[go: up one dir, main page]

CN104681403A - Semiconductor and forming method thereof - Google Patents

Semiconductor and forming method thereof Download PDF

Info

Publication number
CN104681403A
CN104681403A CN201310612380.XA CN201310612380A CN104681403A CN 104681403 A CN104681403 A CN 104681403A CN 201310612380 A CN201310612380 A CN 201310612380A CN 104681403 A CN104681403 A CN 104681403A
Authority
CN
China
Prior art keywords
layer
groove
metal
dielectric layer
interlayer dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310612380.XA
Other languages
Chinese (zh)
Inventor
卜伟海
康劲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201310612380.XA priority Critical patent/CN104681403A/en
Publication of CN104681403A publication Critical patent/CN104681403A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/62Manufacture or treatment of semiconductor devices or of parts thereof the devices having no potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/692Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

一种半导体器件及其形成方法,其中半导体器件的形成方法,包括:提供半导体衬底,所述半导体衬底表面形成有第一层间介质层;在所述第一层间介质层表面形成第二层间介质层;同时刻蚀所述第一区域和第二区域的第二层间介质层,在所述第一区域的第二层间介质层内形成第一凹槽,在所述第二区域的第二层间介质层内形成第二凹槽,且所述第一凹槽包括第一沟槽和位于第一沟槽底部的多个第一通孔,相邻第一通孔之间具有凸起;在第一区域依次形成金属阻挡层、绝缘层和第三金属层,所述金属阻挡层覆盖第一凹槽的底部和侧壁,所述金属阻挡层还覆盖所述凸起的侧壁和顶部。本发明在形成互连结构的同时形成MIM电容器,增加单位面积电容量,节约芯片面积。

A semiconductor device and its forming method, wherein the forming method of the semiconductor device includes: providing a semiconductor substrate, a first interlayer dielectric layer is formed on the surface of the semiconductor substrate; forming a second interlayer dielectric layer on the surface of the first interlayer dielectric layer Two interlayer dielectric layers; simultaneously etching the second interlayer dielectric layer in the first region and the second region, forming a first groove in the second interlayer dielectric layer in the first region, and forming a first groove in the second interlayer dielectric layer in the first region, A second groove is formed in the second interlayer dielectric layer of the second region, and the first groove includes a first groove and a plurality of first through holes located at the bottom of the first groove, and adjacent first through holes There is a protrusion between them; a metal barrier layer, an insulating layer and a third metal layer are sequentially formed in the first region, the metal barrier layer covers the bottom and side walls of the first groove, and the metal barrier layer also covers the protrusion side walls and top. The invention forms the MIM capacitor while forming the interconnection structure, increases the capacitance per unit area, and saves the chip area.

Description

半导体器件及其形成方法Semiconductor device and method of forming the same

技术领域technical field

本发明涉及半导体制作领域,特别涉及半导体器件及其形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a semiconductor device and a forming method thereof.

背景技术Background technique

在超大规模集成电路中,电容器是常用的无源元件之一,其通常整合于双极(Bipolar)晶体管或互补式金属氧化物半导体(CMOS:ComplementaryMetal Oxide Semiconductor)晶体管等有源元件中。In VLSI, capacitors are one of the commonly used passive components, which are usually integrated into active components such as bipolar (Bipolar) transistors or complementary metal oxide semiconductor (CMOS: Complementary Metal Oxide Semiconductor) transistors.

目前制造电容器的技术可分为以多晶硅为电极以及以金属为电极两种,以多晶硅作为电极会存在载子缺乏的问题,使得跨越电容器两端的表面电压改变时,电容量也会随着改变,因此以多晶硅为电极的电容器无法维持现今逻辑电路的线性需求;而以金属为电极的电容器则无上述问题,此种电容器泛称为金属-绝缘-金属型(MIM:Metal-Insulator-Metal)电容器。At present, the technology of manufacturing capacitors can be divided into two types: using polysilicon as the electrode and using metal as the electrode. Using polysilicon as the electrode will cause a lack of carriers, so that when the surface voltage across the capacitor changes, the capacitance will also change. Therefore, capacitors with polysilicon electrodes cannot maintain the linearity requirements of today's logic circuits; capacitors with metal electrodes do not have the above problems. Such capacitors are generally called Metal-Insulator-Metal (MIM: Metal-Insulator-Metal) capacitors.

MIM电容器具有高电容量、低电阻率等优点,此外,在半导体制造工艺中,MIM电容器可形成于层间金属以及铜互连制程,也降低了与CMOS前端工艺整合的困难度及复杂度。因此,MIM电容器被广泛应用于射频电路或高速模拟电路中,用于电荷的存储和电路的匹配。MIM capacitors have the advantages of high capacitance and low resistivity. In addition, in the semiconductor manufacturing process, MIM capacitors can be formed in interlayer metal and copper interconnection processes, which also reduces the difficulty and complexity of integration with CMOS front-end processes. Therefore, MIM capacitors are widely used in radio frequency circuits or high-speed analog circuits for charge storage and circuit matching.

然而,随着半导体制造技术的飞速发展,为了达到更快的运算速度、更大的数据存储量以及更多的功能,半导体芯片朝向高集成度方向发展,半导体器件的尺寸也越来越小。因此,增加单位芯片面积的电容量,增加电容密度,以节约芯片面积的问题越来越重要。However, with the rapid development of semiconductor manufacturing technology, in order to achieve faster computing speed, larger data storage capacity and more functions, semiconductor chips are developing towards high integration, and the size of semiconductor devices is also getting smaller and smaller. Therefore, it is more and more important to increase the capacitance per unit chip area and increase the capacitance density to save the chip area.

发明内容Contents of the invention

本发明解决的问题是提供半导体器件及其形成方法,增加单位芯片面积的电容量,节约芯片面积,以满足器件微型化的发展趋势。The problem solved by the present invention is to provide a semiconductor device and its forming method, increase the capacitance per unit chip area, save the chip area, and meet the development trend of device miniaturization.

为解决上述问题,本发明提供一种半导体器件的形成方法,包括:提供半导体衬底,所述半导体衬底表面形成有第一层间介质层,所述第一层间介质层包括第一区域和第二区域,所述第一区域的第一层间介质层内形成有第一金属层,所述第二区域的第一层间介质层内形成有第二金属层,且所述第一金属层和第二金属层与第一层间介质层顶部齐平;在所述第一层间介质层表面形成第二层间介质层;同时刻蚀所述第一区域和第二区域的第二层间介质层,在所述第一区域的第二层间介质层内形成第一凹槽,在所述第二区域的第二层间介质层内形成第二凹槽,且所述第一凹槽包括第一沟槽和位于第一沟槽底部的多个第一通孔,相邻第一通孔之间具有凸起,所述第二凹槽包括第二沟槽和位于第二沟槽底部的第二通孔,所述第一凹槽底部和第二凹槽底部分别暴露出第一金属层和第二金属层表面;在第一区域依次形成金属阻挡层、绝缘层和第三金属层,所述金属阻挡层覆盖第一凹槽的底部和侧壁,所述金属阻挡层还覆盖所述凸起的侧壁和顶部;形成填充满所述第一凹槽的第四金属层、以及填充满第二凹槽的第五金属层,且所述第四金属层覆盖于第三金属层的表面。In order to solve the above problems, the present invention provides a method for forming a semiconductor device, comprising: providing a semiconductor substrate, a first interlayer dielectric layer is formed on the surface of the semiconductor substrate, and the first interlayer dielectric layer includes a first region and the second region, the first metal layer is formed in the first interlayer dielectric layer in the first region, the second metal layer is formed in the first interlayer dielectric layer in the second region, and the first The metal layer and the second metal layer are flush with the top of the first interlayer dielectric layer; forming a second interlayer dielectric layer on the surface of the first interlayer dielectric layer; simultaneously etching the first interlayer dielectric layer in the first region and the second region Two interlayer dielectric layers, a first groove is formed in the second interlayer dielectric layer in the first region, a second groove is formed in the second interlayer dielectric layer in the second region, and the first groove is formed in the second interlayer dielectric layer in the second region. A groove includes a first groove and a plurality of first through holes located at the bottom of the first groove, with protrusions between adjacent first through holes, and the second groove includes a second groove and a plurality of first through holes located at the second The second through hole at the bottom of the groove, the bottom of the first groove and the bottom of the second groove respectively expose the surfaces of the first metal layer and the second metal layer; a metal barrier layer, an insulating layer and a second metal layer are sequentially formed in the first region Three metal layers, the metal barrier layer covers the bottom and sidewall of the first groove, the metal barrier layer also covers the sidewall and top of the protrusion; forming a fourth metal that fills the first groove layer, and the fifth metal layer filling the second groove, and the fourth metal layer covers the surface of the third metal layer.

可选的,在所述第一区域形成金属阻挡层、绝缘层和第三金属层的同时,在所述第二区域形成金属阻挡层、绝缘层和第三金属层,且所述第二区域金属阻挡层覆盖第二凹槽的底部和侧壁。Optionally, while forming the barrier metal layer, the insulating layer and the third metal layer in the first region, the barrier metal layer, the insulating layer and the third metal layer are formed in the second region, and the second region The metal barrier layer covers the bottom and sidewalls of the second groove.

可选的,在形成第四金属层之前,还包括步骤:形成覆盖第一区域的光刻胶层;以所述光刻胶层为掩膜,刻蚀去除第二区域的第三金属层和绝缘层。Optionally, before forming the fourth metal layer, further steps are included: forming a photoresist layer covering the first region; using the photoresist layer as a mask, etching and removing the third metal layer and the second region Insulation.

可选的,所述金属阻挡层和第三金属层的材料为Ta、Ti、W、TaN、TiN、WN、Co或它们的合金。Optionally, the material of the barrier metal layer and the third metal layer is Ta, Ti, W, TaN, TiN, WN, Co or alloys thereof.

可选的,所述金属阻挡层和第三金属层为单层结构或多层结构。Optionally, the barrier metal layer and the third metal layer are a single-layer structure or a multi-layer structure.

可选的,所述绝缘层的材料为SiO2、SiN、SiON或高k介质材料。Optionally, the material of the insulating layer is SiO 2 , SiN, SiON or high-k dielectric material.

可选的,所述第一金属层、第二金属层、第四金属层和第五金属层的材料为Cu、Al、W、CuAl合金或CuMn合金。Optionally, the material of the first metal layer, the second metal layer, the fourth metal layer and the fifth metal layer is Cu, Al, W, CuAl alloy or CuMn alloy.

可选的,所述第一凹槽和第二凹槽的形成步骤包括:先形成第一沟槽和第二沟槽,后形成第一通孔和第二通孔;或先形成第一通孔和第二通孔,后形成第一沟槽和第二沟槽。Optionally, the step of forming the first groove and the second groove includes: first forming the first groove and the second groove, and then forming the first through hole and the second through hole; or first forming the first through hole holes and second through holes, and then form first trenches and second trenches.

可选的,先形成第一沟槽和第二沟槽,后形成第一通孔和第二通孔的工艺步骤包括:在所述第二层间介质层表面形成第一掩膜层,所述第一区域的第一掩膜层具有第一开口,所述第二区域的第一掩膜层具有第二开口;以所述第一掩膜层为掩膜,同时刻蚀去除第一区域和第二区域的部分厚度的第二层间介质层,在所述第一区域形成第一沟槽,在所述第二区域形成第二沟槽;在所述第一沟槽底部和侧壁、第二沟槽底部和侧壁、以及剩余的第二层间介质层表面形成第二掩膜层,所述第一沟槽底部的第二掩膜层具有多个第三开口,所述第二沟槽底部的第二掩膜层具有第四开口;以所述第二掩膜层为掩膜,刻蚀去除第二层间介质层,直至暴露出第一金属层和第二金属层表面,在第一区域形成多个第一通孔,在第二区域形成第二通孔。Optionally, the process step of forming the first trench and the second trench first, and then forming the first via hole and the second via hole includes: forming a first mask layer on the surface of the second interlayer dielectric layer, so that The first mask layer in the first region has a first opening, and the first mask layer in the second region has a second opening; using the first mask layer as a mask, the first region is etched away at the same time and a second interlayer dielectric layer with a partial thickness of the second region, a first trench is formed in the first region, and a second trench is formed in the second region; at the bottom and sidewalls of the first trench , the bottom and sidewalls of the second trench, and the remaining surface of the second interlayer dielectric layer form a second mask layer, the second mask layer at the bottom of the first trench has a plurality of third openings, the first The second mask layer at the bottom of the second trench has a fourth opening; using the second mask layer as a mask, etch and remove the second interlayer dielectric layer until the surface of the first metal layer and the second metal layer are exposed , forming a plurality of first through holes in the first region, and forming second through holes in the second region.

可选的,先形成第一通孔和第二通孔,后形成第一沟槽和第二沟槽的工艺步骤包括:在所述第二层间介质层表面形成第一掩膜层,所述第一区域的第一掩膜层具有多个第一开口,所述第二区域的第一掩膜层具有第二开口;以所述第一掩膜层为掩膜,同时刻蚀去除第一区域和第二区域的第二层间介质层,直至暴露出第一金属层和第二金属层表面,在第一区域形成多个第一通孔,在第二区域形成第二通孔;在剩余的第二层间介质层表面形成第二掩膜层,第一区域的第二掩膜层具有第三开口,第二区域的第二掩膜层具有第四开口,且所述第三开口暴露出第一通孔,第四开口暴露出第二通孔;以所述第二掩膜层为掩膜,刻蚀去除部分厚度的第二层间介质层,在第一区域形成第一沟槽,在第二区域形成第二沟槽。Optionally, the process step of forming the first through hole and the second through hole first, and then forming the first trench and the second trench includes: forming a first mask layer on the surface of the second interlayer dielectric layer, so that The first mask layer in the first region has a plurality of first openings, and the first mask layer in the second region has a second opening; using the first mask layer as a mask, the first mask layer is etched and removed at the same time. The second interlayer dielectric layer in the first region and the second region, until the surfaces of the first metal layer and the second metal layer are exposed, forming a plurality of first through holes in the first region, and forming second through holes in the second region; A second mask layer is formed on the surface of the remaining second interlayer dielectric layer, the second mask layer in the first region has a third opening, the second mask layer in the second region has a fourth opening, and the third The opening exposes the first through hole, and the fourth opening exposes the second through hole; using the second mask layer as a mask, a part of the thickness of the second interlayer dielectric layer is etched away to form a first through hole in the first region. A trench, forming a second trench in the second region.

可选的,采用干法刻蚀工艺刻蚀所述第二层间介质层。Optionally, the second interlayer dielectric layer is etched using a dry etching process.

可选的,所述干法刻蚀工艺为等离子体刻蚀,等离子体刻蚀工艺的工艺参数为:刻蚀气体包括Ar、O2、CaFb和CxHyFz气体,其中,Ar流量为0sccm至500sccm,O2流量为0sccm至500sccm,CaFb流量为0sccm至500sccm,CxHyFz流量为0sccm至500sccm,刻蚀腔室压强为10毫托至100毫托,温度为-20度至200度,源功率为100瓦至1000瓦,偏置功率为0瓦至500瓦。Optionally, the dry etching process is plasma etching, and the process parameters of the plasma etching process are : the etching gas includes Ar, O2 , CaFb and CxHyFz gases, wherein , the flow rate of Ar is 0 sccm to 500 sccm, the flow rate of O2 is 0 sccm to 500 sccm, the flow rate of C a F b is 0 sccm to 500 sccm, the flow rate of C x H y F z is 0 sccm to 500 sccm, the etch chamber pressure is 10 mTorr to 100 mTorr Torr, the temperature is -20 degrees to 200 degrees, the source power is 100 watts to 1000 watts, and the bias power is 0 watts to 500 watts.

可选的,所述凸起为刻蚀第二层间介质层后形成的。Optionally, the protrusion is formed after etching the second interlayer dielectric layer.

可选的,对所述第四金属层和第五金属层进行刻蚀,使得第四金属层顶部和第五金属层顶部低于第二层间介质层顶部。Optionally, the fourth metal layer and the fifth metal layer are etched, so that the tops of the fourth metal layer and the fifth metal layer are lower than the tops of the second interlayer dielectric layer.

可选的,在形成第四金属层之后,还包括步骤:形成位于第二层间介质层、第四金属层和第五金属层表面的第三层间介质层;刻蚀所述第三层间介质层形成第三凹槽和第四凹槽,所述第三凹槽底部暴露出第四金属层,所述第四凹槽底部暴露出第五金属层;形成填充满所述第三凹槽的第六金属层,同时形成填充满所述第四凹槽的第七金属层。Optionally, after forming the fourth metal layer, further include the steps of: forming a third interlayer dielectric layer on the surface of the second interlayer dielectric layer, the fourth metal layer and the fifth metal layer; etching the third layer The intermediary layer forms a third groove and a fourth groove, the bottom of the third groove exposes the fourth metal layer, and the bottom of the fourth groove exposes the fifth metal layer; the sixth metal layer of the groove, and at the same time form the seventh metal layer filling the fourth groove.

本发明还提供一种半导体器件,包括:位于半导体衬底表面的第一层间介质层,所述第一层间介质层包括第一区域和第二区域,且所述第一区域的第一层间介质层内具有第一金属层,第二区域的第一层间介质层内具有第二金属层,且所述第一金属层和第二金属层顶部与第一层间介质层顶部齐平;位于所述第一层间介质层表面的第二层间介质层;位于所述第一区域的第二层间介质层内的第一凹槽,所述第一凹槽包括第一沟槽和位于第一沟槽底部的多个第一通孔,相邻第一通孔之间具有凸起,位于第二区域的第二层间介质层内的第二凹槽,所述第二凹槽包括第二沟槽和位于第二沟槽底部的第二通孔,所述第一通孔和第二通孔分别暴露出第一金属层和第二金属层表面;位于所述第一凹槽底部和侧壁的金属阻挡层、位于金属阻挡层表面的绝缘层、位于绝缘层表面的第三金属层,且所述金属阻挡层还位于所述凸起的侧壁和顶部;填充满所述第一凹槽的第四金属层,填充满所述第二凹槽的第五金属层。The present invention also provides a semiconductor device, comprising: a first interlayer dielectric layer located on the surface of a semiconductor substrate, the first interlayer dielectric layer includes a first region and a second region, and the first region of the first region There is a first metal layer in the interlayer dielectric layer, there is a second metal layer in the first interlayer dielectric layer in the second region, and the tops of the first metal layer and the second metal layer are flush with the top of the first interlayer dielectric layer flat; the second interlayer dielectric layer on the surface of the first interlayer dielectric layer; the first groove in the second interlayer dielectric layer in the first region, the first groove includes a first groove grooves and a plurality of first through holes at the bottom of the first trenches, with protrusions between adjacent first through holes, second grooves in the second interlayer dielectric layer in the second region, and the second The groove includes a second groove and a second through hole at the bottom of the second groove, the first through hole and the second through hole respectively expose the surface of the first metal layer and the second metal layer; The metal barrier layer on the bottom and sidewall of the groove, the insulating layer on the surface of the metal barrier layer, the third metal layer on the surface of the insulating layer, and the metal barrier layer is also located on the side wall and top of the protrusion; filled with The fourth metal layer of the first groove is filled with the fifth metal layer of the second groove.

可选的,第二凹槽的底部和侧壁具有金属阻挡层。Optionally, the bottom and sidewalls of the second groove have a metal barrier layer.

可选的,所述金属阻挡层和第三金属层的材料为Ta、Ti、W、TaN、TiN、WN、Co或它们的合金。Optionally, the material of the barrier metal layer and the third metal layer is Ta, Ti, W, TaN, TiN, WN, Co or alloys thereof.

可选的,所述第四金属层顶部和第五金属层顶部低于第二层间介质层顶部。Optionally, the tops of the fourth metal layer and the fifth metal layer are lower than the tops of the second interlayer dielectric layer.

与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:

本发明提供一种半导体器件的形成方法,在第一区域的第二层间介质层内形成第一凹槽,且所述第一凹槽包括第一沟槽和位于第一沟槽底部的多个第一通孔,相邻通孔之间具有凸起;在第一区域依次形成金属阻挡层、绝缘层和第三金属层,且所述金属阻挡层覆盖第一凹槽的底部和侧壁,所述金属阻挡层还覆盖所述凸起的顶部和侧壁;本发明技术方案中,在第一区域的第二层间介质层内形成半导体器件中的MIM电容器,金属阻挡层为MIM电容器的第一电极板,绝缘层为MIM电容器的中间绝缘层,第三金属层为MIM电容器的第二电极板;MIM电容器的第一电极板和第二电极板的重叠面积包括:第一凹槽的底部和侧壁面积、凸起的表面和侧壁面积;与现有技术相比,本发明技术方案形成的MIM电容器的第一电极板和第二电极板的重叠面积明显增加了,因此增加了单位面积的MIM电容器的电容量,提高了半导体器件的电容密度,节约了芯片面积,满足半导体器件小型化微型化的发展趋势。The present invention provides a method for forming a semiconductor device. A first groove is formed in a second interlayer dielectric layer in a first region, and the first groove includes a first groove and multiple grooves at the bottom of the first groove. a first through hole, with protrusions between adjacent through holes; a metal barrier layer, an insulating layer and a third metal layer are sequentially formed in the first region, and the metal barrier layer covers the bottom and side walls of the first groove , the metal barrier layer also covers the top and sidewall of the protrusion; in the technical solution of the present invention, a MIM capacitor in a semiconductor device is formed in the second interlayer dielectric layer in the first region, and the metal barrier layer is a MIM capacitor The first electrode plate of the MIM capacitor, the insulating layer is the middle insulating layer of the MIM capacitor, and the third metal layer is the second electrode plate of the MIM capacitor; the overlapping area of the first electrode plate and the second electrode plate of the MIM capacitor includes: the first groove The bottom and sidewall area, raised surface and sidewall area; Compared with the prior art, the overlapping area of the first electrode plate and the second electrode plate of the MIM capacitor formed by the technical scheme of the present invention has obviously increased, therefore increases The capacitance of the MIM capacitor per unit area is increased, the capacitance density of the semiconductor device is improved, the chip area is saved, and the development trend of miniaturization and miniaturization of the semiconductor device is met.

同时,本发明技术方案中,在形成MIM电容器的同时,在第二区域的第二层间介质层内形成了互连结构,MIM电容器的形成工艺与互连结构的形成工艺相兼容,提高了半导体器件生产效率,缩短生产周期。At the same time, in the technical solution of the present invention, while forming the MIM capacitor, an interconnection structure is formed in the second interlayer dielectric layer in the second region, and the formation process of the MIM capacitor is compatible with the formation process of the interconnection structure, which improves the Improve the production efficiency of semiconductor devices and shorten the production cycle.

进一步,本发明技术方案中,在形成第四金属层和第五金属层之后,对所述第四金属层和第五金属层进行刻蚀,使得第四金属层和第五金属层顶部低于第二层间介质层顶部,防止第四金属层和第五金属层之间发生电连接,提高半导体器件的可靠性。Further, in the technical solution of the present invention, after forming the fourth metal layer and the fifth metal layer, the fourth metal layer and the fifth metal layer are etched so that the tops of the fourth metal layer and the fifth metal layer are lower than The top of the second interlayer dielectric layer prevents electrical connection between the fourth metal layer and the fifth metal layer, improving the reliability of the semiconductor device.

本发明还提供一种半导体器件,所述半导体器件结构性能优越,其中,在第一凹槽内具有多个第一通孔,相邻第一通孔之间具有凸起;在第一凹槽底部和侧壁具有金属阻挡层,所述金属阻挡层还位于凸起的顶部和侧壁;所述金属阻挡层为半导体器件中MIM电容器的第一电极板,第三金属层为MIM电容器的第二电极板,所述第一电极板和第二电极板的重叠面积包括:第一凹槽的底部和侧壁面积,凸起的顶部和侧壁面积;与现有技术相比,本实施例增加了MIM电容器的第一电极板和第二电极板的重叠面积,从而提高了半导体器件单位面积的电容量,提高电容密度,节约芯片面积。The present invention also provides a semiconductor device with superior structural performance, wherein there are a plurality of first through holes in the first groove, and there are protrusions between adjacent first through holes; The bottom and side walls have a metal barrier layer, and the metal barrier layer is also located on the raised top and side walls; the metal barrier layer is the first electrode plate of the MIM capacitor in the semiconductor device, and the third metal layer is the first electrode plate of the MIM capacitor. Two electrode plates, the overlapping area of the first electrode plate and the second electrode plate includes: the bottom and side wall area of the first groove, the top and side wall area of the protrusion; compared with the prior art, this embodiment The overlapping area of the first electrode plate and the second electrode plate of the MIM capacitor is increased, thereby increasing the capacitance per unit area of the semiconductor device, increasing the capacitance density, and saving the chip area.

进一步,第二凹槽的底部和侧壁具有金属阻挡层,所述金属阻挡层阻挡第五金属层中易扩散的金属离子扩散至第二层间介质层中,提高半导体器件的可靠性。Further, the bottom and sidewalls of the second groove have a metal barrier layer, and the metal barrier layer prevents easily diffused metal ions in the fifth metal layer from diffusing into the second interlayer dielectric layer, thereby improving the reliability of the semiconductor device.

更进一步,第四金属层顶部和第五金属层顶部低于第二层间介质层顶部,从而防止第四金属层和第五金属层直接发生电连接,进一步提高半导体器件的可靠性,优化半导体器件的电学性能。Furthermore, the top of the fourth metal layer and the top of the fifth metal layer are lower than the top of the second interlayer dielectric layer, thereby preventing direct electrical connection between the fourth metal layer and the fifth metal layer, further improving the reliability of semiconductor devices, and optimizing semiconductor The electrical performance of the device.

附图说明Description of drawings

图1为本发明一实施例提供的半导体器件形成方法的流程示意图;1 is a schematic flow chart of a method for forming a semiconductor device according to an embodiment of the present invention;

图2至图14为本发明又一实施例提供的半导体器件形成过程的剖面结构示意图。2 to 14 are schematic cross-sectional structure diagrams of a semiconductor device formation process provided by another embodiment of the present invention.

具体实施方式Detailed ways

由背景技术可知,为了满足半导体芯片朝向高集成度方向发展,增加单位芯片面积的电容量越来越重要。It can be seen from the background art that in order to meet the development of semiconductor chips toward high integration, it is more and more important to increase the capacitance per unit chip area.

为解决上述问题,针对半导体器件的形成方法进行研究,目前最常见的为在进行双镶嵌工艺(dual damascene)的同时形成MIM电容器,具体的,半导体器件的形成方法包括以下步骤,请参考图1:步骤S1、提供基底,所述基底具有第一区域和第二区域,所述第一区域基底内具有第一金属层,所述第二区域基底内具有第二金属层,且所述第一金属层和第二金属层的顶部与基底顶部齐平;步骤S2、形成覆盖于所述基底表面的层间介质层;步骤S3、在所述第一区域的层间介质层内形成第一凹槽,所述第一凹槽的形状为方形或U形,在所述第二区域的层间介质层内形成第二凹槽,所述第二凹槽为单大马士革开口或双大马士革开口;步骤S4、在所述第一凹槽内依次形成金属阻挡层、绝缘层和第三金属层;步骤S5、形成填充满所述第一凹槽的第四金属层,同时形成填充满所述第二凹槽的第五金属层。In order to solve the above problems, the formation method of semiconductor devices is studied. At present, the most common method is to form MIM capacitors at the same time as dual damascene. Specifically, the formation method of semiconductor devices includes the following steps, please refer to Figure 1 : Step S1, providing a substrate, the substrate has a first region and a second region, the first region has a first metal layer in the substrate, the second region has a second metal layer in the substrate, and the first The tops of the metal layer and the second metal layer are flush with the top of the substrate; step S2, forming an interlayer dielectric layer covering the surface of the substrate; step S3, forming a first recess in the interlayer dielectric layer in the first region Groove, the shape of the first groove is square or U-shaped, and a second groove is formed in the interlayer dielectric layer of the second region, and the second groove is a single damascene opening or a double damascene opening; step S4, sequentially forming a metal barrier layer, an insulating layer, and a third metal layer in the first groove; step S5, forming a fourth metal layer that fills the first groove, and simultaneously forming a fourth metal layer that fills the second groove. The fifth metal layer of the recess.

上述方法形成的半导体器件中,在第一区域形成MIM电容器,金属阻挡层为MIM电容器的第一电极板,绝缘层为MIM电容器的中间绝缘层,第三金属层为MIM电容器的第二电极板。然而,上述方法形成的半导体器件中的MIM电容器中,第一电极板和第二电极板的重叠面积较小,导致形成的MIM电容器的电容量低,难以满足半导体器件对电容量的需求。In the semiconductor device formed by the above method, a MIM capacitor is formed in the first region, the metal barrier layer is the first electrode plate of the MIM capacitor, the insulating layer is an intermediate insulating layer of the MIM capacitor, and the third metal layer is the second electrode plate of the MIM capacitor . However, in the MIM capacitor in the semiconductor device formed by the above method, the overlapping area of the first electrode plate and the second electrode plate is small, resulting in a low capacitance of the formed MIM capacitor, which is difficult to meet the capacitance requirement of the semiconductor device.

由于MIM电容器的电容量与两个金属电极板间的重叠面积成正比,为了增加半导体器件中的电容量,通常需要增加MIM电容器的金属电极板间的重叠面积;而增加金属电极板的重叠面积导致半导体器件的体积增大,不能满足半导体器件尺寸越来越小的发展趋势。Since the capacitance of the MIM capacitor is proportional to the overlapping area between the two metal electrode plates, in order to increase the capacitance in the semiconductor device, it is usually necessary to increase the overlapping area between the metal electrode plates of the MIM capacitor; and increase the overlapping area of the metal electrode plates As a result, the volume of semiconductor devices increases, which cannot meet the development trend of smaller and smaller sizes of semiconductor devices.

为此,本发明提供一种半导体器件的形成方法,在形成互连结构的同时,形成具有高电容量的MIM电容器,增加单位芯片面积的电容量,节约芯片面积,满足半导体器件小型化的发展趋势。Therefore, the present invention provides a method for forming a semiconductor device. While forming an interconnection structure, a MIM capacitor with high capacitance is formed to increase the capacitance per unit chip area, save chip area, and meet the development of miniaturization of semiconductor devices. trend.

为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

图2至图14为本发明又一实施例提供的半导体器件形成过程的剖面结构示意图。2 to 14 are schematic cross-sectional structure diagrams of a semiconductor device formation process provided by another embodiment of the present invention.

请参考图2,提供半导体衬底(未示出),所述半导体衬底表面形成有第一层间介质层100,所述第一层间介质层100包括第一区域I和第二区域II,所述第一区域I第一层间介质层100内具有第一金属层101,所述第二区域II第一层间介质层100内具有第二金属层102,且所述第一金属层101和第二金属层102的顶部与第一层间介质层100顶部齐平。Referring to FIG. 2, a semiconductor substrate (not shown) is provided, and a first interlayer dielectric layer 100 is formed on the surface of the semiconductor substrate, and the first interlayer dielectric layer 100 includes a first region I and a second region II , the first region I has a first metal layer 101 in the first interlayer dielectric layer 100, the second region II has a second metal layer 102 in the first interlayer dielectric layer 100, and the first metal layer 101 and the top of the second metal layer 102 are flush with the top of the first interlayer dielectric layer 100 .

第一区域I和第二区域II分别用来形成半导体器件中的MIM电容器和互连结构,本实施例以在第一区域I形成MIM电容器,在第二区域II形成互连结构作示范性说明。The first region I and the second region II are respectively used to form the MIM capacitor and the interconnection structure in the semiconductor device. In this embodiment, the MIM capacitor is formed in the first region I, and the interconnection structure is formed in the second region II as an exemplary illustration. .

第一层间介质层100的材料为氧化硅、氮化硅、氮氧化硅或低k介质材料(低k介质材料指的是相对介电常数小于4的介质材料),所述低k介质材料为碳氢氧化硅(SiOCH)、掺硼的玻璃(BSG:Boron-Doped Silicate Glass)、掺氟的玻璃(FSG:Fluorine-Doped Silicate Glass)或掺磷的玻璃(PSG:Phosphorus-Doped Silicate Glass)。The material of the first interlayer dielectric layer 100 is silicon oxide, silicon nitride, silicon oxynitride, or a low-k dielectric material (a low-k dielectric material refers to a dielectric material with a relative permittivity less than 4), and the low-k dielectric material Silicon hydroxide (SiOCH), boron-doped glass (BSG: Boron-Doped Silicate Glass), fluorine-doped glass (FSG: Fluorine-Doped Silicate Glass) or phosphorus-doped glass (PSG: Phosphorus-Doped Silicate Glass) .

所述第一金属层101和第二金属层102的材料为Cu、Al、W、CuAl合金或CuMn合金。The materials of the first metal layer 101 and the second metal layer 102 are Cu, Al, W, CuAl alloy or CuMn alloy.

请参考图3,在所述第一层间介质层100表面形成第二层间介质层103。Referring to FIG. 3 , a second interlayer dielectric layer 103 is formed on the surface of the first interlayer dielectric layer 100 .

所述第二层间介质层103的材料为氧化硅、氮化硅、氮氧化硅或低k介质材料,所述低k介质材料为碳氢氧化硅、掺硼的玻璃、掺氟的玻璃或掺磷的玻璃。The material of the second interlayer dielectric layer 103 is silicon oxide, silicon nitride, silicon oxynitride or a low-k dielectric material, and the low-k dielectric material is silicon hydroxide, boron-doped glass, fluorine-doped glass or Phosphorus-doped glass.

本实施例中,所述第二层间介质层103的材料为氧化硅。In this embodiment, the material of the second interlayer dielectric layer 103 is silicon oxide.

在本发明其他实施例中,在第一层间介质层和第二层间介质层之间可以形成刻蚀阻挡层,所述刻蚀阻挡层的材料为氧化硅、氮化硅、氮氧化硅或碳氧化硅。In other embodiments of the present invention, an etch barrier layer may be formed between the first interlayer dielectric layer and the second interlayer dielectric layer, and the material of the etch barrier layer is silicon oxide, silicon nitride, silicon oxynitride or silicon carbide.

请参考图4,在所述第二层间介质层103表面形成第一掩膜层104,所述第一区域I的第一掩膜层104具有第一开口105,所述第二区域II的第二掩膜层104具有第二开口106。Please refer to FIG. 4, a first mask layer 104 is formed on the surface of the second interlayer dielectric layer 103, the first mask layer 104 in the first region I has a first opening 105, and the second region II The second mask layer 104 has a second opening 106 .

本实施例中,所述第一开口105定义出后续在第一区域I形成的第一沟槽的位置,所述第二开口106定义出后续在第二区域II形成第二沟槽的位置。In this embodiment, the first opening 105 defines the position of the first groove to be subsequently formed in the first region I, and the second opening 106 defines the position of the second groove to be subsequently formed in the second region II.

本实施例中,所述第一掩膜层104的材料为氮化硅,厚度为200埃至5000埃。In this embodiment, the material of the first mask layer 104 is silicon nitride, and the thickness is 200 angstroms to 5000 angstroms.

作为一个实施例,形成第一掩膜层104的工艺步骤包括:形成位于第二层间介质层103表面的初始掩膜层;在所述初始掩膜层表面形成图形化的光刻胶层;以所述图形化的光刻胶层为掩膜,刻蚀第一区域I的初始掩膜层,形成第一开口105,同时刻蚀第二区域I的初始掩膜层,形成第二开口106,形成具有第一开口105和第二开口106的第一掩膜层104。As an embodiment, the process steps of forming the first mask layer 104 include: forming an initial mask layer on the surface of the second interlayer dielectric layer 103; forming a patterned photoresist layer on the surface of the initial mask layer; Using the patterned photoresist layer as a mask, etch the initial mask layer of the first region I to form a first opening 105, and simultaneously etch the initial mask layer of the second region I to form a second opening 106 , forming a first mask layer 104 having a first opening 105 and a second opening 106 .

在本发明其他实施例中,第一掩膜层可以为光刻胶层或抗反射涂层和光刻胶层的叠层结构。In other embodiments of the present invention, the first mask layer may be a photoresist layer or a laminated structure of an anti-reflection coating and a photoresist layer.

请参考图5,以所述第一掩膜层104(请参考图4)为掩膜,刻蚀去除第一区域I部分厚度的第二层间介质层103,在第一区域I形成第一沟槽115,同时刻蚀去除第二区域II部分厚度的第二层间介质层103,在第二区域II形成第二沟槽116。Please refer to FIG. 5 , using the first mask layer 104 (please refer to FIG. 4 ) as a mask, the second interlayer dielectric layer 103 with a partial thickness in the first region I is etched away, and the first interlayer dielectric layer 103 is formed in the first region I. The trench 115 is etched to remove part of the thickness of the second interlayer dielectric layer 103 in the second region II at the same time, and the second trench 116 is formed in the second region II.

所述第一沟槽115和第二沟槽116的形成工艺为干法刻蚀。作为一个实施例,所述干法刻蚀工艺为等离子体刻蚀,等离子体刻蚀工艺的工艺参数为:刻蚀气体包括Ar、O2、CaFb和CxHyFz气体,其中,Ar流量为0sccm至500sccm,O2流量为0sccm至500sccm,CaFb流量为0sccm至500sccm,CxHyFz流量为0sccm至500sccm,刻蚀腔室压强为10毫托至100毫托,温度为-20度至200度,源功率为100瓦至1000瓦,偏置功率为0瓦至500瓦。(CaFb可以为CF4,CxHyFz可以为CHF3或CH2F2The formation process of the first trench 115 and the second trench 116 is dry etching. As an embodiment, the dry etching process is plasma etching, and the process parameters of the plasma etching process are: the etching gas includes Ar, O 2 , Ca F b and C x Hy F z gases, Wherein, the flow rate of Ar is 0sccm to 500sccm, the flow rate of O2 is 0sccm to 500sccm , the flow rate of C a F b is 0sccm to 500sccm, the flow rate of CxHyFz is 0sccm to 500sccm, and the pressure of the etching chamber is 10mTorr to 100 Millitorr, temperature from -20 degrees to 200 degrees, source power from 100 watts to 1000 watts, bias power from 0 watts to 500 watts. (C a F b can be CF 4 , C x H y F z can be CHF 3 or CH 2 F 2 )

在第一沟槽115和第二沟槽116形成之后,还包括步骤:去除第一掩膜层104。本实施例中,采用湿法刻蚀工艺去除所述第一掩膜层104,所述湿法刻蚀工艺的刻蚀液体为热磷酸溶液,其中,溶液温度为120度至200度,磷酸质量百分比为65%至85%。After the first trench 115 and the second trench 116 are formed, a step is further included: removing the first mask layer 104 . In this embodiment, the first mask layer 104 is removed by a wet etching process. The etching liquid of the wet etching process is a hot phosphoric acid solution, wherein the temperature of the solution is 120 to 200 degrees, and the mass of phosphoric acid is The percentages range from 65% to 85%.

请参考图6,在所述第一沟槽115(请参考图5)底部和侧壁、第二沟槽116(请参考图5)底部和侧壁、以及剩余的第二层间介质层103表面形成第二掩膜层107,所述第一沟槽115底部的第二掩膜层107具有多个第三开口108,所述第二沟槽116底部的第二掩膜层107具有第四开口109。Please refer to FIG. 6 , at the bottom and sidewalls of the first trench 115 (please refer to FIG. 5 ), the bottom and sidewalls of the second trench 116 (please refer to FIG. 5 ), and the remaining second interlayer dielectric layer 103 A second mask layer 107 is formed on the surface, the second mask layer 107 at the bottom of the first trench 115 has a plurality of third openings 108, and the second mask layer 107 at the bottom of the second trench 116 has a fourth Opening 109.

所述第三开口108定义出后续形成第三通孔的位置和孔径,所述第四开口109定义出后续形成第四通孔的位置和孔径。The third opening 108 defines the position and diameter of the third through hole to be formed later, and the fourth opening 109 defines the position and diameter of the fourth through hole to be formed subsequently.

需要说明的是,所述多个为大于或等于2的任意数量值。本实施例中,以第一沟槽115底部的第二掩膜层107具有3个第三开口108作示范性说明。在其他实施例中,第一沟槽底部的第二掩膜层可以具有2个、4个或更多个的第三开口。It should be noted that the multiple is any number of values greater than or equal to 2. In this embodiment, the second mask layer 107 at the bottom of the first trench 115 has three third openings 108 for an exemplary illustration. In other embodiments, the second mask layer at the bottom of the first trench may have 2, 4 or more third openings.

所述第三开口108暴露出第一沟槽115的底部,所述第四开口109暴露出第二沟槽116的底部。The third opening 108 exposes the bottom of the first trench 115 , and the fourth opening 109 exposes the bottom of the second trench 116 .

所述第二掩膜层107的形成工艺和步骤可参考第一掩膜层104的形成工艺和步骤,在此不再赘述。The formation process and steps of the second mask layer 107 can refer to the formation process and steps of the first mask layer 104 , which will not be repeated here.

请参考图7,以所述第二掩膜层107(请参考图6)为掩膜,刻蚀去除第二层间介质层103,直至暴露出第一金属层101和第二金属层102表面,在第一区域I形成多个第一通孔118,相邻第一通孔118之间具有凸起120,在第二区域II形成第二通孔119。Please refer to FIG. 7 , using the second mask layer 107 (please refer to FIG. 6 ) as a mask, etch and remove the second interlayer dielectric layer 103 until the surfaces of the first metal layer 101 and the second metal layer 102 are exposed. , forming a plurality of first through holes 118 in the first region I, with protrusions 120 between adjacent first through holes 118 , and forming second through holes 119 in the second region II.

需要说明的是,所述多个为大于或等于2的任意数量值。本实施例中,以在第一区域I形成3个第一通孔118作示范性说明。在其他实施例中,在第一区域形成2个、4个或更多个第一通孔。It should be noted that the multiple is any number of values greater than or equal to 2. In this embodiment, three first through holes 118 are formed in the first region I for exemplary illustration. In other embodiments, 2, 4 or more first through holes are formed in the first region.

刻蚀第二层间介质层103形成第一通孔118和第二通孔119的工艺可参考本实施例第一沟槽115和第二沟槽116的形成工艺,在此不再赘述。For the process of etching the second interlayer dielectric layer 103 to form the first via hole 118 and the second via hole 119 , reference may be made to the process of forming the first trench 115 and the second trench 116 in this embodiment, which will not be repeated here.

需要说明的是,在本发明其他实施例中,第一层间介质层和第二层间介质层之间形成有刻蚀阻挡层,则刻蚀第一沟槽底部的第二层间介质层和刻蚀阻挡层,形成第一通孔,刻蚀第二沟槽底部的第二层间介质层和刻蚀阻挡层,形成第二通孔。It should be noted that, in other embodiments of the present invention, an etching stopper layer is formed between the first interlayer dielectric layer and the second interlayer dielectric layer, then the second interlayer dielectric layer at the bottom of the first trench is etched and etching the barrier layer to form a first through hole, and etch the second interlayer dielectric layer and the etch barrier layer at the bottom of the second trench to form a second through hole.

本实施例中,在所述第一区域I的第二层间介质层103内形成第一凹槽,所述第一凹槽包括第一沟槽115和位于第一沟槽115底部的多个第一通孔118;在所述第二区域II的第二层间介质层103内形成第二凹槽,所述第二凹槽包括第二沟槽116和位于第二沟槽116底部的第二通孔119;所述第一凹槽底部和第二凹槽底部分别暴露出第一金属层101和第二金属层102表面。In this embodiment, a first groove is formed in the second interlayer dielectric layer 103 in the first region I, and the first groove includes a first groove 115 and a plurality of grooves at the bottom of the first groove 115 A first through hole 118; a second groove is formed in the second interlayer dielectric layer 103 in the second region II, the second groove includes the second groove 116 and the second groove at the bottom of the second groove 116 Two through holes 119 ; the bottom of the first groove and the bottom of the second groove respectively expose the surfaces of the first metal layer 101 and the second metal layer 102 .

在第一区域I内具有多个第一通孔118,相邻的第一通孔118之间具有凸起120,所述凸起120为刻蚀第二层间介质层103后形成的;本实施例中,在第一凹槽内形成有多个凸起120,后续在第一凹槽内形成MIM电容器时,多个凸起120的顶部面积和侧壁面积也为MIM电容器第一电极板和第二电极板之间的重叠面积,与现有技术相比,本实施MIM电容器第一电极板和第二电极板之间的重叠面积得到明显增加,从而提高MIM电容器的电容量,增加MIM电容器的电容密度,满足半导体器件小型化的发展趋势。There are a plurality of first through holes 118 in the first region I, and there are protrusions 120 between adjacent first through holes 118, and the protrusions 120 are formed after etching the second interlayer dielectric layer 103; In the embodiment, a plurality of protrusions 120 are formed in the first groove, and when a MIM capacitor is subsequently formed in the first groove, the top area and the side wall area of the plurality of protrusions 120 are also the first electrode plate of the MIM capacitor. and the overlapping area between the second electrode plate, compared with the prior art, the overlapping area between the first electrode plate and the second electrode plate of the implementation MIM capacitor is significantly increased, thereby improving the capacitance of the MIM capacitor and increasing the MIM The capacitance density of the capacitor meets the development trend of miniaturization of semiconductor devices.

本实施例中,所述第一凹槽和第二凹槽的形成顺序为:先形成第一沟槽115和第二沟槽116,后形成第一通孔118和第二通孔119。In this embodiment, the formation sequence of the first groove and the second groove is as follows: the first groove 115 and the second groove 116 are formed first, and then the first through hole 118 and the second through hole 119 are formed.

在本发明其他实施例中,所述第一凹槽和第二凹槽的形成顺序也可以为:先形成第一通孔和第二通孔,后形成第一沟槽和第二沟槽。具体的,先形成第一通孔和第二通孔,后形成第一沟槽和第二沟槽的工艺步骤包括:在所述第二层间介质层表面形成第一掩膜层,所述第一区域的第一掩膜层具有多个第一开口,所述第二区域的第一掩膜层具有第二开口;以所述第一掩膜层为掩膜,同时刻蚀去除第一区域和第二区域的第二层间介质层,直至暴露出第一金属层和第二金属层表面,在第一区域形成多个第一通孔,在第二区域形成第二通孔;在剩余的第二层间介质层表面形成第二掩膜层,第一区域的第二掩膜层具有第三开口,第二区域的第二掩膜层具有第四开口,且所述第三开口暴露出第一通孔,第四开口暴露出第二通孔;以所述第二掩膜层为掩膜,刻蚀去除部分厚度的第二层间介质层,在第一区域形成第一沟槽,在第二区域形成第二沟槽。In other embodiments of the present invention, the order of forming the first groove and the second groove may also be: first form the first through hole and the second through hole, and then form the first groove and the second groove. Specifically, the process steps of first forming the first through hole and the second through hole, and then forming the first trench and the second trench include: forming a first mask layer on the surface of the second interlayer dielectric layer, the The first mask layer in the first region has a plurality of first openings, and the first mask layer in the second region has second openings; using the first mask layer as a mask, etch and remove the first region and the second interlayer dielectric layer in the second region until the surfaces of the first metal layer and the second metal layer are exposed, a plurality of first through holes are formed in the first region, and second through holes are formed in the second region; A second mask layer is formed on the surface of the remaining second interlayer dielectric layer, the second mask layer in the first region has a third opening, the second mask layer in the second region has a fourth opening, and the third opening exposing the first via hole, and the fourth opening exposing the second via hole; using the second mask layer as a mask, etching and removing part of the thickness of the second interlayer dielectric layer to form a first trench in the first region groove, forming a second trench in the second region.

请参考图8,在第一区域I依次形成金属阻挡层121、绝缘层122和第三金属层123,所述金属阻挡层121覆盖第一凹槽的底部和侧壁、以及凸起120的顶部和侧壁。Referring to FIG. 8, a barrier metal layer 121, an insulating layer 122 and a third metal layer 123 are sequentially formed in the first region I, and the barrier metal layer 121 covers the bottom and sidewalls of the first groove and the top of the protrusion 120. and side walls.

由于后续在第二区域形成互连结构时,为防止金属中易扩散的离子扩散进入第二层间介质层中,在采用金属填充第二凹槽之前,需要在第二凹槽的底部和侧壁形成金属阻挡层。因此,为节约工艺成本,缩短生产周期,在所述第一区域I形成金属阻挡层121的同时,在所述第二区域II形成金属阻挡层121,且所述第二区域金属阻挡层121覆盖第二凹槽的底部和侧壁。Since the subsequent formation of the interconnection structure in the second region, in order to prevent the easily diffused ions in the metal from diffusing into the second interlayer dielectric layer, before using the metal to fill the second groove, it is necessary to fill the bottom and side of the second groove. The walls form a metal barrier. Therefore, in order to save process cost and shorten the production cycle, while forming the barrier metal layer 121 in the first region I, the barrier metal layer 121 is formed in the second region II, and the barrier metal layer 121 covers the second region The bottom and sidewalls of the second groove.

本实施例中,在所述第一区域I形成金属阻挡层121、绝缘层122和第三金属层123的同时,在所述第二区域II形成金属阻挡层121、绝缘层122和第三金属层123。In this embodiment, while the metal barrier layer 121, the insulating layer 122 and the third metal layer 123 are formed in the first region I, the metal barrier layer 121, the insulating layer 122 and the third metal layer 123 are formed in the second region II. Layer 123.

所述第一区域I的金属阻挡层121作为MIM电容器的第一电极板,所述第一区域I的绝缘层122为MIM电容器的中间介质层,所述第一区域I的第三金属层123为MIM电容器的第二电极板。由于本实施例中,在第一沟槽115底部形成有多个第一通孔118,相邻第一通孔118之间具有凸起120,则MIM电容器的第一电极板和第二电极板的重叠面积包括:第一凹槽的底部和侧壁面积、凸起120的顶部和侧壁面积。与现有技术相比,在相同的芯片面积条件下,本实施形成的MIM电容器的第一电极板和第二电极板的重叠面积明显得到增加,单位面积芯片的MIM电容器的电容量增加,从而提高MIM电容器的电容密度,满足半导体器件小型化微型化的发展趋势。The metal barrier layer 121 in the first region I serves as the first electrode plate of the MIM capacitor, the insulating layer 122 in the first region I is the intermediate dielectric layer of the MIM capacitor, and the third metal layer 123 in the first region I It is the second electrode plate of the MIM capacitor. Since in this embodiment, a plurality of first through holes 118 are formed at the bottom of the first groove 115, and there are protrusions 120 between adjacent first through holes 118, the first electrode plate and the second electrode plate of the MIM capacitor The overlapping area includes: the bottom and sidewall area of the first groove, and the top and sidewall area of the protrusion 120 . Compared with the prior art, under the same chip area condition, the overlapping area of the first electrode plate and the second electrode plate of the MIM capacitor formed in this implementation is obviously increased, and the capacitance of the MIM capacitor of the chip per unit area is increased, thereby Improve the capacitance density of the MIM capacitor to meet the development trend of miniaturization and miniaturization of semiconductor devices.

所述金属阻挡层121为单层结构或多层结构,金属阻挡层121的材料为Ta、Ti、TaN、TiN、Co或它们的合金;所述绝缘层122的材料为SiO2、SiN、SiON或高k介质材料,所述高k介质材料为Ta2O6、TiO2或Al2O3;所述第三金属层123的材料为Ta、Ti、W、Al、TiN、TaN或Co或它们的合金。The metal barrier layer 121 is a single-layer structure or a multi-layer structure, and the material of the metal barrier layer 121 is Ta, Ti, TaN, TiN, Co or their alloys; the material of the insulating layer 122 is SiO 2 , SiN, SiON Or a high-k dielectric material, the high-k dielectric material is Ta 2 O 6 , TiO 2 or Al 2 O 3 ; the material of the third metal layer 123 is Ta, Ti, W, Al, TiN, TaN or Co or their alloys.

本实施例中,所述金属阻挡层121为材料为Ti的单层结构,厚度为20埃至1000埃,所述绝缘层122的材料为SiO2,厚度为20埃至1000埃,所述第三金属层123的材料为Ta,厚度为20埃至1000埃。In this embodiment, the metal barrier layer 121 is a single-layer structure made of Ti, with a thickness of 20 angstroms to 1000 angstroms, and the material of the insulating layer 122 is SiO 2 , with a thickness of 20 angstroms to 1000 angstroms. The material of the three metal layers 123 is Ta, and the thickness is 20 angstroms to 1000 angstroms.

请参考图9,形成覆盖第一区域I的第三金属层123的光刻胶层124。Referring to FIG. 9 , a photoresist layer 124 covering the third metal layer 123 of the first region I is formed.

作为一个实施例,形成所述光刻胶层124的工艺步骤包括:形成覆盖第一区域I和第二区域II的初始光刻胶层;对所述初始光刻胶层进行曝光显影处理,去除第二区域II的初始光刻胶层,形成覆盖第一区域I的第三金属层123的光刻胶层124。As an example, the process steps of forming the photoresist layer 124 include: forming an initial photoresist layer covering the first region I and the second region II; exposing and developing the initial photoresist layer to remove The initial photoresist layer in the second region II forms a photoresist layer 124 covering the third metal layer 123 in the first region I.

请参考图10,以所述光刻胶层124(请参考图9)为掩膜,刻蚀去除第二区域II的第三金属层123和绝缘层122。Referring to FIG. 10 , using the photoresist layer 124 (please refer to FIG. 9 ) as a mask, etch and remove the third metal layer 123 and the insulating layer 122 in the second region II.

第二区域II为形成互连结构的区域,则后续在第二凹槽内填充第四金属时,所述金属需要与第二金属层102进行电连接,因此,在形成第四金属层之前,需要去除第二区域II的第三金属层123和绝缘层122。The second region II is the region where the interconnect structure is formed, and when the fourth metal is subsequently filled in the second groove, the metal needs to be electrically connected to the second metal layer 102. Therefore, before forming the fourth metal layer, The third metal layer 123 and the insulating layer 122 of the second region II need to be removed.

采用干法刻蚀工艺刻蚀去除第二区域II的第三金属层123和绝缘层122。作为一个实施例,所述干法刻蚀工艺为反应离子刻蚀,所述反应离子刻蚀工艺的工艺参数为:反应气体包括CF4、CHF3和Ar,其中,CF4流量为50sccm至100sccm,CHF3流量为10sccm至50sccm,Ar流量为100sccm至200sccm,反应腔室压强为50毫托至500毫托。The third metal layer 123 and the insulating layer 122 in the second region II are etched and removed by using a dry etching process. As an embodiment, the dry etching process is reactive ion etching, and the process parameters of the reactive ion etching process are: the reactive gas includes CF 4 , CHF 3 and Ar, wherein the flow rate of CF 4 is 50 sccm to 100 sccm , the CHF 3 flow rate is 10 sccm to 50 sccm, the Ar flow rate is 100 sccm to 200 sccm, and the reaction chamber pressure is 50 mTorr to 500 mTorr.

在去除第二区域II的第三金属层123和绝缘层122后,还包括步骤:去除位于第一区域I的光刻胶层124。具体的,采用灰化工艺去除第一区域I的光刻胶层124,所述灰化工艺的工艺参数为:氧气流量为100sccm至500sccm,灰化温度为60度至300度。After removing the third metal layer 123 and the insulating layer 122 in the second region II, a step is further included: removing the photoresist layer 124 located in the first region I. Specifically, the photoresist layer 124 in the first region I is removed by an ashing process, the process parameters of the ashing process are: the flow rate of oxygen is 100 sccm to 500 sccm, and the ashing temperature is 60 degrees to 300 degrees.

请参考图11,形成填充满所述第一凹槽的第四金属层125、以及填充满第二凹槽的第五金属层126,且所述第四金属层125覆盖于第三金属层123的表面。Referring to FIG. 11 , a fourth metal layer 125 filling the first groove and a fifth metal layer 126 filling the second groove are formed, and the fourth metal layer 125 covers the third metal layer 123 s surface.

所述第四金属层125和第五金属层126的材料为Cu、Al、W、CuAl合金或CuMn合金,形成工艺为物理气相沉积或电镀法。The material of the fourth metal layer 125 and the fifth metal layer 126 is Cu, Al, W, CuAl alloy or CuMn alloy, and the formation process is physical vapor deposition or electroplating.

本实施例中,所述第四金属层125和第五金属层126的材料为Cu,采用电镀法形成所述第四金属层125和第五金属层126。In this embodiment, the material of the fourth metal layer 125 and the fifth metal layer 126 is Cu, and the fourth metal layer 125 and the fifth metal layer 126 are formed by electroplating.

将所述第一层间介质层100转移至电镀反应池中,电镀形成第四金属层125和第五金属层126。在电镀的过程中,金属铜填充满所述第一凹槽和第二凹槽,形成块铜。The first interlayer dielectric layer 100 is transferred to an electroplating reaction bath, and the fourth metal layer 125 and the fifth metal layer 126 are formed by electroplating. During the electroplating process, metallic copper fills the first groove and the second groove to form bulk copper.

所述电镀反应池中有电镀溶液、金属铜阳极和电源正负极。所述电镀溶液主要由硫酸铜、硫酸和水组成,所述电镀溶液中还包含有催化剂、抑制剂、调整剂等多种添加剂。There are electroplating solution, metal copper anode and positive and negative electrodes of power supply in the electroplating reaction pool. The electroplating solution is mainly composed of copper sulfate, sulfuric acid and water, and the electroplating solution also contains various additives such as catalysts, inhibitors and regulators.

所述电镀的过程为:所述第一区域I的第三金属层123和第二区域II金属阻挡层121连接电源的负极,所述金属铜阳极连接电源的正极,位于所述金属铜阳极上的铜原子发生氧化反应形成金属铜离子,位于所述第一区域I第三金属层123和第二区域II金属阻挡层121表面附近的金属铜离子发生还原反应,生成的铜原子沉积在所述第一区域I第三金属层123和第二区域II金属阻挡层121表面形成金属膜。The electroplating process is as follows: the third metal layer 123 in the first region I and the metal barrier layer 121 in the second region II are connected to the negative pole of the power supply, and the metal copper anode is connected to the positive pole of the power supply and is located on the metal copper anode The copper atoms in the first region I undergo an oxidation reaction to form metal copper ions, and the metal copper ions located near the surface of the third metal layer 123 in the first region I and the metal barrier layer 121 in the second region II undergo a reduction reaction, and the generated copper atoms are deposited on the A metal film is formed on the surface of the third metal layer 123 in the first region I and the metal barrier layer 121 in the second region II.

作为一个实施例,所述第四金属层125和第五金属层126的形成步骤包括:形成填充满第一凹槽和第二凹槽的金属膜,所述金属膜顶部高于第二介质层103顶部;去除高于第二介质层103顶部的金属膜,同时去除高于第二介质层103顶部的第三金属层123、绝缘层122和金属阻挡层121,形成位于第一凹槽内的第四金属层125,第二凹槽内的第五金属层126,使得第四金属层125顶部以及第五金属层126顶部与第二层间介质层103顶部齐平。As an example, the step of forming the fourth metal layer 125 and the fifth metal layer 126 includes: forming a metal film that fills the first groove and the second groove, and the top of the metal film is higher than the second dielectric layer 103 top; remove the metal film higher than the top of the second dielectric layer 103, and simultaneously remove the third metal layer 123, the insulating layer 122 and the metal barrier layer 121 higher than the top of the second dielectric layer 103 to form a groove located in the first groove The fourth metal layer 125 and the fifth metal layer 126 in the second groove make the tops of the fourth metal layer 125 and the fifth metal layer 126 flush with the top of the second interlayer dielectric layer 103 .

所述第四金属层125为MIM电容器的第二电极板(第三金属层123)与上层结构提供电连接,所述第五金属层126用于形成半导体器件中的互连结构。The fourth metal layer 125 provides an electrical connection between the second electrode plate (third metal layer 123 ) of the MIM capacitor and the upper structure, and the fifth metal layer 126 is used to form an interconnection structure in a semiconductor device.

需要说明的是,在形成第四金属层之前,还可以形成覆盖第一凹槽底部和侧壁、第二凹槽底部和侧壁的籽晶层,所述籽晶层为形成第四金属层提供良好的界面态,有助于形成与籽晶层紧密粘结的第四金属层,改善互连结构的电迁移,提高半导体器件的电学性能。It should be noted that before forming the fourth metal layer, a seed layer covering the bottom and sidewalls of the first groove and the bottom and sidewalls of the second groove may also be formed, and the seed layer is used for forming the fourth metal layer. Provide a good interface state, help to form the fourth metal layer closely bonded to the seed layer, improve the electromigration of the interconnection structure, and improve the electrical performance of the semiconductor device.

还需要说明的是,为防止第一区域I和第二区域II的第四金属层125之间发生电连接,影响半导体器件的电学性能,在形成第四金属层125之后,还可以包括步骤:对所述第四金属层125和第五金属层126进行刻蚀,使得第四金属层125顶部和第五金属层126顶部低于第二层间介质层103顶部,提高半导体器件的可靠性。It should also be noted that, in order to prevent the electrical connection between the fourth metal layer 125 of the first region I and the second region II from affecting the electrical performance of the semiconductor device, after forming the fourth metal layer 125, steps may be included: The fourth metal layer 125 and the fifth metal layer 126 are etched so that the tops of the fourth metal layer 125 and the fifth metal layer 126 are lower than the top of the second interlayer dielectric layer 103 , so as to improve the reliability of the semiconductor device.

本实施例在第一区域I的第二层间介质层103形成MIM电容器,在第二区域II的第二层间介质层103内形成互连结构;在形成互连结构的同时,形成MIM电容器,MIM电容器与互连结构的形成工艺相兼容。In this embodiment, a MIM capacitor is formed in the second interlayer dielectric layer 103 in the first region I, and an interconnection structure is formed in the second interlayer dielectric layer 103 in the second region II; while the interconnection structure is formed, the MIM capacitor is formed , the MIM capacitor is compatible with the formation process of the interconnection structure.

请参考图12,形成位于第二层间介质层103、第四金属层125和第五金属层126表面的第三层间介质层127。Referring to FIG. 12 , a third interlayer dielectric layer 127 located on the surfaces of the second interlayer dielectric layer 103 , the fourth metal layer 125 and the fifth metal layer 126 is formed.

所述第三层间介质层127的材料和形成工艺可参考本发明实施例提供的第一层间介质层100的材料和形成工艺,在此不再赘述。For the material and formation process of the third interlayer dielectric layer 127, reference may be made to the material and formation process of the first interlayer dielectric layer 100 provided in the embodiment of the present invention, which will not be repeated here.

本实施例中,所述第三层间介质层127的材料为氧化硅,厚度为500埃至10000埃。In this embodiment, the material of the third interlayer dielectric layer 127 is silicon oxide, and the thickness is 500 angstroms to 10000 angstroms.

请参考图13,刻蚀所述第三层间介质层127形成第三凹槽128和第四凹槽129,所述第三凹槽128底部暴露出第四金属层125,所述第四凹槽129底部暴露出第五金属层126。13, the third interlayer dielectric layer 127 is etched to form a third groove 128 and a fourth groove 129, the bottom of the third groove 128 exposes the fourth metal layer 125, the fourth groove The bottom of the groove 129 exposes the fifth metal layer 126 .

本实施例中,所述第三凹槽128和第四凹槽129为双大马士革开口;在本发明其他实施例中,第三凹槽和第四凹槽也可以为单大马士革开口。In this embodiment, the third groove 128 and the fourth groove 129 are double damascene openings; in other embodiments of the present invention, the third groove and the fourth groove may also be single damascene openings.

本实施例以第三凹槽128和第四凹槽129为双大马士革开口做示范性说明,且所述双大马士革开口的形成工艺为先形成沟槽后形成通孔。In this embodiment, the third groove 128 and the fourth groove 129 are exemplarily described as double damascene openings, and the formation process of the double damascene openings is to form trenches first and then form through holes.

所述第三凹槽128和第四凹槽129的形成工艺可参考本发明第二凹槽(第二通孔119(请参考图7)和第二沟槽116(请参考图5))的形成工艺,在此不再赘述。The formation process of the third groove 128 and the fourth groove 129 can refer to the second groove (second through hole 119 (please refer to FIG. 7 ) and second groove 116 (please refer to FIG. 5 )) of the present invention. The forming process will not be repeated here.

请参考图14,形成填充所述第三凹槽128(请参考图13)的第六金属层,同时形成填充满所述第四凹槽129(请参考图13)的第七金属层。Referring to FIG. 14 , a sixth metal layer is formed to fill the third groove 128 (please refer to FIG. 13 ), and a seventh metal layer is formed to fill the fourth groove 129 (please refer to FIG. 13 ).

本实施例中,所述第六金属层和第七金属层均为多层结构。具体的,所述第六金属层包括位于第三凹槽128底部和侧壁的第六金属阻挡层130、以及位于第六金属阻挡层130表面且填充满第三凹槽128的第六金属体层131;所述第七金属层包括位于第四凹槽129底部和侧壁的第七金属阻挡层132、以及位于第七金属阻挡层132表面且填充满第四凹槽129的第七金属体层133。In this embodiment, both the sixth metal layer and the seventh metal layer are multi-layer structures. Specifically, the sixth metal layer includes a sixth metal barrier layer 130 located on the bottom and side walls of the third groove 128 , and a sixth metal body located on the surface of the sixth metal barrier layer 130 and filling the third groove 128 Layer 131; the seventh metal layer includes a seventh barrier metal layer 132 located at the bottom and side walls of the fourth groove 129, and a seventh metal body located on the surface of the seventh barrier metal layer 132 and filling the fourth groove 129 Layer 133.

所述第六金属阻挡层130和第七金属阻挡层132的作用为:防止第六金属体层131和第七金属体层133的材料中易扩散的离子扩散进入第三层间介质层127中,从而提高半导体器件的可靠性。The function of the sixth metal barrier layer 130 and the seventh metal barrier layer 132 is to prevent the easily diffused ions in the materials of the sixth metal body layer 131 and the seventh metal body layer 133 from diffusing into the third interlayer dielectric layer 127 , thereby improving the reliability of semiconductor devices.

所述第六金属阻挡层130和第七金属阻挡层132的材料为Ta、Ti、W、TaN、TiN、WN、Co或它们的合金。所述第六金属体层131和第七金属体层133的材料为Cu、Al、W、CuAl合金或CuMn合金。The materials of the sixth barrier metal layer 130 and the seventh barrier metal layer 132 are Ta, Ti, W, TaN, TiN, WN, Co or their alloys. The materials of the sixth metal body layer 131 and the seventh metal body layer 133 are Cu, Al, W, CuAl alloy or CuMn alloy.

所述第六金属层为半导体器件中的MIM电容器与外围结构提供电连接,所述第七金属层为半导体器件中的互连结构与外围结构提供电连接。The sixth metal layer provides electrical connection for the MIM capacitor in the semiconductor device and the peripheral structure, and the seventh metal layer provides electrical connection for the interconnection structure in the semiconductor device and the peripheral structure.

综上,本发明提供的半导体器件的形成方法的技术方案具有以下优点:In summary, the technical solution of the method for forming a semiconductor device provided by the present invention has the following advantages:

首先,在第一区域的第二层间介质层内形成第一凹槽,且所述第一凹槽包括第一沟槽和位于第一沟槽顶部的多个第一通孔;在第一区域依次形成金属阻挡层、绝缘层和第三金属层,所述金属阻挡层覆盖第一凹槽的底部和侧壁;本实施例中,金属阻挡层为形成的半导体器件的MIM电容器第一电极板,绝缘层为MIM电容器的中间绝缘层,第三金属层为MIM电容器的第二电极板;由于第一凹槽由第一沟槽和位于第一沟槽底部的多个第一通孔组成,相邻第一通孔之间具有凸起(刻蚀第二层间介质层后形成的),第一电极板和第二电极板的重叠面积除包括第一凹槽的底部和侧壁面积外,还包括凸起的顶部和侧壁面积;与现有技术相比,本发明实施例中MIM电容器第一电极板和第二电极板的重叠面积得到明显的增加,MIM电容器的电容密度得到明显的提高,从而增加了单位芯片面积的MIM电容器的电容量,满足器件小型化的发展趋势。First, a first groove is formed in the second interlayer dielectric layer in the first region, and the first groove includes a first trench and a plurality of first via holes located at the top of the first trench; in the first A metal barrier layer, an insulating layer and a third metal layer are sequentially formed in the region, and the metal barrier layer covers the bottom and side walls of the first groove; in this embodiment, the metal barrier layer is the first electrode of the MIM capacitor of the formed semiconductor device plate, the insulating layer is the middle insulating layer of the MIM capacitor, and the third metal layer is the second electrode plate of the MIM capacitor; since the first groove is composed of the first trench and a plurality of first through holes at the bottom of the first trench , there is a protrusion (formed after etching the second interlayer dielectric layer) between adjacent first through holes, the overlapping area of the first electrode plate and the second electrode plate includes the bottom and sidewall area of the first groove In addition, it also includes the raised top and side wall areas; compared with the prior art, the overlapping area of the first electrode plate and the second electrode plate of the MIM capacitor in the embodiment of the present invention is significantly increased, and the capacitance density of the MIM capacitor is obtained. Obvious improvement, thereby increasing the capacitance of the MIM capacitor per unit chip area, meeting the development trend of device miniaturization.

其次,本实施例中,在形成第二区域的第二凹槽的同时,形成了第一区域的第一凹槽,所述第一凹槽和第二凹槽的形成采用了同一个掩膜层;在形成半导体器件的互连结构的同时形成了MIM电容器,节约了工艺成本,缩短了半导体器件的生产周期。Secondly, in this embodiment, while forming the second groove in the second region, the first groove in the first region is formed, and the same mask is used for the formation of the first groove and the second groove layer; the MIM capacitor is formed while forming the interconnection structure of the semiconductor device, which saves the process cost and shortens the production cycle of the semiconductor device.

再次,本实施例中,在第一区域形成金属阻挡层的同时,在第二区域第二凹槽底部和侧壁形成了金属阻挡层,防止后续形成的第五金属层中易扩散的金属离子扩散进入第二层间介质层内,从而提高了半导体器件的互连结构的可靠性,优化半导体器件的电学性能。Again, in this embodiment, while the metal barrier layer is formed in the first region, a metal barrier layer is formed on the bottom and sidewalls of the second groove in the second region to prevent the easily diffused metal ions in the subsequently formed fifth metal layer. Diffusion into the second interlayer dielectric layer, thereby improving the reliability of the interconnection structure of the semiconductor device and optimizing the electrical performance of the semiconductor device.

并且,本发明实施例中,在形成第四金属层和第五金属层后,刻蚀去除部分厚度的第四金属层和第五金属层,使得第四金属层顶部和第五金属层顶部低于第二层间介质层顶部,避免第四金属层和第五金属层直接发生电连接,从而提高半导体器件的可靠性。Moreover, in the embodiment of the present invention, after forming the fourth metal layer and the fifth metal layer, etching removes part of the thickness of the fourth metal layer and the fifth metal layer, so that the top of the fourth metal layer and the top of the fifth metal layer are lower On the top of the second interlayer dielectric layer, direct electrical connection between the fourth metal layer and the fifth metal layer is avoided, thereby improving the reliability of the semiconductor device.

请继续参考图11,本发明实施例还提供一种半导体器件,包括:Please continue to refer to FIG. 11 , an embodiment of the present invention also provides a semiconductor device, including:

位于半导体衬底表面的第一层间介质层100,所述第一层间介质层100包括第一区域I和第二区域II,且所述第一区域I的第一层间介质层100内具有第一金属层101,第二区域II的第一层间介质层100内具有第二金属层102,且所述第一金属层101和第二金属层102顶部与第一层间介质层100顶部齐平;The first interlayer dielectric layer 100 located on the surface of the semiconductor substrate, the first interlayer dielectric layer 100 includes a first region I and a second region II, and the first interlayer dielectric layer 100 in the first region I There is a first metal layer 101, a second metal layer 102 is provided in the first interlayer dielectric layer 100 in the second region II, and the tops of the first metal layer 101 and the second metal layer 102 are connected to the first interlayer dielectric layer 100 flush at the top;

位于所述第一层间介质层100表面的第二层间介质层103;a second interlayer dielectric layer 103 located on the surface of the first interlayer dielectric layer 100;

位于所述第一区域I的第二层间介质层103内的第一凹槽,所述第一凹槽包括第一沟槽和位于第一沟槽底部的多个第一通孔,相邻第一通孔之间具有凸起120,位于第二区域II的第二层间介质层103内的第二凹槽,所述第二凹槽包括第二沟槽和位于第二沟槽底部的第二通孔,所述第一通孔和第二通孔分别暴露出第一金属层101和第二金属层102表面;A first groove located in the second interlayer dielectric layer 103 in the first region I, the first groove includes a first trench and a plurality of first via holes at the bottom of the first trench, adjacent to There is a protrusion 120 between the first through holes, and a second groove located in the second interlayer dielectric layer 103 in the second region II, the second groove includes a second trench and a bottom of the second trench. a second through hole, the first through hole and the second through hole respectively expose the surfaces of the first metal layer 101 and the second metal layer 102;

位于所述第一凹槽底部和侧壁的金属阻挡层121、位于金属阻挡层121表面的绝缘层122、位于绝缘层122表面的第三金属层123,且所述金属阻挡层123还位于所述凸起120的侧壁和顶部填充满所述第一凹槽的第四金属层125,填充满所述第二凹槽的第五金属层126。The metal barrier layer 121 located on the bottom and sidewall of the first groove, the insulating layer 122 located on the surface of the metal barrier layer 121, the third metal layer 123 located on the surface of the insulating layer 122, and the metal barrier layer 123 is also located on the The sidewall and top of the protrusion 120 are filled with the fourth metal layer 125 of the first groove, and the fifth metal layer 126 of the second groove is filled.

所述第一层间介质层100和第二层间介质层103的材料为氧化硅、氮化硅、氮氧化硅或低k介质材料,所述低k介质材料为碳氢氧化硅、掺硼的玻璃、掺氟的玻璃或掺磷的玻璃。所述凸起120的材料与第二层间介质层103的材料相同。The material of the first interlayer dielectric layer 100 and the second interlayer dielectric layer 103 is silicon oxide, silicon nitride, silicon oxynitride or a low-k dielectric material, and the low-k dielectric material is carbon silicon hydroxide, boron-doped glass, fluorine-doped glass, or phosphorous-doped glass. The material of the protrusion 120 is the same as that of the second interlayer dielectric layer 103 .

所述金属阻挡层121和第三金属层123的材料为Ta、Ti、W、TaN、TiN、WN、Co或它们的合金,所述金属阻挡层121为单层结构或叠层结构。The material of the metal barrier layer 121 and the third metal layer 123 is Ta, Ti, W, TaN, TiN, WN, Co or their alloys, and the metal barrier layer 121 is a single-layer structure or a laminated structure.

所述绝缘层122的材料为SiO2、SiN、SiON或高k介质材料。The material of the insulating layer 122 is SiO 2 , SiN, SiON or high-k dielectric material.

所述第一金属层101、第二金属层102、第四金属层125和第五金属层126的材料为Cu、Al、W、CuAl合金或CuMn合金。The materials of the first metal layer 101 , the second metal layer 102 , the fourth metal layer 125 and the fifth metal layer 126 are Cu, Al, W, CuAl alloy or CuMn alloy.

作为一个具体实施例,所述第一层间介质层100和第二层间介质层103的材料为氧化硅;所述金属阻挡层121的材料为Ti,厚度为20埃至1000埃;所述绝缘层122的材料为氧化硅,厚度为20埃至1000埃;所述第三金属层123的材料为Ta,厚度为20埃至1000埃;所述第四金属层125和第五金属层126的材料为Cu。As a specific embodiment, the material of the first interlayer dielectric layer 100 and the second interlayer dielectric layer 103 is silicon oxide; the material of the metal barrier layer 121 is Ti, with a thickness of 20 angstroms to 1000 angstroms; The insulating layer 122 is made of silicon oxide, with a thickness of 20 angstroms to 1000 angstroms; the material of the third metal layer 123 is Ta, with a thickness of 20 angstroms to 1000 angstroms; the fourth metal layer 125 and the fifth metal layer 126 The material is Cu.

需要说明的是,为了防止第四金属层125和第五金属层126之间发生电连接,所述第四金属层125顶部和第五金属层126顶部可以低于第二层间介质层103顶部;为了防止第五金属层126中易扩散的金属离子扩散至第二层间介质层103中,第二凹槽的底部和侧壁具有金属阻挡层121。It should be noted that, in order to prevent electrical connection between the fourth metal layer 125 and the fifth metal layer 126, the top of the fourth metal layer 125 and the top of the fifth metal layer 126 may be lower than the top of the second interlayer dielectric layer 103 ; In order to prevent easily diffused metal ions in the fifth metal layer 126 from diffusing into the second interlayer dielectric layer 103 , the bottom and sidewalls of the second groove have a metal barrier layer 121 .

本实施例中,第一区域I的金属阻挡层121、绝缘层122和第三金属层123分别为半导体器件中MIM电容器的第一电极板、中间绝缘层和第二电极板。第一电极板和第二电极板的重叠面积包括:第一凹槽的底部和侧壁面积、凸起的顶部和侧壁面积;与现有技术相比,本实施例中第一电极板与第二电极板的重叠面积明显得到增加,从而提高半导体器件单位面积的电容量,节约芯片面积,满足半导体器件的小型化和微型化的发展趋势。In this embodiment, the barrier metal layer 121 , the insulating layer 122 and the third metal layer 123 in the first region I are respectively the first electrode plate, the intermediate insulating layer and the second electrode plate of the MIM capacitor in the semiconductor device. The overlapping area of the first electrode plate and the second electrode plate includes: the bottom and side wall area of the first groove, the top and side wall area of the protrusion; compared with the prior art, in this embodiment, the first electrode plate and the side wall area The overlapping area of the second electrode plate is significantly increased, thereby increasing the capacitance per unit area of the semiconductor device, saving chip area, and meeting the development trend of miniaturization and miniaturization of the semiconductor device.

综上,本发明提供的半导体器件的技术方案具有以下优点:In summary, the technical solution of the semiconductor device provided by the present invention has the following advantages:

首先,本实施例中的半导体器件结构性能优越,其中,在第一凹槽内具有多个第一通孔,相邻第一通孔之间具有凸起;在第一凹槽底部和侧壁具有金属阻挡层,所述金属阻挡层还位于凸起的顶部和侧壁;所述金属阻挡层为半导体器件中MIM电容器的第一电极板,第三金属层为MIM电容器的第二电极板,所述第一电极板和第二电极板的重叠面积包括:第一凹槽的底部和侧壁面积,凸起的顶部和侧壁面积;与现有技术相比,本实施例增加了MIM电容器的第一电极板和第二电极板的重叠面积,从而提高了半导体器件单位面积的电容量,提高电容密度,节约芯片面积。First of all, the semiconductor device in this embodiment has superior structural performance, wherein there are a plurality of first through holes in the first groove, and there are protrusions between adjacent first through holes; There is a metal barrier layer, and the metal barrier layer is also located on the top and sidewall of the protrusion; the metal barrier layer is the first electrode plate of the MIM capacitor in the semiconductor device, and the third metal layer is the second electrode plate of the MIM capacitor, The overlapping area of the first electrode plate and the second electrode plate includes: the bottom and side wall area of the first groove, the top and side wall area of the protrusion; compared with the prior art, this embodiment increases the MIM capacitor The overlapping area of the first electrode plate and the second electrode plate increases the capacitance per unit area of the semiconductor device, increases the capacitance density, and saves the chip area.

其次,本实施例中,第二凹槽的底部和侧壁具有金属阻挡层,所述金属阻挡层阻挡第五金属层中易扩散的金属离子扩散至第二层间介质层中,提高半导体器件的可靠性。Secondly, in this embodiment, the bottom and sidewalls of the second groove have a metal barrier layer, and the metal barrier layer blocks the easy-to-diffuse metal ions in the fifth metal layer from diffusing into the second interlayer dielectric layer, improving the semiconductor device. reliability.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.

Claims (19)

1. a formation method for semiconductor device, is characterized in that, comprising:
Semiconductor substrate is provided, described semiconductor substrate surface is formed with the first interlayer dielectric layer, described first interlayer dielectric layer comprises first area and second area, the first metal layer is formed in first interlayer dielectric layer of described first area, be formed with the second metal level in first interlayer dielectric layer of described second area, and described the first metal layer and the second metal level flush with the first interlayer dielectric layer top;
Between described ground floor, dielectric layer surface forms the second interlayer dielectric layer;
Etch the second interlayer dielectric layer of described first area and second area simultaneously, the first groove is formed in the second interlayer dielectric layer of described first area, the second groove is formed in the second interlayer dielectric layer of described second area, and described first groove comprises the first groove and is positioned at multiple first through holes of the first channel bottom, between adjacent first through hole, there is projection, described second groove comprises the second groove and is positioned at the second through hole of the second channel bottom, and described first bottom portion of groove and the second bottom portion of groove expose the first metal layer and the second layer on surface of metal respectively;
Form metal barrier, insulating barrier and the 3rd metal level successively in first area, described metal barrier covers bottom and the sidewall of the first groove, and described metal barrier also covers sidewall and the top of described projection;
Form the 4th metal level of filling full described first groove and the 5th metal level of filling full second groove, and described 4th metal level is covered in the surface of the 3rd metal level.
2. the formation method of semiconductor device according to claim 1, it is characterized in that, while described first area forms metal barrier, insulating barrier and the 3rd metal level, form metal barrier, insulating barrier and the 3rd metal level at described second area, and described second area metal barrier covers bottom and the sidewall of the second groove.
3. the formation method of semiconductor device according to claim 2, is characterized in that, before formation the 4th metal level, also comprises step: form the photoresist layer covering first area; With described photoresist layer for mask, etching removes the 3rd metal level and insulating barrier of second area.
4. the formation method of semiconductor device according to claim 1, is characterized in that, the material of described metal barrier and the 3rd metal level is Ta, Ti, W, TaN, TiN, WN, Co or their alloy.
5. the formation method of semiconductor device according to claim 1, is characterized in that, described metal barrier and the 3rd metal level are single layer structure or sandwich construction.
6. the formation method of semiconductor device according to claim 1, is characterized in that, the material of described insulating barrier is SiO 2, SiN, SiON or high K medium material.
7. the formation method of semiconductor device according to claim 1, is characterized in that, the material of described the first metal layer, the second metal level, the 4th metal level and the 5th metal level is Cu, Al, W, CuAl alloy or CuMn alloy.
8. the formation method of semiconductor device according to claim 1, is characterized in that, the forming step of described first groove and the second groove comprises: first form the first groove and the second groove, rear formation first through hole and the second through hole; Or first form the first through hole and the second through hole, rear formation first groove and the second groove.
9. the formation method of semiconductor device according to claim 8, it is characterized in that, first form the first groove and the second groove, the processing step of rear formation first through hole and the second through hole comprises: between the described second layer, dielectric layer surface forms the first mask layer, first mask layer of described first area has the first opening, and the first mask layer of described second area has the second opening; With described first mask layer for mask, etching off removes the second interlayer dielectric layer of the segment thickness of first area and second area in the same time, forms the first groove, form the second groove at described second area in described first area; Between described first channel bottom and sidewall, the second channel bottom and sidewall and the remaining second layer, dielectric layer surface forms the second mask layer, second mask layer of described first channel bottom has multiple 3rd opening, and the second mask layer of described second channel bottom has the 4th opening; With described second mask layer for mask, etching removal second interlayer dielectric layer, until expose the first metal layer and the second layer on surface of metal, forms multiple first through hole, forms the second through hole at second area in first area.
10. the formation method of semiconductor device according to claim 8, it is characterized in that, first form the first through hole and the second through hole, the processing step of rear formation first groove and the second groove comprises: between the described second layer, dielectric layer surface forms the first mask layer, first mask layer of described first area has multiple first opening, and the first mask layer of described second area has the second opening; With described first mask layer for mask, etching off removes the second interlayer dielectric layer of first area and second area in the same time, until expose the first metal layer and the second layer on surface of metal, forms multiple first through hole, form the second through hole at second area in first area; Between the remaining second layer, dielectric layer surface forms the second mask layer, second mask layer of first area has the 3rd opening, second mask layer of second area has the 4th opening, and described 3rd opening exposes the first through hole, and the 4th opening exposes the second through hole; With described second mask layer for mask, etching removes the second interlayer dielectric layer of segment thickness, forms the first groove, form the second groove at second area in first area.
The formation method of 11. semiconductor device according to claim 9 or 10, is characterized in that, adopts described second interlayer dielectric layer of dry etch process etching.
The formation method of 12. semiconductor device according to claim 11, is characterized in that, described dry etch process is plasma etching, and the technological parameter of plasma etch process is: etching gas comprises Ar, O 2, C af band C xh yf zgas, wherein, Ar flow is 0sccm to 500sccm, O 2flow is 0sccm to 500sccm, C af bflow is 0sccm to 500sccm, C xh yf zflow is 0sccm to 500sccm, and etching cavity pressure is 10 millitorr to 100 millitorrs, temperature be-20 degree to 200 degree, source power is 100 watts to 1000 watts, and bias power is 0 watt to 500 watts.
The formation method of 13. semiconductor device according to claim 1, is characterized in that, described projection is formed after dielectric layer between etching of second layer.
The formation method of 14. semiconductor device according to claim 1, is characterized in that, etches described 4th metal level and the 5th metal level, makes the 4th metal level top and the 5th metal level top lower than the second interlayer dielectric layer top.
The formation method of 15. semiconductor device according to claim 1, is characterized in that, after formation the 4th metal level, also comprises step: formed be positioned at the second interlayer dielectric layer, the 4th metal level and the 5th layer on surface of metal third layer between dielectric layer; Etch dielectric layer between described third layer and form the 3rd groove and the 4th groove, described 3rd bottom portion of groove exposes the 4th metal level, and described 4th bottom portion of groove exposes the 5th metal level; Form the 6th metal level of filling full described 3rd groove, form the 7th metal level of filling full described 4th groove simultaneously.
16. 1 kinds of semiconductor device, is characterized in that, comprising:
Be positioned at the first interlayer dielectric layer of semiconductor substrate surface, described first interlayer dielectric layer comprises first area and second area, and in the first interlayer dielectric layer of described first area, there is the first metal layer, in first interlayer dielectric layer of second area, there is the second metal level, and described the first metal layer and the second metal level top flush with the first interlayer dielectric layer top;
Be positioned at the second interlayer dielectric layer of dielectric layer surface between described ground floor;
Be positioned at the first groove of the second interlayer dielectric layer of described first area, described first groove comprises the first groove and is positioned at multiple first through holes of the first channel bottom, between adjacent first through hole, there is projection, be positioned at the second groove of the second interlayer dielectric layer of second area, described second groove comprises the second groove and is positioned at the second through hole of the second channel bottom, and described first through hole and the second through hole expose the first metal layer and the second layer on surface of metal respectively;
The metal barrier being positioned at described first bottom portion of groove and sidewall, the insulating barrier being positioned at metal barrier surface, be positioned at the 3rd metal level of surface of insulating layer, and described metal barrier is also positioned at sidewall and the top of described projection;
Fill the 4th metal level of full described first groove, fill the 5th metal level of full described second groove.
17. semiconductor device according to claim 16, is characterized in that, bottom and the sidewall of the second groove have metal barrier.
18. semiconductor device according to claim 16, is characterized in that, the material of described metal barrier and the 3rd metal level is Ta, Ti, W, TaN, TiN, WN, Co or their alloy.
19. semiconductor device according to claim 16, is characterized in that, described 4th metal level top and the 5th metal level top are lower than the second interlayer dielectric layer top.
CN201310612380.XA 2013-11-26 2013-11-26 Semiconductor and forming method thereof Pending CN104681403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310612380.XA CN104681403A (en) 2013-11-26 2013-11-26 Semiconductor and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310612380.XA CN104681403A (en) 2013-11-26 2013-11-26 Semiconductor and forming method thereof

Publications (1)

Publication Number Publication Date
CN104681403A true CN104681403A (en) 2015-06-03

Family

ID=53316301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310612380.XA Pending CN104681403A (en) 2013-11-26 2013-11-26 Semiconductor and forming method thereof

Country Status (1)

Country Link
CN (1) CN104681403A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108123037A (en) * 2017-12-15 2018-06-05 深圳市晶特智造科技有限公司 MIM capacitor and preparation method thereof
CN108123039A (en) * 2017-12-15 2018-06-05 深圳市晶特智造科技有限公司 MIM capacitor and preparation method thereof
CN108364857A (en) * 2018-02-28 2018-08-03 中国电子科技集团公司第十三研究所 The preparation method and semiconductor chip of semiconductor chip protective layer
CN109904111A (en) * 2017-12-11 2019-06-18 中芯国际集成电路制造(北京)有限公司 Interconnection structure and its manufacturing method
CN111199955A (en) * 2018-11-16 2020-05-26 格科微电子(上海)有限公司 Manufacturing method of metal layer-insulation layer-metal layer capacitor and memory unit
CN111199954A (en) * 2018-11-16 2020-05-26 格科微电子(上海)有限公司 Manufacturing method of metal layer-insulation layer-metal layer capacitor and memory unit
CN111668186A (en) * 2020-06-08 2020-09-15 矽力杰半导体技术(杭州)有限公司 Semiconductor device and method of manufacturing the same
CN111834332A (en) * 2019-04-16 2020-10-27 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method of forming the same
CN112582277A (en) * 2020-12-08 2021-03-30 武汉新芯集成电路制造有限公司 Semiconductor device processing method and semiconductor device
CN113823562A (en) * 2020-06-18 2021-12-21 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor structure
CN118647260A (en) * 2024-08-15 2024-09-13 杭州积海半导体有限公司 A semiconductor device and a method for forming the same
CN119181695A (en) * 2024-09-06 2024-12-24 荣芯半导体(淮安)有限公司 Test structure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101160655A (en) * 2005-04-15 2008-04-09 国际商业机器公司 MIM capacitor and its manufacturing method
CN102420102A (en) * 2011-05-26 2012-04-18 上海华力微电子有限公司 Method used for forming MIM (metal-insulator-metal) capacitor structure and MIM capacitor
CN102420108A (en) * 2011-06-15 2012-04-18 上海华力微电子有限公司 Manufacturing process and structure of metal-insulator-metal capacitor by copper damascene process
CN102420110A (en) * 2011-07-12 2012-04-18 上海华力微电子有限公司 Method for improving MIM capacitor density in semiconductor device and device thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101160655A (en) * 2005-04-15 2008-04-09 国际商业机器公司 MIM capacitor and its manufacturing method
CN102420102A (en) * 2011-05-26 2012-04-18 上海华力微电子有限公司 Method used for forming MIM (metal-insulator-metal) capacitor structure and MIM capacitor
CN102420108A (en) * 2011-06-15 2012-04-18 上海华力微电子有限公司 Manufacturing process and structure of metal-insulator-metal capacitor by copper damascene process
CN102420110A (en) * 2011-07-12 2012-04-18 上海华力微电子有限公司 Method for improving MIM capacitor density in semiconductor device and device thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904111A (en) * 2017-12-11 2019-06-18 中芯国际集成电路制造(北京)有限公司 Interconnection structure and its manufacturing method
CN109904111B (en) * 2017-12-11 2021-08-06 中芯国际集成电路制造(北京)有限公司 Interconnect structure and method of making the same
CN108123037B (en) * 2017-12-15 2020-11-20 江苏西力欧智能电气科技有限公司 MIM capacitor and method of making the same
CN108123039A (en) * 2017-12-15 2018-06-05 深圳市晶特智造科技有限公司 MIM capacitor and preparation method thereof
CN108123037A (en) * 2017-12-15 2018-06-05 深圳市晶特智造科技有限公司 MIM capacitor and preparation method thereof
CN108364857A (en) * 2018-02-28 2018-08-03 中国电子科技集团公司第十三研究所 The preparation method and semiconductor chip of semiconductor chip protective layer
CN108364857B (en) * 2018-02-28 2021-01-12 中国电子科技集团公司第十三研究所 Preparation method of semiconductor chip protective layer and semiconductor chip
CN111199955A (en) * 2018-11-16 2020-05-26 格科微电子(上海)有限公司 Manufacturing method of metal layer-insulation layer-metal layer capacitor and memory unit
CN111199954A (en) * 2018-11-16 2020-05-26 格科微电子(上海)有限公司 Manufacturing method of metal layer-insulation layer-metal layer capacitor and memory unit
CN111834332A (en) * 2019-04-16 2020-10-27 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method of forming the same
CN111834332B (en) * 2019-04-16 2022-11-01 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof
CN111668186A (en) * 2020-06-08 2020-09-15 矽力杰半导体技术(杭州)有限公司 Semiconductor device and method of manufacturing the same
CN113823562A (en) * 2020-06-18 2021-12-21 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor structure
CN112582277A (en) * 2020-12-08 2021-03-30 武汉新芯集成电路制造有限公司 Semiconductor device processing method and semiconductor device
CN118647260A (en) * 2024-08-15 2024-09-13 杭州积海半导体有限公司 A semiconductor device and a method for forming the same
CN119181695A (en) * 2024-09-06 2024-12-24 荣芯半导体(淮安)有限公司 Test structure and preparation method thereof

Similar Documents

Publication Publication Date Title
CN104681403A (en) Semiconductor and forming method thereof
KR100422597B1 (en) Method of forming semiconductor device with capacitor and metal-interconnection in damascene process
KR102403619B1 (en) Semiconductor device and method for manufacturing the same
CN110890315B (en) Semiconductor structure with Damascus structure and preparation method thereof
JP5635301B2 (en) Semiconductor device and manufacturing method thereof
CN100539016C (en) MIM capacitor and manufacture method thereof
US20080049378A1 (en) Metal-insulator-metal capacitor and method of fabricating same
TWI861340B (en) Semiconductor device and method of forming the same
CN111211092B (en) Semiconductor structure and forming method thereof
KR100572828B1 (en) Method for manufacturing a semiconductor device having an M capacitor
CN114975238A (en) Integrated chip
US10483162B2 (en) Semiconductor structure of interconnect and fabrication method thereof
KR101557871B1 (en) Semiconductor device and method of manufacturing the semiconductor device
CN108447836A (en) Contact pad structure and manufacturing method thereof
CN113539941B (en) Semiconductor structure and forming method thereof
CN111952287A (en) Capacitive device and method of forming the same
CN103456680A (en) Method for forming holes and grooves in low K medium layer
CN115116961A (en) Dynamic random access memory and method of making the same
CN103545244A (en) How to make a Damascus structure
TWI512894B (en) Metal interconnect structure and process thereof
KR100798270B1 (en) Semiconductor device and manufacturing method thereof
CN111446204B (en) Semiconductor structure and forming method thereof
KR100778851B1 (en) MIM capacitor formation method of semiconductor device
KR100545203B1 (en) Capacitor of semiconductor element and method of forming the same
TW202510677A (en) Manufacturing method of semiconductor structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150603

RJ01 Rejection of invention patent application after publication