CN105215487A - A kind of fine high-efficiency machining method towards non-conductive hard brittle material and device - Google Patents
A kind of fine high-efficiency machining method towards non-conductive hard brittle material and device Download PDFInfo
- Publication number
- CN105215487A CN105215487A CN201510696012.7A CN201510696012A CN105215487A CN 105215487 A CN105215487 A CN 105215487A CN 201510696012 A CN201510696012 A CN 201510696012A CN 105215487 A CN105215487 A CN 105215487A
- Authority
- CN
- China
- Prior art keywords
- electrode
- workpiece
- tool
- ultrasonic vibration
- electrolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 32
- 238000003754 machining Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000003792 electrolyte Substances 0.000 claims abstract description 21
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 8
- 238000010892 electric spark Methods 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000005459 micromachining Methods 0.000 abstract description 7
- 239000002131 composite material Substances 0.000 abstract description 6
- 239000007789 gas Substances 0.000 abstract description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 4
- 238000003672 processing method Methods 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 238000005553 drilling Methods 0.000 abstract 1
- 238000003801 milling Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007516 diamond turning Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H5/00—Combined machining
- B23H5/02—Electrical discharge machining combined with electrochemical machining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D1/00—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
本发明属于复合微细加工领域,公开了一种面向非导电硬脆材料的微细高效加工方法及装置。本发明加工方法将超声振动、电解、电火花、高速钻铣削等加工方法有机的结合在一起,完成非导电微结构的加工;即将工件、工具电极和辅助电极浸入电解液中,辅助电极与工具电极发生电解反应,接负极的工具电极表面析氢形成绝缘气膜,超声振动的空化作用有利于工具电极表面气膜的产生和均匀化,加工时,工具电极与工件表面的电解液发生火花放电击穿气泡膜,由此产生的高温蚀除非导电工件材料。本发明加工装置包括机床床身、电解-电火花加工单元、超声振动工作台和进给工作台;由于螺旋形工具电极的高速旋转及工件的超声振动,间隙流场能高效更新电解液。本发明具有高效率、高精度及成本低等优点,非常适合非导电硬脆材料的微细加工。
The invention belongs to the field of composite micro-machining, and discloses a micro-high-efficiency machining method and device for non-conductive hard and brittle materials. The processing method of the present invention organically combines ultrasonic vibration, electrolysis, electric spark, high-speed drilling and milling and other processing methods to complete the processing of non-conductive microstructures; that is, the workpiece, tool electrode and auxiliary electrode are immersed in the electrolyte, and the auxiliary electrode and tool The electrode undergoes an electrolytic reaction, and the surface of the tool electrode connected to the negative electrode undergoes hydrogen evolution to form an insulating gas film. The cavitation effect of ultrasonic vibration is conducive to the generation and uniformization of the gas film on the surface of the tool electrode. During processing, spark discharge occurs between the tool electrode and the electrolyte on the surface of the workpiece. The bubble film is broken down, and the resulting high temperature erodes the non-conductive workpiece material. The processing device of the present invention includes a machine bed, an electrolysis-EDM unit, an ultrasonic vibration table and a feed table; due to the high-speed rotation of the spiral tool electrode and the ultrasonic vibration of the workpiece, the gap flow field can efficiently update the electrolyte. The invention has the advantages of high efficiency, high precision and low cost, and is very suitable for microprocessing of non-conductive hard and brittle materials.
Description
技术领域technical field
本发明属于复合微细加工领域,涉及一种面向非导电硬脆材料的微细高效加工方法及装置。The invention belongs to the field of composite micro-machining, and relates to a micro-high-efficiency machining method and device for non-conductive hard and brittle materials.
背景技术Background technique
硬脆材料等难加工材料的微细加工有传统加工及特种加工技术两大类。传统机械加工常用金刚石车削、精密磨削及精密研磨等加工方法,但是传统机械加工在加工硬脆材料时往往很难获得良好的加工效果,加工周期及生产成本高;残余应力及微裂纹往往使加工后的零件报废。特种加工在微精加工中具有独特的优势,不受工件硬度影响、残余应力小、工具损耗小等优点使其特别适合硬脆材料的微细加工,因而硬脆材料的微细加工往往使用特种加工或复合加工。Micromachining of hard and brittle materials and other difficult-to-machine materials can be divided into two categories: traditional processing and special processing technologies. Traditional machining methods such as diamond turning, precision grinding and precision grinding are commonly used, but traditional machining is often difficult to obtain good processing results when processing hard and brittle materials, and the processing cycle and production costs are high; residual stress and microcracks often make The processed parts are scrapped. Special processing has unique advantages in micro-finishing. It is not affected by the hardness of the workpiece, the residual stress is small, and the tool loss is small, making it especially suitable for the micro-processing of hard and brittle materials. Therefore, the micro-processing of hard and brittle materials often uses special processing or Composite processing.
硬脆材料的特种加工技术通常使用微细电火花加工、微细电解加工、辅助电极电火花加工、微细激光束加工及微细超声加工,或者采用多种加工装置组合而成的微细复合加工等,这些加工方式在硬脆材料的微细加工中发挥着重要的作用,但是也有一定的局限性。微细电火花和微细电解加工硬脆材料都要求工件导电,并且加工效率不高,工作液或者电解液更新缓慢,排屑效率低;辅助电极电火花加工虽然可以加工非导电硬脆材料,但是其排屑困难,加工效率不高;微细超声加工对于硬度高的材料加工效率较低,且精度不高。The special processing technology of hard and brittle materials usually uses micro-EDM, micro-electrolytic machining, auxiliary electrode EDM, micro-laser beam machining and micro-ultrasonic machining, or micro-composite machining combined with various processing devices. The method plays an important role in the microfabrication of hard and brittle materials, but it also has certain limitations. Micro-EDM and micro-electrolytic machining of hard and brittle materials require the workpiece to be conductive, and the processing efficiency is not high, the working fluid or electrolyte is updated slowly, and the efficiency of chip removal is low; although the auxiliary electrode EDM can process non-conductive hard and brittle materials, its Chip removal is difficult and processing efficiency is not high; micro-ultrasonic processing has low processing efficiency and low precision for materials with high hardness.
公开号为“CN1400077A”的中国发明专利公开了一种动压轴承装置的制造方法及动压轴承装置,其内容是利用超声波振动发生装置对电解液给予超声波振动激励进行电解加工,加工精度良好。此专利应用范围有限,主要用于动压轴承的高精度凹槽加工,很难实现零件的微细加工;另一方面因其加工利用电解原理,要求工件导电,限制了推广使用。The Chinese invention patent with the publication number "CN1400077A" discloses a method of manufacturing a dynamic pressure bearing device and a dynamic pressure bearing device. The content is to use an ultrasonic vibration generating device to give ultrasonic vibration excitation to the electrolyte for electrolytic machining, and the machining accuracy is good. The scope of application of this patent is limited. It is mainly used for high-precision groove processing of dynamic pressure bearings, and it is difficult to realize micro-processing of parts. On the other hand, because the processing uses the principle of electrolysis, the workpiece is required to be conductive, which limits its popularization and use.
公开号为“CN101972874A”的中国专利公开了一种电解电火花切削复合微细加工装置及其加工方法,其内容是利用加工电极和非导电待加工工件可物理接触的特点,引入切削加工,使其成为一种新的电解电火花切削复合微细加工,但这种加工方法仍存在宏观切削力,容易产生微裂纹及热应力。The Chinese patent with the publication number "CN101972874A" discloses an electrolysis electric spark cutting composite micromachining device and its processing method. It has become a new electrolytic EDM composite micromachining, but this machining method still has macro cutting force, which is prone to microcracks and thermal stress.
发明内容Contents of the invention
本发明的目的在于克服上述现有技术存在的不足,提供一种面向非导电硬脆材料的微细高效加工方法及装置。The purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and provide a micro-high-efficiency processing method and device for non-conductive hard and brittle materials.
本发明是通过以下技术方案实现的。The present invention is achieved through the following technical solutions.
一种面向非导电硬脆材料的微细高效加工方法,其特征是:在超声激励的同时进行微细电解-电火花加工,对非导电硬脆材料进行微精去除加工;工具电极做高速旋转,工件沿主轴方向做超声振动,工具电极与工件浸没在电解液中;加电加工时,在电解液中的工具电极与辅助电极发生电解作用,接负极的工具电极周围产生电解氢气泡,由于超声的空化作用,气泡将会均匀分布在工具电极周围,然后工具电极与非导电工件表面电解液产生微细电火花放电作用击穿气泡膜,利用电火花加工产生的高温将工件材料去除,同时工具电极的高速旋转所带动的间隙流场能高效更新电解液。A micro-high-efficiency machining method for non-conductive hard and brittle materials, which is characterized in that micro-electrolysis-EDM is performed while ultrasonic excitation is performed, and micro-fine removal processing is performed on non-conductive hard and brittle materials; tool electrodes are rotated at high speed, and the workpiece Ultrasonic vibration is performed along the main axis, and the tool electrode and the workpiece are immersed in the electrolyte; during power-on machining, the tool electrode and the auxiliary electrode in the electrolyte undergo electrolysis, and electrolytic hydrogen bubbles are generated around the tool electrode connected to the negative electrode. Cavitation, the bubbles will be evenly distributed around the tool electrode, and then the tool electrode and the electrolyte on the surface of the non-conductive workpiece will produce a micro-spark discharge to break down the bubble film, and the high temperature generated by EDM will remove the workpiece material, while the tool electrode The gap flow field driven by the high-speed rotation can efficiently update the electrolyte.
上述一种面向非导电硬脆材料的微细高效加工方法,其特征是:电解-电火花加工电源采用直流高频脉冲电源,电源正负极分别与工件及工具电极连接;工件沿主轴轴向做超声振动;工具电极是螺旋形,并与主轴通过精密螺纹连接,主轴采用电主轴,转速为0-50000r/min;辅助电极采用石墨电极;工具电极及工件的相对运动可实现X、Y和Z方向的移动。The above-mentioned micro-high-efficiency machining method for non-conductive hard and brittle materials is characterized in that: the electrolysis-EDM power supply adopts a DC high-frequency pulse power supply, and the positive and negative poles of the power supply are respectively connected to the workpiece and the tool electrode; the workpiece is machined along the axis of the spindle Ultrasonic vibration; the tool electrode is spiral and connected with the main shaft through precision threads. The main shaft adopts an electric spindle with a speed of 0-50000r/min; the auxiliary electrode uses graphite electrodes; the relative movement of the tool electrode and the workpiece can realize X, Y and Z direction of movement.
一种面向非导电硬脆材料的微细高效加工装置,包括机床床身、电解-电火花加工单元、超声振动工作台和进给工作台;进给工作台安装在机床床身上,超声振动台固定连接在进给工作台上,工件固定在超声振动台上;电解-电火花加工单元包括主轴、工具电极、辅助电极、电解-电火花电源,主轴垂直于超声振动台放置;超声振动工作台包括超声波电源、超声换能器、变幅杆、及振动圆盘;其特征是:进给工作台具有X和Y两个自由度,主轴具有Z方向的移动;超声振动工作台与工件固定连接,将超声振动传递给工件,驱动工件沿主轴轴向进行超声振动;主轴采用电主轴,转速为0-50000r/min。A micro-high-efficiency processing device for non-conductive hard and brittle materials, including a machine bed, an electrolysis-EDM unit, an ultrasonic vibration table and a feed table; the feed table is installed on the machine bed, and the ultrasonic vibration table is fixed Connected to the feed table, the workpiece is fixed on the ultrasonic vibration table; the electrolysis-EDM unit includes the main shaft, tool electrode, auxiliary electrode, electrolysis-EDM power supply, and the main shaft is placed perpendicular to the ultrasonic vibration table; the ultrasonic vibration table includes Ultrasonic power supply, ultrasonic transducer, horn, and vibrating disc; its characteristics are: the feed table has two degrees of freedom of X and Y, and the spindle can move in the Z direction; the ultrasonic vibration table is fixedly connected with the workpiece, The ultrasonic vibration is transmitted to the workpiece, and the workpiece is driven to perform ultrasonic vibration along the axis of the spindle; the spindle adopts an electric spindle with a speed of 0-50000r/min.
本发明将微细超声辅助电解-电火花加工有机复合在一起,依靠工具电极与辅助电极电解产生的气泡,并通过工件超声振动的空化等作用形成均匀的气膜,工具电极与工件表面的电解液放电击穿气膜,达到去除工件材料的目的;工具电极的高速旋转有效加快电解液的更新和加工产物的排除,工件的超声频振动使得工具电极周围气泡均匀化,并且能优化间隙电场,使加工过程更加稳定,在显著提高加工效率的同时,降低生产成本,有效提高加工精度和表面质量。The present invention organically combines micro-ultrasonic assisted electrolysis-EDM, relies on the bubbles generated by the electrolysis of the tool electrode and the auxiliary electrode, and forms a uniform gas film through the cavitation of the ultrasonic vibration of the workpiece, and the electrolysis of the tool electrode and the surface of the workpiece The liquid discharge breaks down the gas film to achieve the purpose of removing the workpiece material; the high-speed rotation of the tool electrode effectively accelerates the renewal of the electrolyte and the removal of processed products. The ultrasonic vibration of the workpiece makes the air bubbles around the tool electrode uniform and can optimize the gap electric field. Make the processing process more stable, while significantly improving processing efficiency, reduce production costs, and effectively improve processing accuracy and surface quality.
附图说明Description of drawings
图1为本发明装置示意图;Fig. 1 is a schematic diagram of the device of the present invention;
图2为本发明工件超声振动对气泡分布的影响图。Fig. 2 is a graph showing the influence of the ultrasonic vibration of the workpiece on the bubble distribution in the present invention.
图中:1—主轴、2—工具电极、3—电解液、4—工件、5—振动圆盘、6—变幅杆、7—超声波换能器、8—进给工作台、9—超声波电源、10—辅助电极、11—电解-电火花电源、12—电流传感器、13—数字存储示波器、14—控制计算机。In the figure: 1—spindle, 2—tool electrode, 3—electrolyte, 4—workpiece, 5—vibration disc, 6—horn, 7—ultrasonic transducer, 8—feed table, 9—ultrasonic Power supply, 10—auxiliary electrode, 11—electrolysis-electric spark power supply, 12—current sensor, 13—digital storage oscilloscope, 14—control computer.
具体实施方式detailed description
下面结合附图给出本发明的三个最佳实施例。Provide three preferred embodiments of the present invention below in conjunction with accompanying drawing.
实施例一:Embodiment one:
一种面向非导电硬脆材料的微细高效加工方法—超声电解-电火花微细加工,用微细电解-电火花加工带有超声激励的工件;电解-电火花加工单元的电源采用直流高频脉冲电源;工具电极是螺旋形的,并且在加工时高速旋转。A micro-high-efficiency machining method for non-conductive hard and brittle materials—ultrasonic electrolysis-EDM micromachining, using micro-electrolysis-EDM to process workpieces with ultrasonic excitation; the power supply of the electrolysis-EDM unit adopts DC high-frequency pulse power supply ; The tool electrode is helical and rotates at high speed during machining.
超声电解-电火花微细加工装置,包括电解-电火花加工单元、超声振动工作台和进给工作台等。电解-电火花单元由主轴1、工具电极2、电解液3、工件4、进给工作台8、辅助电极10及电解-电火花电源11组成;其中工具电极2、辅助电极10和工件4浸没在电解液3中;工具电极2接电源的负极,辅助电极10接电源正极;主轴1具有Z方向的位移,并且可以高速旋转,进给工作台8可以实现X和Y两个方面的位移及转动。超声振动工作台包括超声波电源9、超声波换能器7、变幅杆6和振动圆盘5;其中工件4通过精密螺栓固定在振动圆盘5上,振动圆盘5与变幅杆6使用精密螺栓连接;超声波电源9发出信号经超声波换能器7将电信号转变成机械振动,再经变幅杆6放大,将超声振动传递给振动圆盘5和工件4。电解-电火花加工单元及超声振动振动工作台的控制,加工过程中的进给运动,主轴转速的调整,超声振动的启动时间等均由控制计算机14控制。对非导电硬脆材料加工时,非导电工件4沿主轴1方向做超声振动,电解-电火花电源11采用直流高频脉冲电源,首先工具电极2与辅助电极10在电解液3中发生电解反应,工具电极2采用钨针,电解液3采用的是20%的氢氧化钾溶液,工具电极2周围析出氢气,形成氢气泡,工件4的超声振动使工具电极2周围的气泡分布均匀化,形成厚度一致的气膜;由于气膜的阻隔、绝缘,工具电极2与工件4表面的电解液之间形成放电通道击穿气泡膜,瞬时的高温将工件材料以气化、熔化等方式去除工件材料,螺旋形工具电极2的高速旋转及工件4的超声振动带动电解液3的快速更新,进而使排屑大大加快,减少阻塞,大大提高了加工效率和加工质量。Ultrasonic electrolysis-EDM micromachining device, including electrolysis-EDM unit, ultrasonic vibration table and feed table, etc. The electrolysis-EDM unit is composed of spindle 1, tool electrode 2, electrolyte 3, workpiece 4, feed table 8, auxiliary electrode 10 and electrolysis-EDM power supply 11; the tool electrode 2, auxiliary electrode 10 and workpiece 4 are submerged In the electrolyte 3; the tool electrode 2 is connected to the negative pole of the power supply, and the auxiliary electrode 10 is connected to the positive pole of the power supply; the main shaft 1 has a displacement in the Z direction and can rotate at a high speed, and the feed table 8 can realize the displacement of X and Y. turn. The ultrasonic vibrating table includes an ultrasonic power source 9, an ultrasonic transducer 7, a horn 6 and a vibrating disc 5; the workpiece 4 is fixed on the vibrating disc 5 by precision bolts, and the vibrating disc 5 and the horn 6 are precision Bolt connection; the ultrasonic power supply 9 sends out a signal, and the ultrasonic transducer 7 converts the electrical signal into mechanical vibration, and then amplifies it through the horn 6, and transmits the ultrasonic vibration to the vibrating disc 5 and the workpiece 4. The control of the electrolysis-electric discharge machining unit and the ultrasonic vibration vibration table, the feed movement during the machining process, the adjustment of the spindle speed, and the start time of the ultrasonic vibration are all controlled by the control computer 14 . When processing non-conductive hard and brittle materials, the non-conductive workpiece 4 undergoes ultrasonic vibration along the direction of the main shaft 1, and the electrolysis-electric spark power supply 11 adopts a DC high-frequency pulse power supply. First, the tool electrode 2 and the auxiliary electrode 10 undergo electrolytic reactions in the electrolyte 3 The tool electrode 2 uses tungsten needles, and the electrolyte 3 uses 20% potassium hydroxide solution. Hydrogen gas is precipitated around the tool electrode 2 to form hydrogen bubbles. The ultrasonic vibration of the workpiece 4 makes the bubble distribution around the tool electrode 2 uniform, forming Gas film with uniform thickness; due to the barrier and insulation of the gas film, a discharge channel is formed between the tool electrode 2 and the electrolyte on the surface of the workpiece 4 to break down the bubble film, and the instantaneous high temperature removes the workpiece material by gasification, melting, etc. , the high-speed rotation of the spiral tool electrode 2 and the ultrasonic vibration of the workpiece 4 drive the rapid update of the electrolyte 3, thereby greatly speeding up chip removal, reducing clogging, and greatly improving processing efficiency and processing quality.
图2中反映,工件4的超声振动对于工具电极2周围气泡分布的影响。工件4不振动时,气泡分布散乱,不均匀,有些地方气泡少,有的地方气泡多,给加工带来影响;工件4超声振动时,气泡在工具电极2周围分布均匀,形成气膜,有利于后续的加工过程。It is reflected in FIG. 2 that the ultrasonic vibration of the workpiece 4 affects the bubble distribution around the tool electrode 2 . When the workpiece 4 does not vibrate, the air bubbles are scattered and uneven. In some places there are few air bubbles, and in some places there are many air bubbles, which will affect the processing; It is beneficial to the subsequent processing process.
实施例二:Embodiment two:
电解-电火花电源11采用直流脉冲电源,电解液3采用氢氧化钠溶液,其他如实例一。The electrolysis-spark power supply 11 adopts a DC pulse power supply, the electrolyte solution 3 adopts a sodium hydroxide solution, and others are as in Example 1.
实施例三:Embodiment three:
工具电极2采用钢针,变幅杆6与振动圆盘5、振动圆盘5与工件4之间均采用粘接固定连接,其他如实例一。The tool electrode 2 is made of a steel needle, and the horn 6 and the vibrating disc 5, and the vibrating disc 5 and the workpiece 4 are fixedly connected by bonding, and others are as in Example 1.
本发明方法具有低电压放电的高精度,还可获得良好的表面质量等优点;本发明方法使工件做超声振动,使得加工过程更加稳定,工件的超声振动及螺旋电极的高速旋转,大大提高了加工效率;本发明方法在加工机理上,容易实现微细、精密、高效加工,并且生产成本低;本发明方法尤其适合非导电硬脆材料的微细加工,有利于提高加工精度和表面质量,加工效率高,可适应大批量生产。The method of the present invention has the advantages of high precision of low-voltage discharge, and can also obtain good surface quality; the method of the present invention makes the workpiece perform ultrasonic vibration, making the processing process more stable, and the ultrasonic vibration of the workpiece and the high-speed rotation of the spiral electrode greatly improve the Processing efficiency; the method of the present invention is easy to realize fine, precise and high-efficiency processing in terms of processing mechanism, and the production cost is low; the method of the present invention is especially suitable for the micro-processing of non-conductive hard and brittle materials, which is conducive to improving processing accuracy and surface quality, and processing efficiency High, suitable for mass production.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510696012.7A CN105215487A (en) | 2015-10-23 | 2015-10-23 | A kind of fine high-efficiency machining method towards non-conductive hard brittle material and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510696012.7A CN105215487A (en) | 2015-10-23 | 2015-10-23 | A kind of fine high-efficiency machining method towards non-conductive hard brittle material and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105215487A true CN105215487A (en) | 2016-01-06 |
Family
ID=54984936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510696012.7A Pending CN105215487A (en) | 2015-10-23 | 2015-10-23 | A kind of fine high-efficiency machining method towards non-conductive hard brittle material and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105215487A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106270839A (en) * | 2016-09-21 | 2017-01-04 | 大连交通大学 | Many materials electric discharging machining electrode and processing method thereof |
CN106378875A (en) * | 2016-09-14 | 2017-02-08 | 西安理工大学 | Micro-cutting system suitable for hard and brittle materials and application of micro-cutting system |
CN106493861A (en) * | 2016-09-14 | 2017-03-15 | 西安理工大学 | Micro-cutting system of processing under the ultrasonication of hard brittle material |
CN107186304A (en) * | 2017-07-17 | 2017-09-22 | 山东大学 | The vibration servicing unit of many many micropores of tool-electrode synchronous rotary electro-discharge machining and its application |
CN107214387A (en) * | 2017-06-29 | 2017-09-29 | 浙江工业大学 | The micro- texture rolling erosion electrochemical machining method of radial ultrasonic vibration auxiliary and device |
CN107283010A (en) * | 2017-08-10 | 2017-10-24 | 山东大学 | Rotary ultrasonic electrode micro-electrochemical machining spark cutting processing unit (plant) and method |
CN107363350A (en) * | 2017-09-12 | 2017-11-21 | 天津科技大学 | Contactless EDM System |
CN107470726A (en) * | 2017-08-21 | 2017-12-15 | 广东工业大学 | A kind of electrolytic machining device of the profound and subtle groove of surface of workpiece |
CN108817582A (en) * | 2018-06-15 | 2018-11-16 | 江苏大学 | A kind of device for cathode insulation in Electrolyzed Processing |
EP3421164A1 (en) | 2017-06-27 | 2019-01-02 | MTA Számítástechnikai és Automatizálási Kutató Intézet | Method for micro-electro-discharge machining of ceramic workpieces |
CN110076403A (en) * | 2019-04-23 | 2019-08-02 | 浙江工业大学 | Supersonic synergic air film shields the processing method and device of assist electrolysis |
CN110076407A (en) * | 2019-06-04 | 2019-08-02 | 扬州大学 | A kind of ultrasonic modulation time variant voltage efficient electrolysis combined machining method |
CN110116245A (en) * | 2019-05-10 | 2019-08-13 | 南方科技大学 | Hydrogen embrittlement auxiliary ultrasonic machining equipment and method |
CN111230240A (en) * | 2020-01-19 | 2020-06-05 | 湖南科技大学 | Ultrasonic electric spark auxiliary milling method |
CN111390311A (en) * | 2020-04-17 | 2020-07-10 | 湖南科技大学 | Milling cutter, ultrasonic EDM milling equipment and milling method |
CN112091339A (en) * | 2020-09-09 | 2020-12-18 | 河南理工大学 | An integrated spiral tool electrode and its multi-potential electrolytic milling and grinding method |
CN114378381A (en) * | 2020-10-21 | 2022-04-22 | 航天科工惯性技术有限公司 | Blind groove processing device and blind groove processing method for quartz glass |
CN114406375A (en) * | 2022-03-16 | 2022-04-29 | 长沙理工大学 | A kind of electrochemical discharge energizing micro-grinding method for tiny parts of silicon-based material |
CN114434221A (en) * | 2022-03-16 | 2022-05-06 | 长沙理工大学 | Electrochemical discharge auxiliary fine grinding device for small hard and brittle material parts |
CN114473091A (en) * | 2022-03-15 | 2022-05-13 | 江苏理工学院 | Horizontal electrolytic electric spark machining device and method |
CN115780931A (en) * | 2022-12-07 | 2023-03-14 | 南京航空航天大学 | A method of ultrasonic vibration assisted intermittent electric discharge machining |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005021274A1 (en) * | 2005-05-09 | 2006-11-16 | Siemens Ag | Electromachining process uses electrosound applied by a generator attached to the water filled processing tank |
CN101085483A (en) * | 2007-06-22 | 2007-12-12 | 哈尔滨工业大学 | Combinational processing method for micro-array axle hole |
CN102513622A (en) * | 2011-11-09 | 2012-06-27 | 扬州大学 | Micro and fine machining method for material difficult to machine and machining system |
CN103231133A (en) * | 2013-05-08 | 2013-08-07 | 清华大学 | Electrolytic electric discharge combined machining method and electrolytic electric discharge combined machining device of non-conducting materials |
CN103302368A (en) * | 2013-06-19 | 2013-09-18 | 清华大学 | Three-electrode high-frequency ultrashort pulse micro electrochemical machining power supply and electrochemical machining method thereof |
CN103342913A (en) * | 2013-06-17 | 2013-10-09 | 哈尔滨工业大学 | Conductive coating material for insulating-ceramic electrosparking technology and method for preparing auxiliary electrode by the conductive coating material |
CN103480928A (en) * | 2013-09-16 | 2014-01-01 | 山东大学 | Ultrasonic-vibration micro electric discharge machining workbench |
CN103495782A (en) * | 2013-09-30 | 2014-01-08 | 胜利油田康贝石油工程装备有限公司 | Device and method for electric machining with circular electrode and ultrasonic wave used for cutting |
CN104384637A (en) * | 2014-09-30 | 2015-03-04 | 南通大学 | Glass processing method and system |
CN104842029A (en) * | 2015-04-17 | 2015-08-19 | 首都航天机械公司 | Workpiece additional ultrasonic vibration device for ultrasonic electrical discharge machining |
CN205129105U (en) * | 2015-10-23 | 2016-04-06 | 山东大学 | Fine high -efficient processingequipment towards electrically conductive hard brittle material of non - |
-
2015
- 2015-10-23 CN CN201510696012.7A patent/CN105215487A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005021274A1 (en) * | 2005-05-09 | 2006-11-16 | Siemens Ag | Electromachining process uses electrosound applied by a generator attached to the water filled processing tank |
CN101085483A (en) * | 2007-06-22 | 2007-12-12 | 哈尔滨工业大学 | Combinational processing method for micro-array axle hole |
CN102513622A (en) * | 2011-11-09 | 2012-06-27 | 扬州大学 | Micro and fine machining method for material difficult to machine and machining system |
CN103231133A (en) * | 2013-05-08 | 2013-08-07 | 清华大学 | Electrolytic electric discharge combined machining method and electrolytic electric discharge combined machining device of non-conducting materials |
CN103342913A (en) * | 2013-06-17 | 2013-10-09 | 哈尔滨工业大学 | Conductive coating material for insulating-ceramic electrosparking technology and method for preparing auxiliary electrode by the conductive coating material |
CN103302368A (en) * | 2013-06-19 | 2013-09-18 | 清华大学 | Three-electrode high-frequency ultrashort pulse micro electrochemical machining power supply and electrochemical machining method thereof |
CN103480928A (en) * | 2013-09-16 | 2014-01-01 | 山东大学 | Ultrasonic-vibration micro electric discharge machining workbench |
CN103495782A (en) * | 2013-09-30 | 2014-01-08 | 胜利油田康贝石油工程装备有限公司 | Device and method for electric machining with circular electrode and ultrasonic wave used for cutting |
CN104384637A (en) * | 2014-09-30 | 2015-03-04 | 南通大学 | Glass processing method and system |
CN104842029A (en) * | 2015-04-17 | 2015-08-19 | 首都航天机械公司 | Workpiece additional ultrasonic vibration device for ultrasonic electrical discharge machining |
CN205129105U (en) * | 2015-10-23 | 2016-04-06 | 山东大学 | Fine high -efficient processingequipment towards electrically conductive hard brittle material of non - |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106378875A (en) * | 2016-09-14 | 2017-02-08 | 西安理工大学 | Micro-cutting system suitable for hard and brittle materials and application of micro-cutting system |
CN106493861A (en) * | 2016-09-14 | 2017-03-15 | 西安理工大学 | Micro-cutting system of processing under the ultrasonication of hard brittle material |
CN106378875B (en) * | 2016-09-14 | 2019-03-26 | 西安理工大学 | Suitable for the micro-cutting system of processing of hard brittle material and its application |
CN106270839B (en) * | 2016-09-21 | 2018-06-08 | 大连交通大学 | More material electric discharging machining electrodes and its processing method |
CN106270839A (en) * | 2016-09-21 | 2017-01-04 | 大连交通大学 | Many materials electric discharging machining electrode and processing method thereof |
EP3421164A1 (en) | 2017-06-27 | 2019-01-02 | MTA Számítástechnikai és Automatizálási Kutató Intézet | Method for micro-electro-discharge machining of ceramic workpieces |
CN107214387B (en) * | 2017-06-29 | 2023-09-12 | 浙江工业大学 | Radial ultrasonic vibration assisted micro-texture rolling corrosion electrolytic machining method and device |
CN107214387A (en) * | 2017-06-29 | 2017-09-29 | 浙江工业大学 | The micro- texture rolling erosion electrochemical machining method of radial ultrasonic vibration auxiliary and device |
CN107186304A (en) * | 2017-07-17 | 2017-09-22 | 山东大学 | The vibration servicing unit of many many micropores of tool-electrode synchronous rotary electro-discharge machining and its application |
CN107186304B (en) * | 2017-07-17 | 2023-05-12 | 山东大学 | Vibration auxiliary device and its application for synchronous rotating electric discharge machining of multiple tool electrodes |
CN107283010A (en) * | 2017-08-10 | 2017-10-24 | 山东大学 | Rotary ultrasonic electrode micro-electrochemical machining spark cutting processing unit (plant) and method |
CN107470726A (en) * | 2017-08-21 | 2017-12-15 | 广东工业大学 | A kind of electrolytic machining device of the profound and subtle groove of surface of workpiece |
CN107363350A (en) * | 2017-09-12 | 2017-11-21 | 天津科技大学 | Contactless EDM System |
CN107363350B (en) * | 2017-09-12 | 2023-07-18 | 天津科技大学 | Non-contact EDM system |
CN108817582A (en) * | 2018-06-15 | 2018-11-16 | 江苏大学 | A kind of device for cathode insulation in Electrolyzed Processing |
CN108817582B (en) * | 2018-06-15 | 2020-06-09 | 江苏大学 | Device for cathode insulation in electrolytic machining |
CN110076403B (en) * | 2019-04-23 | 2024-12-17 | 浙江工业大学 | Processing method and device for auxiliary micro electrolysis by ultrasonic cooperative air film shielding |
CN110076403A (en) * | 2019-04-23 | 2019-08-02 | 浙江工业大学 | Supersonic synergic air film shields the processing method and device of assist electrolysis |
CN110116245A (en) * | 2019-05-10 | 2019-08-13 | 南方科技大学 | Hydrogen embrittlement auxiliary ultrasonic machining equipment and method |
CN110116245B (en) * | 2019-05-10 | 2024-04-02 | 南方科技大学 | Hydrogen embrittlement auxiliary ultrasonic processing equipment and method |
CN110076407A (en) * | 2019-06-04 | 2019-08-02 | 扬州大学 | A kind of ultrasonic modulation time variant voltage efficient electrolysis combined machining method |
CN111230240A (en) * | 2020-01-19 | 2020-06-05 | 湖南科技大学 | Ultrasonic electric spark auxiliary milling method |
CN111390311A (en) * | 2020-04-17 | 2020-07-10 | 湖南科技大学 | Milling cutter, ultrasonic EDM milling equipment and milling method |
CN111390311B (en) * | 2020-04-17 | 2021-08-31 | 湖南科技大学 | Milling cutter, ultrasonic EDM milling equipment and milling method |
CN113414592A (en) * | 2020-04-17 | 2021-09-21 | 湖南科技大学 | Milling method |
CN112091339A (en) * | 2020-09-09 | 2020-12-18 | 河南理工大学 | An integrated spiral tool electrode and its multi-potential electrolytic milling and grinding method |
CN112091339B (en) * | 2020-09-09 | 2021-11-02 | 河南理工大学 | An integrated spiral tool electrode and its multi-potential electrolytic milling and grinding method |
CN114378381B (en) * | 2020-10-21 | 2023-09-08 | 航天科工惯性技术有限公司 | Blind groove machining device and blind groove machining method for quartz glass |
CN114378381A (en) * | 2020-10-21 | 2022-04-22 | 航天科工惯性技术有限公司 | Blind groove processing device and blind groove processing method for quartz glass |
CN114473091B (en) * | 2022-03-15 | 2023-08-11 | 江苏理工学院 | A horizontal electrolytic electric discharge machining device and method |
CN114473091A (en) * | 2022-03-15 | 2022-05-13 | 江苏理工学院 | Horizontal electrolytic electric spark machining device and method |
CN114434221A (en) * | 2022-03-16 | 2022-05-06 | 长沙理工大学 | Electrochemical discharge auxiliary fine grinding device for small hard and brittle material parts |
US11904400B2 (en) | 2022-03-16 | 2024-02-20 | Changsha University Of Science And Technology | Electrochemical discharge-enabled micro-grinding process for micro-components of silicon-based materials |
CN114406375A (en) * | 2022-03-16 | 2022-04-29 | 长沙理工大学 | A kind of electrochemical discharge energizing micro-grinding method for tiny parts of silicon-based material |
US11992890B2 (en) | 2022-03-16 | 2024-05-28 | Changsha University Of Science And Technology | Electrochemical discharge-assisted micro-grinding device for micro-components of brittle and hard materials |
CN115780931A (en) * | 2022-12-07 | 2023-03-14 | 南京航空航天大学 | A method of ultrasonic vibration assisted intermittent electric discharge machining |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105215487A (en) | A kind of fine high-efficiency machining method towards non-conductive hard brittle material and device | |
CN102513622A (en) | Micro and fine machining method for material difficult to machine and machining system | |
CN105269094B (en) | Ultrasonic vibration auxiliary micro-electrochemical electrical discharge wire-cutting machining method and device | |
CN205129105U (en) | Fine high -efficient processingequipment towards electrically conductive hard brittle material of non - | |
CN205129104U (en) | Ultrasonic vibration assists fine electrolysis spark -erosion wire cutting processingequipment | |
WO2016201761A1 (en) | Device and method for machining materials by combining electrochemical discharging and laser | |
CN103921356B (en) | A kind of precision machined method of hard brittle material end face | |
CN107214387B (en) | Radial ultrasonic vibration assisted micro-texture rolling corrosion electrolytic machining method and device | |
CN107283010A (en) | Rotary ultrasonic electrode micro-electrochemical machining spark cutting processing unit (plant) and method | |
CN101327536A (en) | Composite Synchronous Ultrasonic Frequency Vibration Micro Electrolytic Machining Method | |
CN110102846B (en) | Radial vibration auxiliary electrolytic machining method and device for micro-texture of inner wall of thin-wall part revolving body | |
CN103203688B (en) | Micro-scale grinding online electrolytic dressing device and method thereof | |
CN101733492A (en) | Combined machining spindle unit of supersonic vibration assistant grinding-impulse discharge | |
CN202388079U (en) | Minuteness finish machining system for material hard to machine | |
CN105364236A (en) | Ultrasonic-modulation micro electro-chemical machining experiment system | |
CN108555317B (en) | Surface texturing device and texturing method based on ultrasonic vibration impact | |
CN104384637A (en) | Glass processing method and system | |
CN102941383B (en) | Thinning and electrolytic machining device for inner wall of static cutter cover of shaver and machining process method of device | |
CN104842029A (en) | Workpiece additional ultrasonic vibration device for ultrasonic electrical discharge machining | |
CN104625267A (en) | Electrolysis-mechanical micro cutting machining method of fretsaw winding electrode | |
Mukhopadhyay et al. | Advancement in ultrasonic vibration and magnetic field assisted micro-EDM process: an overview | |
Lu et al. | The micro-milling machining of pyrex glass using the electrochemical discharge machining process | |
CN108746896A (en) | A micro-electrolytic peripheral milling method for micro-array structures based on on-line preparation of micro-disk electrodes | |
CN104625266B (en) | A kind of scroll saw coiling electrolysis-mechanical fine cutting processing system | |
CN105562851B (en) | A kind of soft electrode electric discharge machining apparatus based on liquid metal and porous ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160106 |
|
WD01 | Invention patent application deemed withdrawn after publication |