[go: up one dir, main page]

CN104779328A - LED structure - Google Patents

LED structure Download PDF

Info

Publication number
CN104779328A
CN104779328A CN201410014540.5A CN201410014540A CN104779328A CN 104779328 A CN104779328 A CN 104779328A CN 201410014540 A CN201410014540 A CN 201410014540A CN 104779328 A CN104779328 A CN 104779328A
Authority
CN
China
Prior art keywords
type
layer
gallium nitride
semiconductor layer
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410014540.5A
Other languages
Chinese (zh)
Other versions
CN104779328B (en
Inventor
李玉柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genesis Photonics Inc
Original Assignee
Genesis Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Photonics Inc filed Critical Genesis Photonics Inc
Priority to CN201410014540.5A priority Critical patent/CN104779328B/en
Priority to CN201810015565.5A priority patent/CN107968139B/en
Priority to CN201810016160.3A priority patent/CN108054255B/en
Publication of CN104779328A publication Critical patent/CN104779328A/en
Application granted granted Critical
Publication of CN104779328B publication Critical patent/CN104779328B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes

Landscapes

  • Led Devices (AREA)

Abstract

The invention provides a light emitting diode structure. The light emitting diode structure comprises a substrate, an N-type semiconductor layer, a light emitting layer and a P-type semiconductor layer. The N-type semiconductor layer is arranged on the substrate. The light-emitting layer is suitable for emitting light with a main light-emitting wavelength of 365 nm to 490 nm and is arranged on the N-type semiconductor layer. The P-type semiconductor layer is disposed on the light emitting layer and includes a P-type AlGaN layer. The thickness of the P-type aluminum gallium nitride layer accounts for more than 85% of the thickness of the whole P-type semiconductor layer.

Description

发光二极管结构LED structure

技术领域technical field

本发明是有关于一种半导体结构,且特别是有关于一种发光二极管结构。The present invention relates to a semiconductor structure, and more particularly to a light emitting diode structure.

背景技术Background technique

随着半导体科技的进步,现今的发光二极管已具备了高亮度的输出,加上发光二极管具有省电、体积小、低电压驱动以及不含汞等优点,因此发光二极管已广泛地应用在显示器与照明等领域。一般而言,发光二极管采用宽带隙半导体材料,如氮化镓(GaN)等材料,来进行制造。然而,当发光二极管的发光层放出近UV光或蓝光时,采用氮化镓所形成的P型半导体层会吸收波长约为365~490奈米左右的光,即会吸收近UV光与蓝光,进而影响整体发光二极管的出光效率。With the advancement of semiconductor technology, today's light-emitting diodes have a high-brightness output. In addition, light-emitting diodes have the advantages of power saving, small size, low-voltage drive, and mercury-free. Therefore, light-emitting diodes have been widely used in displays and lighting and other fields. Generally speaking, light-emitting diodes are manufactured using wide-bandgap semiconductor materials, such as gallium nitride (GaN) and other materials. However, when the light-emitting layer of the light-emitting diode emits near-UV light or blue light, the P-type semiconductor layer formed by gallium nitride will absorb light with a wavelength of about 365-490 nm, that is, it will absorb near-UV light and blue light. This further affects the light extraction efficiency of the overall light emitting diode.

发明内容Contents of the invention

本发明提供一种发光二极管结构,其具有较佳的出光效率。The invention provides a light emitting diode structure with better light extraction efficiency.

本发明的发光二极管结构,其包括基板、N型半导体层、发光层以及P型半导体层。N型半导体层配置于基板上。发光层适于发出主要发光波长介于365奈米至490奈米之间的光且配置于N型半导体层上。P型半导体层配置于发光层上,且包括P型氮化铝镓层。P型氮化铝镓层的厚度占整体P型半导体层的厚度的85%以上。The LED structure of the present invention includes a substrate, an N-type semiconductor layer, a light-emitting layer and a P-type semiconductor layer. The N-type semiconductor layer is configured on the substrate. The light-emitting layer is suitable for emitting light with a main light-emitting wavelength between 365 nm and 490 nm and is disposed on the N-type semiconductor layer. The P-type semiconductor layer is disposed on the light-emitting layer and includes a P-type AlGaN layer. The thickness of the P-type AlGaN layer accounts for more than 85% of the thickness of the entire P-type semiconductor layer.

在本发明的一实施例中,上述的P型半导体层为P型氮化铝镓层。In an embodiment of the present invention, the above-mentioned P-type semiconductor layer is a P-type AlGaN layer.

在本发明的一实施例中,上述的P型半导体层还包括P型氮化镓层,配置于P型氮化铝镓层上。P型氮化镓层的厚度占整体P型半导体层的厚度的15%以下。In an embodiment of the present invention, the above-mentioned P-type semiconductor layer further includes a P-type GaN layer disposed on the P-type AlGaN layer. The thickness of the P-type gallium nitride layer accounts for less than 15% of the thickness of the entire P-type semiconductor layer.

在本发明的一实施例中,上述的P型氮化铝镓层包括第一P型氮化铝镓层以及第二P型氮化铝镓层。第一P型氮化铝镓层中的铝含量不同于第二P型氮化铝镓层中的铝含量。In an embodiment of the present invention, the above-mentioned P-type AlGaN layer includes a first P-type AlGaN layer and a second P-type AlGaN layer. The aluminum content in the first P-type AlGaN layer is different from the aluminum content in the second P-type AlGaN layer.

在本发明的一实施例中,上述的第一P型氮化铝镓层位于第二P型氮化铝镓层与发光层之间,且第一P型氮化铝镓层中的铝含量大于第二P型氮化铝镓层中的铝含量。In an embodiment of the present invention, the above-mentioned first P-type AlGaN layer is located between the second P-type AlGaN layer and the light-emitting layer, and the aluminum content in the first P-type AlGaN layer greater than the aluminum content in the second P-type AlGaN layer.

在本发明的一实施例中,上述的第一P型氮化铝镓层的材料为AlxGa1-xN,且x为0.09~0.2。In an embodiment of the present invention, the material of the above-mentioned first P-type AlGaN layer is AlxGa1-xN, and x is 0.09˜0.2.

在本发明的一实施例中,上述的第二P型氮化铝镓层的材料为AlyGa1-yN,且y为0.01~0.15。In an embodiment of the present invention, the material of the second P-type AlGaN layer is AlyGa1-yN, and y is 0.01˜0.15.

在本发明的一实施例中,上述的第二P型氮化铝镓层的厚度大于第一P型氮化铝镓层的厚度。In an embodiment of the present invention, the thickness of the second P-type AlGaN layer is greater than the thickness of the first P-type AlGaN layer.

在本发明的一实施例中,上述的第一P型氮化铝镓层中的P型掺杂浓度大于第二P型氮化铝镓层的P型掺杂浓度。In an embodiment of the present invention, the P-type doping concentration in the first P-type AlGaN layer is greater than the P-type doping concentration in the second P-type AlGaN layer.

在本发明的一实施例中,上述的P型半导体层还包括P型氮化铝铟镓层,配置于P型氮化铝镓层与发光层之间。In an embodiment of the present invention, the above-mentioned P-type semiconductor layer further includes a P-type AlInGaN layer disposed between the P-type AlGaN layer and the light-emitting layer.

在本发明的一实施例中,上述的N型半导体层为N型氮化镓层。In an embodiment of the present invention, the above-mentioned N-type semiconductor layer is an N-type GaN layer.

在本发明的一实施例中,上述的发光二极管结构,还包括N型电极以及P型电极。N型电极配置于未被发光层所覆盖的N型半导体层上,且与N型半导体层电性连接。P型电极配置于P型半导体层上,且与P型半导体层电性连接。In an embodiment of the present invention, the above light emitting diode structure further includes an N-type electrode and a P-type electrode. The N-type electrode is arranged on the N-type semiconductor layer not covered by the light-emitting layer, and is electrically connected with the N-type semiconductor layer. The P-type electrode is disposed on the P-type semiconductor layer and electrically connected with the P-type semiconductor layer.

在本发明的一实施例中,上述的发光二极管结构还包括透明导电层,配置于P型半导体层上。In an embodiment of the present invention, the above light emitting diode structure further includes a transparent conductive layer disposed on the P-type semiconductor layer.

基于上述,由于本发明的P型氮化铝镓层的厚度占整体P型半导体层的厚度的85%以上,因此可以降低P型半导体层吸收发光层所发出的近UV光或蓝光。如此一来,本发明的发光二极管结构可具有较佳的出光效率。Based on the above, since the thickness of the P-type AlGaN layer of the present invention accounts for more than 85% of the thickness of the entire P-type semiconductor layer, it can reduce the absorption of near-UV light or blue light emitted by the light-emitting layer by the P-type semiconductor layer. In this way, the light emitting diode structure of the present invention can have better light extraction efficiency.

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

附图说明Description of drawings

图1示出为本发明的一实施例的一种发光二极管结构的剖面示意图;FIG. 1 shows a schematic cross-sectional view of a light emitting diode structure according to an embodiment of the present invention;

图2示出为本发明的另一实施例的一种发光二极管结构的剖面示意图;2 is a schematic cross-sectional view of a light emitting diode structure according to another embodiment of the present invention;

图3示出为本发明的另一实施例的一种发光二极管结构的剖面示意图;3 is a schematic cross-sectional view of a light emitting diode structure according to another embodiment of the present invention;

图4示出为本发明的另一实施例的一种发光二极管结构的剖面示意图;4 is a schematic cross-sectional view of a light emitting diode structure according to another embodiment of the present invention;

图5示出为本发明的另一实施例的一种发光二极管结构的剖面示意图;5 is a schematic cross-sectional view of a light emitting diode structure according to another embodiment of the present invention;

图6示出为本发明的另一实施例的一种发光二极管结构的剖面示意图。FIG. 6 is a schematic cross-sectional view of a light emitting diode structure according to another embodiment of the present invention.

附图标记说明:Explanation of reference signs:

100a、100b、100c、100d、100e、100f:发光二极管结构;100a, 100b, 100c, 100d, 100e, 100f: light emitting diode structure;

110:基板;110: substrate;

120:N型半导体层;120: N-type semiconductor layer;

130:发光层;130: luminescent layer;

140a、140b、140c、140d、140e:P型半导体层;140a, 140b, 140c, 140d, 140e: P-type semiconductor layer;

142a、142b、142d:P型氮化铝镓层;142a, 142b, 142d: P-type aluminum gallium nitride layer;

142c1、142e1:第一P型氮化铝镓层;142c1, 142e1: the first P-type aluminum gallium nitride layer;

142c2、142e2:第二P型氮化铝镓层;142c2, 142e2: the second P-type aluminum gallium nitride layer;

144b:P型氮化镓层;144b: P-type gallium nitride layer;

144d、144e:P型氮化铝铟镓层;144d, 144e: P-type aluminum indium gallium nitride layer;

150:N型电极;150: N-type electrode;

160:P型电极;160: P-type electrode;

170:透明导电层;170: transparent conductive layer;

T1、T2:厚度。T1, T2: Thickness.

具体实施方式Detailed ways

图1示出为本发明的一实施例的一种发光二极管结构的剖面示意图。请参考图1,在本实施例中,发光二极管结构100a包括基板110、N型半导体层120、发光层130以及P型半导体层140a。N型半导体层120配置于基板110上。发光层130适于发出主要发光波长介于365奈米至490奈米之间的光且配置于N型半导体层120上。P型半导体层140a配置于发光层130上,且包括P型氮化铝镓层142a。P型氮化铝镓层142a的厚度占整体P型半导体层140a的厚度的85%以上。FIG. 1 is a schematic cross-sectional view of a light emitting diode structure according to an embodiment of the present invention. Please refer to FIG. 1 , in the present embodiment, the LED structure 100 a includes a substrate 110 , an N-type semiconductor layer 120 , a light-emitting layer 130 and a P-type semiconductor layer 140 a. The N-type semiconductor layer 120 is disposed on the substrate 110 . The light-emitting layer 130 is suitable for emitting light with a main light-emitting wavelength between 365 nm and 490 nm and is disposed on the N-type semiconductor layer 120 . The P-type semiconductor layer 140a is disposed on the light emitting layer 130 and includes a P-type AlGaN layer 142a. The thickness of the P-type AlGaN layer 142a accounts for more than 85% of the thickness of the entire P-type semiconductor layer 140a.

详细来说,在本实施例中,基板110例如是蓝宝石基板,而发光层130例如是氮化镓/氮化铟镓的量子井结构,但并不以此为限。N型半导体层120位于基板110与发光层130之间,且N型半导体层120的一部分暴露于发光层130之外。此处,N型半导体层120具体为N型氮化镓层。如图1所示,本实施例的P型半导体层140a具体为P型氮化铝镓层142a,意即整层的P型半导体层140a是由单一材料,即氮化铝镓,所形成。较佳地,P型氮化铝镓层142a的厚度为30奈米至100奈米。此外,本实施例的发光二极管结构100a还包括N型电极150以及P型电极160,其中N型电极150配置于未被发光层130所覆盖的N型半导体层120上且与N型半导体层120电性连接,而P型电极160配置于P型半导体层140a上且与P型半导体层140a电性连接。由上述元件的配置可得知,本实施例的发光二极管结构100a具体为蓝色发光二极管结构。In detail, in this embodiment, the substrate 110 is, for example, a sapphire substrate, and the light emitting layer 130 is, for example, a gallium nitride/indium gallium nitride quantum well structure, but not limited thereto. The N-type semiconductor layer 120 is located between the substrate 110 and the light-emitting layer 130 , and a part of the N-type semiconductor layer 120 is exposed outside the light-emitting layer 130 . Here, the N-type semiconductor layer 120 is specifically an N-type gallium nitride layer. As shown in FIG. 1 , the P-type semiconductor layer 140a of this embodiment is specifically a P-type AlGaN layer 142a, which means that the entire P-type semiconductor layer 140a is formed of a single material, ie, AlGaN. Preferably, the thickness of the P-type AlGaN layer 142a is 30 nm to 100 nm. In addition, the light emitting diode structure 100a of this embodiment also includes an N-type electrode 150 and a P-type electrode 160, wherein the N-type electrode 150 is disposed on the N-type semiconductor layer 120 not covered by the light-emitting layer 130 and is connected to the N-type semiconductor layer 120 are electrically connected, and the P-type electrode 160 is disposed on the P-type semiconductor layer 140a and electrically connected to the P-type semiconductor layer 140a. It can be seen from the arrangement of the above components that the light emitting diode structure 100 a of this embodiment is specifically a blue light emitting diode structure.

由于本实施例P型半导体层140a具体为P型氮化铝镓层142a,且P型氮化铝镓层142a材料特性并不会吸收近UV光或蓝色光波段的光线。因此,当发光层130发出光线时,光线可直接通过P型半导体层140a且不会被吸收。如此一来,本实施例的发光二极管结构100a可具有较佳的出光效率。Since the P-type semiconductor layer 140a in this embodiment is specifically the P-type AlGaN layer 142a, and the material properties of the P-type AlGaN layer 142a do not absorb light in the near-UV light or blue light band. Therefore, when the light-emitting layer 130 emits light, the light can directly pass through the P-type semiconductor layer 140a without being absorbed. In this way, the light emitting diode structure 100a of this embodiment can have better light extraction efficiency.

在此必须说明的是,下述实施例沿用前述实施例的元件标号与部分内容,其中采用相同的标号来表示相同或近似的元件,并且省略了相同技术内容的说明。关于省略部分的说明可参考前述实施例,下述实施例不再重复赘述。It must be noted here that the following embodiments use the component numbers and part of the content of the previous embodiments, wherein the same numbers are used to denote the same or similar components, and descriptions of the same technical content are omitted. For the description of omitted parts, reference may be made to the foregoing embodiments, and the following embodiments will not be repeated.

图2示出为本发明的另一实施例的一种发光二极管结构的剖面示意图。请参考图2,本实施例的发光二极管结构100b与图1的发光二极管结构100a相似,但二者主要差异之处在于:本实施例的P型半导体层140b是由P型氮化铝镓层142b以及P型氮化镓层144b所组成,其中P型氮化镓层144b配置于P型氮化铝镓层142b上。特别是,在本实施例中,P型氮化铝镓层142b的厚度占整体P型半导体层140b的厚度的85%以上,换言之,P型氮化镓层144b的厚度占整体P型半导体层140b的厚度的15%以下。较佳地,P型氮化镓层144b的厚度小于10奈米。FIG. 2 is a schematic cross-sectional view of a light emitting diode structure according to another embodiment of the present invention. Please refer to FIG. 2, the light emitting diode structure 100b of this embodiment is similar to the light emitting diode structure 100a of FIG. 142b and a P-type GaN layer 144b, wherein the P-type GaN layer 144b is disposed on the P-type AlGaN layer 142b. In particular, in this embodiment, the thickness of the P-type GaN layer 142b accounts for more than 85% of the thickness of the overall P-type semiconductor layer 140b, in other words, the thickness of the P-type GaN layer 144b accounts for 15% or less of the thickness of 140b. Preferably, the thickness of the P-type GaN layer 144b is less than 10 nm.

由于本实施例P型氮化铝镓层142b的厚度占整体P型半导体层140b的厚度的85%以上,且P型氮化铝镓层142b材料特性并不会吸收蓝色光波段的光线。依据比尔-朗伯定律(Beer–Lambert law)可得知,当一束平行单色光垂直通过某一均匀非散射的吸光物质时,其吸光度与吸光物质的浓度及吸收层厚度成正比。故,当发光层130发出光线时,由于会吸收蓝色光波的P型氮化镓层144b的厚度远小于P型氮化铝镓层142b的厚度,因此可以降低P型半导体层140b吸收发光层130所发出的近UV光或蓝光。如此一来,本实施例的发光二极管结构100b可具有较佳的出光效率。In this embodiment, the thickness of the P-type AlGaN layer 142b accounts for more than 85% of the thickness of the entire P-type semiconductor layer 140b, and the material properties of the P-type AlGaN layer 142b do not absorb blue light. According to the Beer-Lambert law, when a beam of parallel monochromatic light passes through a uniform non-scattering light-absorbing substance vertically, its absorbance is proportional to the concentration of the light-absorbing substance and the thickness of the absorbing layer. Therefore, when the light-emitting layer 130 emits light, since the thickness of the P-type gallium nitride layer 144b that absorbs blue light waves is much smaller than the thickness of the P-type aluminum gallium nitride layer 142b, the absorption of the light-emitting layer by the P-type semiconductor layer 140b can be reduced. 130 emits near UV light or blue light. In this way, the light emitting diode structure 100b of this embodiment can have better light extraction efficiency.

图3示出为本发明的另一实施例的一种发光二极管结构的剖面示意图。请参考图3,本实施例的发光二极管结构100c与图1的发光二极管结构100a相似,但二者主要差异之处在于:本实施例的P型半导体层140c具体为P型氮化铝镓层,其中P型氮化铝镓层包括第一P型氮化铝镓层142c1以及第二P型氮化铝镓层142c2,且第一P型氮化铝镓层142c1中的铝含量不同于第二P型氮化铝镓层142c2中的铝含量。较佳地,第一P型氮化铝镓层142c1位于第二P型氮化铝镓层142c2与发光层130之间,且第一P型氮化铝镓层142c1中的铝含量大于第二P型氮化铝镓层142c2中的铝含量。此处,第一P型氮化铝镓层142c1的材料为AlxGa1-xN,其中x为0.09~0.2。第二P型氮化铝镓层142c2的材料为AlyGa1-yN,其中的y为0.01~0.15。第二P型氮化铝镓层142c2的厚度T2大于第一P型氮化铝镓层142c1的厚度T1。FIG. 3 is a schematic cross-sectional view of a light emitting diode structure according to another embodiment of the present invention. Please refer to FIG. 3, the light emitting diode structure 100c of this embodiment is similar to the light emitting diode structure 100a of FIG. , wherein the P-type AlGaN layer includes a first P-type AlGaN layer 142c1 and a second P-type AlGaN layer 142c2, and the aluminum content in the first P-type AlGaN layer 142c1 is different from that of the first P-type AlGaN layer 142c1 Al content in the P-type AlGaN layer 142c2. Preferably, the first P-type AlGaN layer 142c1 is located between the second P-type AlGaN layer 142c2 and the light-emitting layer 130, and the aluminum content in the first P-type AlGaN layer 142c1 is greater than that of the second P-type AlGaN layer 142c1. Aluminum content in the P-type AlGaN layer 142c2. Here, the material of the first P-type AlGaN layer 142c1 is AlxGa1 -xN , where x is 0.09˜0.2. The material of the second P-type AlGaN layer 142c2 is AlyGa1 -yN , where y is 0.01˜0.15. The thickness T2 of the second P-type AlGaN layer 142c2 is greater than the thickness T1 of the first P-type AlGaN layer 142c1.

需说明的是,P型氮化铝镓层可减少吸光,但若P型氮化铝镓层中的铝含量太高,则较多的磊晶缺陷会造成复合载流子的损失且增加发光二极管结构内部的热量。再者,P型氮化铝镓层中的铝含量增加会造成另外一项影响,便是会使得p型氮化铝镓层阻值增加并使得电极制造更加困难。因此,本实施例的发光二极管结构100c通过靠近发光层130的第一P型氮化铝镓层142c1,其铝含量高,带隙(bandgap)会比较大,电子阻挡的效果比较好,能将未掉入的发光层130的电子弹回发光层130内,以增加光的效率。此外,第一P型氮化铝镓层142c1的厚度T1较薄,因此可减少因高含量的铝所造成的磊晶缺陷。It should be noted that the P-type AlGaN layer can reduce light absorption, but if the aluminum content in the P-type AlGaN layer is too high, more epitaxial defects will cause the loss of recombined carriers and increase the light emission. Heat inside the diode structure. Furthermore, the increase of the aluminum content in the p-type AlGaN layer will cause another effect, which is to increase the resistance of the p-type AlGaN layer and make electrode fabrication more difficult. Therefore, the light-emitting diode structure 100c of this embodiment passes through the first P-type aluminum gallium nitride layer 142c1 close to the light-emitting layer 130, which has a high aluminum content, a relatively large bandgap, and a relatively good electron blocking effect, which can Electrons that do not fall into the light emitting layer 130 bounce back into the light emitting layer 130 to increase light efficiency. In addition, the thickness T1 of the first P-type AlGaN layer 142c1 is relatively thin, so the epitaxial defects caused by the high content of Al can be reduced.

此外,本实施例的第一P型氮化铝镓层142c1中的P型掺杂浓度大于第二P型氮化铝镓层142c2的P型掺杂浓度。其中,P型掺杂多可以提供较多的空穴,而第一P型氮化铝镓层142c1较靠近发光层130,空穴容易进入发光层130,使空穴与电子在发光层130中相遇而接合,就以光子的形式释放出来。In addition, the P-type doping concentration in the first P-type AlGaN layer 142c1 of this embodiment is greater than the P-type doping concentration in the second P-type AlGaN layer 142c2. Among them, more P-type doping can provide more holes, and the first P-type aluminum gallium nitride layer 142c1 is closer to the light-emitting layer 130, and the holes can easily enter the light-emitting layer 130, so that holes and electrons in the light-emitting layer 130 When they meet and bond, they are released in the form of photons.

图4示出为本发明的另一实施例的一种发光二极管结构的剖面示意图。请参考图4,本实施例的发光二极管结构100d与图1的发光二极管结构100a相似,但二者主要差异之处在于:本实施例的P型半导体层140d是由P型氮化铝镓层142d以及P型氮化铝铟镓层144d所组成,其中P型氮化铝铟镓层144d配置于P型氮化铝镓层142d与发光层130之间。在本实施例中,P型氮化铝铟镓层144d可减缓P型氮化铝镓层142d与发光层130之间材料晶格不匹配的现象,可降低发光二极管结构100d在磊晶时产生的应力。FIG. 4 is a schematic cross-sectional view of a light emitting diode structure according to another embodiment of the present invention. Please refer to FIG. 4, the light emitting diode structure 100d of this embodiment is similar to the light emitting diode structure 100a of FIG. 142d and a P-type AlInGaN layer 144d, wherein the P-type AlInGaN layer 144d is disposed between the P-type AlInGaN layer 142d and the light emitting layer 130 . In this embodiment, the P-type AlInGaN layer 144d can alleviate the material lattice mismatch between the P-type AlGaN layer 142d and the light-emitting layer 130, and can reduce the generation of the light-emitting diode structure 100d during epitaxy. of stress.

图5示出为本发明的另一实施例的一种发光二极管结构的剖面示意图。请参考图5,本实施例的发光二极管结构100e与图1的发光二极管结构100a相似,但二者主要差异之处在于:本实施例的P型半导体层140e是由第一P型氮化铝镓层142e1、第二P型氮化铝镓层142e2以及P型氮化铝铟镓层144e所组成。第一P型氮化铝镓层142e1中的铝含量不同于第二P型氮化铝镓层142e2中的铝含量,较佳地,第一P型氮化铝镓层142e1的材料为AlxGa1-xN,其中x为0.09~0.2,而第二P型氮化铝镓层142e2的材料为AlyGa1-yN,其中的y为0.01~0.15。利用第一P型氮化铝镓层142e1与第二P型氮化铝镓层142e2的铝含量不同,可以避免吸光,同时又可减少磊晶缺陷及阻值高的问题。第一P型氮化铝镓层142e1配置于第二P型氮化铝镓层142e2与P型氮化铝铟镓层144e之间,而P型氮化铝铟镓层144e直接接触发光层130。P型氮化铝铟镓层144e可减缓第一P型氮化铝镓层142e1与发光层130之间材料晶格不匹配的现象,可降低发光二极管结构100e在磊晶时产生的应力。FIG. 5 is a schematic cross-sectional view of a light emitting diode structure according to another embodiment of the present invention. Please refer to FIG. 5, the light emitting diode structure 100e of this embodiment is similar to the light emitting diode structure 100a of FIG. The gallium layer 142e1 is composed of the second P-type AlGaN layer 142e2 and the P-type AlInGaN layer 144e. The aluminum content in the first P-type AlGaN layer 142e1 is different from the Al content in the second P-type AlGaN layer 142e2. Preferably, the material of the first P-type AlGaN layer 142e1 is Al x Ga 1-x N, wherein x is 0.09˜0.2, and the material of the second P-type aluminum gallium nitride layer 142e2 is AlyGa 1-y N, wherein y is 0.01˜0.15. By utilizing the difference in aluminum content between the first P-type AlGaN layer 142e1 and the second P-type AlGaN layer 142e2, light absorption can be avoided, and problems of epitaxial defects and high resistance can be reduced at the same time. The first P-type AlGaN layer 142e1 is disposed between the second P-type AlGaN layer 142e2 and the P-type AlInGaN layer 144e, and the P-type AlInGaN layer 144e directly contacts the light-emitting layer 130 . The P-type AlInGaN layer 144e can reduce the material lattice mismatch between the first P-type AlGaN layer 142e1 and the light-emitting layer 130, and can reduce the stress generated during epitaxy of the light-emitting diode structure 100e.

图6示出为本发明的另一实施例的一种发光二极管结构的剖面示意图。请参考图6,本实施例的发光二极管结构100f与图1的发光二极管结构100a相似,但二者主要差异之处在于:本实施例的发光二极管结构100f还包括透明导电层170,其中透明导电层170配置于P型半导体层140a上,且位于P型半导体层140a与P型电极160之间。P型半导体层140a可通过透明导电层170与P型电极160形成良好的欧姆接触(ohmic contact)。此处,透明导电层170的材质例如为铟锡氧化物(indium tin oxide,简称ITO)、铟锌氧化物(indium zinc oxide,简称IZO)、氧化锌(zinc oxide,简称ZnO)、铟锡锌氧化物(indium tin zinc oxide,简称ITZO)、铝锡氧化物(aluminum tin oxide,简称ATO)、铝锌氧化物(aluminum zinc oxide,简称AZO)或其他适当的透明导电材质。FIG. 6 is a schematic cross-sectional view of a light emitting diode structure according to another embodiment of the present invention. Please refer to FIG. 6, the light emitting diode structure 100f of this embodiment is similar to the light emitting diode structure 100a of FIG. The layer 170 is disposed on the P-type semiconductor layer 140 a and is located between the P-type semiconductor layer 140 a and the P-type electrode 160 . The P-type semiconductor layer 140 a can form a good ohmic contact with the P-type electrode 160 through the transparent conductive layer 170 . Here, the material of the transparent conductive layer 170 is, for example, indium tin oxide (ITO for short), indium zinc oxide (IZO for short), zinc oxide (ZnO for short), indium tin zinc Indium tin zinc oxide (ITZO for short), aluminum tin oxide (ATO for short), aluminum zinc oxide (AZO for short) or other appropriate transparent conductive materials.

综上所述,由于本发明的P型氮化铝镓层的厚度占整体P型半导体层的厚度的85%以上,因此可以降低P型半导体层吸收发光层所发出的近UV光或蓝光。如此一来,本发明的发光二极管结构可具有较佳的出光效率。In summary, since the thickness of the P-type AlGaN layer of the present invention accounts for more than 85% of the thickness of the entire P-type semiconductor layer, it can reduce the absorption of near-UV light or blue light emitted by the light-emitting layer by the P-type semiconductor layer. In this way, the light emitting diode structure of the present invention can have better light extraction efficiency.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.

Claims (13)

1. a light emitting diode construction, is characterized in that, comprising:
Substrate;
N type semiconductor layer, is configured on this substrate;
Luminescent layer, is suitable for sending main emission wavelength between the 365 how light of rice to 490 how between rice, and is configured on this n type semiconductor layer; And
P type semiconductor layer, is configured on this luminescent layer, and comprises P type aluminum gallium nitride, and wherein the thickness of this P type aluminum gallium nitride accounts for more than 85% of the thickness of this p type semiconductor layer overall.
2. light emitting diode construction according to claim 1, is characterized in that, this p type semiconductor layer is this P type aluminum gallium nitride.
3. light emitting diode construction according to claim 1, is characterized in that, this p type semiconductor layer also comprises P type gallium nitride layer, is configured on this P type aluminum gallium nitride, and the thickness of this P type gallium nitride layer accounts for less than 15% of the thickness of this p type semiconductor layer overall.
4. light emitting diode construction according to claim 1, it is characterized in that, this P type aluminum gallium nitride comprises a P type aluminum gallium nitride and the 2nd P type aluminum gallium nitride, and the aluminium content in a P type aluminum gallium nitride is different from the aluminium content in the 2nd P type aluminum gallium nitride.
5. light emitting diode construction according to claim 4, it is characterized in that, one P type aluminum gallium nitride is between the 2nd P type aluminum gallium nitride and this luminescent layer, and the aluminium content in a P type aluminum gallium nitride is greater than the aluminium content in the 2nd P type aluminum gallium nitride.
6. light emitting diode construction according to claim 5, is characterized in that, the material of a P type aluminum gallium nitride is Al xga 1-xn, wherein x is 0.09 ~ 0.2.
7. light emitting diode construction according to claim 5, is characterized in that, the material of the 2nd P type aluminum gallium nitride is Al yga 1-yn, y are wherein 0.01 ~ 0.15.
8. light emitting diode construction according to claim 4, is characterized in that, the thickness of the 2nd P type aluminum gallium nitride is greater than the thickness of a P type aluminum gallium nitride.
9. light emitting diode construction according to claim 4, is characterized in that, the P type doping content in a P type aluminum gallium nitride is greater than the P type doping content of the 2nd P type aluminum gallium nitride.
10. light emitting diode construction according to claim 1, is characterized in that, this p type semiconductor layer also comprises P type aluminum indium gallium nitride layer, is configured between this P type aluminum gallium nitride and this luminescent layer.
11. light emitting diode constructions according to claim 1, is characterized in that, this n type semiconductor layer is n type gallium nitride layer.
12. light emitting diode constructions according to claim 1, is characterized in that, also comprise:
N-type electrode, be configured at not by this luminescent layer on this n type semiconductor layer of covering, and to be electrically connected with this n type semiconductor layer; And
P-type electrode, is configured on this p type semiconductor layer, and is electrically connected with this p type semiconductor layer.
13. light emitting diode constructions according to claim 1, is characterized in that, also comprise:
Transparency conducting layer, is configured on this p type semiconductor layer.
CN201410014540.5A 2014-01-13 2014-01-13 Light emitting diode structure Expired - Fee Related CN104779328B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410014540.5A CN104779328B (en) 2014-01-13 2014-01-13 Light emitting diode structure
CN201810015565.5A CN107968139B (en) 2014-01-13 2014-01-13 Light Emitting Diode Structure
CN201810016160.3A CN108054255B (en) 2014-01-13 2014-01-13 Light emitting diode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410014540.5A CN104779328B (en) 2014-01-13 2014-01-13 Light emitting diode structure

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201810016160.3A Division CN108054255B (en) 2014-01-13 2014-01-13 Light emitting diode structure
CN201810015565.5A Division CN107968139B (en) 2014-01-13 2014-01-13 Light Emitting Diode Structure

Publications (2)

Publication Number Publication Date
CN104779328A true CN104779328A (en) 2015-07-15
CN104779328B CN104779328B (en) 2018-02-02

Family

ID=53620687

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201810016160.3A Expired - Fee Related CN108054255B (en) 2014-01-13 2014-01-13 Light emitting diode structure
CN201810015565.5A Expired - Fee Related CN107968139B (en) 2014-01-13 2014-01-13 Light Emitting Diode Structure
CN201410014540.5A Expired - Fee Related CN104779328B (en) 2014-01-13 2014-01-13 Light emitting diode structure

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201810016160.3A Expired - Fee Related CN108054255B (en) 2014-01-13 2014-01-13 Light emitting diode structure
CN201810015565.5A Expired - Fee Related CN107968139B (en) 2014-01-13 2014-01-13 Light Emitting Diode Structure

Country Status (1)

Country Link
CN (3) CN108054255B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514233A (en) * 2015-11-30 2016-04-20 华灿光电股份有限公司 High-luminous efficiency light emitting diode epitaxial slice and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319742B1 (en) * 1998-07-29 2001-11-20 Sanyo Electric Co., Ltd. Method of forming nitride based semiconductor layer
US20020014632A1 (en) * 1999-03-31 2002-02-07 Naoki Kaneyama Group III nitride compound semiconductor light-emitting device
US20080315243A1 (en) * 2007-06-21 2008-12-25 Sumitomo Electric Industries, Ltd. Group iii nitride semiconductor light-emitting device
CN102751393A (en) * 2011-04-20 2012-10-24 新世纪光电股份有限公司 Light emitting diode structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200908393A (en) * 2007-06-15 2009-02-16 Rohm Co Ltd Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
WO2011102411A1 (en) * 2010-02-19 2011-08-25 シャープ株式会社 Nitride semiconductor light-emitting element and method for producing same
CN103137807A (en) * 2013-02-22 2013-06-05 中国科学院半导体研究所 Green ray light-emitting diode (LED) epitaxial structure with stress relief layer and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319742B1 (en) * 1998-07-29 2001-11-20 Sanyo Electric Co., Ltd. Method of forming nitride based semiconductor layer
US20020014632A1 (en) * 1999-03-31 2002-02-07 Naoki Kaneyama Group III nitride compound semiconductor light-emitting device
US20080315243A1 (en) * 2007-06-21 2008-12-25 Sumitomo Electric Industries, Ltd. Group iii nitride semiconductor light-emitting device
CN102751393A (en) * 2011-04-20 2012-10-24 新世纪光电股份有限公司 Light emitting diode structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514233A (en) * 2015-11-30 2016-04-20 华灿光电股份有限公司 High-luminous efficiency light emitting diode epitaxial slice and preparation method thereof

Also Published As

Publication number Publication date
CN107968139A (en) 2018-04-27
CN108054255A (en) 2018-05-18
CN104779328B (en) 2018-02-02
CN108054255B (en) 2020-10-09
CN107968139B (en) 2021-10-01

Similar Documents

Publication Publication Date Title
TW201631794A (en) Light-emitting diode chip
CN102074629A (en) Light emitting diode with sandwich-type current blocking structure
CN104966768B (en) UV-LED with quantum dot structure
CN110494992B (en) Semiconductor device and light emitting device package including the same
TWI536606B (en) Light-emitting diode structure
CN104103723B (en) Gallium nitride light-emitting diode and preparation method thereof
KR20090032631A (en) Light emitting diode device
US20150179880A1 (en) Nitride semiconductor structure
CN104779328B (en) Light emitting diode structure
CN104465930B (en) Iii-nitride light emitting devices
CN102790156A (en) semiconductor light emitting structure
KR101483230B1 (en) Nitride Semiconductor Light Emitting Device
CN100395899C (en) Gallium nitride light-emitting diode structure with enhanced brightness
CN111987196B (en) Semiconductor components
CN206947377U (en) A kind of ultraviolet LED epitaxial chip inverted structure
TWI762660B (en) Semiconductor structure
KR101255003B1 (en) Light emitting device and manufacturing method thereof
KR101201597B1 (en) Light emitting device and manufacturing method thereof
CN105140369B (en) Light emitting diode structure
KR100647815B1 (en) Light Emitting Diode Having Anti-Reflective Transparent Electrode Layer
CN204257687U (en) A kind of light emitting diode construction
KR102015127B1 (en) Nitride light emitting device
TWI593138B (en) led
KR100831713B1 (en) Nitride-based Semiconductor Light-Emitting Diodes
KR20130007033A (en) Nitride based light emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180202

CF01 Termination of patent right due to non-payment of annual fee