CN104821331A - Iii族氮化物基增强模式晶体管 - Google Patents
Iii族氮化物基增强模式晶体管 Download PDFInfo
- Publication number
- CN104821331A CN104821331A CN201510048389.1A CN201510048389A CN104821331A CN 104821331 A CN104821331 A CN 104821331A CN 201510048389 A CN201510048389 A CN 201510048389A CN 104821331 A CN104821331 A CN 104821331A
- Authority
- CN
- China
- Prior art keywords
- nitride
- ill
- layer
- enhancement mode
- mode transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
- H10D30/4732—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/114—PN junction isolations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/117—Shapes of semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
- H10D62/125—Shapes of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/343—Gate regions of field-effect devices having PN junction gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本发明涉及III族氮化物基增强模式晶体管。III族氮化物基增强模式晶体管包含异质结鳍片结构。异质结鳍片结构的侧面和顶面被p型III族氮化物层覆盖。
Description
背景技术
至今,使用在功率电子应用中的晶体管已典型地用硅(Si)半导体材料来制造。常见的用于功率应用的晶体管器件包含Si CoolMOS、Si功率MOSFET、和Si绝缘栅双极晶体管(IGBT)。最近以来已考虑碳化硅(SiC)功率器件。诸如氮化镓(GaN)器件的III-N族半导体器件现在正显现为有吸引力的候选以承载大电流、支撑高电压并且提供非常低的开启电阻和快的开关时间。
发明内容
在实施例中,III族氮化物基增强模式晶体管包含异质结鳍片(fin)结构。异质结鳍片结构的侧面和顶面被p型III族氮化物层覆盖。
附图说明
附图的元件不必相对于彼此成比例。相同的参考数字指出对应的类似部分。各种图解的实施例的特征能够被组合,除非它们彼此排斥。实施例在附图中被描绘并且在跟随的描述中被详述。
图1图解了依据第一实施例的III族氮化物基增强模式晶体管的横截面视图。
图2a图解了依据第二实施例的III族氮化物基增强模式晶体管的顶视图。
图2b图解了III族氮化物基增强模式晶体管的顶视图。
图3图解了依据第二实施例的III族氮化物基增强模式晶体管沿着线A-A的横截面视图。
图4图解了依据第二实施例的III族氮化物基增强模式晶体管沿着线B-B的横截面视图。
图5图解了依据第二实施例的III族氮化物基增强模式晶体管沿着线C-C的横截面视图。
图6图解了依据第三实施例的III族氮化物基增强模式晶体管的横截面视图。
图7图解了依据第四实施例的III族氮化物基增强模式晶体管的横截面视图。
图8图解了依据第五实施例的III族氮化物基增强模式晶体管的横截面视图。
具体实施方式
在下面的详细描述中对附图进行参考,附图形成其一部分并且在其中通过图解的方式示出了在其中可以实践本发明的特定实施例。在这点上,方向性的术语诸如“顶”、“底”、“前”、“后”、“首”、“尾”等参考正被描述的(一个或多个)附图的定向来使用。因为实施例的组件能够被定位在多个不同的定向上,方向性的术语被用于图解的目的并且绝不是限制的。要被理解的是可以采用其它实施例并且可以进行结构或逻辑变化而没有脱离本发明的范围。它的下面详细的描述不要以限制的意思理解并且本发明的范围由所附权利要求限定。
以下将解释多个实施例。在该情形下,等同的结构的特征在附图中通过等同的或类似的参考符号来识别。在本描述的语境下,“横向的”或“横向的方向”应该被理解为表示与半导体材料或半导体载体的横向的广度大体上平行延伸的方向或广度。横向的方向因而大体上与这些表面或侧平行延伸。与此相比,术语“垂直的”或“垂直的方向”被理解为表示与这些表面或侧并且因而与横向的方向大体上正交延伸的方向。垂直的方向因此在半导体材料或半导体载体的厚度方向中延伸。
如在该说明书中使用,术语“耦合的”和/或“电耦合的”不打算表示元件必须直接耦合在一起,居间元件可以在“耦合的”或“电耦合的”元件之间被提供。
诸如高电压耗尽模式晶体管的耗尽模式器件具有负的阈值电压,其表示它能够在零栅极电压传导电流。这些器件是常开的。诸如低电压增强模式晶体管的增强模式器件具有正的阈值电压,其表示它不能够在零栅极电压传导电流,并且是常关的。
如在本文中所使用,短语“III族氮化物”指的是化合物半导体,所述化合物半导体包含氮(N)和至少一个III族元素,包含铝(Al)、镓(Ga)、铟(In)、和硼(B),并且包含但是不限制到其合金中的任何一个,比如诸如氮化铝镓(AlxGa(1-x)N)、氮化铟镓(InyGa(1-y)N)、氮化铝铟镓(AlxInyGa(1-x-y)N)。氮化铝镓指的是由化学式AlxGa(1-x)N描述的合金,其中x<1。
图1图解了依据第一实施例的包含异质结鳍片结构11的III族氮化物基增强模式晶体管10。异质结鳍片结构11的侧面12和顶面13被p型III族氮化物层14覆盖。
覆盖异质结鳍片结构11的侧面12和顶面13的p型III族氮化物层14的包含可以被用来将III族氮化物基晶体管结构转换成增强模式晶体管,所述III族氮化物基晶体管结构在没有p型III族氮化物层的情况下将是耗尽模式晶体管。
异质结鳍片结构11可以包含一个或多个鳍片15,所述一个或多个鳍片15也可以被描述为台面结构。鳍片15可以具有像条带的形式并且基本上相互平行延伸。异质结鳍片结构11可以包含布置在第二III族氮化物半导体层17上的第一III族氮化物半导体层18,以使得异质结16在第一III族氮化物半导体层18和第二III族氮化物半导体层17之间的界面处形成。鳍片15中的每个包含形成在两个III族氮化物材料17、18之间的异质结16,所述两个III族氮化物材料17、18具有不同的带隙。在相邻的鳍片15之间的区可以被认为是沟槽19,并且这些沟槽19用p型III族氮化物层14填充。额外地,组p型III族氮化物层14覆盖鳍片15的顶面13。
III族氮化物基增强模式晶体管可以进一步包含布置在p型III族氮化物层14上的栅极电极。栅极电极可以被直接地布置在p型III族氮化物层14上或栅极电介质可以被布置在栅极电极和p型III族氮化物层之间。
栅极电极布置在p型III族氮化物层上并且延伸到在异质结鳍片结构的相邻鳍片之间的区中。p型III族氮化物层可以装衬限定异质结鳍片结构的相邻鳍片的沟槽的壁。
p型III族氮化物层14密封异质结鳍片结构11以通过异质结的势垒层来克服可实现的内建电势的限制。异质结鳍片结构11可以被用来提供像沟槽的栅极结构,其中侧壁p型III族氮化物区形成横向的耗尽并且顶p型III族氮化物区形成包含异质结16的剩余鳍片的垂直耗尽。在氮化铝镓/氮化镓的情形下,异质结鳍片结构11包含二维电子气(2DEG)沟道。
该布置提供三重结基的耗尽机制以确保器件的常关晶体管行为,其可以即使在更高的NS密度的情况下被实现,所述更高的NS密度通过更厚的氮化铝镓势垒层或在势垒层中的更高掺杂铝掺杂来获得。在该器件结构中的阈值电压取决于结参数(p型III族氮化物层的掺杂水平和鳍片的宽度)。因此,载流子密度不受PN结的建立的电势约束。如果势垒层增加,则鳍片可以依据在空间电荷区中耗尽电荷的数量而在宽度上减少。因此,提供了低于800欧姆/方块(ohm/sq)的薄层电阻而没有增加器件电容(每面积)。
p型III族氮化物层14可以填充在异质结鳍片结构11的相邻鳍片15之间的区。
异质结鳍片结构11可以被沉积在衬底上或异质结鳍片结构可以通过在衬底中引入沟槽以产生鳍片来制造。比如,沟槽19可以形成在衬底(其包含布置在第二III族氮化物17上的第一III族氮化物层18)的表面中,以使得形式为包含异质结16的鳍片15的台面结构形成在相邻的沟槽19之间。
p型III族氮化物层14可以被耦合到栅极电极。III族氮化物基增强模式晶体管可以进一步包含III族氮化物背势垒层。III族氮化物背势垒层可以布置在第二III族氮化物17下方并且可以包含具有第一III族氮化物层的成分的材料。比如,第一III族氮化物层18可以包含氮化铝镓(AlxGa(1-x)N)、第二III族氮化物层17可以包含氮化镓(GaN)并且III族氮化物背势垒层可以包含氮化铝镓(AlxGa(1-x)N)。背势垒层可以被定位在异质结鳍片结构的鳍片的基底下方或可以被定位在鳍片内。
III族氮化物基增强模式晶体管10可以包含III族氮化物帽层,所述III族氮化物帽层布置在异质结鳍片结构11的顶面13和p型III族氮化物层14之间。
p型III族氮化物层14可以包含顶层,所述顶层布置在异质结鳍片结构11的顶面上和在包含p型III族氮化物的侧层上。
p型III族氮化物层可以包含覆盖异质结鳍片结构11的侧面的侧层,其可以被掺杂比如带有镁。在实施例中(在其中提供用于p型III族氮化物层的顶层和侧层),侧层可以通过注入进行镁掺杂,而顶层可以外延掺杂带有镁。顶层可以是镁掺杂的再生长层。
异质结鳍片结构11可以包含多个鳍片15。异质结鳍片结构11可以包含III族氮化物势垒层,所述III族氮化物势垒层可以包含比如堆叠在III族氮化物沟道层上的氮化铝镓,所述III族氮化物沟道层比如可以包含氮化镓。
III族氮化物基增强模式晶体管10可以进一步包含III族氮化物中间层,所述III族氮化物中间层布置在III族氮化物势垒层和III族氮化物沟道层之间。
图2a图解了依据第二实施例的III族氮化物基增强模式晶体管30的顶视图。图3图解了沿着线A-A的III族氮化物基增强模式晶体管30的横截面视图。图4图解了沿着线B-B的III族氮化物基增强模式晶体管30的横截面视图。图5图解了沿着线C-C的III族氮化物基增强模式晶体管30的横截面视图。
转到图2a,III族氮化物基增强模式晶体管30包含布置在III族氮化物基半导体主体35的上表面34上的源极31、栅极32和漏极33。源极31、栅极32和漏极33可以包含金属或合金。III族氮化物基增强模式晶体管30包含异质结鳍片结构36,所述异质结鳍片结构36包含多个鳍片37,为了易于图解将所述多个鳍片37中的两个图解在附图中。III族氮化物基增强模式晶体管30可以包含单个鳍片37或多于两个鳍片37。鳍片37从邻近半导体主体35的第一侧50布置的源极31延伸到邻近半导体主体35的相对侧布置的漏极33。栅极32被布置在源极31和漏极33之间。源极31、栅极32和漏极33具有像条带的形式,其基本上延伸正交于鳍片37的长度。
III族氮化物基增强模式晶体管30进一步包含形式为p型氮化镓层38的p型III族氮化物层。p型氮化镓层38具有像条带的形式并且在异质结鳍片结构36的鳍片37的一部分的侧面和顶面之上延伸。p型氮化镓层38被定位在栅极32下并且可以具有横向的面积,所述横向的面积稍微大于栅极32的横向的面积。
然而,p型氮化镓层38和栅极32的布置不被限制到该布置。在其它实施例中,栅极32可以部分地交叠p型氮化镓层38并且可以部分地在p型氮化镓层38的外部延伸。在栅极32和p型氮化镓层38之间的接触面积可以小于p型氮化镓层38的上表面的表面积。
p型氮化镓层38被电耦合到栅极32。在形成栅极32的金属和p型氮化镓层38之间的接触可以是欧姆接触,肖特基(Schottky)接触或MIS接触。
鳍片37可以具有不同的长度。在图2a图解的实施例中,鳍片37只被布置在栅极32之下的区中并且具有长度,所述长度对应于p型氮化镓层38的长度。在栅极32的区外部的半导体主体35的区没有鳍片。在进一步实施例(其在图2b中图解)中,鳍片37从邻近半导体主体35的第一侧50布置的源极31延伸到邻近半导体主体35的相对侧布置的漏极33,并且具有像条带的形式。
p型氮化镓层38和异质结鳍片结构36的布置现在参考III族氮化物基增强模式晶体管30的横截面视图将被解释,由此图3图解了沿着图2中指示的线A-A所取得的III族氮化物基增强模式晶体管30的横截面视图。
图3图解了沿着栅极32的长度的横截面并且图解了异质结鳍片结构36的鳍片37的横截面视图。鳍片37中的每个包含在形成鳍片37的上部分时形式为氮化镓铝镓层39的第一III族氮化物层39。第一氮化铝镓层39被定位在形式为氮化镓层40的第二III族氮化物层上,所述氮化镓层40形成鳍片37的下部分。鳍片37能够被认为是通过形成沟槽41而在半导体主体35中形成的台面结构,所述沟槽41基本上相互平行延伸并且限定鳍片37的侧面42。p型氮化镓层38覆盖鳍片37的侧面42和顶面43。
鳍片37中的每个包含不同成分和不同带隙的两个III族氮化物化合物。因此,异质结44在第一氮化铝镓层39和氮化镓层40之间形成。
当III族氮化物基增强模式晶体管30接通时,提供沟道45的二维电子气(2DEG)在异质结44处形成,特别地在氮化镓层40的上区域中。在III族氮化物基增强模式晶体管30的“开启”状态中沟道45的位置图解在图3到5中。在“关断”状态,不存在沟道和二维电子气。因此,氮化镓层40可以被指代为沟道层并且氮化铝镓层39可以被指代为势垒层。栅极32被直接布置在p型氮化镓层38的上表面46上,所述p型氮化镓层38被定位在半导体主体35的上表面34上方。栅极32因此被电耦合到p型氮化镓层38从而p型氮化镓层38处于栅极电势。
III族氮化物基晶体管30包含衬底49,比如硅衬底、蓝宝石衬底或碳化硅衬底,在其上沉积比如氮化铝的缓冲层48。氮化镓沟道层40被布置在缓冲层48上。
图4图解了沿着图2中指示的线B-B的横截面视图并且图解了经过邻近鳍片37的侧面的沟槽41的III族氮化物基增强模式晶体管的横截面。在图4的横截面视图中,能够看到p型氮化镓层38填充沟槽41,其从半导体主体35的上表面34延伸经过氮化铝镓层39并且到氮化镓层40中,从而在氮化铝镓层39和氮化镓层40和沟道45之间的异质结44被p型氮化镓层38的一部分覆盖。
图5图解了沿着线C-C的III族氮化物基增强模式晶体管30的横截面视图。图5图解了沿着鳍片37的长度的横截面视图。图5图解了p型氮化镓层38被定位在鳍片37的顶表面34上。鳍片37从半导体主体35的第一侧50(源极31邻近其被定位)持续延伸到半导体主体35的相对侧51(漏极33邻近其被定位)。
图6图解了依据第三实施例的III族氮化物基增强模式晶体管60的横截面视图。横截面视图沿着栅极61的长度来取得,所述栅极61覆盖异质结鳍片结构62。异质结鳍片结构62包含多个鳍片63,每个在图6图解的平面前和在图6图解的平面后基本上相互平行延伸。
鳍片63中的每个包含上部分64(其包含第一III族氮化物化合物)和下部分65(其包含第二III族氮化物化合物)以使得异质结66形成在它们之间。第一III族氮化物化合物可以包含氮化铝镓并且第二III族氮化物化合物可以包含氮化镓。
鳍片63被形式为p型氮化镓层67的p型III族氮化物化合物密封。p型氮化镓层67覆盖鳍片63的侧面68和鳍片63的顶面69。栅极61被直接定位在p型氮化镓层67的上表面上并且被电耦合到p型氮化镓层67。
依据第三实施例的III族氮化物基增强模式晶体管60进一步包含III族氮化物基背势垒层71,所述III族氮化物基背势垒层71被定位在III族氮化物基层73的下表面72上,鳍片63的下部分65从III族氮化物基层73突出。III族氮化物基背势垒层71可以包含氮化铝镓层,所述氮化铝镓层具有比III族氮化物基层73更宽的带隙。背势垒层71可以被用来改进沟道束缚。背势垒层71可以被布置在缓冲层上,所述缓冲层被布置在衬底上。
上部分64的第一III族氮化物基化合物具有比下部分65的第二III族氮化物基化合物更宽的带隙以使得当III族氮化物基增强模式晶体管60接通时2DEG沟道形成在第二III族氮化物层65的上区中。2DEG沟道的位置在图6中用虚线70示意性图解。
第一III族氮化物基层64可以被认为是势垒层并且第二III族氮化物基层65可以被认为是沟道层。
p型III族氮化物基层67可以被认为包含突出到形成在限定的鳍片63之间的沟槽中的突出部分。
图7图解了依据第四实施例的III族氮化物基增强模式晶体管80的横截面视图的一部分。特别地,图7图解了沿着栅极81的长度的横截面视图并且图解了异质结鳍片结构83的鳍片82中的两个的横截面视图。鳍片82基本上相互平行延伸到纸面的平面中。鳍片82中的每个包含布置在第一III族氮化物基层85上的下部分84和包含第二III族氮化物基化合物的上部分86。下部分84可以包含第一III族氮化物层85的成分。
上部分86的第二III族氮化物基化合物具有与下部分84的III族氮化物化合物不同的晶格常数和带隙。比如,第一III族氮化物基层85和鳍片82的下部分84可以包含氮化镓,并且上部分86可以包含氮化铝镓。鳍片82每个包含形成在下部分84的第一III族氮化物基化合物和上部分86的第二III族氮化物基层之间的异质结87。由于不同的晶格常数和带隙,当III族氮化物基增强模式晶体管80处在“开启”状态时二维气沟道形成在邻近于异质结87的鳍片81的下部分84的上区中。二维气沟道的位置在图7中用虚线88示意性图解。
鳍片82中的每个进一步包含定位在上部分86上的III族氮化物基帽层89。III族氮化物基帽层89可以包含比如氮化镓。III族氮化物基帽层89可以充当用于上部分86的底下第二III族氮化物基化合物的保护层。鳍片82的侧面90和顶面91被p型III族氮化物基层92覆盖。
在该实施例中,p型III族氮化物基层92包含两个子层。第一子层93覆盖鳍片82的侧面90,并且第二子层94覆盖鳍片82的顶面91和第一子层93的顶面95。栅极81被直接定位在第二子层94上。第一子层93和第二子层94可以使用相同或不同的工艺来沉积。比如,第一p型子层93可以被沉积且通过镁注入来掺杂,并且第二p型子层94可以是再生长层。第一子层93和第二子层94可以两者都被再生长。在第一子层93和第二子层94两者都被再生长的实施例中,第一子层和第二子层可以是整体的以使得在第一子层93和第二子层94之间不存在可辨别的界面。
鳍片82可以通过选择性沉积提供下部分84的第一III族氮化物基层、提供上部分86的第二III族氮化物基层、和帽层89来制造以在III族氮化物基的基层85上构建鳍片82。III族氮化物基的基层85可以包含与下部分84的第一III族氮化物基化合物相同的成分或可以具有不同的成分,诸如适合的缓冲层材料的成分,比如AlN。III族氮化物基的基层85可以被布置在缓冲层上,所述缓冲层布置在衬底上。
图8图解了依据第五实施例的III族氮化物基增强模式晶体管100的横截面视图。
横截面视图沿着栅极101的长度来取得,所述栅极101覆盖异质结鳍片结构102。异质结鳍片结构102包含沟槽104限定的多个鳍片103。
鳍片103中的每个包含上部分105(其包含第一III族氮化物化合物)和下部分106(其包含第二III族氮化物化合物)以使得异质结107形成在它们之间。第一III族氮化物化合物可以包含氮化铝镓并且第二III族氮化物化合物可以包含氮化镓。
沟槽104用p型III族氮化物层108装衬以使得鳍片103的两个相对侧面109和顶面110被p型III族氮化物层108覆盖。p型III族氮化物层108可以包含比如p型氮化镓。在该实施例中,p型III族氮化物层不填充沟槽104。栅极101被直接定位在p型氮化镓层108的上表面上,并且延伸到沟槽104中且延伸在定位在沟槽104的相对壁上的III族氮化物层108的部分之间。栅极101被电耦合到p型III族氮化物层108。
上部分104的第一III族氮化物基化合物具有比下部分105的第二III族氮化物基化合物更宽的带隙以使得当III族氮化物基增强模式晶体管100接通时2DEG沟道形成在第二III族氮化物层105的上区中。2DEG沟道的位置在图8中用虚线109示意性图解。
在本文中描述的各种实施例可以相互组合。比如,III族氮化物基背势垒层可以与III族氮化物基帽层一起使用。
依据在本文中描述的实施例中的任何一个的III族氮化物基增强模式晶体管也可以包含:导电源极区,从半导体主体的上表面延伸到势垒层中以使得其被耦合到2DEG沟道;并且也包含:导电源极区,从半导体主体的上表面延伸到势垒层中且被电耦合到2DEG沟道。
空间相对的术语诸如“在...之下”、“以下”、“下”、“在..之上”、“上”等等,被用于易于描述以解释一个元件相对于第二元件的定位。这些术语意图涵盖器件的不同定向,除了与在附图中描绘的那些不同的定向之外。
进一步,术语诸如“第一”、“第二”等等也被用来描述各种元件、区、部分等,并且也不意在进行限制。贯穿描述,相同的术语指的是相同的元件。
如本文使用的术语“具有”、“含有”、“包含”、“包括”等等是开放型的术语,其指示陈述过的元件或特征的出现,但是没有排除额外的元件或特征。冠词“一(a)”、“一个(an)”和“该(the)”意图包含复数以及单数,除非上下文另外清楚地指示。
要被理解的是在本文中描述的各种实施例的特征可以彼此组合,除非另外特定指出。
尽管在本文中已图解和描述了特定的实施例,但是本领域的普通技术人员将意识到的是多个替选和/或等价的实施方式可以代替所示出和所描述的特定实施例,而没有脱离本发明的范围。该申请意图覆盖在本文中讨论的特定实施例的任何适配和变动。因此,意图是该发明只受权利要求和其等价物限制。
Claims (18)
1.一种III族氮化物基增强模式晶体管,包括异质结鳍片结构,其中异质结鳍片结构的侧面和顶面被p型III族氮化物层覆盖。
2.依据权利要求1的所述III族氮化物基增强模式晶体管,其中异质结鳍片结构包括布置在形成异质结的第二III族氮化物半导体层上的第一III族氮化物半导体层。
3.依据权利要求1的所述III族氮化物基增强模式晶体管,进一步包括布置在p型III族氮化物层上的栅极电极。
4.依据权利要求3的所述III族氮化物基增强模式晶体管,其中栅极电极被直接布置在p型III族氮化物层上。
5.依据权利要求1的所述III族氮化物基增强模式晶体管,其中p型III族氮化物层填充在异质结鳍片结构的相邻鳍片之间的区。
6.依据权利要求1的所述III族氮化物基增强模式晶体管,其中异质结鳍片结构被沉积在衬底上。
7.依据权利要求1的所述III族氮化物基增强模式晶体管,其中异质结鳍片结构在衬底中包括台面结构。
8.依据权利要求1的所述III族氮化物基增强模式晶体管,其中p型III族氮化物层被耦合到栅极电极。
9.依据权利要求1的所述III族氮化物基增强模式晶体管,进一步包括III族氮化物背势垒层。
10.依据权利要求1的所述III族氮化物基增强模式晶体管,进一步包括III族氮化物帽层,所述III族氮化物帽层被布置在异质结鳍片结构的顶面和p型III族氮化物层之间。
11.依据权利要求1的所述III族氮化物基增强模式晶体管,其中p型III族氮化物层包括顶层,所述顶层被布置在异质结鳍片结构的顶面上和在包括p型III族氮化物的侧层的顶面上。
12.依据权利要求11的所述III族氮化物基增强模式晶体管,其中p型III族氮化物层包括覆盖异质结鳍片结构的侧面的侧层,所述侧层被注入掺杂。
13.依据权利要求1的所述III族氮化物基增强模式晶体管,其中p型III族氮化物层被掺杂带有镁。
14.依据权利要求1的所述III族氮化物基增强模式晶体管,其中异质结鳍片结构包括多个鳍片。
15.依据权利要求1的所述III族氮化物基增强模式晶体管,其中异质结鳍片结构包括堆叠在III族氮化物沟道层上的III族氮化物势垒层。
16.依据权利要求15的所述III族氮化物基增强模式晶体管,进一步包括布置在III族氮化物势垒层和III族氮化物沟道层之间的III族氮化物中间层。
17.依据权利要求1的所述III族氮化物基增强模式晶体管,进一步包括布置在p型III族氮化物层上的栅极电极,所述栅极电极延伸到在异质结鳍片结构的相邻鳍片之间的区中。
18.依据权利要求1的所述III族氮化物基增强模式晶体管,其中p型III族氮化物层装衬限定异质结鳍片结构的相邻鳍片的沟槽的壁。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/168694 | 2014-01-30 | ||
US14/168,694 US9048303B1 (en) | 2014-01-30 | 2014-01-30 | Group III-nitride-based enhancement mode transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104821331A true CN104821331A (zh) | 2015-08-05 |
CN104821331B CN104821331B (zh) | 2018-08-17 |
Family
ID=53190745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510048389.1A Active CN104821331B (zh) | 2014-01-30 | 2015-01-30 | Iii族氮化物基增强模式晶体管 |
Country Status (3)
Country | Link |
---|---|
US (2) | US9048303B1 (zh) |
CN (1) | CN104821331B (zh) |
DE (1) | DE102015100387A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109888008A (zh) * | 2017-12-06 | 2019-06-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | GaN基的p-GaN增强型HEMT器件及其制作方法 |
CN110676166A (zh) * | 2018-07-02 | 2020-01-10 | 西安电子科技大学 | P-GaN帽层的FinFET增强型器件及制作方法 |
CN111029404A (zh) * | 2018-10-09 | 2020-04-17 | 西安电子科技大学 | 基于鳍形栅结构的p-GaN/AlGaN/GaN增强型器件及其制作方法 |
CN111540674A (zh) * | 2020-07-10 | 2020-08-14 | 浙江大学 | 桥式GaN器件及其制备方法 |
CN112768508A (zh) * | 2021-01-21 | 2021-05-07 | 西安电子科技大学 | 背栅全控型AlGaN/GaN异质结增强型功率HEMT器件及制备方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10217673B2 (en) * | 2014-12-17 | 2019-02-26 | Intel Corporation | Integrated circuit die having reduced defect group III-nitride structures and methods associated therewith |
US9478708B2 (en) | 2015-03-11 | 2016-10-25 | International Business Machines Corporation | Embedded gallium—nitride in silicon |
US10304946B2 (en) * | 2015-06-17 | 2019-05-28 | Intel Corporation | Vertical integration scheme and circuit elements architecture for area scaling of semiconductor devices |
US10276681B2 (en) | 2016-02-29 | 2019-04-30 | Infineon Technologies Austria Ag | Double gate transistor device and method of operating |
US10530360B2 (en) * | 2016-02-29 | 2020-01-07 | Infineon Technologies Austria Ag | Double gate transistor device and method of operating |
US10700188B2 (en) * | 2017-11-02 | 2020-06-30 | Rohm Co., Ltd. | Group III nitride semiconductor device with first and second conductive layers |
CN108321199B (zh) * | 2017-12-28 | 2021-01-19 | 中国电子科技集团公司第五十五研究所 | 一种基于三维复合漏极的GaN高电子迁移率晶体管及其制造方法 |
CN110085675A (zh) * | 2019-03-13 | 2019-08-02 | 西安电子科技大学 | 一种hemt增强型器件及其制作方法 |
US10879382B1 (en) | 2019-06-26 | 2020-12-29 | Northrop Grumman Systems Corporation | Enhancement mode saddle gate device |
US11257941B2 (en) * | 2020-01-28 | 2022-02-22 | Infineon Technologies Austria Ag | High electron mobility transistor with doped semiconductor region in gate structure |
CN113224153B (zh) | 2020-02-06 | 2024-02-13 | 联华电子股份有限公司 | 高电子迁移率晶体管及其制作方法 |
US11973134B2 (en) * | 2020-03-26 | 2024-04-30 | Mitsubishi Electric Research Laboratories, Inc. | Super junction gated AlGaN GaN HEMT |
CN112838121B (zh) * | 2021-01-21 | 2023-03-31 | 西安电子科技大学 | 环栅全控型AlGaN/GaN毫米波HEMT器件及其制备方法 |
CN115810663A (zh) * | 2021-09-14 | 2023-03-17 | 联华电子股份有限公司 | 高电子迁移率晶体管及其制作方法 |
US12218202B2 (en) * | 2021-09-16 | 2025-02-04 | Wolfspeed, Inc. | Semiconductor device incorporating a substrate recess |
US20230197841A1 (en) * | 2021-12-16 | 2023-06-22 | Wolfspeed, Inc. | Group iii-nitride high-electron mobility transistors with a buried conductive material layer and process for making the same |
CN114447113A (zh) * | 2021-12-20 | 2022-05-06 | 西安电子科技大学 | 基于栅下图形化的新型Fin结构GaN HEMT器件及其制备方法 |
US20240304670A1 (en) | 2023-03-08 | 2024-09-12 | Infineon Technologies Austria Ag | Multi-Channel High Electron Mobility Transistor with Reduced Input Capacitance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101853882A (zh) * | 2009-04-01 | 2010-10-06 | 台湾积体电路制造股份有限公司 | 具有改进的开关电流比的高迁移率多面栅晶体管 |
US20110140171A1 (en) * | 2008-12-30 | 2011-06-16 | Ravi Pillarisetty | Apparatus and methods for forming a modulation doped non-planar transistor |
US20120292665A1 (en) * | 2011-05-16 | 2012-11-22 | Fabio Alessio Marino | High performance multigate transistor |
Family Cites Families (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7205604B2 (en) * | 2001-03-13 | 2007-04-17 | International Business Machines Corporation | Ultra scalable high speed heterojunction vertical n-channel MISFETs and methods thereof |
WO2004019415A1 (en) * | 2002-08-26 | 2004-03-04 | University Of Florida | GaN-TYPE ENHANCEMENT MOSFET USING HETERO STRUCTURE |
KR100545863B1 (ko) * | 2004-07-30 | 2006-01-24 | 삼성전자주식회사 | 핀 구조물을 갖는 반도체 장치 및 이를 제조하는 방법 |
JP4002918B2 (ja) | 2004-09-02 | 2007-11-07 | 株式会社東芝 | 窒化物含有半導体装置 |
US20060197129A1 (en) * | 2005-03-03 | 2006-09-07 | Triquint Semiconductor, Inc. | Buried and bulk channel finFET and method of making the same |
US8324660B2 (en) * | 2005-05-17 | 2012-12-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
JP2007142243A (ja) * | 2005-11-21 | 2007-06-07 | Matsushita Electric Ind Co Ltd | 窒化物半導体電界効果トランジスタ及びその製造方法 |
US8227328B2 (en) * | 2006-08-24 | 2012-07-24 | Hongxing Jiang | Er doped III-nitride materials and devices synthesized by MOCVD |
JP4310399B2 (ja) * | 2006-12-08 | 2009-08-05 | 株式会社東芝 | 半導体装置及びその製造方法 |
US8035130B2 (en) * | 2007-03-26 | 2011-10-11 | Mitsubishi Electric Corporation | Nitride semiconductor heterojunction field effect transistor having wide band gap barrier layer that includes high concentration impurity region |
US7728356B2 (en) | 2007-06-01 | 2010-06-01 | The Regents Of The University Of California | P-GaN/AlGaN/AlN/GaN enhancement-mode field effect transistor |
JP2008311355A (ja) * | 2007-06-13 | 2008-12-25 | Rohm Co Ltd | 窒化物半導体素子 |
US7915643B2 (en) * | 2007-09-17 | 2011-03-29 | Transphorm Inc. | Enhancement mode gallium nitride power devices |
US7969776B2 (en) * | 2008-04-03 | 2011-06-28 | Micron Technology, Inc. | Data cells with drivers and methods of making and operating the same |
US7842974B2 (en) * | 2009-02-18 | 2010-11-30 | Alpha & Omega Semiconductor, Inc. | Gallium nitride heterojunction schottky diode |
KR101660870B1 (ko) * | 2009-04-08 | 2016-09-28 | 이피션트 파워 컨버젼 코퍼레이션 | 보상형 게이트 미스페트 |
US8264032B2 (en) | 2009-09-01 | 2012-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Accumulation type FinFET, circuits and fabrication method thereof |
US8338860B2 (en) | 2009-10-30 | 2012-12-25 | Alpha And Omega Semiconductor Incorporated | Normally off gallium nitride field effect transistors (FET) |
US9087725B2 (en) * | 2009-12-03 | 2015-07-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFETs with different fin height and EPI height setting |
US20120305893A1 (en) * | 2010-02-19 | 2012-12-06 | University College Cork-National University of Ireland ,Cork | Transistor device |
US20110210377A1 (en) * | 2010-02-26 | 2011-09-01 | Infineon Technologies Austria Ag | Nitride semiconductor device |
KR101774933B1 (ko) | 2010-03-02 | 2017-09-06 | 삼성전자 주식회사 | 듀얼 디플리션을 나타내는 고 전자 이동도 트랜지스터 및 그 제조방법 |
US20110248283A1 (en) * | 2010-04-07 | 2011-10-13 | Jianjun Cao | Via structure of a semiconductor device and method for fabricating the same |
GB2482308A (en) | 2010-07-28 | 2012-02-01 | Univ Sheffield | Super junction silicon devices |
KR101217209B1 (ko) * | 2010-10-07 | 2012-12-31 | 서울대학교산학협력단 | 발광소자 및 그 제조방법 |
US8435845B2 (en) * | 2011-04-06 | 2013-05-07 | International Business Machines Corporation | Junction field effect transistor with an epitaxially grown gate structure |
US8604486B2 (en) * | 2011-06-10 | 2013-12-10 | International Rectifier Corporation | Enhancement mode group III-V high electron mobility transistor (HEMT) and method for fabrication |
KR20130008280A (ko) * | 2011-07-12 | 2013-01-22 | 삼성전자주식회사 | 안정성이 우수한 질화물계 반도체 소자 |
WO2013011617A1 (ja) * | 2011-07-15 | 2013-01-24 | パナソニック株式会社 | 半導体装置及びその製造方法 |
US20130032860A1 (en) * | 2011-08-01 | 2013-02-07 | Fabio Alessio Marino | HFET with low access resistance |
US8674372B2 (en) * | 2011-08-19 | 2014-03-18 | Infineon Technologies Austria Ag | HEMT with integrated low forward bias diode |
JP2014534632A (ja) * | 2011-10-11 | 2014-12-18 | マサチューセッツ インスティテュート オブ テクノロジー | 凹型電極構造を有する半導体装置 |
US8420459B1 (en) * | 2011-10-20 | 2013-04-16 | International Business Machines Corporation | Bulk fin-field effect transistors with well defined isolation |
US8994035B2 (en) * | 2011-11-21 | 2015-03-31 | Sensor Electronic Technology, Inc. | Semiconductor device with low-conducting buried and/or surface layers |
US8669591B2 (en) * | 2011-12-27 | 2014-03-11 | Eta Semiconductor Inc. | E-mode HFET device |
US8659032B2 (en) * | 2012-01-31 | 2014-02-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET and method of fabricating the same |
US8735993B2 (en) * | 2012-01-31 | 2014-05-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET body contact and method of making same |
US8633077B2 (en) * | 2012-02-15 | 2014-01-21 | International Business Machines Corporation | Transistors with uniaxial stress channels |
US8586993B2 (en) * | 2012-02-28 | 2013-11-19 | Infineon Technologies Austria Ag | Normally-off compound semiconductor tunnel transistor |
US8927966B2 (en) * | 2012-05-22 | 2015-01-06 | Tsinghua University | Dynamic random access memory unit and method for fabricating the same |
US9035355B2 (en) * | 2012-06-18 | 2015-05-19 | Infineon Technologies Austria Ag | Multi-channel HEMT |
US8823059B2 (en) * | 2012-09-27 | 2014-09-02 | Intel Corporation | Non-planar semiconductor device having group III-V material active region with multi-dielectric gate stack |
US8722494B1 (en) * | 2012-11-01 | 2014-05-13 | International Business Machines Corporation | Dual gate finFET devices |
US8815668B2 (en) * | 2012-12-07 | 2014-08-26 | International Business Machines Corporation | Preventing FIN erosion and limiting Epi overburden in FinFET structures by composite hardmask |
US8748940B1 (en) * | 2012-12-17 | 2014-06-10 | Intel Corporation | Semiconductor devices with germanium-rich active layers and doped transition layers |
JP2014138111A (ja) * | 2013-01-17 | 2014-07-28 | Fujitsu Ltd | 半導体装置及びその製造方法、電源装置、高周波増幅器 |
JP6339762B2 (ja) * | 2013-01-17 | 2018-06-06 | 富士通株式会社 | 半導体装置及びその製造方法、電源装置、高周波増幅器 |
US9214555B2 (en) * | 2013-03-12 | 2015-12-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Barrier layer for FinFET channels |
US9029226B2 (en) * | 2013-03-13 | 2015-05-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanisms for doping lightly-doped-drain (LDD) regions of finFET devices |
US8975125B2 (en) * | 2013-03-14 | 2015-03-10 | International Business Machines Corporation | Formation of bulk SiGe fin with dielectric isolation by anodization |
US8906754B2 (en) * | 2013-03-15 | 2014-12-09 | Globalfoundries Inc. | Methods of forming a semiconductor device with a protected gate cap layer and the resulting device |
US20140264488A1 (en) * | 2013-03-15 | 2014-09-18 | Globalfoundries Inc. | Methods of forming low defect replacement fins for a finfet semiconductor device and the resulting devices |
US8859379B2 (en) * | 2013-03-15 | 2014-10-14 | International Business Machines Corporation | Stress enhanced finFET devices |
US9059217B2 (en) * | 2013-03-28 | 2015-06-16 | International Business Machines Corporation | FET semiconductor device with low resistance and enhanced metal fill |
US8987793B2 (en) * | 2013-04-23 | 2015-03-24 | Broadcom Corporation | Fin-based field-effect transistor with split-gate structure |
US8941161B2 (en) * | 2013-05-07 | 2015-01-27 | International Business Machines Corporation | Semiconductor device including finFET and diode having reduced defects in depletion region |
US8895395B1 (en) * | 2013-06-06 | 2014-11-25 | International Business Machines Corporation | Reduced resistance SiGe FinFET devices and method of forming same |
US9093532B2 (en) * | 2013-06-21 | 2015-07-28 | International Business Machines Corporation | Overlapped III-V finFET with doped semiconductor extensions |
CN104347408B (zh) * | 2013-07-31 | 2017-12-26 | 中芯国际集成电路制造(上海)有限公司 | 半导体装置及其制造方法 |
US9337279B2 (en) * | 2014-03-03 | 2016-05-10 | Infineon Technologies Austria Ag | Group III-nitride-based enhancement mode transistor |
-
2014
- 2014-01-30 US US14/168,694 patent/US9048303B1/en active Active
-
2015
- 2015-01-13 DE DE102015100387.2A patent/DE102015100387A1/de not_active Withdrawn
- 2015-01-30 CN CN201510048389.1A patent/CN104821331B/zh active Active
- 2015-04-29 US US14/699,785 patent/US9647104B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110140171A1 (en) * | 2008-12-30 | 2011-06-16 | Ravi Pillarisetty | Apparatus and methods for forming a modulation doped non-planar transistor |
CN101853882A (zh) * | 2009-04-01 | 2010-10-06 | 台湾积体电路制造股份有限公司 | 具有改进的开关电流比的高迁移率多面栅晶体管 |
US20120292665A1 (en) * | 2011-05-16 | 2012-11-22 | Fabio Alessio Marino | High performance multigate transistor |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109888008A (zh) * | 2017-12-06 | 2019-06-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | GaN基的p-GaN增强型HEMT器件及其制作方法 |
CN110676166A (zh) * | 2018-07-02 | 2020-01-10 | 西安电子科技大学 | P-GaN帽层的FinFET增强型器件及制作方法 |
CN110676166B (zh) * | 2018-07-02 | 2020-12-22 | 西安电子科技大学 | P-GaN帽层的FinFET增强型器件及制作方法 |
CN111029404A (zh) * | 2018-10-09 | 2020-04-17 | 西安电子科技大学 | 基于鳍形栅结构的p-GaN/AlGaN/GaN增强型器件及其制作方法 |
CN111540674A (zh) * | 2020-07-10 | 2020-08-14 | 浙江大学 | 桥式GaN器件及其制备方法 |
CN111540674B (zh) * | 2020-07-10 | 2020-10-09 | 浙江大学 | 桥式GaN器件及其制备方法 |
CN112768508A (zh) * | 2021-01-21 | 2021-05-07 | 西安电子科技大学 | 背栅全控型AlGaN/GaN异质结增强型功率HEMT器件及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20150255590A1 (en) | 2015-09-10 |
US9048303B1 (en) | 2015-06-02 |
US9647104B2 (en) | 2017-05-09 |
DE102015100387A1 (de) | 2015-07-30 |
CN104821331B (zh) | 2018-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104821331B (zh) | Iii族氮化物基增强模式晶体管 | |
US9837520B2 (en) | Group III-nitride-based enhancement mode transistor having a multi-heterojunction fin structure | |
JP5611653B2 (ja) | 窒化物半導体素子 | |
EP2720272B1 (en) | High electron mobility transistor and method of driving the same | |
US8890212B2 (en) | Normally-off high electron mobility transistor | |
JP5954831B2 (ja) | 半導体装置の製造方法 | |
US9443938B2 (en) | III-nitride transistor including a p-type depleting layer | |
CN110010562B (zh) | 半导体器件 | |
CN103311291B (zh) | 半导体器件及方法 | |
TW201535739A (zh) | 半導體裝置 | |
CN102623498A (zh) | 半导体元件 | |
CN105720053A (zh) | 半导体器件和方法 | |
EP3539159B1 (en) | Semiconductor devices with multiple channels and three-dimensional electrodes | |
CN104347696A (zh) | 半导体装置以及其制造方法 | |
JP2015173151A (ja) | 半導体装置 | |
CN109980000A (zh) | 增强型高电子迁移率晶体管元件及其形成方法 | |
CN104916679A (zh) | 半导体装置 | |
US9281413B2 (en) | Enhancement mode device | |
CN111799162A (zh) | Iii族氮化物基晶体管器件及制造用于其的栅极结构的方法 | |
US9570597B2 (en) | High electron mobility transistor | |
JP5793101B2 (ja) | 半導体装置 | |
JP5272341B2 (ja) | 半導体装置 | |
JP2009044035A (ja) | 電界効果半導体装置 | |
JP2013183033A (ja) | 窒化ガリウム系電力用半導体装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |