CN102751393A - Light emitting diode structure - Google Patents
Light emitting diode structure Download PDFInfo
- Publication number
- CN102751393A CN102751393A CN2011100987927A CN201110098792A CN102751393A CN 102751393 A CN102751393 A CN 102751393A CN 2011100987927 A CN2011100987927 A CN 2011100987927A CN 201110098792 A CN201110098792 A CN 201110098792A CN 102751393 A CN102751393 A CN 102751393A
- Authority
- CN
- China
- Prior art keywords
- type semiconductor
- semiconductor layer
- layer
- quantum well
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 134
- 230000004888 barrier function Effects 0.000 claims abstract description 12
- 229910002601 GaN Inorganic materials 0.000 claims description 23
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 17
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims description 8
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims 11
- 239000004575 stone Substances 0.000 claims 2
- 239000004411 aluminium Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 252
- 150000001875 compounds Chemical class 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 5
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- -1 aluminum tin oxide Chemical compound 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 229910021480 group 4 element Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 229910005540 GaP Inorganic materials 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 2
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 description 2
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 2
- IEJHYFOJNUCIBD-UHFFFAOYSA-N cadmium(2+) indium(3+) oxygen(2-) Chemical compound [O-2].[Cd+2].[In+3] IEJHYFOJNUCIBD-UHFFFAOYSA-N 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- TYHJXGDMRRJCRY-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) tin(4+) Chemical compound [O-2].[Zn+2].[Sn+4].[In+3] TYHJXGDMRRJCRY-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- YUOWTJMRMWQJDA-UHFFFAOYSA-J tin(iv) fluoride Chemical compound [F-].[F-].[F-].[F-].[Sn+4] YUOWTJMRMWQJDA-UHFFFAOYSA-J 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- UMJICYDOGPFMOB-UHFFFAOYSA-N zinc;cadmium(2+);oxygen(2-) Chemical compound [O-2].[O-2].[Zn+2].[Cd+2] UMJICYDOGPFMOB-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种发光二极管结构,且特别涉及一种发光效率较佳的发光二极管结构。The invention relates to a light emitting diode structure, and in particular to a light emitting diode structure with better luminous efficiency.
背景技术 Background technique
近年来,由于发光二极管的发光效率不断提升,使得发光二极管在某些领域已渐渐取代日光灯与白热灯泡,例如需要高速反应的扫描器灯源、液晶显示器的背光源或前光源汽车的仪表板照明、交通号志灯,以及一般的照明装置等。一般常见的发光二极管是使用氮化物的半导体材料来形成,大多数如上所述的发光二极管是以磊晶方式形成于蓝宝石基板上。In recent years, due to the continuous improvement of the luminous efficiency of light-emitting diodes, light-emitting diodes have gradually replaced fluorescent lamps and incandescent bulbs in some fields, such as scanner light sources that require high-speed response, backlights for liquid crystal displays, or dashboards for front lights. Lighting, traffic lights, and general lighting installations, etc. Common light-emitting diodes are formed using nitride semiconductor materials, and most of the above-mentioned light-emitting diodes are formed on sapphire substrates in an epitaxial manner.
传统的发光二极管结构通常会包含一基板、一N型下局限层(N typecladding layer)、一多重量子井结构(multiple quantum wells tructure)、一P型上局限层、一N型电极及一P型电极。N型下局限层、多重量子井结构与P型上局限层依序配置于基板上,而N型电极及P型电极分别电性连接N型下局限层与P型上局限层,其中施加驱动电压于N型电极及P型电极,便可驱动发光二极管结构发光。The traditional LED structure usually includes a substrate, an N type cladding layer (N type cladding layer), a multiple quantum well structure (multiple quantum wells structure), a P type confinement layer, an N type electrode and a P type electrode. The N-type lower confinement layer, the multiple quantum well structure, and the P-type upper confinement layer are sequentially arranged on the substrate, and the N-type electrode and the P-type electrode are respectively electrically connected to the N-type lower confinement layer and the P-type upper confinement layer, wherein the driving force is applied. Applying voltage to the N-type electrode and the P-type electrode can drive the LED structure to emit light.
一般来说,多重量子井结构内的量子井层的厚度通常会设计成相同,且量子井层的厚度若过厚,则会产生缺陷而影响发光二极管结构的发光效益,因此,如何有效地设计多重量子井结构内的量子井层的厚度,在避免缺陷产生的同时,还能有效地使发光二极管结构的发光效益获得提升,实为一项重要的课题。Generally speaking, the thickness of the quantum well layer in the multiple quantum well structure is usually designed to be the same, and if the thickness of the quantum well layer is too thick, defects will be generated and affect the luminous efficiency of the LED structure. Therefore, how to effectively design The thickness of the quantum well layer in the multiple quantum well structure, while avoiding defects, can effectively improve the luminous efficiency of the light emitting diode structure, which is an important issue.
发明内容Contents of the invention
本发明提供一种发光二极管结构,其具有较佳的发光效率。The invention provides a light emitting diode structure with better luminous efficiency.
本发明的其他目的和优点可以从本发明所揭示的技术特征中得到进一步的了解。Other purposes and advantages of the present invention can be further understood from the technical features disclosed in the present invention.
为达到上述的一或部分或全部目的或是其他目的,本发明的一实施例提出一种发光二极管结构,包括第一型半导体层、发光层、第二型半导体层、第一导电层以及第二导电层。发光层配置于第一型半导体层上。发光层包括数个能障层以及数个量子井层,其中这些量子井层分别夹设于这些能障层之间。第二型半导体层配置于发光层上,其中最靠近第二型半导体层的量子井层的厚度至少大于等于其他这些量子井层的平均厚度的1.1倍。第一导电层电性连接第一型半导体层。第二导电层电性连接第二型半导体层。In order to achieve one or part or all of the above objectives or other objectives, an embodiment of the present invention provides a light emitting diode structure, including a first type semiconductor layer, a light emitting layer, a second type semiconductor layer, a first conductive layer and a second Two conductive layers. The light emitting layer is configured on the first type semiconductor layer. The light-emitting layer includes several energy barrier layers and several quantum well layers, wherein the quantum well layers are respectively sandwiched between the energy barrier layers. The second-type semiconductor layer is disposed on the light-emitting layer, wherein the thickness of the quantum well layer closest to the second-type semiconductor layer is at least 1.1 times the average thickness of the other quantum well layers. The first conductive layer is electrically connected to the first type semiconductor layer. The second conductive layer is electrically connected to the second type semiconductor layer.
在本发明的一实施例中,最靠近第二型半导体层的量子井层的厚度大于其他每一这些量子井层的厚度。In an embodiment of the present invention, the thickness of the quantum well layer closest to the second-type semiconductor layer is greater than the thickness of each of the other quantum well layers.
在本发明的一实施例中,最靠近第二型半导体层的量子井层的厚度至少大于等于其他这些量子井层的平均厚度的1.2倍。In an embodiment of the present invention, the thickness of the quantum well layer closest to the second-type semiconductor layer is at least 1.2 times the average thickness of the other quantum well layers.
在本发明的一实施例中,最靠近第二型半导体层的量子井层的厚度小于等于其他这些量子井层的平均厚度的3倍。In an embodiment of the present invention, the thickness of the quantum well layer closest to the second-type semiconductor layer is less than or equal to three times the average thickness of the other quantum well layers.
在本发明的一实施例中,其他每一这些量子井层的厚度均相同。In an embodiment of the present invention, each of the other quantum well layers has the same thickness.
在本发明的一实施例中,发光二极管结构还包括磊晶基板,其中第一型半导体层、发光层与第二型半导体层依序堆叠于磊晶基板上,且发光层与第二型半导体层配置于第一型半导体层的部分区域上并暴露出部分第一型半导体层,而第一导电层配置于被发光层与第二型半导体层所暴露出的第一型半导体层上。In an embodiment of the present invention, the light emitting diode structure further includes an epitaxial substrate, wherein the first type semiconductor layer, the light emitting layer and the second type semiconductor layer are sequentially stacked on the epitaxial substrate, and the light emitting layer and the second type semiconductor layer The layer is configured on a part of the first-type semiconductor layer and exposes a part of the first-type semiconductor layer, and the first conductive layer is configured on the first-type semiconductor layer exposed by the light-emitting layer and the second-type semiconductor layer.
在本发明的一实施例中,第一导电层配置于第一型半导体层的另一侧,且第一型半导体层位于发光层与第一导电层之间。在本发明的一实施例中,发光二极管结构,还包括导电基板,配置于第一型半导体层与第一导电层之间。In an embodiment of the present invention, the first conductive layer is disposed on the other side of the first type semiconductor layer, and the first type semiconductor layer is located between the light emitting layer and the first conductive layer. In an embodiment of the present invention, the LED structure further includes a conductive substrate disposed between the first type semiconductor layer and the first conductive layer.
在本发明的一实施例中,第一型半导体层为N型半导体层,而第二型半导体层为P型半导体层。In an embodiment of the present invention, the first-type semiconductor layer is an N-type semiconductor layer, and the second-type semiconductor layer is a P-type semiconductor layer.
在本发明的一实施例中,第一型半导体层与第二型半导体层的材质是由氮化镓、氮化铝镓、氮化铟镓、氮化铝铟镓至少其中之一掺杂II族元素或IV族元素所构成。In an embodiment of the present invention, the material of the first-type semiconductor layer and the second-type semiconductor layer is at least one of gallium nitride, aluminum gallium nitride, indium gallium nitride, and aluminum indium gallium nitride doped with II Composed of group elements or group IV elements.
在本发明的一实施例中,这些能障层的材质包括氮化镓,而这些量子井层的材质包括氮化铟镓。In an embodiment of the present invention, the material of the energy barrier layers includes gallium nitride, and the material of the quantum well layers includes indium gallium nitride.
基于上述,本发明通过使最靠近第二型半导体层的量子井层的厚度大于等于其他每一这些量子井层的厚度,且最靠近第二型半导体层的量子井层的厚度至少大于会等于其他这些量子井层的平均厚度的1.1倍,较佳为1.2倍,如此一来,当发光二极管结构被驱动时,最靠近第二型半导体层的量子井层便可承载较多的载子,从而可提升发光二极管结构的整体发光效率。Based on the above, the present invention makes the thickness of the quantum well layer closest to the second type semiconductor layer greater than or equal to the thickness of each of the other quantum well layers, and the thickness of the quantum well layer closest to the second type semiconductor layer is at least greater than or equal to The average thickness of these other quantum well layers is 1.1 times, preferably 1.2 times, so that when the light-emitting diode structure is driven, the quantum well layer closest to the second-type semiconductor layer can carry more carriers, Therefore, the overall luminous efficiency of the light emitting diode structure can be improved.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.
附图说明 Description of drawings
图1为本发明一实施例的发光二极管结构的局部剖示图。FIG. 1 is a partial cross-sectional view of a light emitting diode structure according to an embodiment of the present invention.
图2A~图2D分别为图1的发光层的不同实施态样的局部示意图。2A to 2D are partial schematic diagrams of different implementations of the light-emitting layer in FIG. 1 .
图3为本发明一实施例的发光二极管结构的局部剖示图。FIG. 3 is a partial cross-sectional view of a light emitting diode structure according to an embodiment of the present invention.
附图标记:Reference signs:
100、200:发光二极管结构 110、210:第一型半导体层100, 200: light
120、220:发光层 122:能障层120, 220: Light-emitting layer 122: Barrier layer
124a、124b:量子井层 130、230:第二型半导体层124a, 124b:
140:磊晶基板 150:电流阻隔层140: Epitaxy substrate 150: Current blocking layer
160:电流分散层 170:缓冲层160: Current distribution layer 170: Buffer layer
240:导电基板 E1:第一导电层240: Conductive substrate E1: The first conductive layer
E2:第二导电层 H1、H2、H3:厚度E2: Second conductive layer H1, H2, H3: Thickness
具体实施方式 Detailed ways
有关本发明的前述及其他技术内容、特点与功效,在以下配合参考附图的一较佳实施例的详细说明中,将可清楚的呈现。以下实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。The foregoing and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of a preferred embodiment with reference to the accompanying drawings. The directional terms mentioned in the following embodiments, such as: up, down, left, right, front or back, etc., are only referring to the directions of the drawings. Accordingly, the directional terms are used to illustrate and not to limit the invention.
图1为本发明一实施例的发光二极管结构的局部剖示图,图2A~图2D分别为图1的发光层的不同实施态样的局部示意图。请先参考图1与图2A,本实施例的发光二极管结构100包括一第一型半导体层110、一发光层120、一第二型半导体层130、一第一导电层E1以及一第二导电层E2。发光层120配置于第一型半导体层110上,而第二型半导体层130配置于发光层120上,即发光层120是位于第一型半导体层110与第二型半导体层130之间。在本实施例中,第一型半导体层110例如是一N型半导体层,而第二型半导体层130则可为一P型半导体层。具体而言,第一型半导体层110与第二型半导体层130的材质是可由氮化镓、氮化铝镓、氮化铟镓、氮化铝铟镓至少其中之一掺杂II族元素或IV族元素所构成,其中本实施例以氮化镓作为举例说明。于其他实施例中,第一型半导体层110与第二型半导体层130所选用的材质也可以选用二元化合物(binary compound),例如氮化铝、氮化铟;三元化合物(ternary compound),例如氮化铝镓、氮化镓铟、氮化铝铟、砷化铝镓、砷化铟镓;及四元化合物(quaternary compound)氮化镓铟铝、磷化铝铟镓或上述组合,此部分可视使用者的需求与设计而定。FIG. 1 is a partial cross-sectional view of a light-emitting diode structure according to an embodiment of the present invention, and FIGS. 2A-2D are partial schematic diagrams of different implementations of the light-emitting layer in FIG. 1 . Please refer to FIG. 1 and FIG. 2A first. The
在发光二极管结构100中,本实施例的发光层120包括数个能障层122以及数个量子井层124a、124b,其中这些量子井层124a、124b分别夹设于这些能障层122之间,如图2A所示。换言之,本实施例的发光层120便是呈现一种多重量子井的结构,特别的是,在此多重量子井的结构中,最靠近第二型半导体层130的量子井层124a的厚度H1至少会大于等于其他这些量子井层124b的平均厚度的1.1倍,较佳为1.2倍,如此一来,当发光二极管结构100被驱动时,最靠近第二型半导体层130的量子井层124a便可承载较多的载子,从而可提升发光二极管结构100的整体发光效率。在本实施例中,最靠近第二型半导体层130的量子井层124a的厚度H1可大于其他每一这些量子井层124b的厚度H2。In the light-
以图2A所示的发光层120(多重量子井)来说,若量子井层124a、124b的厚度H1、H2皆为2.8nm时,则发光二极管结构100的整体发光亮度为750mcd。相反地,若提升最靠近第二型半导体层130的量子井层124a的厚度H1至3.1nm,而其他量子井层124b的厚度H2皆保持不变,则发光二极管结构100的整体发光亮度便可提升至820mcd。换言之,通过将本实施例的最靠近第二型半导体层130的量子井层124a的厚度H1设计成大于其他每一这些量子井层124b的厚度H2时,发光二极管结构100的发光亮度至少可提高9.33%。Taking the light-emitting layer 120 (multiple quantum wells) shown in FIG. 2A as an example, if the thicknesses H1 and H2 of the
需要说明的是,虽然使量子井层124a的厚度H1大于其他每一这些量子井层124b的厚度H2有助于提升发光二极管结构100的发光效益,但量子井层124a的厚度过厚也会使其产生缺陷,从而降低提升发光二极管结构100的发光亮度。因此,最靠近第二型半导体层130的量子井层124a的厚度原则上会小于等于其他这些量子井层124b的平均厚度的3倍,较佳为小于平均厚度的2.5倍。在本实施例中,量子井层124a、124b的厚度H1、H2原则上大约是落在0.5nm至8nm,较佳为2nm至4.5nm。另外,由于本实施例的第一型半导体层110与第二型半导体层130是以氮化镓作为举例说明,因此,本实施例的能障层122的材质可为氮化镓,而量子井层124a、124b的材质则可为氮化铟镓。It should be noted that although making the thickness H1 of the
请继续参考图1与图2A,在发光二极管结构100中,发光层120可以是采用如图2A所示的多重量子井结构,即是最靠近第二型半导体层130的量子井层124a的厚度H1可大于每一量子井层124b的厚度H2,且这些量子井层124b的厚度H2实质上均为相同,但本发明并不以此为限。在其他实施例中,图1所示的发光二极管结构100的发光层120也可采用如图2B~图2D所示的多重量子井结构,而仍可具有较佳的发光效益,以下将详述各多重量子井的形态。Please continue to refer to FIG. 1 and FIG. 2A. In the light-emitting
在图2B中,最靠近第二型半导体层130的量子井层124a的厚度H1大于每一量子井层124b的厚度H2,且这些量子井层124b的厚度H2实质上往远离第二型半导体层130的方向上变小;在图2C中,最靠近第二型半导体层130的量子井层124a的厚度H1可等于最靠近第一型半导体层110的量子井层124b的厚度H3并大于其他量子井层124b的厚度H2,且最靠近第二型半导体层130的量子井层124a的厚度H1会大于等于这些量子井层124b的厚度H2、H3和的平均的1.1倍;在图2D中,最靠近第二型半导体层130的量子井层124a的厚度H1等于其他某一量子井层124b的厚度H3,并大于其他量子井层124b的厚度H2,且最靠近第二型半导体层130的量子井层124a的厚度H1会大于等于这些量子井层124b的厚度H2、H3和的平均的1.1倍。In FIG. 2B, the thickness H1 of the
由图1可知,本实施例的发光二极管结构为一种水平式发光二极管结构,因此发光二极管结构100还包括一磊晶基板140,其中第一型半导体层110、发光层120与第二型半导体层130会依序堆叠于磊晶基板140上,且发光层120与第二型半导体层130配置于第一型半导体层110的部分区域上并暴露出部分第一型半导体层110。具体而言,当第一型半导体层110、发光层120与第二型半导体层130会依序堆叠于磊晶基板140后,便可通过一微影蚀刻过程移除部分发光层120与第二型半导体层130,以暴露出部分第一型半导体层110,如图1所示。之后,第一导电层E1配置于被发光层120与第二型半导体层130所暴露出的第一型半导体层110上,而第二导电层E2配置于第二型半导体层130上,以驱动发光二极管结构100,其中第一导电层E1会电性连接第一型半导体层110,而第二导电层E2电性连接第二型半导体层130。在本实施例中,第一导电层E1与第二导电层E2可以是单一层或是多层金属堆叠,且二者的材质也可以选用如:金、银、铂、铜、铬、锡、铅、铪、钨、钼、钕、钛、钽、铝、锌等金属、上述合金、上述金属氧化物、上述金属氮化物,或上述组合的材质,此部分视使用者的需求而定。It can be seen from FIG. 1 that the light emitting diode structure of this embodiment is a horizontal light emitting diode structure, so the light emitting
在本实施例中,为了可提升发光二极管结构100的整体电性表现与发光效率,发光二极管结构100还可包括有一电流阻隔层150与一电流分散层160。电流阻隔层150配置于部分第二型半导体层130上。另外,电流分散层160配置于部分第二型半导体层13上以覆盖电流阻隔层150。在本实施例中,电流分散层160可为透明导电层,其材质例如是铟锡氧化物(indium tin oxide,ITO)、铟锌氧化物(indium zinc oxide,IZO)、铟锡锌氧化物(indium tin zincoxide,ITZO)、氧化锌(zinc oxide)、铝锡氧化物(aluminum tin oxide,ATO)、铝锌氧化物(aluminum zinc oxide,AZO)、镉铟氧化物(cadmium indium oxide,CIO)、镉锌氧化物(cadmium zinc oxide,CZO)、镓锌氧化物(GZO)及锡氟氧化物(FTO)。In this embodiment, in order to improve the overall electrical performance and luminous efficiency of the
值得一提的是,为了可成长或磊晶高品质的第一型半导体层110于基板110上,还可以于形成第一型半导体层110于基板110之前,先形成一缓冲层170于基板110上,如图1所示。It is worth mentioning that, in order to grow or epitaxial the high-quality first-
图3为本发明一实施例的发光二极管结构的局部剖示图。请参考图3,本实施例的发光二极管结构200包括一第一型半导体层210、一发光层220、一第二型半导体层230、一第一导电层E1以及一第二导电层E2。发光层220配置于第一型半导体层210上,而第二型半导体层230配置于发光层220上,即发光层220是位于第一型半导体层210与第二型半导体层230之间。在本实施例中,第一型半导体层210可为N型半导体层,而第二型半导体层230则可为P型半导体层。具体而言,第一型半导体层210与第二型半导体层230的材质是可由氮化镓、氮化铝镓、氮化铟镓、氮化铝铟镓至少其中之一掺杂II族元素或IV族元素所构成,其中本实施例以氮化镓作为举例说明。于其他实施例中,第一型半导体层210与第二型半导体层230所选用的材质也可以选用二元化合物(binary compound),例如氮化铝、氮化铟;三元化合物(ternary compound),例如氮化铝镓、氮化镓铟、氮化铝铟、砷化铝镓、砷化铟镓;及四元化合物(quaternary compound)氮化镓铟铝、磷化铝铟镓或上述组合,此部分可视使用者的需求与设计而定。FIG. 3 is a partial cross-sectional view of a light emitting diode structure according to an embodiment of the present invention. Please refer to FIG. 3 , the LED structure 200 of this embodiment includes a first-type semiconductor layer 210 , a light-emitting layer 220 , a second-type semiconductor layer 230 , a first conductive layer E1 and a second conductive layer E2 . The light-emitting layer 220 is disposed on the first-type semiconductor layer 210 , and the second-type semiconductor layer 230 is disposed on the light-emitting layer 220 , that is, the light-emitting layer 220 is located between the first-type semiconductor layer 210 and the second-type semiconductor layer 230 . In this embodiment, the first-type semiconductor layer 210 can be an N-type semiconductor layer, and the second-type semiconductor layer 230 can be a P-type semiconductor layer. Specifically, the materials of the first-type semiconductor layer 210 and the second-type semiconductor layer 230 can be made of at least one of gallium nitride, aluminum gallium nitride, indium gallium nitride, and aluminum indium gallium nitride doped with group II elements or It is composed of group IV elements, and gallium nitride is used as an example in this embodiment. In other embodiments, the material selected for the first-type semiconductor layer 210 and the second-type semiconductor layer 230 can also be a binary compound, such as aluminum nitride and indium nitride; a ternary compound (ternary compound) , such as aluminum gallium nitride, gallium indium nitride, aluminum indium nitride, aluminum gallium arsenide, indium gallium arsenide; and quaternary compounds (quaternary compound) gallium indium aluminum nitride, aluminum indium gallium phosphide or combinations thereof, This part depends on the user's needs and design.
由图3可知,本实施例的发光二极管结构200为一种垂直式发光二极管结构,因此第一导电层E1配置于第一型半导体层210的另一侧,且第一型半导体层210位于发光层220与第一导电层E1之间。在本实施例中,发光二极管结构200可包括有一导电基板240,配置于第一型半导体层210与第一导电层E1之间。需要说明的是,由于本实施例的发光层220也是采用前述的发光层110所描述的实施态样,即发光层220也可采用如图2A至图2D所示的实施态样,因此,本实施例的发光二极管结构200的发光效率也可获得有效的提升,此部分可参考前述说明,在此便不再赘述。It can be seen from FIG. 3 that the light emitting diode structure 200 of this embodiment is a vertical light emitting diode structure, so the first conductive layer E1 is disposed on the other side of the first type semiconductor layer 210, and the first type semiconductor layer 210 is located on the light emitting diode layer. layer 220 and the first conductive layer E1. In this embodiment, the LED structure 200 may include a conductive substrate 240 disposed between the first-type semiconductor layer 210 and the first conductive layer E1. It should be noted that, since the light-emitting layer 220 of this embodiment also adopts the implementation described above for the light-emitting
综上所述,本发明的发光二极管结构至少具有下列优点。首先,通过使最靠近第二型半导体层的量子井层的厚度大于等于其他每一这些量子井层的厚度,且最靠近第二型半导体层的量子井层的厚度至少大于会等于其他这些量子井层的平均厚度的1.1倍,较佳为1.2倍,如此一来,当发光二极管结构被驱动时,最靠近第二型半导体层的量子井层便可承载较多的载子,从而可提升发光二极管结构的整体发光效率。另外,由于最靠近第二型半导体层的量子井层的厚度小于等于其他这些量子井层的平均厚度的3倍,因此可在有效提升发光二极管结构的整体发光效率下,并可同时避免量子井层过厚而产生缺陷,而影响发光二极管结构的整体发光效率。To sum up, the LED structure of the present invention has at least the following advantages. First, by making the thickness of the quantum well layer closest to the second-type semiconductor layer greater than or equal to the thickness of each of the other quantum well layers, and the thickness of the quantum well layer closest to the second-type semiconductor layer is at least greater than or equal to the thickness of the other quantum well layers The average thickness of the well layer is 1.1 times, preferably 1.2 times, so that when the light-emitting diode structure is driven, the quantum well layer closest to the second-type semiconductor layer can carry more carriers, thereby improving The overall luminous efficiency of a light-emitting diode structure. In addition, since the thickness of the quantum well layer closest to the second-type semiconductor layer is less than or equal to 3 times the average thickness of the other quantum well layers, the overall luminous efficiency of the light-emitting diode structure can be effectively improved, and the quantum well can be avoided at the same time. If the layer is too thick, defects will be generated, which will affect the overall luminous efficiency of the LED structure.
以上所述,仅为本发明的较佳实施例而已,当不能以此限定本发明实施的范围,即凡依本发明申请专利范围及发明说明内容所作的简单的等效变化与修饰,皆仍属本发明专利涵盖的范围内。另外本发明的任一实施例或申请专利范围不须达成本发明所揭示的全部目的或优点或特点。此外,摘要部分和标题仅是用来辅助专利文件搜寻之用,并非用来限制本发明的权利范围。The above is only a preferred embodiment of the present invention, and should not limit the scope of the present invention, that is, all simple equivalent changes and modifications made according to the patent scope of the present invention and the description of the invention are still the same. It belongs to the scope covered by the patent of the present invention. In addition, any embodiment or patent scope of the present invention does not need to achieve all the objects or advantages or features disclosed in the present invention. In addition, the abstract and the title are only used to assist in the search of patent documents, and are not used to limit the scope of rights of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100987927A CN102751393A (en) | 2011-04-20 | 2011-04-20 | Light emitting diode structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100987927A CN102751393A (en) | 2011-04-20 | 2011-04-20 | Light emitting diode structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102751393A true CN102751393A (en) | 2012-10-24 |
Family
ID=47031420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100987927A Pending CN102751393A (en) | 2011-04-20 | 2011-04-20 | Light emitting diode structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102751393A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104779328A (en) * | 2014-01-13 | 2015-07-15 | 新世纪光电股份有限公司 | LED structure |
US9640712B2 (en) | 2012-11-19 | 2017-05-02 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
US9685586B2 (en) | 2012-11-19 | 2017-06-20 | Genesis Photonics Inc. | Semiconductor structure |
US9780255B2 (en) | 2012-11-19 | 2017-10-03 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060219998A1 (en) * | 2005-03-31 | 2006-10-05 | Showa Denko K.K. | Gallium nitride-based compound semiconductor multilayer structure and production method thereof |
TW200919883A (en) * | 2007-09-18 | 2009-05-01 | Osram Opto Semiconductors Gmbh | Opto-electronic semiconductor chip with quantum-well structure |
CN101582478A (en) * | 2009-05-21 | 2009-11-18 | 上海蓝光科技有限公司 | Multi-quantum-well structure used in photoelectron device and manufacturing method thereof |
CN101587930A (en) * | 2009-06-22 | 2009-11-25 | 武汉华灿光电有限公司 | A kind of quantum well structure of gallium nitride based LED and growing method |
US20100080257A1 (en) * | 2008-10-01 | 2010-04-01 | Samsung Electro-Mechanics Co., Ltd. | Nitride semiconductor device |
-
2011
- 2011-04-20 CN CN2011100987927A patent/CN102751393A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060219998A1 (en) * | 2005-03-31 | 2006-10-05 | Showa Denko K.K. | Gallium nitride-based compound semiconductor multilayer structure and production method thereof |
TW200919883A (en) * | 2007-09-18 | 2009-05-01 | Osram Opto Semiconductors Gmbh | Opto-electronic semiconductor chip with quantum-well structure |
US20100080257A1 (en) * | 2008-10-01 | 2010-04-01 | Samsung Electro-Mechanics Co., Ltd. | Nitride semiconductor device |
CN101582478A (en) * | 2009-05-21 | 2009-11-18 | 上海蓝光科技有限公司 | Multi-quantum-well structure used in photoelectron device and manufacturing method thereof |
CN101587930A (en) * | 2009-06-22 | 2009-11-25 | 武汉华灿光电有限公司 | A kind of quantum well structure of gallium nitride based LED and growing method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9640712B2 (en) | 2012-11-19 | 2017-05-02 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
US9685586B2 (en) | 2012-11-19 | 2017-06-20 | Genesis Photonics Inc. | Semiconductor structure |
US9780255B2 (en) | 2012-11-19 | 2017-10-03 | Genesis Photonics Inc. | Nitride semiconductor structure and semiconductor light emitting device including the same |
CN104779328A (en) * | 2014-01-13 | 2015-07-15 | 新世纪光电股份有限公司 | LED structure |
CN104779328B (en) * | 2014-01-13 | 2018-02-02 | 新世纪光电股份有限公司 | Light emitting diode structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113078246B (en) | display screen | |
US8564009B2 (en) | Vertical light emitting device | |
CN105895763A (en) | Light-Emitting Diode Chip | |
CN102881797B (en) | Gallium nitride based light emitting diode with current expanding structure | |
CN1953225A (en) | Nitride semiconductor light-emitting diode | |
TW201135973A (en) | Light emitting device and light emitting device package | |
TWI255055B (en) | Light emitting diode and method for improving luminescence efficiency thereof | |
TWI555226B (en) | Light-emitting element with multilayer light-emitting laminate | |
CN102751393A (en) | Light emitting diode structure | |
CN101771119A (en) | LED (light-emitting diode) of zinc-oxide based transparent electrode and manufacturing method thereof | |
CN106684223A (en) | Light emitting diode chip and manufacturing method thereof | |
CN104600166A (en) | LED chip structure and preparation method thereof | |
CN109473536B (en) | Light emitting diode display and method of manufacturing the same | |
CN102738331A (en) | Vertical light emitting diode structure and manufacturing method thereof | |
KR101203538B1 (en) | Metallic nanoparticles-embedded light emitting diode structure with conducting intermediate layer | |
CN108133984A (en) | A kind of light emitting diode with vertical structure and preparation method thereof | |
CN103117332B (en) | Photoelectric components | |
TWI246782B (en) | Light emitting diode structure and manufacturing method of the same | |
CN102760811B (en) | Light-emitting element structure and manufacturing method thereof | |
CN103606617B (en) | There is the inverted light-emitting diode (LED) of transparency electrode | |
TW201242075A (en) | Light emitting diode structure | |
CN101075649A (en) | Method of making light emitting diodes | |
CN100341162C (en) | LED structure | |
CN103606601B (en) | A kind of manufacture method of stepped ramp type light emitting diode | |
CN103594567B (en) | The manufacture method of the vertical type light emitting diode of a kind of high light-emitting efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C05 | Deemed withdrawal (patent law before 1993) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20121024 |