates, and the processing is more difficult. Since the metal plate is processed by stamping process, the back of the pole plate cannot form the flow field of cooling water through secondary processing. The flow field and diversion field of the coolant are composed of the back flow channels of the two pole plates. Due to the limitation of the metal material itself, the groove depth of the plate flow field is generally not too deep (<0.75mm), especially in the diversion field part. As a result, the depth of the flow field of each medium of the fuel cell is relatively shallow, and the resistance of the medium in each flow field increases, which increases the difficulty of distribution of the medium in the flow field and the energy consumption of the system.
发明内容 Contents of the invention
本发明的目的在于提供一种燃料电池双极板结构,采用多个还原剂极板、多个氧化剂极板及多层膜电极组件组成上述燃料电池双极板结构。本发明设计的双极板结构能够合理地利用还原剂极板、氧化剂极板形成的空腔,为冷却剂提供了流动流场,能够实现两张基板组合中冷却剂进入活性区域;同时巧妙地将冷却剂通过冷却剂导流流道引入导流区域流道。并且可以在很大程度上减小冷却剂在双极板中的流动阻力,降低系统能耗。本发明提供的燃料电池双极板结构能够降低双极板重量、体积,该提高燃料电池的能力密度。 The object of the present invention is to provide a fuel cell bipolar plate structure, which is composed of a plurality of reducing agent plates, a plurality of oxidant plates and a multilayer membrane electrode assembly. The bipolar plate structure designed in the present invention can rationally utilize the cavity formed by the reducing agent plate and the oxidizing agent plate to provide a flow field for the coolant, enabling the coolant to enter the active area in the combination of two substrates; The coolant is introduced into the diversion area flow channel through the coolant diversion channel. Moreover, the flow resistance of the coolant in the bipolar plate can be reduced to a large extent, and the energy consumption of the system can be reduced. The fuel cell bipolar plate structure provided by the invention can reduce the weight and volume of the bipolar plate, so as to improve the capacity density of the fuel cell.
为了达到上述目的,本发明通过以下技术方案实现: In order to achieve the above object, the present invention is achieved through the following technical solutions:
一种燃料电池双极板结构,该燃料电池双极板结构包含:多个还原剂极板、多个氧化剂极板及多层膜电极组件; A fuel cell bipolar plate structure, the fuel cell bipolar plate structure comprising: a plurality of reducing agent plates, a plurality of oxidant plates and a multilayer membrane electrode assembly;
多个所述氧化剂极板与多个所述还原剂极板间隔对称设置;其中,每个所述氧化剂极板与对应的一个所述还原剂极板对称匹配设置形成一对双极板结构; A plurality of said oxidant plates and a plurality of said reductant plates are arranged symmetrically at intervals; wherein, each said oxidant plate is symmetrically matched with a corresponding one of said reductant plates to form a pair of bipolar plate structures;
每层所述膜电极组件设置在一对所述双极板结构的所述氧化剂极板与另一对所述双极板结构的所述还原剂极板之间。 Each layer of the membrane electrode assembly is arranged between the oxidant electrode plates of a pair of bipolar plate structures and the reductant electrode plates of another pair of bipolar plate structures.
每对所述双极板结构之间形成冷却剂流场,每个所述还原剂极板与对应的所述膜电极组件之间形成还原剂流道,每个所述氧化剂极板与对应的所述膜电极组件之间形成氧化剂流道。 A coolant flow field is formed between each pair of bipolar plate structures, a reducing agent flow channel is formed between each reducing agent electrode plate and the corresponding membrane electrode assembly, and each oxidizing agent electrode plate is connected to the corresponding membrane electrode assembly. An oxidant flow channel is formed between the membrane electrode assemblies.
每个所述还原剂极板包含: Each of said reductant plates contains:
还原剂进口,还原剂通过所述还原剂进口进入所述还原剂极板内; A reducing agent inlet, the reducing agent enters the reducing agent plate through the reducing agent inlet;
第一还原剂导流区域,所述第一还原剂导流区域的一端与所述还原剂进口连接; a first reducing agent guiding area, one end of the first reducing agent guiding area is connected to the reducing agent inlet;
还原剂活性反应区域,所述第一还原剂导流区域的另一端与所述还原剂活性反应区域的一端连接; A reducing agent active reaction area, the other end of the first reducing agent guiding area is connected to one end of the reducing agent active reaction area;
第二还原剂导流区域,所述第二还原剂导流区域一端与所述还原剂活性反应区域的另一端连接; a second reducing agent guiding area, one end of the second reducing agent guiding area is connected to the other end of the reducing agent active reaction area;
还原剂出口,与所述第二还原剂导流区域另一端连接。 The reducing agent outlet is connected to the other end of the second reducing agent guiding area.
所述第一还原剂导流区域内包含: The first reducing agent diversion area contains:
多个第一还原剂导流流道,每个所述第一还原剂导流流道的一端与所述还原剂进口连接; A plurality of first reducing agent guiding channels, one end of each first reducing agent guiding channel is connected to the reducing agent inlet;
多个第一还原剂导流流道脊,多个所述第一还原剂导流流道脊与多个所述第一还原剂导流流道间隔排列设置,每个所述第一还原剂导流流道脊的一端与所述还原剂进口连接; A plurality of first reducing agent guiding channel ridges, the plurality of first reducing agent guiding channel ridges are arranged at intervals with the plurality of first reducing agent guiding channels, each of the first reducing agent One end of the diversion channel ridge is connected to the reducing agent inlet;
所述还原剂活性反应区域内包含: The reducing agent active reaction area contains:
多个第二还原剂导流流道,每个所述第二还原剂导流流道的一端与对应的所述第一还原剂导流流道的另一端连接; A plurality of second reducing agent guiding channels, one end of each second reducing agent guiding channel is connected to the other end of the corresponding first reducing agent guiding channel;
多个第三还原剂导流流道,多个所述第三还原剂导流流道与多个第二还原剂导流流道间隔排列,每个所述第三还原剂导流流道的一端与对应的所述第一还原剂导流流道脊的另一端连接; A plurality of third reducing agent guiding channels, the plurality of third reducing agent guiding channels and the plurality of second reducing agent guiding channels are arranged at intervals, each of the third reducing agent guiding channels One end is connected to the other end of the corresponding first reducing agent guide channel ridge;
所述第二还原剂导流区域内包含: The second reducing agent diversion area contains:
多个第四还原剂导流流道,每个所述第四还原剂导流流道的一端与对应的所述第二还原剂导流流道的另一端连接;每个所述第四还原剂导流流道的另一端与所述还原剂出口连接; A plurality of fourth reducing agent guiding channels, one end of each fourth reducing agent guiding channel is connected to the other end of the corresponding second reducing agent guiding channel; each of the fourth reducing The other end of the agent guiding channel is connected with the reducing agent outlet;
多个第二还原剂导流流道脊,多个所述第二还原剂导流流道脊与多个所述第四还原剂导流流道间隔排列设置,每个所述第二还原剂导流流道脊的一端与对应的所述第三还原剂导流流道的另一端连接,每个所述第二还原剂导流流道脊的另一端与所述还原剂出口连接。 A plurality of second reducing agent guiding channel ridges, the plurality of second reducing agent guiding channel ridges are arranged at intervals with the plurality of fourth reducing agent guiding channels, each of the second reducing agent One end of the guiding channel ridge is connected to the other end of the corresponding third reducing agent guiding channel, and the other end of each second reducing agent guiding channel ridge is connected to the reducing agent outlet.
还原剂通过所述还原剂进口进入所述第一还原剂导流区域内的多个第一还原剂导流流道,并分别通过所述还原剂活性反应区域内的多个第二还原剂导流流道、所述第二还原剂导流区域内的多个第四还原剂导流流道流出至所述还原剂出口。 The reducing agent enters the multiple first reducing agent guiding channels in the first reducing agent guiding area through the reducing agent inlet, and passes through the multiple second reducing agent guiding channels in the reducing agent active reaction area respectively. The flow channels and the plurality of fourth reducing agent flow guiding channels in the second reducing agent guiding area flow out to the reducing agent outlet.
每个所述氧化剂极板包含: Each of said oxidizer plates contains:
氧化剂进口,氧化剂通过所述氧化剂进口进入所述氧化剂极板内;该氧化剂进口与所述还原剂进口处于燃料电池双极板结构的同一侧; An oxidant inlet, through which the oxidant enters into the oxidant plate; the oxidant inlet is on the same side of the fuel cell bipolar plate structure as the reducing agent inlet;
第一氧化剂导流区域,所述第一氧化剂导流区域的一端与所述氧化剂进口连接; a first oxidant flow guide area, one end of the first oxidant flow guide area is connected to the oxidant inlet;
氧化剂活性反应区域,所述氧化剂活性反应区域的一端与所述第一氧化剂导流区域的另一端连接; An oxidant active reaction area, one end of the oxidant active reaction area is connected to the other end of the first oxidant flow guide area;
第二氧化剂导流区域,所述第二氧化剂导流区域一端与所述氧化剂活性反应区域的另一端连接; A second oxidant flow guide area, one end of the second oxidant flow guide area is connected to the other end of the oxidant active reaction area;
氧化剂出口,与所述第二氧化剂导流区域另一端连接。 The oxidant outlet is connected to the other end of the second oxidant flow guide area.
所述第一氧化剂导流区域内包含: The first oxidant diversion area contains:
多个第一氧化剂导流流道,每个所述第一氧化剂导流流道的一端与所述氧化剂进口连接; A plurality of first oxidant diversion channels, one end of each first oxidant diversion channel is connected to the oxidant inlet;
多个第一氧化剂导流流道脊,多个所述第一氧化剂导流流道脊与多个所述第一氧化剂导流流道间隔排列设置,每个所述第一氧化剂导流流道脊的一端与所述氧化剂进口连接;多个所述第一氧化剂导流流道脊分别与多个所述第一还原剂导流流道脊交叉组成第三交叉点区域; A plurality of first oxidant flow guiding channel ridges, the plurality of first oxidant guiding channel ridges are arranged at intervals with the plurality of first oxidant guiding flow channels, each of the first oxidant guiding flow channels One end of the ridge is connected to the oxidant inlet; a plurality of the first oxidant flow guide channel ridges respectively intersect with a plurality of the first reducing agent flow guide channel ridges to form a third intersection area;
所述氧化剂活性反应区域内包含: The active reaction zone of the oxidizing agent contains:
多个第二氧化剂导流流道,每个所述第二氧化剂导流流道的一端与对应的所述第一氧化剂导流流道的另一端连接; A plurality of second oxidant guiding flow channels, one end of each second oxidant guiding channel is connected to the other end of the corresponding first oxidant guiding channel;
多个第三氧化剂导流流道,多个所述第三氧化剂导流流道与多个第二氧化剂导流流道间隔排列,每个所述第三氧化剂导流流道的一端与对应的所述第一氧化剂导流流道脊的另一端连接; A plurality of third oxidant diversion channels, the plurality of third oxidant diversion channels and the plurality of second oxidant diversion channels are arranged at intervals, one end of each third oxidant diversion channel is connected to the corresponding The other end of the first oxidant guiding channel ridge is connected;
所述第二氧化剂导流区域内包含: The second oxidant diversion area contains:
多个第四氧化剂导流流道,每个所述第四氧化剂导流流道的一端与对应的所述第二氧化剂导流流道的另一端连接;每个所述第四氧化剂导流流道的另一端与所述氧化剂出口连接; A plurality of fourth oxidant diversion channels, one end of each fourth oxidant diversion channel is connected to the other end of the corresponding second oxidant diversion channel; each of the fourth oxidant diversion channels The other end of the channel is connected with the outlet of the oxidant;
多个第二氧化剂导流流道脊,多个所述第二氧化剂导流流道脊与多个所述第四氧化剂导流流道间隔排列设置,每个所述第二氧化剂导流流道脊的一端与对应的所述第三氧化剂导流流道的另一端连接,每个所述第二氧化剂导流流道脊的另一端与所述氧化剂出口连接。 A plurality of second oxidant flow guiding channel ridges, a plurality of second oxidant guiding channel ridges and a plurality of fourth oxidant guiding flow channels are arranged at intervals, each of the second oxidant guiding channel One end of the ridge is connected to the other end of the corresponding third oxidant flow guiding channel, and the other end of each second oxidant guiding channel ridge is connected to the oxidant outlet.
氧化剂通过所述氧化剂进口进入所述第一氧化剂导流区域内的多个第一氧化剂导流流道,并分别通过所述氧化剂活性反应区域内的多个第二氧化剂导流流道、所述第二氧化剂导流区域内的多个第四氧化剂导流流道流出至所述氧化剂出口。 The oxidant enters the plurality of first oxidant flow guide channels in the first oxidant guide area through the oxidant inlet, and passes through the multiple second oxidant guide channels in the oxidant active reaction area, the A plurality of fourth oxidant flow guide channels in the second oxidant flow guide area flow out to the oxidant outlet.
每对所述双极板结构的冷却剂进口与所述氧化剂极板的氧化剂进口、所述还原剂极板的还原剂进口处于同一侧,该对所述双极板结构的冷却剂出口与所述氧化剂极板的氧化剂出口、所述还原剂极板的还原剂出口处于同一侧; The coolant inlet of each pair of bipolar plate structures is on the same side as the oxidant inlet of the oxidizer plate and the reducing agent inlet of the reductant plate, and the coolant outlet of the pair of bipolar plate structures is on the same side as the reductant inlet of the reductant plate. The oxidant outlet of the oxidizer plate and the reductant outlet of the reductant plate are on the same side;
每对所述双极板结构内包含多个冷却剂导流流道; Each pair of the bipolar plate structure contains a plurality of coolant diversion channels;
多个所述冷却剂导流流道分别与多个所述第一还原剂导流流道脊交叉组合,并在交叉处形成第一交叉点区域; A plurality of the coolant diversion channels are respectively combined with a plurality of the first reducing agent diversion channel ridges, and a first intersection area is formed at the intersections;
多个所述冷却剂导流流道分别与多个所述第一氧化剂导流流道脊交叉组合,并在交叉处形成第二交叉点区域。 A plurality of the coolant guide flow channels are respectively combined with a plurality of the first oxidant guide flow channel ridges to form a second intersection area at the intersections.
冷却剂从每个所述冷却剂进口进入多个所述冷却剂导流流道后,冷却剂分别进入所述还原剂极板、所述氧化剂极板; After the coolant enters the plurality of coolant diversion channels from each of the coolant inlets, the coolant enters the reducing agent plate and the oxidizing agent plate respectively;
当冷却剂沿多个所述冷却剂导流流道进入多个所述第一交叉点区域时,冷却剂会通过多个所述第一交叉点区域进入多个所述第一还原剂导流流道脊; When the coolant enters the multiple first intersection regions along the plurality of coolant diversion channels, the coolant enters the plurality of first reducing agent diversion regions through the plurality of first intersection regions. runner ridge;
当冷却剂沿多个所述冷却剂导流流道进入多个所述第二交叉点区域时,冷却剂会通过多个所述第二交叉点区域进入多个所述第一氧化剂导流流道脊。 When the coolant enters the plurality of second intersection areas along the plurality of coolant diversion channels, the coolant enters the plurality of first oxidizer diversion flows through the plurality of second intersection regions road ridge.
当冷却剂分别进入多个所述第一还原剂导流流道脊、多个所述第一氧化剂导流流道脊后;在多个所述第三交叉点区域处,冷却剂进行重新分配,使得冷却剂能够重新均匀的分配到多个所述第一还原剂导流流道脊、多个所述第一氧化剂导流流道脊,并进入所述冷却剂流场。 After the coolant enters the plurality of first reducing agent diversion channel ridges and the plurality of first oxidizer diversion channel ridges; at the plurality of third intersection areas, the coolant is redistributed , so that the coolant can be evenly redistributed to the plurality of first reducing agent guide channel ridges and the plurality of first oxidant guide channel ridges, and enter the coolant flow field.
本发明与现有技术相比具有以下优点: Compared with the prior art, the present invention has the following advantages:
本发明公开的一种燃料电池双极板结构,采用多个还原剂极板、多个氧化剂极板及多层膜电极组件组成上述燃料电池双极板结构。本发明设计的双极板结构能够合理地利用还原剂极板、氧化剂极板形成的空腔,为冷却剂提供了流动流场,能够实现两张基板组合中冷却剂进入活性区域;同时巧妙地将冷却剂通过冷却剂导流流道引入导流区域流道,并利用还原剂极板的还原剂导流流道脊与氧化剂极板的氧化剂导流流道脊的交叉区域引入活性冷却反应区。并且可以在很大程度上减小冷却剂在双极板中的流动阻力,降低系统能耗。本发明提供的燃料电池双极板结构能够降低双极板重量、体积,该提高燃料电池的能力密度。 The invention discloses a fuel cell bipolar plate structure, which uses a plurality of reducing agent plates, a plurality of oxidant plates and a multilayer membrane electrode assembly to form the fuel cell bipolar plate structure. The bipolar plate structure designed in the present invention can rationally utilize the cavity formed by the reducing agent plate and the oxidizing agent plate to provide a flow field for the coolant, enabling the coolant to enter the active area in the combination of two substrates; The coolant is introduced into the channel of the diversion area through the coolant guide channel, and is introduced into the active cooling reaction zone by using the intersection area of the reductant guide channel ridge of the reductant plate and the oxidant guide channel ridge of the oxidizer plate . Moreover, the flow resistance of the coolant in the bipolar plate can be reduced to a large extent, and the energy consumption of the system can be reduced. The fuel cell bipolar plate structure provided by the invention can reduce the weight and volume of the bipolar plate, so as to improve the capacity density of the fuel cell.
附图说明 Description of drawings
图1为本发明一种燃料电池双极板结构的整体结构剖视图。 Fig. 1 is a sectional view of the overall structure of a fuel cell bipolar plate structure according to the present invention.
图2为本发明一种燃料电池双极板结构的还原剂极板示意图。 Fig. 2 is a schematic diagram of a reducing agent plate of a fuel cell bipolar plate structure according to the present invention.
图3为本发明一种燃料电池双极板结构的氧化剂极板示意图。 Fig. 3 is a schematic diagram of an oxidant plate of a fuel cell bipolar plate structure according to the present invention.
图4为本发明一种燃料电池双极板结构的冷却剂导流流道与还原剂导流流道交叉区域示意图。 Fig. 4 is a schematic diagram of the crossing area between the coolant guide channel and the reducing agent guide channel of a fuel cell bipolar plate structure according to the present invention.
图5为本发明一种燃料电池双极板结构的冷却剂导流流道与氧化剂导流流道交叉区域示意图。 Fig. 5 is a schematic diagram of the crossing area between the coolant guide flow channel and the oxidant guide flow channel of a fuel cell bipolar plate structure according to the present invention.
图6为本发明一种燃料电池双极板结构的还原剂导流流道与氧化剂导流流道交叉区域示意图。 Fig. 6 is a schematic diagram of the intersection area of the reductant guide flow channel and the oxidant guide flow channel of a fuel cell bipolar plate structure according to the present invention.
具体实施方式 detailed description
以下结合附图,通过详细说明一个较佳的具体实施例,对本发明做进一步阐述。 The present invention will be further elaborated below by describing a preferred specific embodiment in detail in conjunction with the accompanying drawings.
如图1所示,一种燃料电池双极板结构100,该燃料电池双极板结构100包含:多个还原剂极板2、多个氧化剂极板1及多层膜电极组件3。 As shown in FIG. 1 , a fuel cell bipolar plate structure 100 includes: a plurality of reducing agent plates 2 , a plurality of oxidizing agent plates 1 and a multilayer membrane electrode assembly 3 .
多个氧化剂极板1与多个还原剂极板2间隔对称设置。其中,每个氧化剂极板1与对应的一个还原剂极板2对称匹配设置形成一对双极板结构100。每层膜电极组件3设置在一对双极板结构100的氧化剂极板1与另一对双极板结构100的还原剂极板2之间。 A plurality of oxidizer plates 1 and a plurality of reductant plates 2 are symmetrically arranged at intervals. Wherein, each oxidant electrode plate 1 is arranged symmetrically with a corresponding reducing agent electrode plate 2 to form a pair of bipolar plate structures 100 . Each membrane electrode assembly 3 is arranged between the oxidant electrode plate 1 of one pair of bipolar plate structures 100 and the reducing agent electrode plate 2 of another pair of bipolar plate structures 100 .
每对双极板结构100之间形成冷却剂流场4,每个还原剂极板2与对应的膜电极组件3之间形成还原剂流道21,每个氧化剂极板1与对应的膜电极组件3之间形成氧化剂流道11。 A coolant flow field 4 is formed between each pair of bipolar plate structures 100, a reducing agent flow channel 21 is formed between each reducing agent plate 2 and the corresponding membrane electrode assembly 3, and each oxidizing agent plate 1 is connected to the corresponding membrane electrode An oxidant flow channel 11 is formed between the components 3 .
如图2所示,每个还原剂极板2包含:还原剂进口201、第一还原剂导流区域202、还原剂活性反应区域203、第二还原剂导流区域204及还原剂出口205。 As shown in FIG. 2 , each reductant plate 2 includes: a reductant inlet 201 , a first reductant guide area 202 , a reductant active reaction area 203 , a second reductant guide area 204 and a reductant outlet 205 .
其中,还原剂通过还原剂进口201进入还原剂极板2内;第一还原剂导流区域202的一端与还原剂进口201连接,第一还原剂导流区域202的另一端与还原剂活性反应区域203的一端连接;第二还原剂导流区域204一端与还原剂活性反应区域203的另一端连接,还原剂出口205与第二还原剂导流区域204另一端连接。 Wherein, the reducing agent enters the reducing agent plate 2 through the reducing agent inlet 201; one end of the first reducing agent guiding area 202 is connected to the reducing agent inlet 201, and the other end of the first reducing agent guiding area 202 reacts with the reducing agent. One end of the region 203 is connected; one end of the second reducing agent guiding region 204 is connected to the other end of the reducing agent active reaction region 203 , and the reducing agent outlet 205 is connected to the other end of the second reducing agent guiding region 204 .
如图2所示,第一还原剂导流区域202内包含:多个第一还原剂导流流道2021、多个第一还原剂导流流道脊2022。 As shown in FIG. 2 , the first reducing agent guiding region 202 includes: a plurality of first reducing agent guiding channels 2021 and a plurality of first reducing agent guiding channel ridges 2022 .
其中,每个第一还原剂导流流道2021的一端与还原剂进口201连接;多个第一还原剂导流流道脊2022与多个第一还原剂导流流道2021间隔排列设置,每个第一还原剂导流流道脊2022的一端与还原剂进口201连接。 Wherein, one end of each first reducing agent guiding channel 2021 is connected to the reducing agent inlet 201; multiple first reducing agent guiding channel ridges 2022 and multiple first reducing agent guiding channels 2021 are arranged at intervals, One end of each first reducing agent guiding flow channel ridge 2022 is connected to the reducing agent inlet 201 .
如图2所示,还原剂活性反应区域203内包含:多个第二还原剂导流流道2031、多个第三还原剂导流流道2032。 As shown in FIG. 2 , the reducing agent active reaction area 203 includes: a plurality of second reducing agent guiding channels 2031 and a plurality of third reducing agent guiding channels 2032 .
其中,每个第二还原剂导流流道2031的一端与对应的第一还原剂导流流道2021的另一端连接;多个第三还原剂导流流道2032与多个第二还原剂导流流道2031间隔排列,每个第三还原剂导流流道2032的一端与对应的第一还原剂导流流道脊2022的另一端连接。 Wherein, one end of each second reducing agent guiding channel 2031 is connected to the other end of the corresponding first reducing agent guiding channel 2021; multiple third reducing agent guiding channels 2032 are connected to multiple second reducing agent The flow guiding channels 2031 are arranged at intervals, and one end of each third reducing agent guiding channel 2032 is connected to the other end of the corresponding first reducing agent guiding channel ridge 2022 .
如图2所示,第二还原剂导流区域204内包含:多个第四还原剂导流流道2041、多个第二还原剂导流流道脊2042。 As shown in FIG. 2 , the second reducing agent guiding region 204 includes: a plurality of fourth reducing agent guiding channels 2041 and a plurality of second reducing agent guiding channel ridges 2042 .
其中,每个第四还原剂导流流道2041的一端与对应的第二还原剂导流流道2031的另一端连接;每个第四还原剂导流流道2041的另一端与还原剂出口205连接。多个第二还原剂导流流道脊2042与多个第四还原剂导流流道2041间隔排列设置,每个第二还原剂导流流道脊2042的一端与对应的第三还原剂导流流道2032的另一端连接,每个第二还原剂导流流道脊2042的另一端与还原剂出口205连接。 Wherein, one end of each fourth reducing agent guiding channel 2041 is connected to the other end of the corresponding second reducing agent guiding channel 2031; the other end of each fourth reducing agent guiding channel 2041 is connected to the reducing agent outlet 205 connections. A plurality of second reducing agent guiding channel ridges 2042 and a plurality of fourth reducing agent guiding channels 2041 are arranged at intervals, and one end of each second reducing agent guiding channel ridge 2042 is connected to the corresponding third reducing agent guiding channel. The other end of the flow channel 2032 is connected, and the other end of each second reducing agent guiding channel ridge 2042 is connected with the reducing agent outlet 205 .
本发明中,还原剂通过还原剂进口201进入第一还原剂导流区域202内的多个第一还原剂导流流道2021,并分别通过还原剂活性反应区域203内的多个第二还原剂导流流道2031、第二还原剂导流区域204内的多个第四还原剂导流流道2041流出至还原剂出口205。 In the present invention, the reducing agent enters the multiple first reducing agent guiding channels 2021 in the first reducing agent guiding area 202 through the reducing agent inlet 201, and passes through the multiple second reducing agents in the reducing agent active reaction area 203 respectively. The agent guiding channel 2031 and the plurality of fourth reducing agent guiding channels 2041 in the second reducing agent guiding region 204 flow out to the reducing agent outlet 205 .
如图3所示,每个氧化剂极板1包含:氧化剂进口101、第一氧化剂导流区域102、氧化剂活性反应区域103、第二氧化剂导流区域104及氧化剂出口105。 As shown in FIG. 3 , each oxidant plate 1 includes: an oxidant inlet 101 , a first oxidant flow guide area 102 , an oxidant active reaction area 103 , a second oxidant flow guide area 104 and an oxidant outlet 105 .
其中,氧化剂通过氧化剂进口101进入氧化剂极板1内;该氧化剂进口101与还原剂进口201处于燃料电池双极板结构100的同一侧。第一氧化剂导流区域102的一端与氧化剂进口101连接,氧化剂活性反应区域103的一端与第一氧化剂导流区域102的另一端连接;第二氧化剂导流区域104一端与氧化剂活性反应区域103的另一端连接;氧化剂出口105与第二氧化剂导流区域104另一端连接。 Wherein, the oxidant enters the oxidant plate 1 through the oxidant inlet 101; the oxidant inlet 101 and the reducing agent inlet 201 are on the same side of the fuel cell bipolar plate structure 100. One end of the first oxidant flow guide area 102 is connected to the oxidant inlet 101, and one end of the oxidant active reaction area 103 is connected to the other end of the first oxidant flow guide area 102; The other end is connected; the oxidant outlet 105 is connected with the other end of the second oxidant flow guiding area 104 .
如图3所示,第一氧化剂导流区域102内包含:多个第一氧化剂导流流道1021、多个第一氧化剂导流流道脊1022。 As shown in FIG. 3 , the first oxidant flow guiding region 102 includes: a plurality of first oxidant flow guiding channels 1021 and a plurality of first oxidant guiding channel ridges 1022 .
其中,每个第一氧化剂导流流道1021的一端与氧化剂进口101连接。多个第一氧化剂导流流道脊1022与多个第一氧化剂导流流道1021间隔排列设置,每个第一氧化剂导流流道脊1022的一端与氧化剂进口101连接;多个第一氧化剂导流流道脊1022分别与多个第一还原剂导流流道脊2022交叉组成第三交叉点区域150。 Wherein, one end of each first oxidant guiding channel 1021 is connected to the oxidant inlet 101 . A plurality of first oxidant flow guiding channel ridges 1022 are arranged at intervals with a plurality of first oxidant guiding flow channels 1021, and one end of each first oxidant guiding flow channel ridge 1022 is connected to the oxidant inlet 101; a plurality of first oxidizing agent The guide channel ridges 1022 intersect with the plurality of first reducing agent guide channel ridges 2022 respectively to form the third intersection region 150 .
如图3所示,氧化剂活性反应区域103内包含:多个第二氧化剂导流流道1031、多个第三氧化剂导流流道1032。 As shown in FIG. 3 , the oxidant active reaction area 103 includes: a plurality of second oxidant diversion channels 1031 and a plurality of third oxidant diversion channels 1032 .
其中,每个第二氧化剂导流流道1031的一端与对应的第一氧化剂导流流道1021的另一端连接;多个第三氧化剂导流流道1032与多个第二氧化剂导流流道1031间隔排列,每个第三氧化剂导流流道1032的一端与对应的第一氧化剂导流流道脊1022的另一端连接。 Wherein, one end of each second oxidant diversion channel 1031 is connected to the other end of the corresponding first oxidant diversion channel 1021; 1031 are arranged at intervals, and one end of each third oxidant flow guiding channel 1032 is connected with the other end of the corresponding first oxidizing agent guiding channel ridge 1022 .
如图3所示,第二氧化剂导流区域104内包含:多个第四氧化剂导流流道1041、多个第二氧化剂导流流道脊1042。 As shown in FIG. 3 , the second oxidant flow guiding region 104 includes: a plurality of fourth oxidant flow guiding channels 1041 and a plurality of second oxidant guiding channel ridges 1042 .
其中,每个第四氧化剂导流流道1041的一端与对应的第二氧化剂导流流道1031的另一端连接,每个第四氧化剂导流流道1041的另一端与氧化剂出口105连接。多个第二氧化剂导流流道脊1042与多个第四氧化剂导流流道1041间隔排列设置,每个第二氧化剂导流流道脊1042的一端与对应的第三氧化剂导流流道1032的另一端连接,每个第二氧化剂导流流道脊1042的另一端与氧化剂出口105连接。 Wherein, one end of each fourth oxidant guiding flow channel 1041 is connected to the other end of the corresponding second oxidant guiding flow channel 1031 , and the other end of each fourth oxidant guiding flow channel 1041 is connected to the oxidizing agent outlet 105 . A plurality of second oxidant flow guiding channel ridges 1042 and a plurality of fourth oxidant guiding channel 1041 are arranged at intervals, and one end of each second oxidant guiding channel ridge 1042 is connected to the corresponding third oxidant guiding channel 1032 The other end of each second oxidant guiding channel ridge 1042 is connected with the oxidant outlet 105 .
氧化剂通过氧化剂进口101进入第一氧化剂导流区域102内的多个第一氧化剂导流流道1021,并分别通过氧化剂活性反应区域103内的多个第二氧化剂导流流道1031、第二氧化剂导流区域104内的多个第四氧化剂导流流道1041流出至氧化剂出口105。 The oxidant enters the plurality of first oxidant flow channels 1021 in the first oxidant flow area 102 through the oxidant inlet 101, and passes through the plurality of second oxidant flow channels 1031 and the second oxidant flow channels 1031 in the oxidant active reaction area 103 respectively. A plurality of fourth oxidant flow guide channels 1041 in the flow guide area 104 flow out to the oxidant outlet 105 .
如图2、图3所示,每对双极板结构100的冷却剂进口401与氧化剂极板1的氧化剂进口101、还原剂极板2的还原剂进口201处于同一侧,该对双极板结构100的冷却剂出口402与氧化剂极板1的氧化剂出口105、还原剂极板2的还原剂出口205处于同一侧。 As shown in Figures 2 and 3, the coolant inlet 401 of each pair of bipolar plate structures 100 is on the same side as the oxidant inlet 101 of the oxidizer plate 1 and the reductant inlet 201 of the reductant plate 2, and the pair of bipolar plates The coolant outlet 402 of the structure 100 is on the same side as the oxidant outlet 105 of the oxidizer plate 1 and the reductant outlet 205 of the reductant plate 2 .
如图4、图5所示,每对双极板结构100内包含多个冷却剂导流流道110。多个冷却剂导流流道110分别与多个第一还原剂导流流道脊2022交叉组合,并在交叉处形成第一交叉点区域130。多个冷却剂导流流道110分别与多个第一氧化剂导流流道脊1022交叉组合,并在交叉处形成第二交叉点区域140。 As shown in FIG. 4 and FIG. 5 , each pair of bipolar plate structures 100 includes a plurality of coolant guiding channels 110 . The plurality of coolant guiding flow channels 110 are respectively intersected and combined with the plurality of first reducing agent guiding channel ridges 2022 , and a first intersection area 130 is formed at the intersections. The plurality of coolant guide flow channels 110 are respectively intersected and combined with the plurality of first oxidant guide channel ridges 1022 , and a second intersection area 140 is formed at the intersections.
如图4-图6所示,本发明公开的一种燃料电池双极板结构的具体工作原理如下: As shown in Figures 4-6, the specific working principle of a fuel cell bipolar plate structure disclosed by the present invention is as follows:
还原剂在还原剂极板2中的流动过程为:还原剂经第一还原剂导流区域202内的多个第一还原剂导流流道2021进入还原剂活性反应区域203的多个第二还原剂导流流道2031,并经第二还原剂导流区域204的多个第四还原剂导流流道2041通过还原剂出口205流出。氧化剂在氧化剂极板1中的流动过程为:氧化剂经第一氧化剂导流区域102内的多个第一氧化剂导流流道1021进入氧化剂活性反应区域103内的多个第二氧化剂导流流道1031,并经第二氧化剂导流区域104内的多个第四氧化剂导流流道1041通过氧化剂出口105流出。 The flow process of the reducing agent in the reducing agent plate 2 is as follows: the reducing agent enters the multiple second reducing agent active reaction regions 203 through the multiple first reducing agent guiding channels 2021 in the first reducing agent guiding area 202 . The reducing agent guiding flow channel 2031 , and flows out through the reducing agent outlet 205 through the plurality of fourth reducing agent guiding flow channels 2041 in the second reducing agent guiding area 204 . The flow process of the oxidant in the oxidant plate 1 is as follows: the oxidant enters the plurality of second oxidant flow channels in the oxidant active reaction area 103 through the multiple first oxidant flow channels 1021 in the first oxidant flow guide area 102 1031 , and flow out through the oxidant outlet 105 through a plurality of fourth oxidant flow guide channels 1041 in the second oxidant flow guide area 104 .
冷却剂从每个冷却剂进口401进入多个冷却剂导流流道110后,冷却剂分别进入还原剂极板2、氧化剂极板1。 After the coolant enters the plurality of coolant guide channels 110 from each coolant inlet 401 , the coolant enters the reducing agent plate 2 and the oxidizing agent plate 1 respectively.
当冷却剂沿多个冷却剂导流流道110进入多个第一还原剂导流流道脊2022与多个冷却剂导流流道110形成的多个第一交叉点区域130时,部分冷却剂会通过多个第一交叉点区域130进入多个第一还原剂导流流道脊2022,剩余部分冷却剂分流至多个冷却剂导流流道110。当冷却剂沿多个冷却剂导流流道110进入多个第一氧化剂导流流道脊1022与多个冷却剂导流流道110形成的多个第二交叉点区域140时,部分冷却剂会通过多个第二交叉点区域140进入多个第一氧化剂导流流道脊1022,剩余部分冷却剂分流至多个冷却剂导流流道110。 When the coolant enters the plurality of first intersection regions 130 formed by the plurality of first reducing agent guiding channel ridges 2022 and the plurality of coolant guiding channels 110 along the plurality of coolant guiding channels 110 , partial cooling The coolant enters the plurality of first reductant guide flow channel ridges 2022 through the plurality of first intersection regions 130 , and the rest of the coolant is divided into the plurality of coolant guide flow channels 110 . When the coolant enters the plurality of second intersection areas 140 formed by the plurality of first oxidizer flow guiding channels 1022 and the plurality of coolant guiding channels 110 along the plurality of coolant guiding channels 110 , part of the coolant It enters into the plurality of first oxidizer guide flow channel ridges 1022 through the plurality of second intersection regions 140 , and the rest of the coolant is divided into the plurality of coolant guide flow channels 110 .
当冷却剂分别进入多个第一还原剂导流流道脊2022、多个第一氧化剂导流流道脊1022后;在多个第三交叉点区域150处,冷却剂进行重新分配,使得冷却剂能够重新均匀的分配后,部分冷却剂分流到多个第一还原剂导流流道脊2022、剩余冷却剂分流到多个第一氧化剂导流流道脊1022,使得冷却剂在各个分配流道中的分配更加均匀。最后,冷却剂进入冷却剂流场4。 After the coolant enters the multiple first reducing agent guide channel ridges 2022 and the multiple first oxidant guide channel ridges 1022 respectively; at the multiple third intersection areas 150, the coolant is redistributed, so that cooling After the agent can be evenly redistributed, part of the coolant is divided into a plurality of first reducing agent guide channel ridges 2022, and the remaining coolant is divided into a plurality of first oxidant guide channel ridges 1022, so that the coolant flows in each distribution flow The distribution in the channel is more even. Finally, the coolant enters the coolant flow field 4 .
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。 Although the content of the present invention has been described in detail through the above preferred embodiments, it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the above disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510820686.3A CN105336967B (en) | 2015-11-24 | 2015-11-24 | A fuel cell bipolar plate structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510820686.3A CN105336967B (en) | 2015-11-24 | 2015-11-24 | A fuel cell bipolar plate structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105336967A true CN105336967A (en) | 2016-02-17 |
CN105336967B CN105336967B (en) | 2019-02-05 |
Family
ID=55287366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510820686.3A Active CN105336967B (en) | 2015-11-24 | 2015-11-24 | A fuel cell bipolar plate structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105336967B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108767288A (en) * | 2018-06-11 | 2018-11-06 | 西安交通大学 | A kind of tree-like fuel cell channel structure of variable cross-section |
CN109687001A (en) * | 2017-10-18 | 2019-04-26 | 熵零技术逻辑工程院集团股份有限公司 | A kind of fuel cell |
CN110767919A (en) * | 2019-12-26 | 2020-02-07 | 武汉中极氢能产业创新中心有限公司 | Bipolar plate of fuel cell and fuel cell |
CN111900429A (en) * | 2020-07-24 | 2020-11-06 | 浙江泓林新能源科技有限公司 | Metal bipolar plate of fuel cell and processing method thereof |
CN114551922A (en) * | 2022-03-02 | 2022-05-27 | 重庆理工大学 | Fuel cell bipolar plate structure and fuel cell |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050244700A1 (en) * | 2004-05-03 | 2005-11-03 | Abd Elhamid Mahmoud H | Hybrid bipolar plate assembly and devices incorporating same |
CN101420037A (en) * | 2008-12-10 | 2009-04-29 | 新源动力股份有限公司 | Metal bipolar plate of proton exchange membrane fuel cell |
CN101572318A (en) * | 2009-06-16 | 2009-11-04 | 新源动力股份有限公司 | Metal bipolar plate of proton exchange membrane fuel cell |
CN106134491B (en) * | 2004-04-07 | 2011-01-12 | 上海空间电源研究所 | Proton Exchange Membrane Fuel Cells novel metal bipolar plates |
CN203760565U (en) * | 2014-02-18 | 2014-08-06 | 武汉理工大学 | Metal bipolar plate of proton exchange membrane fuel battery |
-
2015
- 2015-11-24 CN CN201510820686.3A patent/CN105336967B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106134491B (en) * | 2004-04-07 | 2011-01-12 | 上海空间电源研究所 | Proton Exchange Membrane Fuel Cells novel metal bipolar plates |
US20050244700A1 (en) * | 2004-05-03 | 2005-11-03 | Abd Elhamid Mahmoud H | Hybrid bipolar plate assembly and devices incorporating same |
CN101420037A (en) * | 2008-12-10 | 2009-04-29 | 新源动力股份有限公司 | Metal bipolar plate of proton exchange membrane fuel cell |
CN101572318A (en) * | 2009-06-16 | 2009-11-04 | 新源动力股份有限公司 | Metal bipolar plate of proton exchange membrane fuel cell |
CN203760565U (en) * | 2014-02-18 | 2014-08-06 | 武汉理工大学 | Metal bipolar plate of proton exchange membrane fuel battery |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109687001A (en) * | 2017-10-18 | 2019-04-26 | 熵零技术逻辑工程院集团股份有限公司 | A kind of fuel cell |
CN108767288A (en) * | 2018-06-11 | 2018-11-06 | 西安交通大学 | A kind of tree-like fuel cell channel structure of variable cross-section |
CN110767919A (en) * | 2019-12-26 | 2020-02-07 | 武汉中极氢能产业创新中心有限公司 | Bipolar plate of fuel cell and fuel cell |
CN110767919B (en) * | 2019-12-26 | 2020-04-10 | 武汉中极氢能产业创新中心有限公司 | Bipolar plate of fuel cell and fuel cell |
CN111900429A (en) * | 2020-07-24 | 2020-11-06 | 浙江泓林新能源科技有限公司 | Metal bipolar plate of fuel cell and processing method thereof |
CN111900429B (en) * | 2020-07-24 | 2021-11-05 | 浙江泓林新能源科技有限公司 | Metal bipolar plate of fuel cell and processing method thereof |
CN114551922A (en) * | 2022-03-02 | 2022-05-27 | 重庆理工大学 | Fuel cell bipolar plate structure and fuel cell |
CN114551922B (en) * | 2022-03-02 | 2024-02-20 | 重庆理工大学 | Fuel cell bipolar plate structure and fuel cell |
Also Published As
Publication number | Publication date |
---|---|
CN105336967B (en) | 2019-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100449836C (en) | A Hybrid Gradually Variable Flow Field Plate for Proton Exchange Membrane Fuel Cell | |
CN207558943U (en) | A kind of fuel battery double plates | |
CN101101993A (en) | Bipolar plates for proton exchange membrane fuel cells based on sheet stamping | |
CN105336967A (en) | Bipolar plate structures of fuel cell | |
CN104037426B (en) | The dual polar plates of proton exchange membrane fuel cell in a kind of tree-shaped tapered configuration flow field | |
CN109686995A (en) | A kind of interior bipolar plates with wedge-shaped protrusion of runner | |
CN104795574A (en) | Metal bipolar plates of fuel cell and fuel cell | |
CN108232229A (en) | A kind of high score matches consistency metal double polar plates flow field configuration | |
CN101183723A (en) | Bipolar plates for proton exchange membrane fuel cells formed from sheet metal | |
CN102473928A (en) | Air-cooled metal separator for fuel cell and fuel cell stack using the same | |
CN111952623A (en) | A fuel cell bipolar plate | |
CN110429296A (en) | A kind of fuel battery double plates | |
CN102117921A (en) | Flow field plate | |
CN104900886B (en) | A kind of metal double polar plates with convection type coolant flow field | |
CN210224176U (en) | Proton exchange membrane fuel cell bipolar plate with improved common conduit and fluid channel | |
CN202275888U (en) | Metal Bipolar Plates for Proton Exchange Membrane Fuel Cells Facilitating Improved Fluid Distribution | |
CN113013437B (en) | Fuel cell cathode runner with gradually-reduced slope structure | |
CN101388465A (en) | Fuel cell polar plate and fuel cell using the same | |
CN104701550B (en) | Metal bipolar plate of fuel battery | |
CN209374562U (en) | A kind of interior bipolar plates with wedge-shaped protrusion of runner | |
CN206789622U (en) | A kind of flow battery or fuel cell used metal electrode plate | |
CN201466110U (en) | Serpentine micro-dot mixed flow field for proton exchange membrane fuel cells | |
CN100550500C (en) | A kind of fuel battery | |
CN100517834C (en) | A guide plate of a fuel cell | |
CN203707257U (en) | Cathode structure of proton exchange membrane fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |