CN105144345B - 与赝配电子和光电器件的平面接触 - Google Patents
与赝配电子和光电器件的平面接触 Download PDFInfo
- Publication number
- CN105144345B CN105144345B CN201480015040.1A CN201480015040A CN105144345B CN 105144345 B CN105144345 B CN 105144345B CN 201480015040 A CN201480015040 A CN 201480015040A CN 105144345 B CN105144345 B CN 105144345B
- Authority
- CN
- China
- Prior art keywords
- layer
- light emitting
- emitting device
- gaw
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/82—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
- H10H20/8252—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN characterised by the dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/835—Reflective materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/855—Optical field-shaping means, e.g. lenses
- H10H20/856—Reflecting means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/032—Manufacture or treatment of electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/034—Manufacture or treatment of coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
- H10H20/0363—Manufacture or treatment of packages of optical field-shaping means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8316—Multi-layer electrodes comprising at least one discontinuous layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/833—Transparent materials
Landscapes
- Led Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
在多个实施例中,发光器件包含光滑的接触层和极化掺杂(即,大体没有掺杂杂质的底层),并且呈现了高光子提取效率。
Description
相关申请
本申请要求在2013年3月15日提交的申请号为61/788141的美国临时专利申请的权益和优先权,由此通过引用将该美国临时专利申请的全部公开内容包含于本文中。
政府支持
本发明是根据与美国军队的合同W911NF-09-2-0068在美国政府的支持下做出的。美国政府对该发明拥有一定的权利。
技术领域
在多个实施例中,本发明涉及提高载流子注入高铝含量电子和光电器件的效率(例如,空穴注入效率)。本发明的实施例还涉及改进在氮化物基衬底上制备的紫外光电器件,特别是增加从其提取的光。
背景技术
由于有源区域中的高缺陷能级,基于氮化物半导体系统的短波长紫外发光二极管(UV LED)(即,发射波长小于350nm的光的LED)的输出功率、效率和使用寿命仍然有限。在被设计为发射波长小于280nm的光的器件中,这些限制特别成问题(和值得注意)。特别是器件是形成在异质衬底(如蓝宝石)上的情况下,纵使做出极大努力来降低缺陷密度,但缺陷密度仍然很高。这些高缺陷密度限制了在这种衬底上生长的器件的效率和可靠性。
近期推出的低缺陷晶体氮化铝(AlN)衬底具有显著改进氮化物基光电半导体器件(特别是具有高铝浓度的那些器件)的潜力,这得益于这些器件的有源区域中具有较低缺陷。例如,在AlN衬底上赝配(pseudomorphically)生长的UV LED已被证实具有比在其他衬底上形成的类似器件更高的效率、更高的功率和更长的寿命。通常,这些赝配UV LED被安装来用于以“倒装芯片”配置进行封装,在该配置下,在器件的有源区域中产生的光通过AlN衬底被发射,而LED裸片具有其结合至图案化基板的前表面(即,在结合之前的外延生长和初始器件制备期间的器件的上表面),该图案化基板用于建立与LED芯片的电和热接触。一种好的基板材料是多晶(陶瓷)AlN,原因在于与AlN芯片相匹配的相对良好的热膨胀和这种材料的高导热性。由于可在该器件的有源器件区域中实现的高结晶完整性,内部效率已被证实高于60%。
可惜的是,在这些器件中光子提取效率通常仍是很差(通过使用表面图案化技术达到从约4%到约15%的范围),远低于由许多可见光(或“可见”)LED所呈现的光提取效率。因此,当前这代短波长UV LED最多具有仅几个百分点的低的电光转换效率(wall plugefficiencies)(WPE),其中,WPE被定义为从二极管获得的可用光功率(在这种情况下是发射的UV光)与供应至器件内的电功率的比率。可通过取电效率(ηel)、光子提取效率(ηex)和内部效率(IE)的乘积来计算LED的WPE,即WPE=ηel xηex x IE。IE本身是电流注入效率(ηinj)和内部量子效率(IQE)的乘积,即IE=ηinj x IQE。因此,低ηex会有害地影响WPE,即使是在通过(例如使用上文引用的AlN衬底作为器件平台来实现)降低内部晶体缺陷提高了IE之后。
存在数种可能导致低光子提取效率的促成因素。例如,当前可用的AlN衬底通常对在UV波长范围内,甚至对比AlN中的带边(约210nm)更长的波长,有一些吸收。这种吸收趋于导致在器件的有源区域中产生的一些UV光在衬底中被吸收,因此减少了从衬底表面发射的光的量。然而,可以如在美国专利No.8080833(“’833专利”,该专利的全部公开内容通过引用被包含于此)中描述的那样通过减薄AlN和/或如在美国专利No.8012257(该专利的全部公开内容通过引用被包含于此)中描述的那样通过减少AlN衬底中的吸收,来缓解这种损耗机制。此外,UV LED通常受损耗,由于产生的光子中约50%朝向p型接触件,p型接触件通常包括光子吸收p型GaN。即使在光子朝向AlN表面时,通常也仅有约9.4%从未处理的表面逸出,这归因于AlN的大的折射率,该大的折射率导致小的逃逸锥(escape cone)。这些损耗是倍增的,并且平均光子提取效率可能相当低。
如由Grandusky等人在近期的出版物(James R.Grandusky等,2013应用物理快报,卷6,编号3032101,后文称作“Grandusky 2013”,其全部公开内容通过引用被包含于此)中证实的,通过将无机(且通常为刚性的)透镜经由薄的密封剂层(例如,有机的抗UV密封剂化合物)直接附接至LED裸片,有可能在生长于AlN衬底上的赝配UV LED中将光子提取效率提高至约15%。在2012年7月19日提交的序列号为13/553093的美国专利申请(“’093申请”,该申请的全部公开内容通过引用被包含于此)中也详细描述了这种封装方法,这种封装方法增大了通过半导体裸片的上表面的全内反射的临界角,其显著提高了UV LED的光子提取效率。此外,并且如上文提到的,可如’833专利中论述的那样,通过减薄AlN衬底以及通过粗化AlN衬底表面的表面来提高光子提取效率。
可惜的是,这些努力都不能解决由于p型GaN中的吸收导致的大量光子损耗,该p型GaN用于与这些器件的p型接触。在由Grandusky 2013描述的赝配UV类型的器件中,p型GaN用于建立与LED的p型接触,因为p型GaN允许建立与器件的p侧的相对低的阻抗接触。然而,GaN的带隙能量仅为3.4eV,且因此其高度吸引波长小于365nm的光子。因为所产生的光子中通常有50%朝向p型接触件,从而由于p型GaN中的吸收,这些光子通常立刻消失。此外,即使直接朝向二极管的发射表面的光子通常也仅有一次机会逸出,因为如果它们被反射回二极管中,它们将很可能被p型GaN吸收。p型GaN是常被使用的,因为建立与p型AlxGa1-xN(其中,x大于0.3)的低电阻率接触非常困难。此外,允许与p型氮化物半导体材料的低电阻率接触的金属通常是差的反射体。当LED的期望波长小于340nm时这种反射性问题尤为严重,因为大部分常见金属在该状况下会开始强烈吸收。
此外,以前的工作已建议使用厚p型GaN层(或者x<0.2的p型AlxGa1-xN层),以使得空穴电流从p型金属接触件并且在p型金属接触件的下方充分扩散。该方法通常不会作用于发射波长短于300nm的光的器件,这归因于p型GaN或p型AlxGa1-xN材料对于这些较短波长的高吸收。
可选地,可以通过在LED的p侧使用不吸收的p型半导体以及使用反射UV光子的p接触冶金,来弥补上面提到的缺点。然而,传统方法不适用于赝配UV LED,因为这些方法使用多个薄p型AlxGa1-xN层,其中该p型AlxGa1-xN层足够薄以致对波长短于300nm的UV辐射来说是光学透明的。这种类型的多层结构难以在赝配器件结构(其中底层衬底为AlN或x>0.6的AlxGa1-xN)上生长,因为(由于晶格失配导致的)大量的应变通常使薄GaN(或低铝含量的AlxGa1-xN)孤立并且变得非常粗糙。在论文Grandusky 2013中,通过将p型GaN层制造得相当厚来解决接触粗化;然而,如上文详细描述的,该层吸收UV光子并且降低了UV LED器件的效率。
因此,鉴于上文,需要改进UV LED(特别是在AlN衬底上生产的那些UV LED)的接触冶金和性能,以改进该器件的特性,如WPE。
发明内容
在本发明的多个实施例中,在生长于单晶AlN衬底或单晶AlxGa1-xN衬底(其中x>0.6)上的电子或光电器件的有源区域(例如,赝配有源区域)上制造光滑的p型GaN层(或者p型AlxGa1-xN层,其中x<0.3)。该光滑的p型GaN或p型AlxGa1-xN层(其中x<0.3)将在下文中被缩写为SPG层。该SPG层对于改进使用p型接触件的任何赝配电子或光电器件的制备来说是非常理想的,因为其最小化或者大体消除了难以均匀刻蚀和金属化的粗糙表面。在本发明的多个实施例中,SPG层还可以被制造得足够薄,从而对波长短于340nm的UV辐射透明。该薄的UV透明的SPG层可以与接触该SPG层的反射金属接触件组合,并且随后这种双层结构可用于将空穴有效地注入UV光电器件,以及从p型接触件反射UV光子。在本发明的多个实施例中,该薄的UV透明的SPG层在与适当设计的UV反射接触件组合时,将允许在光子提取效率大于25%的AlN衬底(或AlxGa1-xN衬底,x>0.6)上制备赝配UV LED。赝配UV LED上的薄SPG层可与反射体金属接触件组合,以在波长短于275nm、电流密度超过30A/cm-2时实现大于10%的WPE。
在本发明另一实施例中,能够建立与SPG层的低电阻率接触的第一金属层布置于SPG层上并且被图案化。接着,在第一金属层中产生的间隙可通过第二金属层的沉积被填充,该第二金属层是高效的UV光子反射体。通过这种方式,双金属结构提供了低接触电阻和高反射率的双重优势,这两种优势提高了UV LED的性能。
在一个示例性的实施例中,Al可以被用作反射体金属,因为其对于波长为约265nm的光具有>90%的反射率。然而,对于建立与p型GaN或p型AlxGa1-xN的低电阻率接触来说,Al很不理想,这归因于它的低功函数(4.26eV)。低电阻率接触金属的区域解决了Al/氮化物接触面的高电阻率;然而,为了防止UV光子被接触金属吸收,本发明的优选实施例仅使用在接触金属和底层半导体之间的有限接触面积,而不是大体覆盖了半导体整个表面的接触金属-半导体接触面积。例如,在一些实施例中,(i)多于约10%的半导体表面被接触金属覆盖,但(ii)少于约70%、少于约60%、少于约50%或者甚至少于40%的半导体表面被接触金属覆盖,而半导体表面的剩余部分被反射体金属覆盖,从而最小化对UV光的有害吸收。
在一个方面,本发明的实施例描述了一种形成与UV发光器件的接触的方法。提供具有AlyGa1-yN上表面的衬底,其中y≥0.4(且≤1.0)。衬底可以大体上全部由AlyGa1-yN材料(例如AlN)组成,或者衬底可以包括不同的材料(例如,碳化硅、硅和/或蓝宝石)或基本上由不同的材料组成,通过例如外延生长在其上形成AlyGa1-yN材料;该材料可以大体上完全晶格弛豫并且可具有例如至少1μm的厚度。有源发光器件结构形成于该衬底上,该器件结构包括多个层或者基本上由多个层组成,每个层包括AlxGa1-xN或基本上由其组成。无掺杂的分级Al1-zGazN层形成于器件结构上,该分级层的组成以Ga浓度z分级,使得Ga浓度z在离开发光器件结构的方向上增加。(例如,Ga浓度z可从接近器件结构的约0.15的成分增加至分级层顶部的约为1的成分)。p型掺杂Al1-wGawN覆盖层形成于分级层上,该覆盖层(i)具有在约2nm和约30nm之间的厚度,(ii)对于样本大小为约200μm x 300μm表面粗糙度小于约6nm,以及(iii)Ga浓度w≥0.8。包括至少一种金属的金属接触件形成于Al1-wGawN覆盖层上,该金属接触件对Al1-wGawN覆盖层具有小于约1.0mΩ-cm2的接触电阻率。
本发明的实施例可包括对下列特征的的一个或多个采用各种组合。形成Al1-wGawN覆盖层可包括以850℃和900℃之间的温度和小于50Torr(例如,在约10Torr和约30Torr之间,如20Torr)的生长压力的外延生长,或者基本上由其组成。Al1-wGawN覆盖层可以掺杂有Mg和/或可以至少部分弛豫。发光器件可具有大于25%的光子提取效率。分级层和Al1-wGawN覆盖层可共同吸收小于80%的UV光子,该UV光子由发光器件结构产生并且具有小于340nm的波长。金属接触件中的至少一种金属可包括Ni/Au和/或Pd,或者基本上由其组成。金属接触件对于由发光器件结构产生的光可具有约60%或更少的反射率,或者甚至约30%或更少的反射率。金属接触件可被形成为至少一种金属的多个离散的线和/或像素,Al1-wGawN覆盖层的部分未被该金属接触件覆盖。反射体可形成于金属接触件和Al1-wGawN覆盖层的未覆盖部分上。反射体可包括对于UV光具有大于60%(或者甚至大于90%)的反射率以及具有小于约4.5eV的功函数的金属,或者基本上由其组成。反射体对Al1-wGawN覆盖层可具有大于约5mΩ-cm2(或者甚至大于约10mΩ-cm2)的接触电阻率。反射体可包括Al或基本上由其组成。
发光器件可包括发光二极管或激光器,或者基本上由其组成。接近有源器件结构的分级层的底部可具有与直接在分级层之下的层的Ga浓度大体相等的Ga浓度z,和/或与分级层的底部相对的分级层的顶部可具有约为1的Ga浓度z。形成Al1-wGawN覆盖层可包括以0.5nm/min和5nm/min之间的生长速率的外延生长,或者基本上由其组成。在形成分级层和形成Al1-wGawN覆盖层之间,分级层的表面可被暴露给覆盖层的p型掺杂物的前躯体,而不暴露给Ga前躯体。覆盖层的p型掺杂可包括Mg或基本上由Mg组成。衬底可以基本上由掺杂或无掺杂的AlN组成。
在另一个方面,本发明的实施例描述了一种UV发光器件,包括如下部件或基本上由如下部件组成:具有AlyGa1-yN上表面的衬底,其中y≥0.4(且≤1.0);在衬底上布置的发光器件结构,该器件结构包括多个层或基本上由多个层组成,每层包括AlxGa1-xN或基本上由AlxGa1-xN组成;在器件结构上布置的无掺杂分级Al1-zGazN层,该分级层的成分以Ga浓度z分级,使得该Ga浓度z在离开发光器件结构的方向上增加;在分级层上布置的p型掺杂Al1- wGawN覆盖层,该p型掺杂Al1-wGawN覆盖层(i)具有在约2nm和约30nm之间的厚度,(ii)对于样本大小为约200μm x 300μm表面粗糙度小于约6nm,以及(iii)Ga浓度w≥0.8;以及,在Al1- wGawN覆盖层上布置的、并且包括至少一种金属或基本上由至少一种金属组成的金属接触件,该金属接触件对Al1-wGawN覆盖层具有小于约1.0mΩ-cm2的接触电阻率。衬底可以大体上全部由AlyGa1-yN材料(例如AlN)组成,或者衬底可以包括不同的材料(例如,碳化硅、硅和/或蓝宝石)或基本上由不同的材料组成,通过例如外延生长在其上形成AlyGa1-yN材料;该材料可以大体上完全晶格弛豫并且可具有例如至少1μm的厚度。
本发明的实施例可包括对下列特征的的一个或多个采用各种组合。Al1-wGawN覆盖层可掺杂有Mg,和/或可至少部分弛豫。发光器件可具有大于25%的光子提取效率。分级层和Al1-wGawN覆盖层可共同吸收小于80%的UV光子,该UV光子由发光器件结构产生并且具有小于340nm的波长。金属接触件中的至少一种金属可包括Ni/Au和/或Pd,或者基本上由Ni/Au和/或Pd组成。金属接触件对于由发光器件结构产生的光可具有约60%或更少的反射率,或者甚至约30%或更少的反射率。
金属接触件可具有至少一种金属的多个离散的线和/或像素的形式,Al1-wGawN覆盖层的部分未被该金属接触件覆盖。反射体可被布置在金属接触件和Al1-wGawN覆盖层的未覆盖部分上。反射体可包括对于UV光具有大于60%(或者甚至大于90%)的反射率以及具有小于约4.5eV的功函数的金属,或者基本上由其组成。反射体对Al1-wGawN覆盖层可具有大于约5mΩ-cm2(或者甚至大于约10mΩ-cm2)的接触电阻率。反射体可包括Al或基本上由Al组成。发光器件可包括发光二极管或激光器,或者基本上由其组成。接近有源器件结构的分级层的底部可具有与直接在分级层之下的层的Ga浓度大体相等的Ga浓度z,和/或与分级层的底部相对的分级层的顶部可具有约为1的Ga浓度z。衬底可基本上由掺杂或无掺杂的AlN组成。
通过引用下面的说明书、附图和权利要求,本文公开的这些和其他目的以及本发明的优点和特征将变得更显而易见。此外,应理解本文描述的各个实施例的特征不是互相排斥的,并且可以存在于各种组合和排列中。如本文中使用的,术语“大体”意味着±10%,并且在一些实施例中意味着±5%。术语“基本上由…组成”意味着不包括对作用有影响的其他材料,除非本文中另行规定。然而,微量的这些其他材料可共同或独立地存在。
附图说明
附图中,同样的附图标记通常指所有不同视图中的相同部分。另外,附图不一定是按比例绘制的,而是重点通常放在示出本发明的原理。在下文的描述中,参考下列附图描述了本发明的各个实施例,其中:
图1是LED器件的传统接触层的光学轮廓术表面粗糙度扫描图;
图2是根据本发明各个实施例的发光器件的接触层的光学轮廓术表面粗糙度扫描图;
图3A和3B是根据本发明各个实施例的发光器件的截面示意图;
图4A是根据本发明各个实施例的发光器件的覆盖层(capping layer)的原子力显微镜扫描图;
图4B是发光器件的传统覆盖层的原子力显微镜扫描图;以及
图5是根据本发明各个实施例的发光器件的部分的截面示意图。
具体实施方式
本发明的实施例包括在衬底上的赝配AlxGa1-xN电子和发光器件,其具有AlyGa1-yN顶表面,其中y≥0.4(并且≤1.0)。衬底可以大体上全部由AlyGa1-yN材料(例如AlN)组成,或者衬底可以包括不同的材料(例如,碳化硅、硅和/或蓝宝石)或基本上由不同的材料组成,通过例如外延生长在其上形成有AlyGa1-yN材料;该材料可以大体上完全晶格弛豫,并且可以具有例如至少1μm的厚度。(尽管根据本发明的优选实施例的发光器件被配置为发射UV光,但衬底不必对UV辐射透明(例如,硅),因为在器件制备期间衬底可能被部分地或者大体地去除)。根据本发明的实施例的器件还具有光滑的薄p型GaN或p型AlxGa1-xN接触层,即接触层具有小于约6nm或甚至小于约1nm的均方根(Rq)表面粗糙度。粗糙度可以用基于约200μm x 300μm(例如233μm x 306.5μm)的样本大小的光学轮廓术来表征。图1描述了Rq值约为33nm的传统粗糙接触层表面的轮廓术扫描图。与之相比,图2描述了Rq值仅仅约6nm的根据本发明实施例的光滑接触表面。
在本发明的优选实施例中,器件的有源区域中的穿透位错密度(TDD)小于105cm-2。此外,在优选实施例中,薄p型GaN或p型AlxGa1-xN(SPG)的最终层会足够薄,以允许以最小限度的吸收(即,单次通过的吸收不大于80%、不大于50%或者甚至不大于40%)来传输波长短于340nm的光。通过降低SPG层的厚度或者通过增加Al在给定厚度的SPG层中的浓度,波长短于340nm的UV吸收可被降低至50%、降低至25%、降低至10%,或者甚至降低至5%或更少。例如,对于被设计为以265nm操作的UV LED来说,在p型GaN层中该辐射的吸收系数将为约1.8x l05cm-1。表1示出了具有多种Al含量x和厚度的AlxGa1-xN层针对多种发射波长的多种厚度-吸收关系。在表1中,对于含40%的Al的层,仅示出发射波长不超过265nm的吸收值,因为对于更大的波长来说该层变得大体透明。
表1
为了提高光子提取效率且使得光子的提取直接朝向p型材料,可将UV反射体引入器件结构,以反射传输的光子并将它们引向AlN衬底,使得它们可从器件提取出。在可见LED中,这常通过使用银P型接触件来实现,因为银形成与可见LED结构的欧姆接触并且反射可见光子。此外,对于正在量子阱中产生的光子来说,形成可见LED的层通常是透明的。然而,银的反射率在UV范围内急速下降。除了Al之外的大部分其他常见金属的反射率也随着波长降低至UV范围内而下降,可惜的是铝不能形成与p型GaN或AlxGa1-xN的良好的欧姆接触。
因此,为了在仍然实现良好的欧姆接触时反射光子,可在接触层上形成(至少对于UV光子)几乎不反射的接触冶金(例如,Ni/Au或Pd),但该接触冶金被图案化以减少接触件在半导体上的表面“印迹”。以这种方式,器件层上不反射UV光子的表面面积被最小化,但仍然实现了与半导体的良好欧姆接触。为了反射UV光子中的至少一部分,可在半导体上的非反射接触区域之间直接提供诸如Al的反射金属。该反射金属建立与非反射金属的欧姆接触,在使用由非反射金属形成的优良金属-半导体接触件时,实现了与LED的电接触。
在该实施例中,SPG层可包括p型GaN或其中x<0.3的p型AlxGa1-xN层,或者基本上由其组成。通常,当Ga含量降低时可以使用较厚的SPG层,因为在SPG层和底层AlN衬底之间的晶格失配应变(可粗化SPG层)降低了。然而,SPG层的Ga含量最好保持在70%或高于70%,以实现高掺杂、低电阻率的层。
对于掺杂有Mg的p型AlxGa1-xN层来说,随着Al摩尔分数(x)的增加,Mg杂质的激活能也增加。这导致Mg的较低激活,从而随着Al摩尔分数的增加引起较低的空穴浓度。对这一问题的一种解决方式是使用极化诱导的掺杂,这可以通过在沉积AlxGa1-xN层时从高x到较低x对该层进行分级来实现。这可以用于实现远高于通过传统杂质掺杂可实现的空穴浓度。此外,这一技术由于没有杂质散射而可以提高载流子迁移率,并且降低空穴浓度的温度依赖性。在没有杂质掺杂时,或者除了杂质掺杂之外,可以实现高空穴浓度。本发明的优选实施例描述了赝配分级层中的低位错密度,这实现了在没有杂质掺杂时的高空穴浓度,从而允许更高的导电性以及增强的从薄的透明层扩散的电流。这些高空穴浓度使得实现具有低电阻率的p型接触件成为可能。特别地,可根据本发明的实施例实现小于10mΩ-cm2的电阻率。在优选实施例中,在UV LED中实现和使用了小于5mΩ-cm2的电阻率。对于电阻率为10mΩ-cm2的接触件来说,器件可以在接触金属与反射体金属(如上文详述的)的比例为1:3时以30A/cm2操作,并且以器件面积为0.0033cm2在p型接触件上实现小于1.2V的电压降。通过用良好的反射体金属覆盖75%的p型接触件面积以及使用吸收小于80%的SPG层,在UV LED中实现大于25%的光子提取效率是可能的,特别是在结合了上文描述的高效光子提取技术时。当将大于25%的高光子提取效率与上文描述的低电阻率接触件组合时,本发明的实施例以超过30A/cm2的操作电流密度呈现了大于10%的电光转换效率。
图3A示出了根据本发明实施例的赝配UV发光二极管(“PUVLED”)结构300。提供了半导体衬底305,其包括例如具有AlyGa1-yN顶表面的衬底或者基本上由其组成,其中y≥0.4(且≤1.0)。衬底可以大体上全部由AlyGa1-yN材料(例如AlN)组成,或者该衬底可以包括不同的材料(例如,碳化硅、硅和/或蓝宝石)或基本上由不同的材料组成,通过例如外延生长在其上形成有AlyGa1-yN材料;该材料可以大体上完全晶格弛豫,并且可以具有例如至少1μm的厚度。如上文提到的,衬底305不必对UV辐射透明(例如硅),因为在器件制备期间衬底305可能被部分地或者大体去除。半导体衬底305可被斜切,以使得其c轴和其表面法线之间的角在约0°和约4°之间。在优选实施例中,例如对于没有被故意地或可控制地斜切的半导体衬底305来说,该半导体衬底305的表面的取向误差(misorientation)小于约0.3°。在其他的实施例中,例如对于被故意地和可控制地斜切的半导体衬底305来说,该半导体衬底305的表面的取向误差大于约0.3°。在优选实施例中,斜切的方向朝向a轴。半导体衬底305的表面可具有III族(例如,Al-)极性或N极性,并且可以例如通过化学-机械抛光变得平面化。对于10μm x 10μm的面积来说,半导体衬底的RMS表面粗糙度最好小于约0.5nm。在一些实施例中,当用原子力显微镜探测时,可在表面上检测原子级步骤。可以在采用450℃的KOH-NaOH共晶刻蚀5分钟之后,使用例如蚀坑密度测量法来测量半导体衬底305的穿透位错密度。穿透位错密度最好小于约2x 103cm-2。在一些实施例中,衬底305具有甚至更低的穿透位错密度。半导体衬底305顶部上可具有同质外延层(未示出),该同质外延层包括存在于半导体衬底300中的相同的半导体材料(如AlN)或基本上由其组成。
在一个实施例中,可选的分级缓冲层310形成于半导体衬底305上。分级缓冲层310可包括一种或多种半导体材料(如AlxGa1-xN)或由基本上由其组成。在优选实施例中,分级缓冲层310的组成与半导体衬底305在与该层交界处的组成近似相等,以便促成二维生长并且避免有害的岛效应(islanding)(该孤岛效应可在分级缓冲层310和随后生长的层中导致非期望的弹性应变消除和/或表面粗化)。分级缓冲层310在与(下文描述的)随后生长的层交界处的组成通常被选择为接近于(例如,近似等于)器件的期望有源区域的组成(例如,会导致从PUVLED发射期望波长的AlxGa1-xN浓度)。在一个实施例中,分级缓冲层310包括从约100%的Al浓度x到约60%的Al浓度x分级的AlxGa1-xN。
底部接触层320随后形成于衬底305和可选的分级层310之上,并且可以包括掺杂有至少一种杂质(例如Si)的AlxGa1-xN或者基本上由其组成。在一个实施例中,底部接触层320中的Al浓度x近似等于分级层310中的最终Al浓度x(即,近似等于(下文描述的)器件的期望有源区域的Al浓度)。底部接触层320的厚度足以在器件制备(如下文所述)后防止电流聚集和/或在刻蚀期间停留其上以制备接触件。例如,底部接触层320的厚度可以小于约200nm。在使用该厚度的底部接触层320时,可以用后侧接触件来制备最终的PUVLED。在许多实施例中,当层被赝配时,底部接触层320(即使厚度小)将具有高导电性,这归因于所保持的低缺陷密度。如本文所使用的,赝配薄膜是这样一种薄膜:其中平行于界面的应变与将薄膜中的晶格扭曲到与衬底的晶格相匹配所需的应变近似。因此,赝配薄膜中的平行应变将几乎或近似等于在平行于界面的未应变衬底与平行于界面的未应变外延层之间的晶格参数的差异。
多量子阱(“MQW”)层330制备在底部接触层320之上。MQW层330与PUVLED结构300的“有源区域”相对应并且包括多个量子阱,每个量子阱可以包括AlGaN或基本上由AlGaN组成。在一个实施例中,MQW层330的每个段(period)包括AlxGa1-xN量子阱和AlyGa1-yN阻挡,其中x与y不同。在优选实施例中,x和y之间的差量大到足以在有源区域中获得良好的电子和空穴约束,因此实现了高的辐射复合与非辐射复合的比例。在一个实施例中,x和y之间的差量为约0.05,例如x为约0.35且y为约0.4。然而,如果x和y之间的差量太大,例如大于约0.3,则在形成MQW层330的期间可能出现有害的岛效应。MQW层330可包括多个这样的段,并且可具有小于约50nm的总厚度。在MQW层330之上可形成可选的薄电子阻挡(或者,如果n型接触件置于器件的顶部之上,则为空穴阻挡)层340,其包括例如AlxGa1-xN或基本上由AlxGa1-xN组成,该AlxGa1-xN可以掺杂有一种或多种杂质,例如Mg。电子阻挡层340具有可以在例如约10nm和约50nm范围内的厚度。顶部接触层350形成于电子阻挡层340之上,并且包括一种或多种半导体材料(例如AlxGa1-xN)或者基本上由其组成,该半导体材料掺杂有至少一种杂质,例如Mg。顶部接触层350被n型掺杂或者p型掺杂,但具有与底部接触层310相反的导电性。顶部接触层350的厚度例如在约50nm和约100nm之间。顶部接触层350被覆盖层360所覆盖,该覆盖层360包括一种或多种半导体材料或者基本上由其组成,该半导体材料掺杂有与顶部接触层350相同的导电性。在一个实施例中,覆盖层360包括掺杂有Mg的GaN,并且具有在约10nm和约200nm之间的厚度,优选为约50nm。在一些实施例中,可与顶部接触层350直接建立高质量欧姆接触,并且省略覆盖层360。在其他实施例中,省略顶部接触层350和/或电子阻挡层340,并且顶部接触件被直接形成在覆盖层360上(在该实施例中,覆盖层360可被看作“顶部接触层”)。尽管层310-340最好都是赝配的,但顶部接触层350和/或覆盖层360可以弛豫(relax)而不会将有害的缺陷引入有源层,在该有源层下方会不利地影响PUVLED结构300的性能(如下文参考图3B所描述的)。层310-350中的每一层是赝配的,并且每一层各自可具有大于其预测临界厚度的厚度。此外,包括层310-350的总的层结构可具有大于总体考虑的层的预测临界厚度的总的厚度(即,对于多层结构来说,即使在每个独立的层可能小于其孤立考虑的预测临界厚度时,整个结构仍具有预测临界厚度)。
在多个实施例中,PUVLED结构300的层310-340是赝配的,并且覆盖层360是有意弛豫的。如图3B所示,如上文中参考图3A描述的那样形成层310-340。随后通过合理选择其组成和/或沉积条件,以部分或大体应变弛豫的状态形成覆盖层360。例如,覆盖层360与衬底305和/或MQW层330之间的晶格失配可大于约1%、大于约2%或者甚至大于约3%。在优选实施例中,覆盖层360包括无掺杂的或掺杂的GaN或者基本上由其组成,衬底305包括AlN或基本上由其组成,并且MQW层330包括与Al0.75Ga0.25N阻挡层交错的多个Al0.55Ga0.45N量子阱或基本上由其组成,而覆盖层360晶格失配约2.4%。覆盖层360可以大体弛豫,即,可具有近似等于其理论未应变晶格常数的晶格参数。如图所示,部分或大体弛豫的覆盖层360可包含应变消除位错370,其具有穿透至覆盖层360的表面的段(该位错可被称为“穿透位错”)。弛豫覆盖层360的穿透位错密度可比衬底305和/或层310-340的穿透位错密度大例如一个、两个或三个数量级,或者甚至更大。最好不要将覆盖层360形成为一系列合并的或者未合并的岛,如果这样,岛效应可能有害地影响覆盖层360的表面粗糙度。
分级层可形成于层310-340和覆盖层360之间,并且其在与层340、360交界处的组成可与那些层的组成大体匹配。该分级层(最好是赝配应变的)的厚度范围可以在约10nm和约50nm之间,例如约30nm。在一些实施例中,可在分级层和覆盖层360的生长之间暂时停止外延生长。
在示例性的实施例中,电子阻挡层340形成于MQW层330上,该电子阻挡层340包括Al0.8Ga0.2N或Al0.85Ga0.15N或者基本上由其组成。在形成包括GaN或基本上由GaN组成的覆盖层360之前,在电子阻挡层340上形成分级层。可以对约30nm的厚度,根据组成对分级层进行分级(从例如Al0.85Ga0.15N到GaN)。可由例如MOCVD来形成分级层,并且在这个实施例中,通过在约24分钟的期间内将TMA和TMG的流分别从用于形成电子阻挡层340的条件逐渐变化(ramp)至0标准立方厘米/每分钟(sccm)和6.4sccm(通过它们各自的起泡器(bubbler)逐渐变化氢气流)来形成分级层,从而导致从Al0.85Ga0.15N到GaN的单调分级(所有其他的生长条件大体是固定的)。在该示例性实施例中,如使用SiLENSe软件建模的那样,分级层的厚度为约30nm,并且可以通过极化掺杂而不是杂质掺杂(例如,甚至大体没有掺杂杂质)来实现约3x 1019cm-3的空穴浓度。一般地,能够通过极化在氮化物材料中实现极化掺杂,这归因于金属原子和氮原子之间的电负性差异。这导致了铅锌矿晶体结构中的沿非对称方向的极化场。此外,层中的应变可导致额外的压电极化场,且因此导致额外的极化掺杂。这些场在突变界面(例如二维板材)或者分级组成层(例如三维体)处产生固定的电荷,其产生异号的移动载流子。由分级层内的Al组成的差异,即开始组成和最终组成之间的差异,来定义总电荷的数量。由总电荷除以分级层的厚度来定义载流子的浓度。对于小厚度可通过高组成变化来实现很高的载流子浓度,而较低的组成变化或者较大的分级厚度通常引起较小的载流子浓度;然而,对于给定的组成变化来说,载流子的总数量通常不变。
如上所述,本发明的优选实施例使用非常薄的SPG层,以便最小化其中的UV光子吸收。该SPG层最好具有小于50nm的厚度,例如在约10nm和约30nm之间。在一个实施例中,由MOCVD在典型的赝配LED结构(AlN/n型AlGaN/MQW/电子阻挡层/p型GaN)上生长光滑的(25-50nm)p型GaN层,并且三甲基镓(TMGa)和NH3被用作Ga和N前驱体。一些传统的p型GaN层在1000℃和100Torr的压力下生长,并且通常这些层是粗糙的,从而呈现孤立的或椎体形态。该方法受本领域传统认知的支持,其指示该方法应该提高Ga吸附原子的迁移率,从而促进层的侧向生长与合并。因此,传统认知教导了接触层生长应该使用增加的V/III比例和更高的温度。然而,这种技术不能在(采用本发明的实施例中使用的厚度范围的)赝配层上实现光滑的表面。特别地,赝配层中的大应变增强了孤立构造和增加的表面粗糙度。出乎意料的是,为了抑制这种表面粗化,根据本发明的实施例,可将850℃-900℃的生长温度用于SPG层的生长,并且可在这种较低的生长温度状况下使用20Torr的生长压力来提高吸附原子迁移率。光滑的p型GaN的生长速率仅为约5nm/min。可使用原子力显微镜(AFM)和二次离子质谱仪(SIMS)来探测生成的SPG层的形态和基本属性。如图4A所示,AFM示出了与图4B所示的传统p型GaN的较粗糙的形态(Rq值为约7.2nm)相比的较光滑的p型GaN层(Rq值为约0.85nm)。这里,实际的岛高度超过50nm,而且,这些较厚的岛引起了较高的吸收并且还留下了未被p型GaN覆盖的区域,当接触金属化覆盖的区域中出现这些空穴时,这些区域会导致接触金属化的p型接触不良。与传统的p型GaN相比,SIMS分析示出了光滑的p型GaN中的较高的掺杂浓度(两倍);然而,该浓度不是常数并且直到生长了~25nm的p型GaN才达到平衡,这导致难以与薄于25nm的层建立欧姆接触。为了克服这个问题,在生长开始前,可使用仅掺杂(例如Mg)源(即不是Ga源)流动的浸泡(例如1-10分钟,如5分钟),即沉积室内的曝光,来使表面饱和。例如,当MOCVD用于层生长时,对于浸泡可在Mg源使用二茂镁(Cp2Mg)。可在起泡器内布置前躯体,并且诸如氮或氢的载气可流入该起泡器,从而形成掺杂前驱体饱和的气体溶液。这实现了较高的掺杂浓度,以及与薄至5nm的层的良好的欧姆接触构造。总之,由于较慢的生长速率和保形的形态,可以在这种生长状况下容易地实现很薄的p型GaN层(<10nm),同时可以通过调节输入的前驱体流来优化掺杂浓度。
在一个示例性实施例中,如图5所示,极化掺杂和薄SPG层与图案化反射体相组合,图5描述了UV LED器件500的部分。在器件500中,例如如上文详述的以及在图3A中示出的,区域510包括AlN衬底和器件的有源区域或者基本上由其组成。区域510的顶部上具有SPG层520,该SPG层520保持光滑以实现具有高UV透明度的很薄的层。在SPG层520上形成的接触层530通常大体上不能反射UV,但是形成了与SPG层520的良好欧姆接触。在一个示例性的实施例中,接触层530包括Ni/Au或基本上由其组成。如图所示,在优选实施例中,在SPG层520的表面上图案化接触层。可以通过例如传统的光刻法来限定接触层530的各个部分之间的间距。图案可以是如图5所示的孤立“像素”(或“岛”)的线或者图案的形式。线可以具有例如1μm至50μm(如5μm)的宽度,并且它们之间可以具有例如1μm至50μm(如5μm)的间距。像素可以是例如大体呈立方的或矩形的立方体,或者甚至可以大体呈半球体,并且像素可以具有诸如宽度、长度或直径的维度,例如1μm至50μm(如5μm)。接触面积和间距通常被限定为优化器件的电光转换效率。
如图5所示,接触层530可被反射体540覆盖,该反射体540形成于接触层530(或其孤立部分)之上并且形成于接触层530的各部分之间(即,与SPG层520直接接触)。反射体540通常包括金属(或金属合金)或者基本上由其组成,该金属(或金属合金)高度反射UV光但没有与SPG层520形成良好的欧姆接触。例如,反射体540可包括Al或基本上由Al组成。接触层530的接触面积通常将至少部分地确定组合的接触层530和反射体540的有效接触电阻。例如,如果10%的面积被接触层530覆盖,则有效接触电阻通常增加十倍。然而,同时增加了反射体面积(即,直接由反射体540覆盖的SPG层520的面积,而不是它们之间的接触层530的面积)。在一个示例性的实施例中,接触层530的接触电阻率小于约1.0mΩ-cm2,或者甚至小于约0.5mΩ-cm2。通过使用值为1:10的接触件530面积与反射体540面积的比例,有效接触电阻增加至5mΩ,并且(整个面积上平均的)有效反射体降低了10%(例如,反射体540的90%的反射率被有效降低至81%)。此外,最好将接触层530的各个金属接触像素的尺寸保持为尽可能的小,以便出现从各个接触像素扩散的电流。这提高了所产生的光子将撞击反射体540而不是接触层530的接触像素(如果电流从接触层530的接触金属像素直线向下移动,则通常会出现撞击该像素的情况)的可能性。即使使用薄的SPG层520,极化掺杂的AlGaN在保持透明度时实现了电流扩散;该薄的SPG层520主要用于在保持低吸收时降低接触电阻。这与传统方法形成直接的对比,传统方法中高Al含量的AlxGa1-xN中的p型掺杂是高电阻性的并且不会允许电流扩散。
本发明的实施例可使用在’093申请中描述的光子提取技术。该技术包括表面处理(例如,粗化、纹理化和/或图案化)、衬底减薄、衬底去除和/或使用具有薄中间密封剂层的刚性透镜。示例性的衬底去除技术包括激光剥离,如V.Haerle等人于固态物理(a)201,2736(2004)(Phys.Stat.Sol.(a)201,2736(2004))上发表的“High brightness LEDs forgeneral lighting applications using the new Thin GaNTM-Technology”中所描述的,该论文的全部公开内容通过引用被包含于此。
在其中的器件衬底被减薄或被去除的实施例中,衬底的后表面可以例如使用600至1800个砂轮研磨。这个步骤的去除速率可以被有目的地保持在一个低水平(约0.3-0.4μm/s),以免损坏衬底或者衬底上的器件层。在可选的研磨步骤之后,可用抛光浆液来抛光后表面,该抛光浆液例如是等量的蒸馏水和在KOH和水的缓冲溶液中的市售的二氧化硅的胶态悬浮体的溶液。该步骤的去除速率可以在约10μm/min和约15μm/min之间变化。衬底可被减薄至约200μm到约250μm的厚度,或者甚至被减薄至约20μm到50μm的厚度,然而本发明范围不受该范围的限制。在其他实施例中,衬底被减薄至约20μm或更少,或者甚至大体上完全被去除。在该减薄步骤之后,最好在例如一种或多种有机溶剂中清洗晶圆。在本发明的一个实施例中,该清洗步骤包括将衬底在沸腾的丙酮中浸泡约10分钟,接着在沸腾的甲醇中浸泡约10分钟。
使用根据本发明多个实施例的上述技术制备的结构,制备有占0%、51%和60%的三种不同的反射体金属面积。当反射体金属面积占51%时,没有观察到正向电压显著增大,在100mA的情况下仅有0.1V的增大(而当反射体金属面积占60%时看到0.4V的增大),并且对于通过反射体金属面积占51%的厚吸收AlN衬底发射光的器件来说,测量到提取效率提高了24%。然而,当与裸片减薄、粗化和封装组合时,与反射体面积占0%的器件相比,反射体金属面积占51%的器件实现了~100%的总增益。反射体面积占60%的结果的改进小于反射体面积占51%的结果的改进,但接触金属间隔和反射体面积的优化可导致总效率的进一步提高。
本文使用的术语和表达方式是用作描述的措辞而并非用来限制,并且在使用该术语和表达方式时,其目的不是排除所示和所描述的特征的任何等同物或其部分,而应该认识到,在请求保护的本发明的范围内的各种修改是可能的。
Claims (39)
1.一种形成与紫外(UV)发光器件的接触的方法,所述方法包括:
提供具有AlyGa1-yN顶表面的衬底,其中y≥0.4;
在所述衬底上形成有源的发光器件结构,所述发光器件结构包括多个层,每层包括AlxGa1-xN;
在所述发光器件结构上形成无掺杂分级Al1-zGazN层,所述分级层的组成以Ga浓度z分级,使得所述Ga浓度z在离开所述发光器件结构的方向上增加;
在所述分级层上形成p型掺杂Al1-wGawN覆盖层,该覆盖层(i)具有在2nm和30nm之间的厚度,(ii)对于样本大小为200μmx300μm表面粗糙度小于6nm,以及(iii)Ga浓度w≥0.8;以及
在所述Al1-wGawN覆盖层上形成包括至少一种金属的金属接触件,所述金属接触件对所述Al1-wGawN覆盖层具有小于1.0mΩ·cm2的接触电阻率。
2.根据权利要求1所述的方法,其中,形成所述Al1-wGawN覆盖层包括以850℃和900℃之间的温度和小于50Torr的生长压力的外延生长。
3.根据权利要求2所述的方法,其中,所述生长压力为20Torr。
4.根据权利要求1所述的方法,其中,所述Al1-wGawN覆盖层掺杂有Mg。
5.根据权利要求1所述的方法,其中,所述Al1-wGawN覆盖层至少部分弛豫。
6.根据权利要求1所述的方法,其中,所述发光器件具有大于25%的光子提取效率。
7.根据权利要求1所述的方法,其中,所述分级层和Al1-wGawN覆盖层共同吸收小于80%的UV光子,所述UV光子由所述发光器件结构产生并且具有小于340nm的波长。
8.根据权利要求1所述的方法,其中,所述金属接触件中的至少一种金属包括Ni/Au或Pd。
9.根据权利要求1所述的方法,其中,所述金属接触件对于由所述发光器件结构产生的光具有60%或更少的反射率。
10.根据权利要求1所述的方法,其中,所述金属接触件对于由所述发光器件结构产生的光具有30%或更少的反射率。
11.根据权利要求1所述的方法,其中,所述金属接触件被形成为所述至少一种金属的多个离散的线和/或像素,所述Al1-wGawN覆盖层的部分未被所述金属接触件覆盖。
12.根据权利要求11所述的方法,还包括在所述金属接触件和所述Al1-wGawN覆盖层的未覆盖部分上形成反射体。
13.根据权利要求12所述的方法,其中,所述反射体包含对于UV光具有大于90%的反射率以及具有小于4.5eV的功函数的金属。
14.根据权利要求12所述的方法,其中,所述反射体对所述Al1-wGawN覆盖层具有大于5mΩ·cm2的接触电阻率。
15.根据权利要求12所述的方法,其中,所述反射体对所述Al1-wGawN覆盖层具有大于10mΩ·cm2的接触电阻率。
16.根据权利要求12所述的方法,其中,所述反射体包含Al。
17.根据权利要求1所述的方法,其中,所述发光器件包括发光二极管。
18.根据权利要求1所述的方法,其中,(i)接近所述发光器件结构的所述分级层的底部具有与直接在所述分级层之下的层的Ga浓度相等的Ga浓度z,以及(ii)与所述分级层的底部相对的所述分级层的顶部具有为1的Ga浓度z。
19.根据权利要求1所述的方法,其中,形成所述Al1-wGawN覆盖层包括以0.5nm/min和5nm/min之间的生长速率的外延生长。
20.根据权利要求1所述的方法,还包括在形成所述分级层和形成所述Al1-wGawN覆盖层之间,将所述分级层的表面暴露给所述覆盖层的p型掺杂物的前躯体,而不暴露给Ga前躯体。
21.根据权利要求20所述的方法,其中,所述覆盖层的p型掺杂物包括Mg。
22.根据权利要求1所述的方法,其中,所述衬底包括掺杂或无掺杂的AlN。
23.一种紫外(UV)发光器件,包括:
具有AlyGa1-yN顶表面的衬底,其中y≥0.4;
在所述衬底上布置的发光器件结构,所述发光器件结构包括多个层,每层包括AlxGa1- xN;
在所述发光器件结构上布置的无掺杂分级Al1-zGazN层,所述分级层的组成以Ga浓度z分级,使得所述Ga浓度z在离开所述发光器件结构的方向上增加;
在所述分级层上布置的p型掺杂Al1-wGawN覆盖层,所述p型掺杂Al1-wGawN覆盖层(i)具有在2nm和30nm之间的厚度,(ii)对于样本大小为200μm x 300μm表面粗糙度小于6nm,以及(iii)Ga浓度w≥0.8;以及
在所述Al1-wGawN覆盖层上布置的并且包含至少一种金属的金属接触件,所述金属接触件对所述Al1-wGawN覆盖层具有小于1.0mΩ·cm2的接触电阻率。
24.根据权利要求23所述的发光器件,其中,所述Al1-wGawN覆盖层掺杂有Mg。
25.根据权利要求23所述的发光器件,其中,所述Al1-wGawN覆盖层至少部分弛豫。
26.根据权利要求23所述的发光器件,其中,所述发光器件具有大于25%的光子提取效率。
27.根据权利要求23所述的发光器件,其中,所述分级层和Al1-wGawN覆盖层共同吸收小于80%的UV光子,所述UV光子由所述发光器件结构产生并且具有小于340nm的波长。
28.根据权利要求23所述的发光器件,其中,所述金属接触件中的至少一种金属包括Ni/Au或Pd。
29.根据权利要求23所述的发光器件,其中,所述金属接触件对于由所述发光器件结构产生的光具有60%或更少的反射率。
30.根据权利要求23所述的发光器件,其中,所述金属接触件对于由所述发光器件结构产生的光具有30%或更少的反射率。
31.根据权利要求23所述的发光器件,其中,所述金属接触件具有所述至少一种金属的多个离散的线和/或像素的形式,所述Al1-wGawN覆盖层的部分未被所述金属接触件覆盖。
32.根据权利要求31所述的发光器件,还包括在所述金属接触件和所述Al1-wGawN覆盖层的未覆盖部分上布置的反射体。
33.根据权利要求32所述的发光器件,其中,所述反射体包含对于UV光具有大于90%的反射率以及具有小于4.5eV的功函数的金属。
34.根据权利要求32所述的发光器件,其中,所述反射体对所述Al1-wGawN覆盖层具有大于5mΩ·cm2的接触电阻率。
35.根据权利要求32所述的发光器件,其中,所述反射体对所述Al1-wGawN覆盖层具有大于10mΩ·cm2的接触电阻率。
36.根据权利要求32所述的发光器件,其中,所述反射体包含Al。
37.根据权利要求23所述的发光器件,其中,所述发光器件包括发光二极管。
38.根据权利要求23所述的发光器件,其中,(i)接近所述发光器件结构的所述分级层的底部具有与直接在所述分级层之下的层的Ga浓度相等的Ga浓度z,以及(ii)与所述分级层的底部相对的所述分级层的顶部具有为1的Ga浓度z。
39.根据权利要求23所述的发光器件,其中,所述衬底包括掺杂或无掺杂的AlN。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810282466.3A CN108511567A (zh) | 2013-03-15 | 2014-03-13 | 与赝配电子和光电器件的平面接触 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361788141P | 2013-03-15 | 2013-03-15 | |
US61/788141 | 2013-03-15 | ||
PCT/US2014/025317 WO2014151264A1 (en) | 2013-03-15 | 2014-03-13 | Planar contacts to pseudomorphic electronic and optoelectronic devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810282466.3A Division CN108511567A (zh) | 2013-03-15 | 2014-03-13 | 与赝配电子和光电器件的平面接触 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105144345A CN105144345A (zh) | 2015-12-09 |
CN105144345B true CN105144345B (zh) | 2018-05-08 |
Family
ID=51523549
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810282466.3A Pending CN108511567A (zh) | 2013-03-15 | 2014-03-13 | 与赝配电子和光电器件的平面接触 |
CN201480015040.1A Active CN105144345B (zh) | 2013-03-15 | 2014-03-13 | 与赝配电子和光电器件的平面接触 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810282466.3A Pending CN108511567A (zh) | 2013-03-15 | 2014-03-13 | 与赝配电子和光电器件的平面接触 |
Country Status (5)
Country | Link |
---|---|
US (4) | US20150280057A1 (zh) |
EP (1) | EP2973664B1 (zh) |
JP (2) | JP6275817B2 (zh) |
CN (2) | CN108511567A (zh) |
WO (1) | WO2014151264A1 (zh) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8545629B2 (en) | 2001-12-24 | 2013-10-01 | Crystal Is, Inc. | Method and apparatus for producing large, single-crystals of aluminum nitride |
EP1954857B1 (en) | 2005-12-02 | 2018-09-26 | Crystal Is, Inc. | Doped aluminum nitride crystals and methods of making them |
US9034103B2 (en) | 2006-03-30 | 2015-05-19 | Crystal Is, Inc. | Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them |
US9771666B2 (en) | 2007-01-17 | 2017-09-26 | Crystal Is, Inc. | Defect reduction in seeded aluminum nitride crystal growth |
WO2008088838A1 (en) | 2007-01-17 | 2008-07-24 | Crystal Is, Inc. | Defect reduction in seeded aluminum nitride crystal growth |
US8080833B2 (en) | 2007-01-26 | 2011-12-20 | Crystal Is, Inc. | Thick pseudomorphic nitride epitaxial layers |
WO2012003304A1 (en) | 2010-06-30 | 2012-01-05 | Crystal Is, Inc. | Growth of large aluminum nitride single crystals with thermal-gradient control |
US8962359B2 (en) | 2011-07-19 | 2015-02-24 | Crystal Is, Inc. | Photon extraction from nitride ultraviolet light-emitting devices |
JP6275817B2 (ja) | 2013-03-15 | 2018-02-07 | クリスタル アイエス, インコーポレーテッドCrystal Is, Inc. | 仮像電子及び光学電子装置に対する平面コンタクト |
US9412911B2 (en) | 2013-07-09 | 2016-08-09 | The Silanna Group Pty Ltd | Optical tuning of light emitting semiconductor junctions |
WO2015157178A1 (en) | 2014-04-07 | 2015-10-15 | Crystal Is, Inc. | Ultraviolet light-emitting devices and methods |
JP6636459B2 (ja) | 2014-05-27 | 2020-01-29 | シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッドSilanna Uv Technologies Pte Ltd | 半導体構造と超格子とを用いた高度電子デバイス |
US11322643B2 (en) | 2014-05-27 | 2022-05-03 | Silanna UV Technologies Pte Ltd | Optoelectronic device |
KR102439708B1 (ko) | 2014-05-27 | 2022-09-02 | 실라나 유브이 테크놀로지스 피티이 리미티드 | 광전자 디바이스 |
KR102427203B1 (ko) | 2014-05-27 | 2022-07-29 | 실라나 유브이 테크놀로지스 피티이 리미티드 | n-형 및 p-형 초격자를 포함하는 전자 디바이스 |
US9673287B2 (en) * | 2014-12-15 | 2017-06-06 | Infineon Technologies Americas Corp. | Reliable and robust electrical contact |
JP6896708B2 (ja) * | 2015-09-17 | 2021-06-30 | クリスタル アイエス, インコーポレーテッドCrystal Is, Inc. | 2次元正孔ガスを組み込んだ紫外線発光デバイス |
WO2017145026A1 (en) | 2016-02-23 | 2017-08-31 | Silanna UV Technologies Pte Ltd | Resonant optical cavity light emitting device |
US10418517B2 (en) | 2016-02-23 | 2019-09-17 | Silanna UV Technologies Pte Ltd | Resonant optical cavity light emitting device |
CN105720144B (zh) * | 2016-03-24 | 2021-09-24 | 晶能光电(江西)有限公司 | 一种硅衬底氮化物紫外led芯片结构及其实现方法 |
AT519500B1 (de) * | 2017-01-03 | 2019-03-15 | Univ Linz | Lichtemittierendes Halbleiterelement |
WO2018232080A1 (en) * | 2017-06-16 | 2018-12-20 | Crystal Is. Inc. | Two-stage seeded growth of large aluminum nitride single crystals |
US10954608B2 (en) | 2017-11-10 | 2021-03-23 | Crystal Is, Inc. | UV-transparent aluminum nitride single crystal having a diameter of 35 mm to 150 mm and a predefined UV transparency metric at a wavelength of 265 nm |
US11168411B2 (en) | 2018-06-19 | 2021-11-09 | Crystal Is, Inc. | Impurity control during formation of aluminum nitride crystals and thermal treatment of aluminum nitride crystals |
US10622514B1 (en) | 2018-10-15 | 2020-04-14 | Silanna UV Technologies Pte Ltd | Resonant optical cavity light emitting device |
EP3966297B1 (en) * | 2019-07-11 | 2023-10-04 | Nanosys, Inc. | Blue-emitting nanocrystals with cubic shape and fluoride passivation |
WO2021072616A1 (zh) * | 2019-10-15 | 2021-04-22 | 厦门三安光电有限公司 | 一种发光二极管 |
CN111554784B (zh) * | 2020-07-09 | 2020-09-25 | 华灿光电(浙江)有限公司 | 发光二极管外延片及其生长方法 |
US11990562B1 (en) * | 2020-10-07 | 2024-05-21 | Crystal Is, Inc. | Ultraviolet light-emitting devices having enhanced light output |
CN114765344A (zh) * | 2021-01-15 | 2022-07-19 | 山东华光光电子股份有限公司 | 一种优化电子阻挡层的小功率AlGaInP红光半导体激光器及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102150272A (zh) * | 2008-03-31 | 2011-08-10 | 普瑞光电股份有限公司 | 具供设置反射性电极的平滑表面的发光二极管 |
Family Cites Families (262)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL6615059A (zh) | 1966-10-25 | 1968-04-26 | ||
US3600701A (en) | 1968-03-14 | 1971-08-17 | Gen Electric | Signal generator for producing a set of signals at baseband frequency and with adjustable phase slope |
US3531245A (en) | 1968-04-01 | 1970-09-29 | Du Pont | Magnesium-aluminum nitrides |
US3607014A (en) | 1968-12-09 | 1971-09-21 | Dow Chemical Co | Method for preparing aluminum nitride and metal fluoride single crystals |
US3603414A (en) | 1970-01-30 | 1971-09-07 | Frank E Stebley | Insert for drilling unit |
US3768983A (en) | 1971-11-03 | 1973-10-30 | North American Rockwell | Single crystal beryllium oxide growth from calcium oxide-beryllium oxide melts |
US3903357A (en) | 1971-12-06 | 1975-09-02 | Westinghouse Electric Corp | Adaptive gate video gray level measurement and tracker |
FR2225207B1 (zh) | 1973-04-16 | 1978-04-21 | Ibm | |
US3933573A (en) | 1973-11-27 | 1976-01-20 | The United States Of America As Represented By The Secretary Of The Air Force | Aluminum nitride single crystal growth from a molten mixture with calcium nitride |
US4008851A (en) | 1976-01-16 | 1977-02-22 | Curt G. Joa, Inc. | Adhesive tape bag closure |
DE2750607A1 (de) | 1977-11-11 | 1979-05-17 | Max Planck Gesellschaft | Luftbestaendiges kristallines lithiumnitrid, verfahren zu seiner herstellung und seine verwendung |
US4547471A (en) | 1983-11-18 | 1985-10-15 | General Electric Company | High thermal conductivity aluminum nitride ceramic body |
JPS61236686A (ja) | 1985-04-13 | 1986-10-21 | Tohoku Metal Ind Ltd | 単結晶育成法 |
JP2745408B2 (ja) | 1988-07-07 | 1998-04-28 | 東芝セラミックス株式会社 | 半導体単結晶引上げ装置 |
US5258218A (en) | 1988-09-13 | 1993-11-02 | Kabushiki Kaisha Toshiba | Aluminum nitride substrate and method for producing same |
US5057287A (en) | 1988-11-01 | 1991-10-15 | Sfa, Inc. | Liquid encapsulated zone melting crystal growth method and apparatus |
US5070393A (en) | 1988-12-23 | 1991-12-03 | Kabushiki Kaisha Toshiba | Aluminum nitride substrate for formation of thin-film conductor layer and semiconductor device using the substrate |
US5087949A (en) | 1989-06-27 | 1992-02-11 | Hewlett-Packard Company | Light-emitting diode with diagonal faces |
JPH03285075A (ja) | 1990-03-30 | 1991-12-16 | Nisshin Steel Co Ltd | タングステンルツボの製造方法 |
DE69204198T2 (de) | 1991-04-16 | 1996-02-08 | Sumitomo Electric Industries | Czochralsky-Verfahren unter Verwendung eines Bauelementes zum Abschirmen der Strahlung der Rohmaterial-Schmelzlösung und Vorrichtung hierfür. |
EP0544329A3 (en) | 1991-11-28 | 1993-09-01 | Kabushiki Kaisha Toshiba | Semiconductor package |
US5578839A (en) | 1992-11-20 | 1996-11-26 | Nichia Chemical Industries, Ltd. | Light-emitting gallium nitride-based compound semiconductor device |
US5777364A (en) * | 1992-11-30 | 1998-07-07 | International Business Machines Corporation | Graded channel field effect transistor |
JP2875726B2 (ja) | 1993-10-28 | 1999-03-31 | 新日本無線株式会社 | 化合物半導体の熱処理方法 |
US6083812A (en) | 1993-02-02 | 2000-07-04 | Texas Instruments Incorporated | Heteroepitaxy by large surface steps |
DE69425186T3 (de) * | 1993-04-28 | 2005-04-14 | Nichia Corp., Anan | Halbleitervorrichtung aus einer galliumnitridartigen III-V-Halbleiterverbindung und Verfahren zu ihrer Herstellung |
US5520785A (en) | 1994-01-04 | 1996-05-28 | Motorola, Inc. | Method for enhancing aluminum nitride |
US5571603A (en) | 1994-02-25 | 1996-11-05 | Sumitomo Electric Industries, Ltd. | Aluminum nitride film substrate and process for producing same |
US5525320A (en) | 1994-07-11 | 1996-06-11 | University Of Cincinnati | Process for aluminum nitride powder production |
JPH0859386A (ja) | 1994-08-22 | 1996-03-05 | Mitsubishi Materials Corp | 半導体単結晶育成装置 |
US5679965A (en) * | 1995-03-29 | 1997-10-21 | North Carolina State University | Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same |
US5670798A (en) | 1995-03-29 | 1997-09-23 | North Carolina State University | Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same |
EP0992470B1 (en) | 1995-08-03 | 2006-03-08 | Ngk Insulators, Ltd. | Aluminium nitride sintered bodies and their use as substrate in an apparatus for producing semiconductors |
JP3604205B2 (ja) | 1995-09-18 | 2004-12-22 | 日亜化学工業株式会社 | 窒化物半導体の成長方法 |
US5981980A (en) | 1996-04-22 | 1999-11-09 | Sony Corporation | Semiconductor laminating structure |
JP3876473B2 (ja) | 1996-06-04 | 2007-01-31 | 住友電気工業株式会社 | 窒化物単結晶及びその製造方法 |
JP3644191B2 (ja) | 1996-06-25 | 2005-04-27 | 住友電気工業株式会社 | 半導体素子 |
US5858086A (en) | 1996-10-17 | 1999-01-12 | Hunter; Charles Eric | Growth of bulk single crystals of aluminum nitride |
US5954874A (en) | 1996-10-17 | 1999-09-21 | Hunter; Charles Eric | Growth of bulk single crystals of aluminum nitride from a melt |
US6533874B1 (en) | 1996-12-03 | 2003-03-18 | Advanced Technology Materials, Inc. | GaN-based devices using thick (Ga, Al, In)N base layers |
US5868837A (en) | 1997-01-17 | 1999-02-09 | Cornell Research Foundation, Inc. | Low temperature method of preparing GaN single crystals |
JP3239787B2 (ja) | 1997-01-30 | 2001-12-17 | 安藤電気株式会社 | Icソケット |
US6583444B2 (en) | 1997-02-18 | 2003-06-24 | Tessera, Inc. | Semiconductor packages having light-sensitive chips |
JPH10335637A (ja) * | 1997-05-30 | 1998-12-18 | Sony Corp | ヘテロ接合電界効果トランジスタ |
US6229160B1 (en) | 1997-06-03 | 2001-05-08 | Lumileds Lighting, U.S., Llc | Light extraction from a semiconductor light-emitting device via chip shaping |
US6270569B1 (en) | 1997-06-11 | 2001-08-07 | Hitachi Cable Ltd. | Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method |
JP3776565B2 (ja) | 1997-06-12 | 2006-05-17 | 株式会社コトブキ | 伸縮式階段状観覧席 |
US6006620A (en) | 1997-12-01 | 1999-12-28 | Chrysler Corporation | Automated manual transmission controller |
WO1999034037A1 (fr) | 1997-12-25 | 1999-07-08 | Japan Energy Corporation | Procede de preparation de monocristaux de composes semi-conducteurs, equipement pour ce procede et monocristaux de composes semi-conducteurs |
US6091085A (en) | 1998-02-19 | 2000-07-18 | Agilent Technologies, Inc. | GaN LEDs with improved output coupling efficiency |
JP4214585B2 (ja) | 1998-04-24 | 2009-01-28 | 富士ゼロックス株式会社 | 半導体デバイス、半導体デバイスの製造方法及び製造装置 |
JP4166885B2 (ja) * | 1998-05-18 | 2008-10-15 | 富士通株式会社 | 光半導体装置およびその製造方法 |
US6218207B1 (en) | 1998-05-29 | 2001-04-17 | Mitsushita Electronics Corporation | Method for growing nitride semiconductor crystals, nitride semiconductor device, and method for fabricating the same |
JP3439994B2 (ja) | 1998-07-07 | 2003-08-25 | 科学技術振興事業団 | 低抵抗n型および低抵抗p型単結晶AlN薄膜の合成法 |
US6045612A (en) | 1998-07-07 | 2000-04-04 | Cree, Inc. | Growth of bulk single crystals of aluminum nitride |
KR100277968B1 (ko) | 1998-09-23 | 2001-03-02 | 구자홍 | 질화갈륨 기판 제조방법 |
US6086672A (en) | 1998-10-09 | 2000-07-11 | Cree, Inc. | Growth of bulk single crystals of aluminum nitride: silicon carbide alloys |
US6063185A (en) | 1998-10-09 | 2000-05-16 | Cree, Inc. | Production of bulk single crystals of aluminum nitride, silicon carbide and aluminum nitride: silicon carbide alloy |
US6048813A (en) | 1998-10-09 | 2000-04-11 | Cree, Inc. | Simulated diamond gemstones formed of aluminum nitride and aluminum nitride: silicon carbide alloys |
US6404125B1 (en) | 1998-10-21 | 2002-06-11 | Sarnoff Corporation | Method and apparatus for performing wavelength-conversion using phosphors with light emitting diodes |
US6218293B1 (en) | 1998-11-13 | 2001-04-17 | Micron Technology, Inc. | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
JP3015887B1 (ja) | 1998-11-19 | 2000-03-06 | 科学技術庁金属材料技術研究所長 | バルク単結晶育成方法 |
US6187089B1 (en) | 1999-02-05 | 2001-02-13 | Memc Electronic Materials, Inc. | Tungsten doped crucible and method for preparing same |
US6838705B1 (en) * | 1999-03-29 | 2005-01-04 | Nichia Corporation | Nitride semiconductor device |
US6592663B1 (en) | 1999-06-09 | 2003-07-15 | Ricoh Company Ltd. | Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate |
US6829273B2 (en) | 1999-07-16 | 2004-12-07 | Agilent Technologies, Inc. | Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same |
RU2158789C1 (ru) | 1999-08-04 | 2000-11-10 | Водаков Юрий Александрович | Способ эпитаксиального выращивания монокристаллического нитрида алюминия и ростовая камера для осуществления способа |
JP4145437B2 (ja) | 1999-09-28 | 2008-09-03 | 住友電気工業株式会社 | 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板 |
US6398867B1 (en) | 1999-10-06 | 2002-06-04 | General Electric Company | Crystalline gallium nitride and method for forming crystalline gallium nitride |
US6350393B2 (en) | 1999-11-04 | 2002-02-26 | Cabot Microelectronics Corporation | Use of CsOH in a dielectric CMP slurry |
JP2001192647A (ja) | 2000-01-14 | 2001-07-17 | Seimi Chem Co Ltd | 酸化セリウム含有研磨用組成物及び研磨方法 |
US6879615B2 (en) | 2000-01-19 | 2005-04-12 | Joseph Reid Henrichs | FCSEL that frequency doubles its output emissions using sum-frequency generation |
US6698647B1 (en) | 2000-03-10 | 2004-03-02 | Honeywell International Inc. | Aluminum-comprising target/backing plate structures |
US6447604B1 (en) | 2000-03-13 | 2002-09-10 | Advanced Technology Materials, Inc. | Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices |
US6596079B1 (en) | 2000-03-13 | 2003-07-22 | Advanced Technology Materials, Inc. | III-V nitride substrate boule and method of making and using the same |
US6627974B2 (en) | 2000-06-19 | 2003-09-30 | Nichia Corporation | Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate |
US7064355B2 (en) | 2000-09-12 | 2006-06-20 | Lumileds Lighting U.S., Llc | Light emitting diodes with improved light extraction efficiency |
JP2002141556A (ja) | 2000-09-12 | 2002-05-17 | Lumileds Lighting Us Llc | 改良された光抽出効果を有する発光ダイオード |
US6777717B1 (en) | 2000-09-21 | 2004-08-17 | Gelcore, Llc | LED reflector for improved light extraction |
US7053413B2 (en) | 2000-10-23 | 2006-05-30 | General Electric Company | Homoepitaxial gallium-nitride-based light emitting device and method for producing |
JP2002222771A (ja) | 2000-11-21 | 2002-08-09 | Ngk Insulators Ltd | Iii族窒化物膜の製造方法、iii族窒化物膜の製造用下地膜、及びその下地膜の製造方法 |
US6548333B2 (en) | 2000-12-01 | 2003-04-15 | Cree, Inc. | Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment |
JP2005167275A (ja) | 2000-12-07 | 2005-06-23 | Ngk Insulators Ltd | 半導体素子 |
US6649287B2 (en) * | 2000-12-14 | 2003-11-18 | Nitronex Corporation | Gallium nitride materials and methods |
JP2002274996A (ja) | 2001-01-15 | 2002-09-25 | Ngk Insulators Ltd | エピタキシャル下地基板及びエピタキシャル基板 |
US6800876B2 (en) | 2001-01-16 | 2004-10-05 | Cree, Inc. | Group III nitride LED with undoped cladding layer (5000.137) |
US6791119B2 (en) | 2001-02-01 | 2004-09-14 | Cree, Inc. | Light emitting diodes including modifications for light extraction |
US7233028B2 (en) | 2001-02-23 | 2007-06-19 | Nitronex Corporation | Gallium nitride material devices and methods of forming the same |
US6940075B2 (en) | 2001-03-15 | 2005-09-06 | Christopher R. Schulz | Ultraviolet-light-based disinfection reactor |
US6958497B2 (en) * | 2001-05-30 | 2005-10-25 | Cree, Inc. | Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures |
JP3876649B2 (ja) | 2001-06-05 | 2007-02-07 | ソニー株式会社 | 窒化物半導体レーザ及びその製造方法 |
US6488767B1 (en) | 2001-06-08 | 2002-12-03 | Advanced Technology Materials, Inc. | High surface quality GaN wafer and method of fabricating same |
US6936357B2 (en) | 2001-07-06 | 2005-08-30 | Technologies And Devices International, Inc. | Bulk GaN and ALGaN single crystals |
US7501023B2 (en) | 2001-07-06 | 2009-03-10 | Technologies And Devices, International, Inc. | Method and apparatus for fabricating crack-free Group III nitride semiconductor materials |
US7067849B2 (en) | 2001-07-17 | 2006-06-27 | Lg Electronics Inc. | Diode having high brightness and method thereof |
CN2492947Y (zh) | 2001-07-18 | 2002-05-22 | 赵汝杰 | 非晶系氮化铝铟镓发光二极管装置 |
WO2003016782A1 (fr) | 2001-08-09 | 2003-02-27 | Matsushita Electric Industrial Co., Ltd. | Illuminateur del et source lumineuse d'eclairage del de type carte |
JP3785970B2 (ja) | 2001-09-03 | 2006-06-14 | 日本電気株式会社 | Iii族窒化物半導体素子の製造方法 |
AU2002323168A1 (en) | 2001-09-05 | 2003-03-18 | Rensselaer Polytechnic Institute | Passivated nanoparticles, method of fabrication thereof, and devices incorporating nanoparticles |
US7105865B2 (en) | 2001-09-19 | 2006-09-12 | Sumitomo Electric Industries, Ltd. | AlxInyGa1−x−yN mixture crystal substrate |
US7211146B2 (en) | 2001-09-21 | 2007-05-01 | Crystal Is, Inc. | Powder metallurgy crucible for aluminum nitride crystal growth |
TW573086B (en) | 2001-09-21 | 2004-01-21 | Crystal Is Inc | Powder metallurgy tungsten crucible for aluminum nitride crystal growth |
WO2003036771A1 (fr) | 2001-10-26 | 2003-05-01 | Ammono Sp.Zo.O. | Laser a semi-conducteurs a base de nitrure et procede de production de ce laser |
WO2003043780A2 (en) | 2001-11-20 | 2003-05-30 | Rensselaer Polytechnic Institute | Method for polishing a substrate surface |
US6515308B1 (en) | 2001-12-21 | 2003-02-04 | Xerox Corporation | Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection |
US6618413B2 (en) * | 2001-12-21 | 2003-09-09 | Xerox Corporation | Graded semiconductor layers for reducing threshold voltage for a nitride-based laser diode structure |
US6770135B2 (en) | 2001-12-24 | 2004-08-03 | Crystal Is, Inc. | Method and apparatus for producing large, single-crystals of aluminum nitride |
US7638346B2 (en) | 2001-12-24 | 2009-12-29 | Crystal Is, Inc. | Nitride semiconductor heterostructures and related methods |
US20060005763A1 (en) | 2001-12-24 | 2006-01-12 | Crystal Is, Inc. | Method and apparatus for producing large, single-crystals of aluminum nitride |
US8545629B2 (en) | 2001-12-24 | 2013-10-01 | Crystal Is, Inc. | Method and apparatus for producing large, single-crystals of aluminum nitride |
JP4331906B2 (ja) | 2001-12-26 | 2009-09-16 | 日本碍子株式会社 | Iii族窒化物膜の製造方法 |
JP3782357B2 (ja) | 2002-01-18 | 2006-06-07 | 株式会社東芝 | 半導体発光素子の製造方法 |
US7063741B2 (en) | 2002-03-27 | 2006-06-20 | General Electric Company | High pressure high temperature growth of crystalline group III metal nitrides |
WO2004008551A1 (ja) * | 2002-07-16 | 2004-01-22 | Nitride Semiconductors Co.,Ltd. | 窒化ガリウム系化合物半導体装置 |
US6841001B2 (en) | 2002-07-19 | 2005-01-11 | Cree, Inc. | Strain compensated semiconductor structures and methods of fabricating strain compensated semiconductor structures |
CN100358163C (zh) | 2002-08-01 | 2007-12-26 | 日亚化学工业株式会社 | 半导体发光元件及其制造方法、使用此的发光装置 |
US7775685B2 (en) | 2003-05-27 | 2010-08-17 | Cree, Inc. | Power surface mount light emitting die package |
DE10248964B4 (de) | 2002-10-14 | 2011-12-01 | Crystal-N Gmbh | Verfahren zur Sublimationszüchtung von Aluminiumnitrid-Einkristallen |
DE10255849B4 (de) | 2002-11-29 | 2006-06-14 | Advanced Micro Devices, Inc., Sunnyvale | Verbesserte Drain/Source-Erweiterungsstruktur eines Feldeffekttransistors mit dotierten Seitenwandabstandselementen mit hoher Permittivität und Verfahren zu deren Herstellung |
AU2003285769A1 (en) | 2002-12-11 | 2004-06-30 | Ammono Sp. Z O.O. | A substrate for epitaxy and a method of preparing the same |
US7186302B2 (en) | 2002-12-16 | 2007-03-06 | The Regents Of The University Of California | Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition |
JP4373086B2 (ja) | 2002-12-27 | 2009-11-25 | 株式会社半導体エネルギー研究所 | 発光装置 |
US20070082019A1 (en) | 2003-02-21 | 2007-04-12 | Ciphergen Biosystems Inc. | Photocrosslinked hydrogel surface coatings |
FR2852974A1 (fr) | 2003-03-31 | 2004-10-01 | Soitec Silicon On Insulator | Procede de fabrication de cristaux monocristallins |
US7098589B2 (en) | 2003-04-15 | 2006-08-29 | Luminus Devices, Inc. | Light emitting devices with high light collimation |
US7211831B2 (en) | 2003-04-15 | 2007-05-01 | Luminus Devices, Inc. | Light emitting device with patterned surfaces |
US6831302B2 (en) | 2003-04-15 | 2004-12-14 | Luminus Devices, Inc. | Light emitting devices with improved extraction efficiency |
US7274043B2 (en) | 2003-04-15 | 2007-09-25 | Luminus Devices, Inc. | Light emitting diode systems |
US7521854B2 (en) | 2003-04-15 | 2009-04-21 | Luminus Devices, Inc. | Patterned light emitting devices and extraction efficiencies related to the same |
US7306748B2 (en) | 2003-04-25 | 2007-12-11 | Saint-Gobain Ceramics & Plastics, Inc. | Methods for machining ceramics |
US7192849B2 (en) | 2003-05-07 | 2007-03-20 | Sensor Electronic Technology, Inc. | Methods of growing nitride-based film using varying pulses |
JP3898153B2 (ja) | 2003-05-28 | 2007-03-28 | Necトーキン株式会社 | 密閉型二次電池 |
US6921929B2 (en) | 2003-06-27 | 2005-07-26 | Lockheed Martin Corporation | Light-emitting diode (LED) with amorphous fluoropolymer encapsulant and lens |
JP4112449B2 (ja) | 2003-07-28 | 2008-07-02 | 株式会社東芝 | 放電電極及び放電灯 |
DE10335538A1 (de) | 2003-07-31 | 2005-02-24 | Sicrystal Ag | Verfahren und Vorrichtung zur AIN-Einkristall-Herstellung mit gasdurchlässiger Tiegelwand |
CN100389481C (zh) | 2003-08-12 | 2008-05-21 | 日本电信电话株式会社 | 氮化物半导体生长用衬底 |
WO2005022654A2 (en) | 2003-08-28 | 2005-03-10 | Matsushita Electric Industrial Co.,Ltd. | Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device |
US7288152B2 (en) | 2003-08-29 | 2007-10-30 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing GaN crystals and GaN crystal substrate, GaN crystals and GaN crystal substrate obtained by the method, and semiconductor device including the same |
TWI223460B (en) * | 2003-09-23 | 2004-11-01 | United Epitaxy Co Ltd | Light emitting diodes in series connection and method of making the same |
US6995402B2 (en) | 2003-10-03 | 2006-02-07 | Lumileds Lighting, U.S., Llc | Integrated reflector cup for a light emitting device mount |
JP4396816B2 (ja) | 2003-10-17 | 2010-01-13 | 日立電線株式会社 | Iii族窒化物半導体基板およびその製造方法 |
KR100799857B1 (ko) * | 2003-10-27 | 2008-01-31 | 삼성전기주식회사 | 전극 구조체 및 이를 구비하는 반도체 발광 소자 |
US7276779B2 (en) | 2003-11-04 | 2007-10-02 | Hitachi Cable, Ltd. | III-V group nitride system semiconductor substrate |
US7323256B2 (en) | 2003-11-13 | 2008-01-29 | Cree, Inc. | Large area, uniformly low dislocation density GaN substrate and process for making the same |
US7087112B1 (en) | 2003-12-02 | 2006-08-08 | Crystal Is, Inc. | Nitride ceramics to mount aluminum nitride seed for sublimation growth |
AU2003296426A1 (en) | 2003-12-09 | 2005-07-21 | The Regents Of The University Of California | Highly efficient gallium nitride based light emitting diodes via surface roughening |
US7518158B2 (en) | 2003-12-09 | 2009-04-14 | Cree, Inc. | Semiconductor light emitting devices and submounts |
US7087465B2 (en) | 2003-12-15 | 2006-08-08 | Philips Lumileds Lighting Company, Llc | Method of packaging a semiconductor light emitting device |
US7341628B2 (en) | 2003-12-19 | 2008-03-11 | Melas Andreas A | Method to reduce crystal defects particularly in group III-nitride layers and substrates |
JP2005210084A (ja) | 2003-12-22 | 2005-08-04 | Ngk Insulators Ltd | エピタキシャル基板、半導体積層構造、転位低減方法およびエピタキシャル形成用基板 |
US7056383B2 (en) | 2004-02-13 | 2006-06-06 | The Fox Group, Inc. | Tantalum based crucible |
US7569863B2 (en) | 2004-02-19 | 2009-08-04 | Panasonic Corporation | Semiconductor light emitting device |
EP1733439B1 (en) | 2004-03-18 | 2013-05-15 | Panasonic Corporation | Nitride based led with a p-type injection region |
JP4154731B2 (ja) | 2004-04-27 | 2008-09-24 | 信越半導体株式会社 | 発光素子の製造方法及び発光素子 |
US7905958B2 (en) | 2004-05-19 | 2011-03-15 | Sumitomo Electric Industries, Ltd. | Group III-nitride semiconductor crystal and manufacturing method thereof, and group III-nitride semiconductor device |
US7994527B2 (en) | 2005-11-04 | 2011-08-09 | The Regents Of The University Of California | High light extraction efficiency light emitting diode (LED) |
US20050269577A1 (en) | 2004-06-08 | 2005-12-08 | Matsushita Electric Industrial Co., Ltd. | Surface treatment method and surface treatment device |
US7294199B2 (en) | 2004-06-10 | 2007-11-13 | Sumitomo Electric Industries, Ltd. | Nitride single crystal and producing method thereof |
US7339205B2 (en) | 2004-06-28 | 2008-03-04 | Nitronex Corporation | Gallium nitride materials and methods associated with the same |
US7534633B2 (en) | 2004-07-02 | 2009-05-19 | Cree, Inc. | LED with substrate modifications for enhanced light extraction and method of making same |
TWI374552B (en) * | 2004-07-27 | 2012-10-11 | Cree Inc | Ultra-thin ohmic contacts for p-type nitride light emitting devices and methods of forming |
US7476910B2 (en) | 2004-09-10 | 2009-01-13 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device and method for manufacturing the same |
US7525130B2 (en) * | 2004-09-29 | 2009-04-28 | The Regents Of The University Of California | Polarization-doped field effect transistors (POLFETS) and materials and methods for making the same |
US7462502B2 (en) | 2004-11-12 | 2008-12-09 | Philips Lumileds Lighting Company, Llc | Color control by alteration of wavelength converting element |
JP2006169173A (ja) | 2004-12-16 | 2006-06-29 | Toyobo Co Ltd | シート状パック材の使用方法 |
US7906788B2 (en) | 2004-12-22 | 2011-03-15 | Panasonic Corporation | Semiconductor light emitting device, illumination module, illumination apparatus, method for manufacturing semiconductor light emitting device, and method for manufacturing semiconductor light emitting element |
US7186580B2 (en) | 2005-01-11 | 2007-03-06 | Semileds Corporation | Light emitting diodes (LEDs) with improved light extraction by roughening |
US7335920B2 (en) | 2005-01-24 | 2008-02-26 | Cree, Inc. | LED with current confinement structure and surface roughening |
US20060181695A1 (en) | 2005-02-11 | 2006-08-17 | Sage Burton H Jr | Compensating liquid delivery system and method |
US7125734B2 (en) | 2005-03-09 | 2006-10-24 | Gelcore, Llc | Increased light extraction from a nitride LED |
JP2006295126A (ja) * | 2005-03-15 | 2006-10-26 | Sumitomo Electric Ind Ltd | Iii族窒化物半導体素子およびエピタキシャル基板 |
JP4563230B2 (ja) | 2005-03-28 | 2010-10-13 | 昭和電工株式会社 | AlGaN基板の製造方法 |
JP2006310721A (ja) | 2005-03-28 | 2006-11-09 | Yokohama National Univ | 自発光デバイス |
JP5053993B2 (ja) | 2005-04-07 | 2012-10-24 | ノース・キャロライナ・ステイト・ユニヴァーシティ | 窒化アルミニウム単結晶を調製するためのシード形成成長方法 |
JP5364368B2 (ja) | 2005-04-21 | 2013-12-11 | エイオーネックス・テクノロジーズ・インコーポレイテッド | 基板の製造方法 |
US7544963B2 (en) | 2005-04-29 | 2009-06-09 | Cree, Inc. | Binary group III-nitride based high electron mobility transistors |
JP5236148B2 (ja) | 2005-05-12 | 2013-07-17 | 日本碍子株式会社 | エピタキシャル基板、半導体素子、エピタキシャル基板の製造方法、半導体素子の製造方法、およびiii族窒化物結晶における転位偏在化方法 |
US20060267043A1 (en) * | 2005-05-27 | 2006-11-30 | Emerson David T | Deep ultraviolet light emitting devices and methods of fabricating deep ultraviolet light emitting devices |
JP4600160B2 (ja) | 2005-06-02 | 2010-12-15 | 住友電気工業株式会社 | Iii族窒化物結晶の成長方法 |
KR20060127743A (ko) | 2005-06-06 | 2006-12-13 | 스미토모덴키고교가부시키가이샤 | 질화물 반도체 기판과 그 제조 방법 |
KR100616686B1 (ko) | 2005-06-10 | 2006-08-28 | 삼성전기주식회사 | 질화물계 반도체 장치의 제조 방법 |
US20060288929A1 (en) | 2005-06-10 | 2006-12-28 | Crystal Is, Inc. | Polar surface preparation of nitride substrates |
EP1897151A4 (en) | 2005-06-22 | 2010-03-10 | Seoul Opto Device Co Ltd | ILLUMINATING ELEMENT AND METHOD FOR THE PRODUCTION THEREOF |
TWI422044B (zh) | 2005-06-30 | 2014-01-01 | Cree Inc | 封裝發光裝置之晶片尺度方法及經晶片尺度封裝之發光裝置 |
US20070018182A1 (en) | 2005-07-20 | 2007-01-25 | Goldeneye, Inc. | Light emitting diodes with improved light extraction and reflectivity |
JP4778745B2 (ja) | 2005-07-27 | 2011-09-21 | パナソニック株式会社 | 半導体発光装置及びその製造方法 |
JP2007073761A (ja) | 2005-09-07 | 2007-03-22 | Sumitomo Electric Ind Ltd | 窒化物半導体基板及び窒化物半導体基板の加工方法 |
KR100985452B1 (ko) | 2005-09-20 | 2010-10-05 | 파나소닉 전공 주식회사 | 발광 장치 |
CN101415864B (zh) | 2005-11-28 | 2014-01-08 | 晶体公司 | 具有减少缺陷的大的氮化铝晶体及其制造方法 |
EP1954857B1 (en) | 2005-12-02 | 2018-09-26 | Crystal Is, Inc. | Doped aluminum nitride crystals and methods of making them |
US7915619B2 (en) | 2005-12-22 | 2011-03-29 | Showa Denko K.K. | Light-emitting diode and method for fabrication thereof |
US20070151905A1 (en) | 2005-12-29 | 2007-07-05 | Metertek Technology Inc. | Water purifier |
JP2007201195A (ja) * | 2006-01-26 | 2007-08-09 | Sumitomo Electric Ind Ltd | 窒化物半導体発光素子 |
JP4963839B2 (ja) | 2006-02-06 | 2012-06-27 | 昭和電工株式会社 | 発光装置 |
MX2008011275A (es) | 2006-03-10 | 2008-11-25 | Stc Unm | Crecimiento pulsado de nanoalambres de gan y aplicaciones en materiales y dispositivos de substrato semiconductor de nitruros del grupo iii. |
US8012257B2 (en) | 2006-03-30 | 2011-09-06 | Crystal Is, Inc. | Methods for controllable doping of aluminum nitride bulk crystals |
US9034103B2 (en) | 2006-03-30 | 2015-05-19 | Crystal Is, Inc. | Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them |
GB0606604D0 (en) | 2006-04-01 | 2006-05-10 | P W Circuts Ltd | Treatment apparatus |
US7524376B2 (en) | 2006-05-04 | 2009-04-28 | Fairfield Crystal Technology, Llc | Method and apparatus for aluminum nitride monocrystal boule growth |
WO2008011377A2 (en) | 2006-07-17 | 2008-01-24 | 3M Innovative Properties Company | Led package with converging extractor |
US7943952B2 (en) | 2006-07-31 | 2011-05-17 | Cree, Inc. | Method of uniform phosphor chip coating and LED package fabricated using method |
US7755103B2 (en) | 2006-08-03 | 2010-07-13 | Sumitomo Electric Industries, Ltd. | Nitride gallium semiconductor substrate and nitride semiconductor epitaxial substrate |
US7842960B2 (en) | 2006-09-06 | 2010-11-30 | Lumination Llc | Light emitting packages and methods of making same |
US7872272B2 (en) * | 2006-09-06 | 2011-01-18 | Palo Alto Research Center Incorporated | Nitride semiconductor ultraviolet LEDs with tunnel junctions and reflective contact |
US7714340B2 (en) | 2006-09-06 | 2010-05-11 | Palo Alto Research Center Incorporated | Nitride light-emitting device |
SG174789A1 (en) * | 2006-09-22 | 2011-10-28 | Agency Science Tech & Res | Group iii nitride white light emitting diode |
WO2008052327A1 (en) | 2006-10-31 | 2008-05-08 | Tir Technology Lp | Lighting device package |
US20090121250A1 (en) | 2006-11-15 | 2009-05-14 | Denbaars Steven P | High light extraction efficiency light emitting diode (led) using glass packaging |
US9318327B2 (en) | 2006-11-28 | 2016-04-19 | Cree, Inc. | Semiconductor devices having low threading dislocations and improved light extraction and methods of making the same |
US8110838B2 (en) | 2006-12-08 | 2012-02-07 | Luminus Devices, Inc. | Spatial localization of light-generating portions in LEDs |
US7687823B2 (en) | 2006-12-26 | 2010-03-30 | Nichia Corporation | Light-emitting apparatus and method of producing the same |
US20100015468A1 (en) | 2006-12-28 | 2010-01-21 | Yasuyuki Yamamoto | Method for manufacturing metallized aluminum nitride substrate |
WO2008088838A1 (en) | 2007-01-17 | 2008-07-24 | Crystal Is, Inc. | Defect reduction in seeded aluminum nitride crystal growth |
JP5730484B2 (ja) | 2007-01-26 | 2015-06-10 | クリスタル アイエス インコーポレイテッド | 厚みのある擬似格子整合型の窒化物エピタキシャル層 |
US8080833B2 (en) * | 2007-01-26 | 2011-12-20 | Crystal Is, Inc. | Thick pseudomorphic nitride epitaxial layers |
US9061450B2 (en) | 2007-02-12 | 2015-06-23 | Cree, Inc. | Methods of forming packaged semiconductor light emitting devices having front contacts by compression molding |
JP5121268B2 (ja) | 2007-03-27 | 2013-01-16 | 日本碍子株式会社 | 窒化アルミニウム焼結体及び半導体製造装置用部材 |
TWI331816B (en) * | 2007-04-03 | 2010-10-11 | Advanced Optoelectronic Tech | Semiconductor light-emitting device |
US8163582B2 (en) | 2007-04-23 | 2012-04-24 | Goldeneye, Inc. | Method for fabricating a light emitting diode chip including etching by a laser beam |
US8088220B2 (en) | 2007-05-24 | 2012-01-03 | Crystal Is, Inc. | Deep-eutectic melt growth of nitride crystals |
US7598108B2 (en) * | 2007-07-06 | 2009-10-06 | Sharp Laboratories Of America, Inc. | Gallium nitride-on-silicon interface using multiple aluminum compound buffer layers |
US20090039373A1 (en) | 2007-07-24 | 2009-02-12 | Toyoda Gosei Co., Ltd. | Group III nitride-based compound semiconductor light emitting device |
US8866185B2 (en) | 2007-09-06 | 2014-10-21 | SemiLEDs Optoelectronics Co., Ltd. | White light LED with multiple encapsulation layers |
US20090065792A1 (en) | 2007-09-07 | 2009-03-12 | 3M Innovative Properties Company | Method of making an led device having a dome lens |
TW200931690A (en) | 2007-11-30 | 2009-07-16 | Univ California | Light output enhanced gallium nitride based thin light emitting diode |
US20090140279A1 (en) | 2007-12-03 | 2009-06-04 | Goldeneye, Inc. | Substrate-free light emitting diode chip |
US7767579B2 (en) | 2007-12-12 | 2010-08-03 | International Business Machines Corporation | Protection of SiGe during etch and clean operations |
US7713769B2 (en) | 2007-12-21 | 2010-05-11 | Tekcore Co., Ltd. | Method for fabricating light emitting diode structure having irregular serrations |
JP4592742B2 (ja) * | 2007-12-27 | 2010-12-08 | Dowaエレクトロニクス株式会社 | 半導体材料、半導体材料の製造方法及び半導体素子 |
US8049237B2 (en) | 2007-12-28 | 2011-11-01 | Nichia Corporation | Light emitting device |
US20090173958A1 (en) | 2008-01-04 | 2009-07-09 | Cree, Inc. | Light emitting devices with high efficiency phospor structures |
WO2009111790A1 (en) * | 2008-03-07 | 2009-09-11 | Trustees Of Boston University | Optical devices featuring nonpolar textured semiconductor layers |
US7859000B2 (en) | 2008-04-10 | 2010-12-28 | Cree, Inc. | LEDs using single crystalline phosphor and methods of fabricating same |
KR101092079B1 (ko) | 2008-04-24 | 2011-12-12 | 엘지이노텍 주식회사 | 반도체 발광소자 및 그 제조방법 |
JP5271601B2 (ja) | 2008-05-16 | 2013-08-21 | 株式会社ブリヂストン | 単結晶の製造装置及び製造方法 |
KR20100003321A (ko) | 2008-06-24 | 2010-01-08 | 삼성전자주식회사 | 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및발광 장치의 제조 방법 |
US20090321758A1 (en) | 2008-06-25 | 2009-12-31 | Wen-Huang Liu | Led with improved external light extraction efficiency |
JP5305758B2 (ja) | 2008-06-30 | 2013-10-02 | 株式会社東芝 | 半導体発光装置 |
US8384115B2 (en) | 2008-08-01 | 2013-02-26 | Cree, Inc. | Bond pad design for enhancing light extraction from LED chips |
CN201274297Y (zh) | 2008-09-23 | 2009-07-15 | 王海军 | 可提高亮度的大功率led封装结构 |
US20110156048A1 (en) * | 2008-11-06 | 2011-06-30 | Toshiya Yokogawa | Nitride-based semiconductor device and method for fabricating the same |
EP2399117A4 (en) * | 2009-02-23 | 2012-08-08 | Univ Maryland | DIRECTIVE SURFACE PLASMONES-COUPLED FLUORESCENCE AND CHEMILUMINESCENCE OF NICKEL, IRON OR PALLADIUM THIN FILMS AND THEIR USE |
US20100314551A1 (en) | 2009-06-11 | 2010-12-16 | Bettles Timothy J | In-line Fluid Treatment by UV Radiation |
DE102009034359A1 (de) * | 2009-07-17 | 2011-02-17 | Forschungsverbund Berlin E.V. | P-Kontakt und Leuchtdiode für den ultravioletten Spektralbereich |
JP5317898B2 (ja) * | 2009-09-10 | 2013-10-16 | 株式会社アルバック | 発光ダイオード素子の製造方法 |
DE102009047881B4 (de) * | 2009-09-30 | 2022-03-03 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung einer epitaktisch hergestellten Schichtstruktur |
US8835998B2 (en) * | 2009-12-14 | 2014-09-16 | University Of Notre Dame Du Lac | Compositionally graded heterojunction semiconductor device and method of making same |
WO2012012010A2 (en) | 2010-04-30 | 2012-01-26 | Trustees Of Boston University | High efficiency ultraviolet light emitting diode with band structure potential fluctuations |
WO2012003304A1 (en) | 2010-06-30 | 2012-01-05 | Crystal Is, Inc. | Growth of large aluminum nitride single crystals with thermal-gradient control |
JP5931862B2 (ja) | 2010-07-20 | 2016-06-08 | ヘクサテック,インコーポレイテッド | 多結晶窒化アルミニウム材料およびその製造方法 |
US8748919B2 (en) * | 2011-04-28 | 2014-06-10 | Palo Alto Research Center Incorporated | Ultraviolet light emitting device incorporating optically absorbing layers |
JP5873260B2 (ja) * | 2011-05-26 | 2016-03-01 | 株式会社トクヤマ | Iii族窒化物積層体の製造方法 |
US8860059B2 (en) * | 2011-06-20 | 2014-10-14 | Xiamen Sanan Optoelectronics Technology Co., Ltd. | Light emitting devices, systems, and methods of manufacturing |
US8962359B2 (en) | 2011-07-19 | 2015-02-24 | Crystal Is, Inc. | Photon extraction from nitride ultraviolet light-emitting devices |
US9252329B2 (en) * | 2011-10-04 | 2016-02-02 | Palo Alto Research Center Incorporated | Ultraviolet light emitting devices having compressively strained light emitting layer for enhanced light extraction |
US9818912B2 (en) * | 2011-12-12 | 2017-11-14 | Sensor Electronic Technology, Inc. | Ultraviolet reflective contact |
US20130228743A1 (en) * | 2012-03-01 | 2013-09-05 | Industrial Technology Research Institute | Light emitting diode |
US10164150B2 (en) * | 2012-03-29 | 2018-12-25 | Seoul Viosys Co., Ltd. | Near UV light emitting device |
US9312447B2 (en) * | 2012-03-29 | 2016-04-12 | Seoul Viosys Co., Ltd. | Near UV light emitting device |
US9705030B2 (en) * | 2012-04-18 | 2017-07-11 | Technische Universität Berlin | UV LED with tunnel-injection layer |
US20140167058A1 (en) * | 2012-08-28 | 2014-06-19 | Iqe, Kc, Llc | Compositionally graded nitride-based high electron mobility transistor |
JP6275817B2 (ja) | 2013-03-15 | 2018-02-07 | クリスタル アイエス, インコーポレーテッドCrystal Is, Inc. | 仮像電子及び光学電子装置に対する平面コンタクト |
-
2014
- 2014-03-13 JP JP2016501818A patent/JP6275817B2/ja active Active
- 2014-03-13 CN CN201810282466.3A patent/CN108511567A/zh active Pending
- 2014-03-13 EP EP14769060.6A patent/EP2973664B1/en active Active
- 2014-03-13 WO PCT/US2014/025317 patent/WO2014151264A1/en active Application Filing
- 2014-03-13 CN CN201480015040.1A patent/CN105144345B/zh active Active
- 2014-03-13 US US14/208,089 patent/US20150280057A1/en not_active Abandoned
- 2014-03-13 US US14/208,379 patent/US9299880B2/en active Active
-
2016
- 2016-02-18 US US15/046,515 patent/US9620676B2/en active Active
-
2017
- 2017-03-03 US US15/449,044 patent/US11251330B2/en active Active
-
2018
- 2018-01-10 JP JP2018001646A patent/JP2018110235A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102150272A (zh) * | 2008-03-31 | 2011-08-10 | 普瑞光电股份有限公司 | 具供设置反射性电极的平滑表面的发光二极管 |
Also Published As
Publication number | Publication date |
---|---|
US9299880B2 (en) | 2016-03-29 |
WO2014151264A1 (en) | 2014-09-25 |
CN105144345A (zh) | 2015-12-09 |
JP2018110235A (ja) | 2018-07-12 |
CN108511567A (zh) | 2018-09-07 |
US11251330B2 (en) | 2022-02-15 |
EP2973664B1 (en) | 2020-10-14 |
EP2973664A4 (en) | 2016-08-10 |
JP2016515308A (ja) | 2016-05-26 |
US20140264263A1 (en) | 2014-09-18 |
US20160225949A1 (en) | 2016-08-04 |
US9620676B2 (en) | 2017-04-11 |
EP2973664A1 (en) | 2016-01-20 |
JP6275817B2 (ja) | 2018-02-07 |
US20170179336A1 (en) | 2017-06-22 |
US20150280057A1 (en) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105144345B (zh) | 与赝配电子和光电器件的平面接触 | |
CN108140695B (zh) | 包含二维空穴气体的紫外发光器件 | |
US9876140B2 (en) | Semiconductor structure with stress-reducing buffer structure | |
CN101427431B (zh) | 具有隧道结的高效发光二极管 | |
Pernot et al. | Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes | |
KR101898679B1 (ko) | 나노구조 발광소자 | |
CN100555682C (zh) | 氮化物半导体发光器件及其制造方法 | |
TW544952B (en) | Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures | |
TWI497753B (zh) | 包含硼之三族氮化物發光裝置 | |
US20080277682A1 (en) | Dual surface-roughened n-face high-brightness led | |
TW200402896A (en) | Semiconductor light-emitting device | |
TW200908393A (en) | Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor | |
US10043943B2 (en) | UV light emitting diode having a stress adjustment layer | |
KR101030823B1 (ko) | 투명 박막, 이를 포함하는 발광 소자와 이들의 제조 방법 | |
CN104412395B (zh) | 降低或者消除ⅲ-氮化物结构中的纳米管缺陷 | |
CN102884643A (zh) | 生长在松弛层上的iii族氮化物发光装置 | |
CN101667614A (zh) | 发光二极管装置及其制造方法 | |
JP2008066591A (ja) | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法 | |
CN116960246A (zh) | 发光二极管外延片及其制备方法、led | |
CN101246942B (zh) | 发光二极管和激光器制作方法及发光二极管和激光器 | |
JP2011082248A (ja) | 半導体発光素子及びその製造方法、並びにランプ | |
US11990562B1 (en) | Ultraviolet light-emitting devices having enhanced light output | |
JP2006295057A (ja) | 半導体発光素子およびその製法 | |
Sakurai et al. | Fabrication of high-efficiency LED using moth-eye structure | |
KR20090079123A (ko) | 발광다이오드 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |