CN105209496A - 针对组织因子途径抑制剂的前体药物抗体 - Google Patents
针对组织因子途径抑制剂的前体药物抗体 Download PDFInfo
- Publication number
- CN105209496A CN105209496A CN201480027867.4A CN201480027867A CN105209496A CN 105209496 A CN105209496 A CN 105209496A CN 201480027867 A CN201480027867 A CN 201480027867A CN 105209496 A CN105209496 A CN 105209496A
- Authority
- CN
- China
- Prior art keywords
- antibody
- chain variable
- variable region
- tfpi
- domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/36—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against blood coagulation factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/38—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against protease inhibitors of peptide structure
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/35—Valency
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/50—Fusion polypeptide containing protease site
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Diabetes (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本公开内容提供了仅在暴露于来源凝血级联的蛋白酶后,与组织因子途径抑制剂(TFPI)特异性结合的前体药物抗体。所述前体药物抗体可用于治疗出血障碍例如血友病。当在此类治疗中使用时,这些前体药物抗体显示相对于其他抗TFPI抗体增加的半衰期,同时减轻副作用例如血栓形成的可能性。
Description
背景
根据37 C.F.R. 1.821(c),随同提交作为ASCII标准文本文件的序列表,所述ASCII标准文本文件命名为“BAYRP0004WO_ST25.txt”,于2014年3月14日创建,并且具有~312千字节的大小。前述文件的内容在此整体引入作为参考。
本申请要求于2013年3月15 提交的美国临时申请序列号61/794,024的优先权利益,所述美国临时申请的完整内容在此引入作为参考。
I. 技术领域
技术领域涉及血友病及其他凝血病的治疗。
II. 相关技术
血液凝固是通过其血液形成稳定血块以止血的过程。该过程涉及在血液中循环的许多酶原和促辅因子(procofactor)(或“凝血因子”)。这些酶原和前辅因子通过几种途径相互作用,它们通过所述途径相继或同时转换为活化形式。最终,该过程导致在因子Va、离子钙和血小板的存在下,凝血酶原通过活化因子X(FXa)活化为凝血酶。活化凝血酶进而诱导血小板聚集,并且将纤维蛋白原转换成纤维蛋白,其随后通过活化因子XIII(FXIIIa)交联以形成血块。
导致因子X活化的过程可以通过两个不同途径进行:接触活化途径(以前称为内源性途径)和组织因子途径(以前称为外源性途径)。先前认为凝血级联由与共同途径连接的具有相等重要性的两个途径组成。目前已知用于起始血液凝固的主要途径是组织因子途径。因子X可以被与活化因子VII(FVIIa)组合的组织因子(TF)活化。因子VIIa及其必需辅因子TF的复合物是凝血级联的有力引发剂。
凝血的组织因子途径受组织因子途径抑制剂("TFPI")负面控制。TFPI是FVIIa/TF复合物的天然FXa依赖性反馈抑制剂。它是多价Kunitz型丝氨酸蛋白酶抑制剂的成员。生理学上,TFPI与活化因子X(FXa)结合,以形成异二聚复合物,其随后与FVIIa/TF复合物相互作用,以抑制其活性,因此关闭凝血的组织因子途径。原则上,阻断TFPI活性可以恢复FXa和FVIIa/TF活性,因此延长组织因子途径的作用持续时间且扩大FXa的生成,所述FXa是血友病A和B中的共同缺陷。
事实上,一些初步实验证据已指示通过针对TFPI的抗体阻断TFPI活性使延长的凝血时间标准化或缩短出血时间。例如,Nordfang等人显示在用针对TFPI的抗体处理血浆后,血友病血浆的延长稀释凝血酶原时间被标准化(Thromb. Haemost.,1991,66(4): 464-467)。类似地,Erhardtsen等人显示血友病A兔模型中的出血时间被抗TFPI抗体显著缩短(Blood
Coagulation and Fibrinolysis,1995,6: 388-394)。这些研究提示通过抗TFPI抗体抑制TFPI可以用于治疗血友病A或B。仅多克隆抗TFPI抗体用于这些研究中。
使用杂交瘤技术,制备且鉴定针对重组人TFPI(rhTFPI)的单克隆抗体。参见Yang等人,Chin. Med. J.,1998,111(8): 718-721。测试单克隆抗体对稀释凝血酶原时间(PT)和活化部分促凝血酶原时间(APTT)的作用。实验显示抗TFPI单克隆抗体缩短因子IX缺乏血浆的稀释凝血酶凝血时间。提示组织因子途径不仅在生理学凝血中,还在血友病的出血中起重要作用(Yang等人,Hunan Yi Ke Da Xue Xue Bao,1997,22(4): 297-300)。
授予Kjalke等人的美国专利号7,015,194公开了包含FVIIa和TFPI抑制剂的组合物,所述TFPI抑制剂包括多克隆或单克隆抗体或其片段,用于治疗或预防出血发作或凝血治疗。还公开了此类组合物降低正常哺乳动物血浆中的凝血时间的用途。进一步提出因子VIII或其变体可以包括在公开的FVIIa和TFPI抑制剂的组合物中。未提出FVIII或因子IX与TFPI单克隆抗体的组合。除用于血友病的治疗之外,还已提出TFPI抑制剂包括多克隆或单克隆抗体可以用于癌症治疗(参见授予Hung的美国专利号5,902,582)。
相应地,需要对于TFPI特异性的改善抗体用于治疗血液学疾病和癌症。
公开内容概述
因此,依照本公开内容,提供了包含下述的抗体:(a)含有第一轻链可变区和第一重链可变区的第一可变结构域,所述第一可变结构域与组织因子途径抑制剂(TFPI)免疫学结合;(b)与第一轻链可变区和/或第一重链可变区的氨基末端连接的掩蔽结构域;和(c)介于第一轻链可变区和/或第一重链可变区和掩蔽结构域之间的蛋白酶可切割接头。蛋白酶可切割结构域可以是凝血酶、纤溶酶、因子VIIa或因子Xa切割位点。掩蔽结构域可以包含第二可变结构域,其包含第二轻链可变区和第二重链可变区。抗体可以是IgG1、IgG2、IgG3、IgG4、IgM、IgA1、IgA2、分泌型IgA、IgD和IgE抗体。抗体可以是人或人源化抗体,和/或单链抗体。抗体可以是:二价的且包含两个掩蔽结构域,一个连接至每个第一轻链可变区的氨基末端;或二价的且包含两个掩蔽结构域,一个连接至每个第一重链可变区的氨基末端;或二价的且包含四个掩蔽结构域,一个连接至每个第一轻链可变区和每个第一重链可变区的氨基末端,例如其中掩蔽结构域中的两个是第二轻链可变区,并且掩蔽结构域中的两个是第二重链可变区,其中第二轻链可变区和第二重链可变区形成第二可变结构域。第二可变结构域可以与组织因子(TF)、红细胞或白蛋白结合。掩蔽结构域可以是白蛋白结合蛋白。抗体可以与人组织因子途径抑制剂的Kunitz结构域2结合。
还提供的是包含处于启动子的控制下的关于如上所述的抗体的编码区的表达载体,以及包含此类表达载体的细胞。还提供的是包含用药学可接受的缓冲液、载体或稀释剂配制的如上所述的抗体的药物制剂。
在另一个实施方案中,提供的是治疗对象中的凝血障碍的方法,其包括以有效促进对象中的凝血的量给对象施用包含下述的抗体:(a)含有第一轻链可变区和第一重链可变区的第一可变结构域,所述第一可变结构域与组织因子途径抑制剂(TFPI)免疫学结合;(b)与第一轻链可变区和/或第一重链可变区的氨基末端连接的掩蔽结构域;和(c)介于第一轻链可变区和/或第一重链可变区和掩蔽结构域之间的蛋白酶可切割接头。蛋白酶可切割结构域可以是凝血酶、纤溶酶、因子VIIa或因子Xa切割位点。掩蔽结构域可以包含第二可变结构域,其包含第二轻链可变区和第二重链可变区。抗体可以是IgG1、IgG2、IgG3、IgG4、IgM、IgA1、IgA2、分泌型IgA、IgD和IgE抗体。抗体可以是人或人源化抗体,和/或单链抗体。抗体可以是:二价的且包含两个掩蔽结构域,一个连接至每个第一轻链可变区的氨基末端;或二价的且包含两个掩蔽结构域,一个连接至每个第一重链可变区的氨基末端;或二价的且包含四个掩蔽结构域,一个连接至每个第一轻链可变区和每个第一重链可变区的氨基末端,例如其中两个掩蔽结构域是第二轻链可变区,并且两个掩蔽结构域是第二重链可变区,其中第二轻链可变区和第二重链可变区形成第二可变结构域。第二可变结构域可以与组织因子(TF)、红细胞或白蛋白结合。掩蔽结构域可以是白蛋白结合蛋白。对象可以是人或非人哺乳动物。对象可以患有创伤、血友病(例如血友病A或B)或癌症。抗体可以全身施用,或者局部或区域性施用于出血部位。抗体可以皮下、静脉内或动脉内施用。抗体可以与人组织因子途径抑制剂的Kunitz结构域2结合。
考虑本文描述的任何方法或组合物可以对本文描述的任何其他方法或组合物而言应用。
当与术语“包含”结合用于权利要求和/或说明书中时,单词“一个”或“一种”的使用可以意指“一个/种”,但它还与“一个或多个/一种或多种”、“至少一个/种”和“一个或超过一个/一种或超过一种”的含义一致。
考虑在本说明书中讨论的任何实施方案均可对本发明的任何方法或组合物而言应用,并且反之亦然。此外,本发明的组合物和试剂盒可以用于实现本发明的方法。
本申请自始至终,术语“约”用于指示,该值包括关于装置、用于测定值的方法的固有误差变异,或在研究对象中存在的变异。
附图简述
下述附图构成本说明书的部分,并且包括以进一步证实本公开内容的某些方面。通过参考与本文呈现的具体实施方案的详细描述组合的这些附图中的一个或多个,公开内容可以得到更好理解。
图1. 抗TFPI前体药物抗体及其如何在体内起作用的实施方案的举例说明。
图2. 抗TFPI前体药物抗体的潜在掩蔽策略的举例说明。
图3A-B. TF结合前体药物的载体图,其中针对TFPI和TF的可变区是串联连接的。(图3A)HC1-pTTF5 gA200抗TFPI前体药物抗体片段的载体图。(图3B)LC1-pTTF 641抗TFPI前体药物抗体片段的载体图。
图4A-C. TF结合前体药物和RBC结合前体药物的载体图,其中针对TF或RBC的scFv在抗TFPI抗体的重链的氨基末端上连接。 (图4A)pQM1-3E10sc-gA200HC抗TFPI前体药物抗体片段的载体图。(图4B)pQM1-T119sc-gA200HC抗TFPI前体药物抗体片段的载体图。(图4C)pQM1/gA200LC抗TFPI前体药物抗体片段的载体图。
图5A-B. 白蛋白结合前体药物的载体图。(图5A)pQM1-56E4-gA200H抗TFPI前体药物抗体片段的载体图。(图5B)pQM1-56E4-gA200L抗TFPI前体药物抗体片段的载体图。
图6. 使用考马斯染色,以及在不含二硫苏糖醇(DTT)的非还原条件和含DTT的还原条件下,3E10-scFv-gA200和Ter119-scFv-gA200抗TFPI
IgG的SDS-PAGE。
图7. 相对于天然gA200,测定56E4-gA200的结合亲和力的TFPI结合ELISA的曲线。
图8. 作为抗体浓度的函数,与RBC结合的Ter119sc-gA200的曲线。
图9. 在人血清白蛋白(HSA)的存在或不存在下,关于不同抗TFPI前体药物抗体和未经修饰的抗TFPI抗体gA200与TFPI的相对结合百分比的BIACORETM测量结果的曲线。
图10A-G. (图10A)作为抗TFPI前体药物抗体、56E4-gA200和抗TFPI抗体gA200的抗体浓度的函数的峰凝血酶曲线。(图10B)作为抗TFPI前体药物抗体、56E4-gA200和抗TFPI抗体gA200的不同浓度的函数的凝血酶生成曲线,显示在每个抗体浓度产生的凝血酶浓度。(图10C) 前体药物TPP-2654与其亲本抗体gA200的凝血酶生成概况的比较,所述TPP-2654可以通过凝血酶和FXa活化两者进行活化。通过添加外源凝血酶,随后添加水蛭素以使加入的凝血酶失活,来评价凝血酶活化TPP-2654的能力。对照包括其中加入缓冲液代替凝血酶的反应。(图10D)显示了活化前体药物TPP-2654所需的凝血酶的滴定。测试的凝血酶浓度为在生理学上潜在可达到的范围内。(图10E)间接评价FXa活化前体药物TPP-2654的能力。FXa和凝血酶水平通过增加用于起始TGA反应的TF浓度得到增加。通过比较外源凝血酶增强TPP-2654应答的能力与通过FXa和凝血酶活化两者实现的那些,可以衡量FXa活化前体药物的相对贡献。(图10F)显示了通过单独的凝血酶活化的前体药物TPP-2654的凝血酶生成。此处,滴定研究指示前体药物TPP-2654需要~2.5
U/mL凝血酶,以转换为活性TFPI Ab。(图10G)在TF滴定实验结果中,可以观察到TPP-2652对FXa的相对不敏感性。与设计为通过FXa和凝血酶活化两者活化的TPP-2654形成对比,TPP-2652显示在使用的更高TF剂量下在凝血酶生成中的更少增加(比较图10G与图10E)。
图11. 不同浓度的白蛋白对抗TFPI前体药物抗体和未经修饰的抗TFPI抗体的作用的曲线。
图12. 可以组合以制备根据本公开内容的抗TFPI前体药物抗体的重链和轻链的序列。
图13. 根据本公开内容的抗TFPI前体药物抗体的重链和轻链的序列。
图14A-B. 根据本公开内容的抗TFPI前体药物抗体的所选重链(图14A),以及重链和轻链(图14B)的氨基末端序列。
图15A. 在人或猴白蛋白的不存在或存在下,白蛋白结合抗TFPI前体药物的TFPI结合(表面等离子体共振- Biacore数据)。
图15B. 在人/猴白蛋白的不存在或存在下,在用或不用凝血酶或FXa处理后,白蛋白结合抗TFPI前体药物的TFPI结合(表面等离子体共振)。
图16A-C.(图16A-B)在凝血酶切割后,抗TFPI前体药物TPP-2652和TPP-2654的质谱。(图16C)用FXa切割的抗TFPI前体药物TPP-2654的质谱。
公开内容的详述
本公开内容描述了安全和长效的针对组织因子途径抑制剂(TFPI)的抗体,用于血友病及其他疗法。目前,抗TFPI抗体分别处于临床前和临床开发中,但抗TFPI抗体的体内半衰期相对短于其他IgG抗体的那种。这可能是由于靶介导的清除。另外,在具有炎症或用FVIIa治疗的患者中,也已引发抗TFPI抗体可能引起副作用的担心。
为了解决这些问题,本公开内容中描述的抗TFPI前体药物抗体已得到开发。在它们暴露于由凝血级联生成的蛋白酶之前,这些抗体具有显著降低的与TFPI的结合。一旦凝血起始且蛋白酶生成,蛋白酶就通过切割掩蔽结构域来活化抗TFPI抗体,因此增加其对TFPI的结合。这些前体药物抗体可以用于治疗出血障碍例如血友病,同时与先前描述的抗TFPI抗体相比较,提供更佳的安全和药物代谢动力学概况。
1. 抗TFPI前体药物抗体
本文公开的抗体与TFPI特异性结合;即它们与TFPI结合的亲和力比其对于无关抗原(例如BSA、酪蛋白)的结合亲和力更高(例如至少两倍高)。如本文使用的,术语“组织因子途径抑制剂”或“TFPI”指由细胞天然表达的人TFPI的任何变体、同种型和物种同系物。
在一些实施方案中,前体药物抗体以至少约105 M-1至约1012 M-1(例如105 M-1、105.5 M-1、106 M-1、106.5 M-1、107 M-1、107.5 M-1、108 M-1、108.5 M-1、109 M-1、109.5 M-1、1010 M-1、1010.5 M-1、1011 M-1、1011.5 M-1、1012 M-1)的亲和力与TFPI结合。抗体与抗原结合的亲和力(Kd)可以使用本领域已知的任何方法进行测定,包括例如免疫测定例如酶联免疫特异性测定(ELISA)、生物分子相互作用分析(BIA)(例如Sjolander &
Urbaniczky;Anal. Chem. 63:2338-2345,1991;Szabo等人,Curr. Opin. Struct. Biol. 5:699-705,1995,这两者均引入本文作为参考)、和用于定量与表达抗原的细胞结合的抗体的荧光激活细胞分选(FACS)。BIA是用于实时分析生物特异性相互作用的技术,而无需标记相互作用物中的任一种(例如BIACORETM)。光学现象表面等离子体共振(SPR)中的变化可以用作生物分子之间的实时反应的指示。
可以使用基本上全长的免疫球蛋白分子(例如IgG1、IgG2a、IgG2b、IgG3、IgG4、IgM、IgD、IgE、IgA),其抗原结合片段例如Fab或F(ab′)2,或者含有能够与TFPI特异性结合的抗原结合位点的构建体例如scFv、Fv或双抗体,来构建抗TFPI前体药物抗体。术语“抗体”还包括能够将抗体互补性决定区(CDR)插入片段定向到与天然抗体中发现的那种相同的活性结合构象的其他蛋白质支架中,使得相对于CDR由其衍生的天然抗体的TFPI结合活性,用这些嵌合蛋白观察到的与TFPI的结合得到维持。
如本文使用的,术语“经分离的抗体”是基本上不含具有不同抗原特异性的其他抗体的抗体(例如与TFPI结合的经分离的抗体基本上不含结合除TFPI外的抗原的抗体)。然而,与人TFPI的表位、同种型或变体结合的经分离的抗体可以与例如来自其他物种的其他相关抗原(例如TFPI物种同系物)具有交叉反应性。经分离的抗体可以基本上不含其他细胞材料和/或化学品。
特定的抗TFPI抗体公开于美国专利公开US 2012/20268917、US2012/0108796、US2011/0229476以及国际专利公开WO2012/135671中,这些文件各自的完整公开内容引入本文作为参考。
A. 掩蔽抗体
在一些实施方案中,本文公开的前体药物抗体被改造为具有掩蔽结构域,其降低抗体与TFPI结合的能力。这些掩蔽结构域可以识别凝血级联的元件或其他相关标记物。在一些实施方案中,掩蔽结构域包括下述元件,其识别生物分子例如组织因子(TF)、红细胞(RBC)和/或白蛋白。这些掩蔽结构域通过蛋白酶切割位点附着至抗体的可变区,如图1中所示。这些掩蔽结构域可以是抗体、肽、蛋白质或另一种支架。无论如何,掩蔽结构域通过其可变区阻止抗体与TFPI的结合,直至被去除。
本文公开的前体药物抗体被改造为包含由一种或多种蛋白酶识别的蛋白酶切割位点,其切割释放掩蔽结构域且允许抗体与TFPI结合。如本文使用的,“蛋白酶切割位点”指由蛋白酶识别且切割的氨基酸序列。在一些实施方案中,蛋白酶切割位点定位于掩蔽抗TFPI抗体的可变区,且如图1中所示。在一些实施方案中,抗TFPI前体药物抗体包括一个或多个蛋白酶切割位点,其可以被凝血酶、纤溶酶和/或因子Xa切割。还设想可以使用关于通过凝血级联活化或上调的蛋白酶的其他蛋白酶切割位点。在一些实施方案中,掩蔽抗TFPI前体药物抗体的可变区的氨基酸序列包含除蛋白酶切割位点之外的多肽接头(如例如图1中举例说明的),和/或与TF、RBC或白蛋白结合的抗体、肽、蛋白质或另一种支架。接头可以是单个氨基酸或多肽序列(例如最高达100个氨基酸)。例如,接头可以是GGGGS(SEQ
ID NO: 149)。其他有用的接头包括SEQ ID NO: 151-176中所示的那些。在其他实施方案中,不存在接头,并且切割位点自身以这样的方式插入可变区上,以便掩蔽其与TFPI的结合,如图1中所示,伴随与TF、RBC或白蛋白结合的抗体、肽、蛋白质或另一种支架。
关于凝血酶的至少两个最佳切割位点已得到测定:(1)X1-X2-P-R-X3-X4(SEQ ID NO: 147),其中X1和X2是疏水性氨基酸,而X3和X4是非酸性氨基酸;和(2)GRG。凝血酶在精氨酸残基后特异性切割。纤溶酶还可以切割两个前述切割位点,然而与凝血酶相比较具有更少的特异性。其他有用的凝血酶切割位点作为SEQ
ID NO: 1-60提供。其他有用的纤溶酶切割位点作为SEQ ID NO: 12、47、48、53和61-130提供。在一些实施方案中,切割位点是LVPRGS(SEQ
ID NO: 137)。
在一些实施方案中,使用因子Xa切割位点例如I-(E或D)-G-R(SEQ ID NO: 148)。其他有用的因子Xa切割位点作为SEQ ID NO: 29、59和61-69提供。
除切割位点之外,第二蛋白酶切割位点,所谓的外部位点,可以引入抗TFPI前体药物内,以使得切割更有效。凝血酶的外部位点可以来自蛋白酶底物或抑制剂,例如PAR1、纤维蛋白原和水蛭素的天然外部位点。外部位点还可以是来自蛋白质的其他外部位点的衍生物。
B. 抗体合成
抗TFPI前体药物抗体可以合成或重组产生。许多技术可用于产生抗体。例如,噬菌体抗体技术可以用于生成抗体(Knappik等人,J. Mol. Biol. 296:57-86,2000,其引入本文作为参考)。用于获得抗体的另一种方法是筛选来自B细胞的DNA文库,如WO 91/17271和WO 92/01047中所述,所述两个申请均引入本文作为参考。在这些方法中,产生了其中成员在其外表面上展示不同抗体的噬菌体文库。抗体通常作为Fv或Fab片段展示。展示抗体的噬菌体通过与所选蛋白质的结合的亲和力富集进行选择。抗体还可以使用三源杂交瘤(trioma)方法进行生产(例如Oestberg等人,Hybridoma
2:361-367,1983;美国专利4,634,664;美国专利4,634,666,所有所述参考文献均引入本文作为参考)。
抗体还可以由表达抗体的任何细胞进行纯化,所述细胞包括已用编码抗体的表达构建体进行转染的宿主细胞。宿主细胞可以在由其表达抗体的条件下进行培养。使用本领域众所周知的方法,纯化的抗体可以与其他细胞组分分开,所述其他细胞组分可以在细胞中与抗体结合,例如某些蛋白质、碳水化合物或脂质。此类方法包括但不限于尺寸排阻层析、硫酸铵分级、离子交换层析、亲和层析和制备型凝胶电泳。可以通过本领域已知的任何方法,例如SDS-聚丙烯酰胺凝胶电泳,来评价制剂的纯度。纯化抗体的制剂可以含有超过一类抗体。
可替代地,可以使用化学方法来合成其氨基酸序列,例如通过使用固相技术的直接肽合成,来生产抗TFPI前体药物抗体(例如Merrifield,J.
Am. Chem. Soc. 85:2149-2154,1963;Roberge等人,Science 269:202-204,1995,所述两个参考文献均引入本文作为参考)。蛋白质合成可以使用手动技术或通过自动化来执行。任选地,抗体的片段可以使用化学方法分开合成且组合,以产生全长分子。
在一些实施方案中,抗TFPI前体药物抗体还可以以“单链Fv(scFv)形式”进行构建,其中蛋白酶切割位点以这样的方式插入肽接头、抗体、肽、蛋白质或可变区上的另一种支架上或周围,以便掩蔽其识别TFPI的能力。因为肽接头是使scFv的两个可变区保持在一起用于抗原结合所必需的,所以肽接头或侧翼区的切割允许目的蛋白酶使scFv失活或下调scFv与其抗原的结合。
在一些实施方案中,抗TFPI前体药物抗体以“IgG形式”构建,具有两个结合位点,并且可以以这样的方式包含在可变区和抗体、肽、蛋白质或另一种支架之间的一个、两个、三个或四个蛋白酶切割位点,以便掩蔽其识别TFPI的能力。在每种情况下,蛋白酶切割位点可以在一侧或两侧上侧面为接头。进一步地,在每种情况下,切割位点可以是相同或不同的。
2. 多核苷酸
本公开内容还提供了编码前体药物抗体的多核苷酸。这些多核苷酸可以例如用于产生大量抗体用于治疗用途。
抗体编码cDNA分子可以用标准分子生物学技术进行制备,使用mRNA作为模板。其后,使用本领域已知并且在手册例如Sambrook等人(Molecular
Cloning: A Laboratory Manual,(Second Edition,Cold Spring Harbor Laboratory Press;Cold Spring Harbor,N.Y.;1989)第1-3卷,其引入本文作为参考)中公开的分子生物学技术,可以复制cDNA分子。扩增技术例如PCR可以用于获得另外的多核苷酸拷贝。可替代地,合成化学技术可以用于合成编码抗TFPI前体药物抗体的多核苷酸。
为了表达编码抗体的多核苷酸,多核苷酸可以插入表达载体内,所述表达载体含有所插入的编码序列转录和翻译的必需元件。本领域技术人员众所周知的方法可以用于构建表达载体,其含有编码抗体的序列以及适当的转录和翻译控制元件。这些方法包括体外重组DNA技术、合成技术和体内遗传重组。此类技术例如在Sambrook等人(1989)和Ausubel等人(Current
Protocols in Molecular Biology,John Wiley &
Sons,New York,N.Y.,1995)中得到描述,所述两个参考文献均引入本文作为参考。
各种表达载体/宿主系统可以用于含有且表达编码抗体的序列。这些包括但不限于微生物例如用重组细菌噬菌体、质粒或粘粒DNA表达载体转化的细菌;用酵母表达载体转化的酵母;用病毒表达载体(例如杆状病毒)感染的昆虫细胞系统;用病毒表达载体(例如花椰菜花叶病毒,CaMV;烟草花叶病毒,TMV)转化的植物细胞系统;或细菌表达载体(例如Ti或pBR322质粒),或动物细胞系统。
控制元件或调节序列是载体的那些非翻译区—增强子、启动子、5'和3'非翻译区—其与宿主细胞蛋白质相互作用以进行转录和翻译。此类元件可以在强度和特异性方面不同。取决于载体系统和宿主,可以使用任何数目的合适转录和翻译元件,包括组成型和诱导型启动子。例如,当在细菌系统中克隆时,可以使用诱导型启动子。杆状病毒多角体蛋白启动子可以用于昆虫细胞中。衍生自植物细胞的基因组(例如热休克、RUBISCO和储藏蛋白基因)或植物病毒(例如病毒启动子或前导序列)的启动子或增强子可以克隆到载体内。在哺乳动物细胞系统中,可以使用来自哺乳动物基因或哺乳动物病毒的启动子。如果需要生成含有编码抗体的多核苷酸序列的多个拷贝的细胞系,则基于SV40或EBV的载体可以与适当的可选标记物一起使用。
3. 制备针对TFPI的抗体的方法
描述另外的有用分子生物学技术包括抗体制备的一般课本是Berger和Kimmel(Guide to
Molecular Cloning Techniques,Methods in
Enzymology,第152卷,Academic
Press,Inc.);Sambrook等人(Molecular Cloning: A Laboratory Manual,(Second Edition,Cold
Spring Harbor Laboratory Press;Cold Spring
Harbor,N.Y.;1989)第1-3卷);Current
Protocols in Molecular Biology,(F. M. Ausabel等人[编辑],Current Protocols,a
joint venture between Green Publishing Associates,Inc.
and John Wiley & Sons,Inc.(supplemented through 2000));Harlow等人(Monoclonal Antibodies: A Laboratory Manual,Cold Spring Harbor Laboratory Press(1988),Paul [编辑]);Fundamental
Immunology,(Lippincott Williams & Wilkins(1998));和Harlow等人(Using Antibodies: A Laboratory Manual,Cold Spring Harbor Laboratory Press(1998)),所有这些参考文献均引入本文作为参考。
用于人疾病的治疗抗体已使用遗传工程生成,以制备鼠、嵌合、人源化或全人抗体。由于短血清半衰期、不能触发人效应子功能、以及人抗小鼠抗体的产生,鼠单克隆抗体显示具有作为治疗剂的有限用途。Brekke和Sandlie,"Therapeutic
Antibodies for Human Diseases at the Dawn of the Twenty-first Century," Nature
2,53,52-62(January 2003)。嵌合抗体已显示产生人抗嵌合抗体应答。人源化抗体进一步使抗体的小鼠组分降到最低。然而,全人抗体完全避免与鼠元件相关的免疫原性。特别地,如果使用具有鼠组分或鼠起源的抗体,由于所需的频繁给药和疗法的长持续时间,例如将是用抗TFPI单克隆抗体的血友病治疗所需的长期预防治疗,具有发展针对疗法的免疫应答的高危险。例如,用于血友病A的抗体疗法可能需要对于患者终生每周一次的给药。这将是对免疫系统的持续挑战。因此,存在关于用于血友病以及相关遗传性和获得性凝血缺乏或缺陷的抗体疗法的全人抗体的需要。
治疗抗体已通过由Koehler和Milstein在"Continuous Cultures of Fused Cells Secreting Antibody
of Predefined Specificity," Nature 256,495-497(1975)中描述的杂交瘤技术进行制备。全人抗体还可以在原核生物和真核生物中重组制备。抗体在宿主细胞中的重组生产而不是杂交瘤生产对于治疗抗体是优选的。重组生产具有更大的产物一致性,如更高的生产水平,以及使抗体衍生的蛋白质的存在降到最低或得到消除的受控制造的优点。出于这些原因,可能期望具有重组产生的单克隆抗TFPI抗体。
单克隆抗体可以通过在宿主细胞中表达核苷酸序列重组产生,所述核苷酸序列编码根据本发明的实施方案的单克隆抗体的可变区。借助于表达载体,含有核苷酸序列的核酸可以在适合于生产的宿主细胞中转染且表达。相应地,还提供的是用于产生与人TFPI结合的单克隆抗体的方法,其包括:(a)将编码本发明的单克隆抗体的核酸分子转染到宿主细胞内,(b)培养宿主细胞,以便在宿主细胞中表达单克隆抗体,和任选地(c)分离且纯化所产生的单克隆抗体,其中所述核酸分子包含编码本发明的单克隆抗体的核苷酸序列。
在一个例子中,为了表达抗体或其抗体片段,将通过标准分子生物学技术获得的编码部分或全长轻链和重链的DNA插入表达载体内,使得基因与转录和翻译控制序列可操作地连接。在该上下文中,术语“可操作地连接的”意指抗体基因这样连接到载体内,使得在载体内的转录和翻译控制序列发挥其调节抗体基因的转录和翻译的意图功能。表达载体和表达控制序列选择为与所使用的表达宿主细胞相容。抗体轻链基因和抗体重链基因可以插入分开的载体内,或更通常地,两种基因插入相同表达载体内。抗体基因通过标准方法(例如在抗体基因片段和载体上的互补限制位点的连接,或如果不存在限制位点,则平端连接)插入表达载体内。本文描述的抗体的轻链和重链可变区可以通过下述用于制备任何抗体同种型的全长抗体基因:将其插入已经编码所需同种型的重链恒定区和轻链恒定区的表达载体内,使得VH区段与载体内的一个或多个CH区段可操作地连接,并且VL区段与载体内的CL区段可操作地连接。另外或可替代地,重组表达载体可以编码促进来自宿主细胞的抗体链分泌的信号肽。抗体链基因可以这样克隆到载体内,使得信号肽与抗体链基因的氨基末端框内连接。信号肽可以是免疫球蛋白信号肽或异源信号肽(即来自非免疫球蛋白蛋白质的信号肽)。
除抗体链编码基因之外,本发明的重组表达载体携带控制宿主细胞中的抗体链基因表达的调节序列。术语“调节序列”意欲包括启动子、增强子及其他表达控制元件(例如多腺苷酸化信号),其控制抗体链基因的转录或翻译。此类调节序列例如在Goeddel;Gene Expression Technology. Methods in Enzymology 185,Academic Press,San
Diego,Calif.(1990)中得到描述。本领域技术人员应当理解表达载体的设计,包括调节序列的选择可以取决于诸如下述的因素:待转化的宿主细胞的选择、所需蛋白质的表达水平等。用于哺乳动物宿主细胞表达的调节序列的例子包括指导在哺乳动物细胞中的高水平的蛋白质表达的病毒元件,例如衍生自巨细胞病毒(CMV)、猴病毒40(SV40)、腺病毒(例如腺病毒主要晚期启动子(AdMLP))和多瘤的启动子和/或增强子。可替代地,可以使用非病毒调节序列,例如遍在蛋白启动子或β-珠蛋白启动子。
除抗体链基因和调节序列之外,重组表达载体可以携带另外的序列,例如调节宿主细胞中的载体复制的序列(例如复制起点)和可选标记物基因。可选标记物基因促进载体已引入其内的宿主细胞的选择(参见例如全部为Axel等人的美国专利号4,399,216;4,634,665;和5,179,017)。例如,通常可选标记物基因对载体已引入其内的宿主细胞赋予针对药物(例如G418、潮霉素或氨甲蝶呤)的抗性。可选标记物基因的例子包括二氢叶酸还原酶(DHFR)基因(连同氨甲蝶呤选择/扩增一起在dhfr-宿主细胞中使用)和neo基因(用于G418选择)。
对于轻链和重链的表达,通过标准技术将编码重链和轻链的一个或多个表达载体转染到宿主细胞内。各种形式的术语“转染”意欲涵盖通常用于将外源DNA引入原核或真核宿主细胞内的广泛多样的技术,例如电穿孔、磷酸钙沉淀、DEAE-葡聚糖转染等。尽管在理论上能够在原核或真核宿主细胞中表达本发明的抗体,但在真核细胞且最优选哺乳动物宿主细胞中的抗体表达是最优选的,因为此类真核细胞且特别是哺乳动物细胞,比原核细胞更可能装配且分泌适当折叠且免疫活性的抗体。
用于表达重组抗体的哺乳动物宿主细胞的例子包括中国仓鼠卵巢(CHO细胞)(包括在Urlaub和Chasin,(1980)Proc. Natl. Acad. Sci. USA 77:4216-4220中描述的dhfr- CHO细胞,与DHFR可选标记物一起使用,例如如R. J. Kaufman和P. A.
Sharp(1982)Mol.
Biol. 159:601-621中所述)、NSO骨髓瘤细胞、COS细胞、HKB11细胞和SP2细胞。当编码抗体基因的重组表达载体引入哺乳动物宿主细胞内时,抗体通过将宿主细胞培养一段时间进行生产,所述时间段足以允许抗体在宿主细胞中表达,或抗体分泌到宿主细胞在其中生长的培养基内。使用标准蛋白质纯化方法,例如超滤、大小排阻层析、离子交换色谱和离心,可以从培养基中回收抗体。
4. 部分抗体序列表达完整抗体的用途
抗体占优势地通过氨基酸残基与靶抗原相互作用,所述氨基酸残基位于六个重链和轻链CDR中。为此,在CDR内的氨基酸序列在个别抗体之间比CDR外的序列更多样化。因为CDR序列负责大多数抗体抗原相互作用,所以能够通过构建表达载体来表达模拟特异性天然存在的抗体的特性的重组抗体,所述表达载体包括移植到来自具有不同特性的不同抗体的构架序列上、来自特异性天然存在的抗体的CDR序列(参见例如Riechmann等人,1998,Nature 332:323-327;Jones等人,1986,Nature
321:522-525;和Queen等人,1989,Proc. Natl. Acad. Sci. U.S.A. 86:10029-10033)。此类构架序列可以得自公开的DNA数据库,其包括种系抗体基因序列。这些种系序列不同于成熟抗体基因序列,因为它们不包括完全装配的可变基因,其通过B细胞成熟过程中的V(D)J连接形成。不必获得部分抗体的整个DNA序列,以便重新制备具有与原始抗体的那些相似的结合特性的完整重组抗体(参见WO 99/45962)。跨越CDR区的部分重链和轻链序列通常对于这个目的是足够的。部分序列用于测定哪个种系可变和连接基因区段促成重组抗体可变基因。种系序列随后用于填充可变区的缺失部分。重链和轻链前导序列在蛋白质成熟过程中被切割,并且不促成最终抗体的特性。为此,必须使用相应的种系前导序列用于表达构建体。为了添加缺失序列,克隆的cDNA序列可以通过连接或PCR扩增与合成寡核苷酸组合。可替代地,整个可变区可以作为一组短的重叠寡核苷酸合成,并且通过PCR扩增组合以制备整个合成可变区克隆。该过程具有诸如消除或包括特定限制位点、或者特定密码子优化的某些优点。
重链和轻链转录物的核苷酸序列用于设计合成寡核苷酸的重叠组,以制备具有与天然序列相同的氨基酸编码能力的合成V序列。合成重链和κ链序列可以以三种方式不同于天然序列:重复核苷酸碱基串被中断,以促进寡核苷酸合成和PCR扩增;优化翻译起始位点根据Kozak的规则(Kozak,1991,J. Biol. Chem.
266:19867-19870)掺入;并且HindIII位点被改造到翻译起始位点上游。
对于重链和轻链可变区,在相应的非编码寡核苷酸的大约中点处,优化的克隆和相应的非克隆链序列被分解成30-50个核苷酸部分。因此,对于每条链,寡核苷酸可以装配成重叠双链组,其跨越150-400个核苷酸的区段。库随后用作模板以产生150-400个核苷酸的PCR扩增产物。通常,单个可变区寡核苷酸组将分解成两个库,其分开扩增以生成两个重叠PCR产物。这些重叠产物随后通过PCR扩增组合,以形成完全可变区。还可能希望在PCR扩增中包括重链或轻链恒定区的重叠片段,以生成可以容易地克隆到表达载体构建体内的片段。
重构的重链和轻链可变区随后与克隆的启动子、翻译起始、恒定区、3'非翻译、多聚腺苷酸化和转录终止序列组合,以形成表达载体构建体。重链和轻链表达构建体可以组合进单一载体,共转染,系列转染或分开转染到宿主细胞内,所述宿主细胞随后融合以形成表达两条链的宿主细胞。
因此,在另一个方面,人抗TFPI抗体例如TP2A8,TP2G6,TP2G7,TP4B7等的结构特点用于制备结构上相关的人抗TFPI抗体,其保留与TFPI结合的功能。更具体而言,本发明的单克隆抗体的特异性鉴定的重链和轻链区的一个或多个CDR可以与已知的人构架区和CDR重组组合,以制备另外的重组改造的本发明的人抗TFPI抗体。
5. 药物组合物
抗TFPI前体药物抗体可以在包含药学可接受的载体的药物组合物中提供。药学可接受的载体优选是无热原的。包含抗TFPI前体药物抗体的药物组合物可以单独或与至少一种其他试剂例如稳定化合物组合施用,其可以在任何无菌、生物相容性药物载体中施用,所述药物载体包括但不限于盐水、缓冲盐水、右旋糖和水。可以采用各种水性载体,例如0.4%盐水、0.3%甘氨酸等等。这些溶液是无菌的且一般不含微粒物质。这些溶液可以通过常规的众所周知的灭菌技术(例如过滤)进行灭菌。需要时,组合物可以含有药学可接受的辅助物质,以接近生理条件例如pH调整和缓冲剂等。药物组合物中的抗TFPI前体药物抗体浓度可以广泛改变,即从按重量计小于约0.5%,通常为或至少约1%到多达15或20%,并且例如根据所选择的具体施用方式,主要基于流体体积、粘度等加以选择。参见例如引入本文作为参考的美国专利号5,851,525。需要时,超过一种不同的抗TFPI前体药物抗体可以包括在药物组合物中。
除活性成分之外,药物组合物还可以含有合适的药学可接受的载体,包含促进组合物加工成可以药学使用的制剂的赋形剂和助剂。药物组合物可以通过许多途径进行施用,包括但不限于经口、静脉内、肌内、动脉内、髓内、鞘内、心室内、经皮、皮下、腹膜内、鼻内、肠胃外、局部、舌下或直肠途径。
在药物组合物已制备后,它们可以置于适当容器中且标记用于所示状况的治疗。合适的标记包括施用量、频率和方法。组合物可以进一步包装在试剂盒中,所述试剂盒含有通过合适的包装材料保持在一起的一个或多个容器,任选包括贮存和使用说明书,所述容器包括模塑Styrofoam和塑料吹塑成型容器。
6. 治疗出血障碍的方法
A. 障碍
血友病是一组遗传性遗传病症,其损害机体控制血液凝结或凝固的能力,当血管破裂时,所述能力用于止血。血友病A(凝血因子VIII缺乏)是该病症的最常见形式,存在于5,000–10,000个男婴的约1个中。血友病B(因子IX缺乏)在约20,000–34,000个男婴的约1个中出现。
如同大多数隐性遗传性连锁X染色体病症,血友病最可能在男性而不是女性中出现。这是因为女性具有两条X染色体,而男性仅具有一条,因此有缺陷的基因保证在携带其的任何男性中体现。因为女性具有两条X染色体并且血友病是罕见的,所以具有基因的两个缺陷拷贝的女性机率非常罕见,因此女性几乎专一地是该病症的无症状携带者。女性携带者可以从其母亲或父亲继承有缺陷的基因,或它可以是新的突变。尽管女性不可能具有血友病,但例外是:具有血友病A或B的女性必须是男性血友病患者和女性携带者两者的女儿,而可以影响任一性别的由于凝血因子XI缺乏的非性连锁的血友病C在德系犹太人(东欧)后裔中更常见,但在其他群体组中罕见。
血友病降低正常凝血过程所需的凝血因子的血液血浆凝血因子水平。因此,当血管受损时,的确形成瞬时的结痂,但缺失的凝血因子阻止纤维蛋白形成,其是维持血块必需的。血友病不比不患有其的个人更强烈地出血,但可以出血长得多的时间。在重度血友病患者中,即使轻度损伤也可以导致持续数天或数周的失血,或甚至完全不愈合。在例如脑或关节内的区域中,这可以是致命的或永久衰弱的。
可以通过本公开内容的抗体治疗的其他出血障碍包括获得性血小板功能缺陷、先天性血小板功能缺陷、先天性蛋白C或S缺乏症、弥散性血管内凝血(DIC)、因子II缺乏症、因子V缺乏症、因子VII缺乏症、凝血因子X缺乏症、因子XII缺乏症、特发性血小板减少性紫癜(ITP)和遗传性假血友病。
B. 药物组合物、途径和剂量
包含一种或多种抗TFPI前体药物抗体的药物组合物可以单独或与其他试剂、药物或凝血因子组合施用于患者,以治疗血友病或其他凝血障碍。“治疗有效剂量”的抗TFPI前体药物抗体指促进凝血或降低出血时间的抗TFPI前体药物抗体量。治疗有效剂量的测定完全在本领域技术人员的能力内。
治疗有效剂量可以最初在细胞培养测定或动物模型中进行估计,所述动物模型通常为大鼠、小鼠、兔、狗或猪。动物模型还可以用于测定适当的浓度范围和施用途径。此类信息随后可以用于测定在人中有用的剂量和施用途径。
抗TFPI前体药物抗体的治疗功效和毒性例如ED50(在50%的群体中治疗有效的剂量)和LD50(对50%的群体致命的剂量)可以通过标准药学操作在细胞培养或实验动物中进行测定。毒性效应与疗效的剂量比为治疗指数,并且它可以表示为比LD50/ED50。
显示出大治疗指数的药物组合物是优选的。得自细胞培养测定和动物研究的数据用于配制用于人使用的一系列剂量。在此类组合物中含有的剂量优选在包括ED50的一系列循环浓度内,具有很少的毒性或无毒性。取决于采用的剂型、患者的敏感性和施用途径,剂量在该范围内改变。
按照与需要治疗的患者有关的因素,确切剂量由从业者加以决定。调整剂量和施用以提供抗TFPI前体药物抗体的足够水平或维持所需效应。可以加以考虑的因素包括疾病状态的严重性,对象的一般健康,对象的年龄、重量和性别,饮食,施用时间和频率,药物组合,反应灵敏度,以及对疗法的耐受/应答。长效药物组合物可以每3至4天、每周、或每两周一次进行施用,取决于特定制剂的半衰期和清除率。
在一些实施方案中,抗TFPI前体药物抗体的治疗有效的体内剂量在约5 μg至约100 mg/kg、约1 mg至约50 mg/kg、约10 mg至约50 mg/kg患者体重的范围内。
包含抗TFPI前体药物抗体的药物组合物的施用方式可以是将抗体递送至宿主的任何合适途径(例如皮下、肌内、静脉内或鼻内施用)。
在一些实施方案中,抗TFPI前体药物抗体不连同其他治疗剂施用。在一些实施方案中,抗TFPI前体药物抗体与其他试剂例如药物或凝血因子组合施用,以增强凝血酶的初始生产,同时确保凝血酶水平保持低于在患有凝血病的一些人中可能引起血栓形成的范围。抗TFPI前体药物抗体的施用可以在其他试剂施用之前、之后或基本上同时。
7. 实施例
包括下述实施例以进一步举例说明公开内容的各个方面。本领域技术人员应当理解:下述技术代表由本发明人发现在具体实施方案的实践中良好作用的技术和/或组合物,并且可以构成用于其实践的优选方式。然而,本领域技术人员应当理解,按照本公开内容,可以在这些实施方案中作出变化并且仍获得相同或相似结果,而不背离公开内容的精神和范围。
实施例1 – 抗TFPI前体药物抗体设计策略
为了掩蔽抗TFPI活性,已设想至少三种策略,然而,考虑了另外的策略。抗组织因子抗体结构域、抗红细胞抗体结构域或白蛋白结合肽可以用作掩蔽结构域。掩蔽功能可以涉及前体药物抗体与第一靶例如组织因子、红细胞或白蛋白的结合。当抗TFPI前体药物抗体处于其潜伏形式时,不存在对TFPI的结合或基本上降低的结合,直至掩蔽区通过由凝血级联生成的蛋白酶切割,如图1中所示。已设计了不同形式的前体药物抗体。尽管所有形式均包含允许FcRn结合以提供长半衰期的Fc区,但可变区可以进行修饰,包括串联连接的可变区,scFv
- 可变区融合物,肽-可变区融合物等。这些前体药物抗体的代表显示于图2中。目前设想的前体药物抗体的亲本抗体由人抗体文库中发现。这些抗体已广泛优化以改善其亲和力和功能性。亲本抗体gA200和gB9.7具有对人TFPI的高亲和力和特异性,促进组织因子(TF)起始的凝血。
掩蔽方法
A. 组织因子结合
组织因子(TF)是用于起始由酶原凝血酶原形成凝血酶所需的,存在于内皮下组织和白细胞中的蛋白质。组织因子仅在损伤出现时暴露于血流,因此起始凝血。因此,靶向TF允许抗TFPI前体药物抗体在损伤部位上活化。掺入抗TFPI前体药物抗体内的TF结合的掩蔽结构域可以是不阻断TF功能的TF结合抗体、肽或替代支架。
B. 抗红细胞结合
RBC(红细胞)已用作载体或储库用于药物和酶的递送。RBC是生物相容性、生物可降解的,具有长循环半衰期,且可以装载有各式各样的生物学活性物质。用抗体的表面修饰已显示改善其靶特异性且增加其循环半衰期。在本公开内容中,抗RBC抗体用作在抗TFPI抗体的N末端上融合的掩蔽结构域。该抗TFPI前体药物抗体导致具有比未经修饰的亲本抗TFPI抗体的那种更长的潜在循环时间的前体药物。前体药物对RBC的结合进一步减少其结合TFPI的能力,直至掩蔽结构域已被切割。
C. 白蛋白结合肽
白蛋白已作为用于治疗剂和诊断剂的通用载体出现,主要用于诊断和治疗糖尿病、癌症、类风湿性关节炎和感染疾病。人血清白蛋白是体内最丰富的蛋白质,其循环浓度为大约40
mg/mL。白蛋白具有67 kDa的分子量。白蛋白结合部分可以用作在抗TFPI抗体的N末端上融合的掩蔽结构域,导致具有比亲本抗TFPI抗体的那种潜在更长的循环时间的抗TFPI前体药物抗体。尽管白蛋白结合肽用于前体药物构建体中,但白蛋白结合部分可以是肽、天然白蛋白结合结构域、支架、抗体或抗体片段例如Fab、scFv、结构域抗体及其他衍生物。
D. 蛋白酶的选择和切割位点的设计
当损伤出现时,组织因子(TF)变得暴露于血流并且活化因子VII,以形成TF/FVIIa复合物。TF/FVIIa复合物随后活化因子X,并且FXa将凝血酶原活化为凝血酶,促使纤维蛋白形成和凝血。组织因子途径的主要作用是生成“凝血酶爆发”,通过该过程即时释放凝血酶,所述凝血酶考虑其反馈活化作用是凝血级联中最重要的组成成分。另外,一系列其他凝血因子在凝血级联中活化:
• TF-FVIIa活化FIX和FX。
• FVII自身被凝血酶、FXIa、FXII和FXa活化。
• FXa及其辅因子FVa形成凝血酶原复合物,其将凝血酶原活化为凝血酶。
• 凝血酶随后活化凝血级联的其他组分包括FV和FVIII )活化释放与vWF结合的FVIII。最后,凝血酶活化FXI,其进而活化FIX。
• FVIIIa是FIXa的辅因子,并且它们一起形成"tenase"复合物,其活化FX;并且因此循环继续。("Tenase"是“十(ten)”和用于酶的后缀“酶(ase)”的缩写)。
前述蛋白酶中的许多例如FVIIa、FXa和凝血酶,可以用于活化抗TFPI前体药物抗体。在本公开内容中,FXa和凝血酶的切割位点被设计到掩蔽结构域内,但设想所提及的其他蛋白酶中的任一种也可掺入抗TFPI前体药物抗体内。
实施例2 - 前体药物抗体的载体图
使用Infusion克隆(Clontech),将九种gA200-前体药物重链(HC)和六种gA200轻链变体(LC)克隆到表达质粒pTTF5内。所有变体均含有FXa六氨基酸切割位点EGRTAT。突变蛋白含有侧接切割位点的各种N末端和C末端缺失。HC1突变蛋白和LC1突变蛋白的代表性质粒图显示于图3A-B中。15种轻链和重链变体的DNA序列显示于图12中。HC突变蛋白命名为HC1到HC9,LC突变蛋白命名为LC1到LC6。与抗TFPI融合的scFv(抗RBC或抗TF)的代表性质粒载体图显示于图4A-4C中,并且与抗TFPI融合的白蛋白结合肽的代表性质粒载体图显示于图5A-B中。图13-14提供了关于15种构建体的序列,所述15种构建体包含具有经改造的切割位点的各种轻链和重链组合。
实施例3 - 前体药物抗体的表达和生产
当中国仓鼠卵巢细胞用作宿主细胞时,使用来自Amaxa的Neucleofection技术执行转染。简言之,将2 x
106细胞/反应以1000
rpm共5分钟沉淀。将沉淀重悬浮于100
µl Nucleofector溶液V/反应中。将2μg
pQM1-3E10sc-gA200HC连同pQM1-gA200LC、pQM1-Ter119sc-gA200HC连同pQM1-gA200LC、或pQM1-56E4-gA200HC连同pQM1-56E4-gA200LC分别加入细胞中。随后将溶液V中的DNA/细胞转移到Nucleocuvette器皿中。电穿孔使用U024程序在Nucleofector®中执行。在电穿孔后,将0.5
mL加温的培养基立即加入细胞中,随后转移至具有4.5 mL/孔预温的Qmix1培养基(不含抗生素)的6孔板,并且放回到在振荡器上的37℃温箱。转染后3-4天测量前体药物抗体的表达。对于阳性表达细胞,生成稳定库。将细胞稀释至0.5 x 106/mL,并且将G418加入至0.7 mg/mL。一旦细胞密度达到3–4 x 106/mL,就将细胞再次稀释至0.4 x 106/mL,且所有时间均维持在含有0.7 mg/mL G418的Qmix1中。选择花费大约两周,随后为生产阶段。当细胞生存恢复至>95%,并且细胞密度达到3.5–4 x 106/mL时,将培养温度转变成30℃。在温度转变后4-7天收获条件培养基。细胞通过以5000 rpm离心30分钟进行去除。条件培养基使用Millipore浓缩器浓缩5x,随后为以9000 rpm共40分钟的另外离心。
当HEK293-6E细胞用作宿主细胞时,它们作为悬浮培养物维持在F17培养基中,所述F17培养基补充有4 mM L-谷氨酰胺、0.1% Pluronic F68和25
mg/L G418。使用聚乙烯亚胺(PEI,25KD,线性)执行转染。简言之,在转染前一天接种1 x 106细胞/ml。在转染当天时,将细胞密度调整至1.7 x
106/ml。为了转染1L细胞,将各0.5 mg的VEC-4581和VEC-4568(用于TPP2652)、或VEC-4583和4568(用于TPP2654)在500 ml F17培养基中稀释,并且将2 ml PEI(以1
mg/ml的PEI原液)在500
ml F17中稀释。组合稀释的DNA和PEI,并且在室温下10’温育后加入细胞中。随后将细胞放回到在具有125
rpm的振荡器上的37℃温箱。转染后24小时,用1%超低IgG FBS和0.5 mM丙戊酸给细胞补料。转染后3-4天测量前体药物抗体的表达,并且当细胞生存下降至70%时终止表达。随后通过以2000
rpm离心10分钟去除细胞,并且随后为以9000
rpm共40分钟的另外离心,来收获条件培养基。
实施例4 - 抗TFPI前体药物抗体的纯化
使用MabSelect蛋白A柱(5 mL HiTrap,GE
HealthCare,#28-4082-55),从CHO细胞条件培养基中纯化前体药物蛋白质。培养基通过超滤浓缩5至10倍,或无需浓缩而使用。在以1-1.5 mL/分钟的流速将培养基泵送经过柱之前,柱在“平衡缓冲液”(50 mM Tris-HCl,150 mM NaCl,pH
7.0)中进行平衡。在装载后,将柱用5至10柱体积(CV)的平衡缓冲液以4 mL/分钟的流速进行洗涤。柱随后用“乙酸盐洗涤缓冲液”(50 mM乙酸钠、150
mM NaCl,pH 5.4)进行再平衡。
从柱中洗脱结合的蛋白质使用三步洗脱以1 mL/分钟的流速执行:(1)50 mM乙酸钠、150 mM NaCl,pH 3.4;(2)50 mM乙酸钠、150 mM NaCl,pH 3.2;和(3)100 mM甘氨酸-HCl,pH 3.0。将级分(1 mL/级分)收集到含有1 ml“配制缓冲液”(50 mM乙酸钠、50 mM NaCl,pH
5.4)的管内,以升高pH。柱使用100
mM甘氨酸,pH 2.8进行再生,并且随后用dH2O洗涤且贮存于20%乙醇中。
如通过在280 nm处的吸光度监控而测定的,将含有蛋白质的级分合并,并且通过在4℃下的过夜透析或通过旋转脱盐柱而缓冲液更换到配制缓冲液内。通过使用10 kDa浓缩器的超滤实现最终蛋白质溶液的浓缩。在浓缩或透析过程中已形成的任何沉淀物通过以2000xg离心30分钟得到去除。最终样品使用0.22mm药筒(cartridge)进行无菌过滤。
纯化的蛋白质通过下述进行表征:SDS-PAGE、分析型尺寸排阻层析(aSEC)和蛋白质印迹。还测量内毒素水平。纯度通过aSEC和SDS-PAGE通常大于90%。SDS-PAGE显示于图6中。
实施例5 - gA200和56E4-gA200的体外TFPI结合ELISA
Maxisorb 96孔板(Nunc)在4℃下用在PBS中的1 µg/mL TFPI进行包被o/n。将板在室温下在5%脱脂奶粉PBS/0.5%
Tween-20中封闭1小时。将未经消化的和消化的抗体的系列三倍稀释物加入孔(100
µL/孔)中,并且在室温下温育1小时。将板在PBS-T中洗涤5次。加入第二抗Fab-HRP缀合抗体(100 µL 1:10,000稀释度),用于由Amplex
Red(Invitrogen)溶液检测。HSA结合前体药物抗体对TFPI具有比其亲本抗TFPI抗体gA200轻微减少的结合,如图7中可见的。
实施例6 - Ter119sc-gA200前体药物抗体的RBC结合ELISA
ELISA用于测试前体药物抗体对RBC的结合。将透明的96孔Maxisorp微量滴定板的孔用100 μL小鼠血影RBC进行包被,所述小鼠血影RBC以107/ml的浓度重悬浮于DPBS(不含Ca或Mg)中。将板用胶带密封且在4℃下温育过夜。将孔用DPBST(DPBS
+ 0.05% Tween 20)洗涤一次,并且随后用5%乳/ DPBST在室温下封闭1小时。弃去封闭缓冲液且加入50 μL稀释的样品/孔。将样品在PBS中1:3系列稀释。将板在室温下温育1小时,并且随后用DPBST快速洗涤5x。每孔加入100 μL在PBST中1:5000稀释的第二抗体(HRP山羊抗hFAB,Jackson ImmunoResearch,目录#109-035-097)。使板在室温下温育1小时,并且随后用DPBST洗涤5X。加入HRP底物(Amplex Red,Invitrogen
A22177),并且在SpectraMax M2e(Molecular Devices)上获得在485
nM的激发波长和595 nM的发射波长处的荧光读数。前体药物抗体在超过10 nM的浓度与RBC结合,如图8中可见的。
实施例7 - 抗TFPI前体药物抗体的BIACORETM分析
方法。基于制造商的说明书,使用胺偶联试剂盒,将人TFPI固定到CM4或CM5芯片上。使抗TFPI前体药物抗体或亲本抗TFPI抗体流通系统,使用10 µg/mL抗体连同或不连同15 µg/mL人血清白蛋白(HSA)。结合水平在每次注射完成后约2秒时进行测量。在动力学测定中,注射具有一系列浓度的抗体,随后为30分钟解离时间。使用BiaEvaluation软件,将抗体的解离速率和结合速率建模。
结果。图9显示了与人TFPI结合的不同前体药物抗体。如图9中所示,在不存在HSA的情况下,ABP-gA200前体药物抗体以179反射单位(RU)与TFPI结合,而在HSA的存在下,信号减少80%至36 RU。相反,人白蛋白并非显著影响亲本抗体gA200对TFPI的结合。
RBC结合前体药物抗体Ter119scFv-gA200以与gA200相同的水平与TFPI结合,而TF结合前体药物抗体3E10scFv-gA200,以22%残留水平与TFPI结合。
为了进一步测量这些前体药物抗体的结合,进行动力学测定以测量亲和力。如表1a-d中所示,抗TFPI前体药物抗体3E10scFv-gA200和抗RBC前体药物抗体Ter119scFv-gA200,使对TFPI的结合分别减少29.71倍和14.66倍。白蛋白结合前体药物抗体ABP-gA200不降低与TFPI的结合,但在与HSA混合且温育后,它对TFPI的结合也减少15.34倍。
表1a:与未经修饰的抗TFPI抗体相比较,关于抗TFPI前体药物抗体的动力学测定结果
为了进一步优化ABP-gA200的切割,本发明人已修饰了ABP-gA200的切割位点。将不同的切割位点插入白蛋白结合肽和重链可变区之间。如图14A-B中所示,将间隔物GGGGS插入在切割位点周围。虽然TPP-2651、TPP-2652、TPP-2653和TPP2655含有凝血酶切割位点,但TPP-2654含有可以通过FXa和凝血酶切割的接头。如表1b中所示,在人或猴白蛋白的存在下,这些抗体使其与TFPI的结合对于TPP-2654减少最高达28.6倍,并且对于TPP-2652减少39.6倍,而亲本抗体gA200在白蛋白的不存在或存在下具有相似的TFPI结合亲和力。TPP-2653未完整表达,因此它的数据未显示。将这些良好表达的前体药物抗体纯化,且通过蛋白酶凝血酶或因子Xa消化。在这些蛋白酶去除后,使用LC-MS分析抗体。结果指示蛋白酶切割白蛋白结合肽。TPP-2652和TPP-2654的代表性数据显示于图16中。
表1b:与未经修饰的抗TFPI Ab相比较,抗TFPI前体药物Ab的结果
为了进一步平衡抗TFPI前体药物的切割效率和掩蔽功能,本发明人改变抗体gA200的接头长度且截短FR1结构域。具有ABP的前体药物的氨基末端序列显示于附图中。
表1c. 与未经修饰的抗TFPI Ab相比较,粗制抗TFPI前体药物Ab的结果
表1d. 与未经修饰的抗TFPI Ab相比较,纯化的抗TFPI前体药物Ab的结果
实施例8 - 用于抗TFPI前体药物抗体的凝血酶生成测定
使用人HemA血浆进行TFPI前体药物抗体的凝血酶生成测定(TGA)。用1 mL蒸馏水重构贫血小板血浆(PPP)试剂和校准物。在HemA人血浆中加入抗TFPI前体药物抗体的1:2系列稀释物,从100 nM的最终浓度开始到1.56
nM。仅血浆样品用作对照。在96孔TGA板中,将20 µL PPP试剂或校准物加入每个孔中,随后加入80 µL含有不同浓度的抗TFPI前体药物抗体的血浆样品。将板置于TGA仪器中,并且随后该仪器在每个孔中自动分配20 µL FluCa(Fluo底物 + CaCl2)。凝血酶生成测量60分钟。当Ter119scFv-gA200在TGA中进行测试时,将HemA血浆掺入小鼠RBC血影。使Ter119scFv-gA200在室温下与小鼠RBC-GOLD一起温育15分钟。
如图10A-B中所示,56E4-gA200生成比其亲本抗体gA200更低的凝血酶峰,指示在血浆中的人白蛋白可能降低抗TFPI的活性。通过56E4gA200生成的凝血酶形状是低且宽的峰,还指示抗体在时间零时较少活性,并且可能通过生成的FXa或凝血酶变得活化。
在生理条件下将前体药物TFPI抗体转换为更有活性的TFPI抗体的可行性通过下述进行建模:1)外源凝血酶(在生理水平下)增加TFPI
Ab介导的TGA应答的能力,和2)在TGA反应中生成FXa和凝血酶,并且监控TFPI抗体诱导的应答中的后续增加。
外源凝血酶添加直接评价前体药物TFPI抗体在生理学上潜在可实现的水平下对酶的敏感性,并且通过下述来执行:使1200
nM Ab与0.5 - 2.5 U/mL凝血酶一起预温育1小时,随后用以0.5 - 2.5 U/mL的凝血酶特异性不可逆抑制剂水蛭素使凝血酶失活1小时。为了衡量水蛭素残留在TGA反应中的作用,将缓冲液替换凝血酶以评价水蛭素残留在TGA反应内的作用。在一些情况下,无关Ab或亲本抗体gA200(不含白蛋白掩蔽序列或蛋白酶敏感位点)用于代替前TFPI
Ab作为对照。抗体-凝血酶-水蛭素混合物系列稀释至10 - 100 nM Ab浓度,并且混合物另外在TGA反应中1:10稀释。TGA反应如上所述执行,除了使用的引发剂是含有1 pM TF-4 μM血小板的PPP-低之外。关于无关抗体的TGA结果从具有前体药物TFPI抗体的那些中扣除。
蛋白酶切割前和后的前TFPI Ab TPP-2654的TGA概况显示于图10C中。亲本gA200的TGA应答通过凝血酶温育是未改变的,而当与凝血酶一起预温育时,含有凝血酶和FXa敏感切割位点两者的TPP-2654显示增加的应答。然而,峰TGA应答小于应用gA200,提示TFPI Ab活性的完全暴露可能需要更高的凝血酶水平的存在或优化的蛋白酶敏感位点,以增加蛋白酶切割的效率。
用一系列凝血酶浓度(0.5 - 2.5 U/mL)的滴定实验确定前体药物TFPI抗体至更有活性的TFPI抗体的最大转换可以在1 U/mL凝血酶实现,其为在体内可潜在实现的水平(图10D)。
为了评价FXa或凝血酶是否可以更有效地将前体药物抗体转换为活性TFPI抗体,特别是含有两个蛋白酶敏感位点的前体药物抗体中,评价原位增加FXa和凝血酶的效应。原位FXa生成通过增加用作引发剂的TF浓度得到增加。在这些实验中,通过在TGA反应中使用PPP-低(1 pM TF-4 μM PL)或PPP试剂(5 pM TF-4 μM PL)作为引发剂,TF浓度从1 pM变成5 pM。增加TF通过TF-FVIIa的直接作用增加FXa,并且增加FXa进而增加凝血酶生成。TGA反应如上所述执行,并且通过比较在使用1 pM相对于5 pM
TF的TGA反应之间的应答差异来分析结果。
TPP-2654的FXa和凝血酶敏感性在1 pM和5 pM TF引发剂之间的峰凝血酶应答(δ峰)中的差异增加中显而易见(图10E),特别是对于与2.5 U/mL凝血酶一起预温育的前体药物TFPI抗体。增加前TFPI Ab TPP-2654的峰凝血酶应答的能力进一步超出用初始凝血酶预温育获得的应答,指示FXa切割可以进一步促成白蛋白结合肽的完全暴露。
其中掩蔽白蛋白结合肽通过凝血酶切割去除的前TFPI Ab(TPP-2652)的TGA应答显示于图10F-G中。TPP-2652的凝血酶敏感性显示于图10F中,指示在测试的凝血酶的最大浓度(2.5 U/mL)下,仅在测试的最高抗体水平下检测到TGA应答中的小增加。通过增加用于起始TGA的TF浓度来增加FXa(和凝血酶)仅轻微进一步增加TPP-2652的TGA应答(图10F)。这与当凝血酶预处理的TPP-2654进一步暴露于用5 pM
TF生成的FXa时,应用TPP-2654的凝血酶应答中的大增加形成对比(比较图10E与图10G)。
这些结果提出不同的蛋白酶敏感位点可以影响前体药物TFPI抗体至活性TFPI
Ab的转换。
实施例9 - 用于抗TFPI前体药物抗体的FXa测定
材料与方法
下述试剂用于FXa测定:
测定缓冲液:1X缓冲液是25 mM
Hepes 7.4、100 mM NaCl、5 mM CaCl2、0.1%
BSA。
TFPI – R&D(目录# 2974-PI,MW ~35 kDa)。根据产品插页说明书,通过添加10 µL
25 mM Tris和150 mM NaCl,pH 7.5,将TFPI重构至100 µg/mL(2.86 µM)。将2.86 µM原液1/143稀释,以生成20nM工作原液。
FXa – Haematologic Technologies(目录#
HCX-0060,MW – 58.9
kDa)原液2 µM等分试样先前在测定缓冲液中制备,并且贮存于-80℃下。2 µM原液1/1000稀释用于2 nM工作原液。
S-2765
– Chromogenix(Cat # S-2765,MW – 714.6 Da)通过将25 mg冻干材料溶解于7 mL蒸馏水中,生成5 mM工作原液。将5 mM工作原液直接加入测定孔内。
在测定缓冲液中生成抗TFPI抗体的4X剂量曲线。将60 µL每种抗体浓度与4X(20 nM)浓度的TFPI组合。将抗体/TFPI混合物在室温下温育30分钟。将120 µL 2X(2 nM)浓度的FXa加入Ab/TFPI混合物中,并且在室温下温育30分钟。随后将Ab/TFPI/FXa混合物以100 µL/孔一式两份转移至测定板,随后为20 µL
5 mM底物。板立即在Molecular Devices SpectraMax板阅读器中在405 nm处动态读数3分钟。当测试白蛋白结合抗TFPI前体药物抗体56E4-gA200时,将34 µL 8X抗TFPI抗体与34 µL不同浓度的白蛋白在96孔圆底聚丙烯板中组合。随后将溶液在室温下温育15分钟,并且将68 µL
20 nM(4X)TFPI加入α-TFPI Ab/白蛋白中。
如图11中所示,gA200的Vmax不受人或猴白蛋白影响。白蛋白结合前体药物抗体56E4-gA200随着白蛋白浓度增加而减少Vmax。当人或猴白蛋白的浓度达到5 µM时,前体药物抗体的抗TFPI活性90%被抑制。
实施例10 – 抗TFPI前体药物抗体的蛋白酶消化
Novagen凝血酶切割捕获试剂盒(69022-3)和Novagen因子Xa试剂盒(69037-3)用于前体药物的蛋白酶切割和蛋白酶耗尽。
如下文简要描述的,生物素化的凝血酶用于前体药物切割。
关于每种前体药物的50 µL反应含有5 µg前体药物、5 µL 10x试剂盒凝血酶切割/捕获缓冲液、1单位凝血酶、去离子水至50 µL。反应在37℃下温育1小时。在切割反应后,使用16 ml沉降树脂(32 ml的50%浆)/酶单位的比,用链霉抗生物素蛋白琼脂糖(在试剂盒中供应)去除生物素化的凝血酶。在琼脂糖加入反应管中之后,使管在室温下温育30分钟,伴随轻轻振荡。将整个反应转移至具有旋转过滤器的试剂盒供应的样品杯。随后将管以500 x g离心5分钟。收集管中的滤液含有切割的前体药物,不含生物素化的凝血酶。
当因子Xa用于前体药物切割时,关于每种前体药物的50 µL反应含有5 µg前体药物、5 µL 10x试剂盒因子Xa切割/捕获缓冲液、1单位因子Xa和去离子水至50 µL总体积。反应在37℃下温育1小时。在切割反应后,用Xarrest™ Agarose(试剂盒中供应的)去除因子Xa。Xarrest Agarose首先通过添加11体积的1x因子Xa切割/捕获缓冲液/沉积树脂体积的Xarrest Agarose进行平衡。将Xarrest琼脂糖以1000 x g离心5分钟。将上清液取出且弃去。将琼脂糖重悬浮于10体积的1X因子Xa切割/捕获缓冲液中,并且以1000 x g离心5分钟。将上清液取出且弃去。将一沉积树脂体积的1X因子Xa切割/捕获缓冲液加入管中,并且将树脂完全重悬浮。将制备的Xarrest
Agarose转移至2 ml旋转过滤器(由试剂盒包括的)的样品杯。将前体药物切割反应的整个体积加入制备的Xarrest
Agarose。使管在室温下温育5分钟,并且以1000
x g离心5分钟,以去除Xarrest
Agarose。结合的因子Xa保留在样品杯中,并且在离心过程中将切割的前体药物流动到滤液管内。
实施例11 – 抗TFPI前体药物抗体的LC-MS
抗TFPI前体药物抗体TPP-2652和TPP-2654的LC-MS分析在完整或还原条件下进行。对于完整蛋白质,直接将2 µg装载至PLRP柱。对于还原样品,在装载至PLRP柱之前,测试样品已用10 mM DTT、37℃处理30分钟。
使用Agilent 1200 Capillary LC System与PLRP-S(8 µm 4000A,0.3 x 150mm),在70℃下进行LC分离。用于LC的缓冲液系统是:A:水,具有0.1%甲酸+0.01% TFA,B:乙腈,具有0.1%甲酸+0.01% TFA,流速10 µL/分钟。梯度:10% B 2分钟,至90% B 15分钟,90% B共5分钟,10% B平衡共10分钟。
使用Agilent 6520 Q-TOF系统执行MS分析。条件是DualEsi来源,气温:350℃,干燥气体:7 psi,喷雾器:10psi,扫描范围:500-3000 amu,1个光谱/s。两个实验/循环:3500v,175v粉碎器,65v撇渣器用于还原形式,以及4000v,350v粉碎器,100v撇渣器用于完整蛋白质。参考离子:1221.990637和2421.91399 amu,50
ppm窗,Min 1000。将前体药物抗体纯化且通过蛋白酶凝血酶或因子Xa消化。在这些蛋白酶去除后,使用LC-MS分析抗体。结果指示蛋白酶切割白蛋白结合肽。TPP-2652和TPP-2654的代表性数据显示于图16A-C。
表2 – 关于图13的关键。
根据本公开内容,本文公开且请求保护的所有组合物和方法均可无需过度实验而制备且执行。虽然本公开内容的组合物和方法已按照优选实施方案进行描述,但对于本领域技术人员显而易见的是:可以对组合物和方法,以及在本文描述的方法的步骤或步骤顺序中应用变动,而不背离公开内容的概念、精神和范围。更具体而言,显而易见的是生物学和生理学两者相关的某些试剂可以取代本文描述的试剂,同时仍实现相同或相似结果。对于本领域技术人员显而易见的是:所有此类相似取代物或修饰视为在如通过所附权利要求限定的本发明的精神、范围和概念内。
Claims (35)
1.一种抗体,其包含:
(a)含有第一轻链可变区和第一重链可变区的第一可变结构域,所述第一可变结构域与组织因子途径抑制剂(TFPI)结合;
(b)与所述第一轻链可变区和/或第一重链可变区的氨基末端连接的掩蔽结构域;和
(c)介于所述第一轻链可变区和/或第一重链可变区和所述掩蔽结构域之间的蛋白酶可切割接头。
2.权利要求1的抗体,其中所述蛋白酶可切割结构域是凝血酶、纤溶酶、因子VIIa或因子Xa切割位点。
3.权利要求1的抗体,其中所述掩蔽结构域包含第二可变结构域,其包含第二轻链可变区和第二重链可变区。
4.权利要求1的抗体,其中所述抗体是IgG1、IgG2、IgG3、IgG4、IgM、IgA1、IgA2、分泌型IgA、IgD和IgE抗体。
5.权利要求1的抗体,其中所述抗体是人或人源化抗体。
6.权利要求1的抗体,其中所述抗体是单链抗体。
7.权利要求1的抗体,其中所述抗体是二价的且包含两个掩蔽结构域,一个连接至每个第一轻链可变区的氨基末端。
8.权利要求1的抗体,其中所述抗体是二价的且包含两个掩蔽结构域,一个连接至每个第一重链可变区的氨基末端。
9.权利要求1的抗体,其中所述抗体是二价的且包含四个掩蔽结构域,一个连接至每个第一轻链可变区和每个第一重链可变区的氨基末端。
10.权利要求9的抗体,其中所述掩蔽结构域中的两个是第二轻链可变区,并且所述掩蔽结构域中的两个是第二重链可变区,其中所述第二轻链可变区和第二重链可变区形成第二可变结构域。
11.权利要求3或10的抗体,其中所述第二可变结构域与组织因子(TF)、红细胞或白蛋白结合。
12.权利要求1、7或8的抗体,其中所述掩蔽结构域是白蛋白结合肽或蛋白。
13.一种表达载体,其包含处于启动子的控制下的根据权利要求1-12的抗体的编码区。
14.一种细胞,其包含根据权利要求13的表达载体。
15.一种药物制剂,其包含用药学可接受的缓冲液、载体或稀释剂配制的根据权利要求1-12的抗体。
16.一种治疗对象中的凝血障碍的方法,其包括以有效促进所述对象中的凝血的量给所述对象施用包含下述的抗体:
(a)含有第一轻链可变区和第一重链可变区的第一可变结构域,所述第一可变结构域与组织因子途径抑制剂(TFPI)免疫学结合;
(b)与所述第一轻链可变区和/或第一重链可变区的氨基末端连接的掩蔽结构域;和
(c)介于所述第一轻链可变区和/或第一重链可变区和所述掩蔽结构域之间的蛋白酶可切割接头。
17.权利要求16的方法,其中所述蛋白酶可切割结构域是凝血酶、纤溶酶、因子VIIa或因子Xa切割位点。
18.权利要求16的方法,其中所述掩蔽结构域包含第二可变结构域,其包含第二轻链可变区和第二重链可变区。
19.权利要求16的方法,其中所述对象是人。
20.权利要求16的方法,其中所述对象是非人哺乳动物。
21.权利要求16的方法,其中所述抗体是单链抗体。
22.权利要求16的方法,其中所述抗体是二价的且包含两个掩蔽结构域,一个连接至每个第一轻链可变区的氨基末端。
23.权利要求16的方法,其中所述抗体是二价的且包含两个掩蔽结构域,一个连接至每个第一重链可变区的氨基末端。
24.权利要求16的方法,其中所述抗体是二价的且包含四个掩蔽结构域,一个连接至每个第一轻链可变区和每个第一重链可变区的氨基末端。
25.权利要求24的方法,其中所述掩蔽结构域中的两个是第二轻链可变区,并且所述掩蔽结构域中的两个是第二重链可变区,其中所述第二轻链可变区和第二重链可变区形成第二可变结构域。
26.权利要求18或25的方法,其中所述第二可变结构域与组织因子(TF)、红细胞或白蛋白结合。
27.权利要求16、22或23的方法,其中所述掩蔽结构域是白蛋白结合蛋白。
28.权利要求16的方法,其中所述对象患有创伤、血友病或癌症。
29.权利要求16的方法,其中所述对象患有血友病A或B。
30.权利要求16的方法,其中所述抗体全身施用。
31.权利要求16的方法,其中所述抗体局部或区域性施用于出血部位。
32.权利要求16的方法,其中所述抗体皮下、静脉内或动脉内施用。
33.权利要求16的抗体,其中所述抗体是IgG1、IgG2、IgG3、IgG4、IgM、IgA1、IgA2、分泌型IgA、IgD和IgE抗体。
34.权利要求16的方法,其中所述抗体是人或人源化抗体。
35.权利要求16的方法,其中所述抗体与人组织因子途径抑制剂的Kunitz结构域2结合。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361794024P | 2013-03-15 | 2013-03-15 | |
US61/794024 | 2013-03-15 | ||
PCT/US2014/029207 WO2014144689A1 (en) | 2013-03-15 | 2014-03-14 | Pro-drug antibodies against tissue factor pathway inhibitor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105209496A true CN105209496A (zh) | 2015-12-30 |
Family
ID=51537758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480027867.4A Withdrawn CN105209496A (zh) | 2013-03-15 | 2014-03-14 | 针对组织因子途径抑制剂的前体药物抗体 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20160009817A1 (zh) |
EP (1) | EP2970498A4 (zh) |
JP (1) | JP2016514687A (zh) |
CN (1) | CN105209496A (zh) |
AR (1) | AR095502A1 (zh) |
CA (1) | CA2906095A1 (zh) |
HK (1) | HK1215262A1 (zh) |
TW (1) | TW201522368A (zh) |
UY (1) | UY35459A (zh) |
WO (1) | WO2014144689A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110036034A (zh) * | 2016-12-09 | 2019-07-19 | 西雅图遗传学公司 | 卷曲螺旋掩蔽的二价抗体 |
CN112771081A (zh) * | 2018-09-21 | 2021-05-07 | 株式会社绿十字 | 高度有效抗tfpi抗体组合物 |
CN113354715A (zh) * | 2021-05-07 | 2021-09-07 | 暨南大学 | Egfr的改造的结合蛋白及其应用 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201203442D0 (en) | 2012-02-28 | 2012-04-11 | Univ Birmingham | Immunotherapeutic molecules and uses |
CA2913051C (en) | 2013-05-28 | 2023-09-05 | Dcb-Usa Llc | Antibody locker for the inactivation of protein drug |
JP6664467B2 (ja) | 2015-08-19 | 2020-03-13 | ファイザー・インク | 組織因子経路インヒビター抗体およびその使用 |
EP3377103B2 (en) | 2015-11-19 | 2025-03-12 | Revitope Limited | Functional antibody fragment complementation for a two-components system for redirected killing of unwanted cells |
US11623958B2 (en) | 2016-05-20 | 2023-04-11 | Harpoon Therapeutics, Inc. | Single chain variable fragment CD3 binding proteins |
CN119060177A (zh) | 2016-05-20 | 2024-12-03 | 哈普恩治疗公司 | 单结构域血清白蛋白结合蛋白质 |
US11535668B2 (en) | 2017-02-28 | 2022-12-27 | Harpoon Therapeutics, Inc. | Inducible monovalent antigen binding protein |
EP3619234A4 (en) * | 2017-05-03 | 2021-05-26 | Harpoon Therapeutics, Inc. | Compositions and methods for adoptive cell therapies |
WO2018209298A1 (en) | 2017-05-12 | 2018-11-15 | Harpoon Therapeutics, Inc. | Mesothelin binding proteins |
US11623965B2 (en) | 2017-08-16 | 2023-04-11 | Bristol-Myers Squibb Company | Prodruggable antibodies, prodrugs thereof, and methods of use and making |
IL315737A (en) | 2017-10-13 | 2024-11-01 | Harpoon Therapeutics Inc | B-cell maturation antigen-binding proteins |
WO2019222282A1 (en) * | 2018-05-14 | 2019-11-21 | Harpoon Therapeutics, Inc. | Conditionally activated binding protein comprising a sterically occluded target binding domain |
WO2020061482A1 (en) | 2018-09-21 | 2020-03-26 | Harpoon Therapeutics, Inc. | Egfr binding proteins and methods of use |
CN113286817B (zh) | 2018-09-25 | 2025-01-28 | 哈普恩治疗公司 | Dll3结合蛋白及使用方法 |
US20220251206A1 (en) | 2019-06-11 | 2022-08-11 | Bristol-Myers Squibb Company | Anti-ctla4 antibody prodruggable (probody) at a cdr position |
JP2023527609A (ja) | 2020-02-21 | 2023-06-30 | ハープーン セラピューティクス,インク. | Flt3結合タンパク質および使用方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5902582A (en) * | 1995-09-05 | 1999-05-11 | Chiron Corporation | Use of TFPI inhibitor for treatment of cancer |
CN101031588A (zh) * | 2004-06-01 | 2007-09-05 | 多曼蒂斯有限公司 | 药物组合物,融合物和结合物 |
US20110229476A1 (en) * | 2007-08-15 | 2011-09-22 | Bayer Schering Pharma Aktiengesellschaft | Monospecific and multispecific antibodies and method of use |
CN102325795A (zh) * | 2008-12-22 | 2012-01-18 | 诺沃—诺迪斯克有限公司 | 针对组织因子途径抑制剂的抗体 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7015194B2 (en) * | 2000-05-10 | 2006-03-21 | Novo Nordisk A/S | Pharmaceutical composition comprising factor VIIa and anti-TFPI |
JP2008506389A (ja) * | 2004-07-13 | 2008-03-06 | セル ジェネシス インコーポレイテッド | Aavベクター組成物および免疫グロブリンの発現の増強のための方法ならびにその使用方法 |
US20060252096A1 (en) * | 2005-04-26 | 2006-11-09 | Glycofi, Inc. | Single chain antibody with cleavable linker |
JP6035009B2 (ja) * | 2007-08-22 | 2016-11-30 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 活性化可能な結合ポリペプチドおよびその同定方法ならびに使用 |
JP5851842B2 (ja) * | 2009-01-12 | 2016-02-03 | サイトムエックス セラピューティクス, インク.CytomX Therapeutics, Inc. | 改変した抗体組成物、それを作製および使用する方法 |
WO2011069104A2 (en) * | 2009-12-04 | 2011-06-09 | Genentech, Inc. | Multispecific antibodies, antibody analogs, compositions, and methods |
CN102770454A (zh) * | 2010-02-19 | 2012-11-07 | 诺沃—诺迪斯克有限公司 | 可活化构建体 |
MY174760A (en) * | 2010-03-01 | 2020-05-13 | Bayer Healthcare Llc | Optimized monoclonal antibodies against tissue factor pathway inhibitor (tfpi) |
BR112012023559A2 (pt) * | 2010-03-19 | 2017-10-17 | Baxter Healthcare Sa | inibidores tfpi e métodos de uso |
EP2588499B1 (en) * | 2010-06-30 | 2020-04-08 | Novo Nordisk A/S | Antibodies that are capable of specifically binding tissue factor pathway inhibitor |
-
2014
- 2014-03-14 JP JP2016503014A patent/JP2016514687A/ja active Pending
- 2014-03-14 EP EP14765680.5A patent/EP2970498A4/en not_active Withdrawn
- 2014-03-14 CN CN201480027867.4A patent/CN105209496A/zh not_active Withdrawn
- 2014-03-14 US US14/772,373 patent/US20160009817A1/en not_active Abandoned
- 2014-03-14 CA CA2906095A patent/CA2906095A1/en not_active Abandoned
- 2014-03-14 TW TW103109453A patent/TW201522368A/zh unknown
- 2014-03-14 WO PCT/US2014/029207 patent/WO2014144689A1/en active Application Filing
- 2014-03-14 UY UY0001035459A patent/UY35459A/es not_active Application Discontinuation
- 2014-03-14 AR ARP140101107A patent/AR095502A1/es unknown
-
2016
- 2016-03-17 HK HK16103102.1A patent/HK1215262A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5902582A (en) * | 1995-09-05 | 1999-05-11 | Chiron Corporation | Use of TFPI inhibitor for treatment of cancer |
CN101031588A (zh) * | 2004-06-01 | 2007-09-05 | 多曼蒂斯有限公司 | 药物组合物,融合物和结合物 |
US20110229476A1 (en) * | 2007-08-15 | 2011-09-22 | Bayer Schering Pharma Aktiengesellschaft | Monospecific and multispecific antibodies and method of use |
CN102325795A (zh) * | 2008-12-22 | 2012-01-18 | 诺沃—诺迪斯克有限公司 | 针对组织因子途径抑制剂的抗体 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110036034A (zh) * | 2016-12-09 | 2019-07-19 | 西雅图遗传学公司 | 卷曲螺旋掩蔽的二价抗体 |
CN112771081A (zh) * | 2018-09-21 | 2021-05-07 | 株式会社绿十字 | 高度有效抗tfpi抗体组合物 |
CN113354715A (zh) * | 2021-05-07 | 2021-09-07 | 暨南大学 | Egfr的改造的结合蛋白及其应用 |
CN113354715B (zh) * | 2021-05-07 | 2023-03-17 | 暨南大学 | Egfr的改造的结合蛋白及其应用 |
Also Published As
Publication number | Publication date |
---|---|
HK1215262A1 (zh) | 2016-08-19 |
US20160009817A1 (en) | 2016-01-14 |
CA2906095A1 (en) | 2014-09-18 |
JP2016514687A (ja) | 2016-05-23 |
EP2970498A4 (en) | 2016-11-23 |
EP2970498A1 (en) | 2016-01-20 |
TW201522368A (zh) | 2015-06-16 |
WO2014144689A1 (en) | 2014-09-18 |
AR095502A1 (es) | 2015-10-21 |
UY35459A (es) | 2014-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105209496A (zh) | 针对组织因子途径抑制剂的前体药物抗体 | |
AU2009279804C1 (en) | Monoclonal antibodies against tissue factor pathway inhibitor (TFPI) | |
CN103797030B (zh) | 针对组织因子途径抑制物(tfpi)的单克隆抗体 | |
USRE47150E1 (en) | Optimized monoclonal antibodies against tissue factor pathway inhibitor (TFPI) | |
MX2015006424A (es) | Anticuerpos monoclonales contra una proteina activada c (apc). | |
AU2021440154B2 (en) | Monoclonal antibody against human activated protein C and preparation and use thereof | |
AU2018271420B2 (en) | Optimized monoclonal antibodies against tissue factor pathway inhibitor (TFPI) | |
JP2018038398A (ja) | 組織因子経路インヒビター(tfpi)に対するモノクローナル抗体 | |
JP6419664B2 (ja) | 組織因子経路インヒビター(tfpi)に対するモノクローナル抗体 | |
JP6559188B2 (ja) | 組織因子経路インヒビター(tfpi)に対するモノクローナル抗体 | |
AU2013202752B2 (en) | Monoclonal antibodies against tissue factor pathway inhibitor (TFPI) | |
WO2023241389A1 (zh) | 针对tfpi的单克隆抗体及其用途 | |
CN117545782A (zh) | 针对XIa因子抑制剂的抗体和抗原结合肽及其用途 | |
JP2018108089A (ja) | 組織因子経路インヒビター(tfpi)に対するモノクローナル抗体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1215262 Country of ref document: HK |
|
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20151230 |
|
WW01 | Invention patent application withdrawn after publication | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1215262 Country of ref document: HK |