CN104662787B - 用于感应电力传输的反馈控制线圈驱动器 - Google Patents
用于感应电力传输的反馈控制线圈驱动器 Download PDFInfo
- Publication number
- CN104662787B CN104662787B CN201380045573.XA CN201380045573A CN104662787B CN 104662787 B CN104662787 B CN 104662787B CN 201380045573 A CN201380045573 A CN 201380045573A CN 104662787 B CN104662787 B CN 104662787B
- Authority
- CN
- China
- Prior art keywords
- voltage
- switch
- time
- ground
- output voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000006698 induction Effects 0.000 title 1
- 238000005070 sampling Methods 0.000 claims description 20
- 238000012546 transfer Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 15
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims 4
- 230000005611 electricity Effects 0.000 claims 2
- 238000012544 monitoring process Methods 0.000 claims 2
- 210000001367 artery Anatomy 0.000 claims 1
- 239000004744 fabric Substances 0.000 claims 1
- 210000003462 vein Anatomy 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 15
- 239000007943 implant Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 230000003252 repetitive effect Effects 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 101100537617 Arabidopsis thaliana TON1A gene Proteins 0.000 description 2
- 101100537619 Arabidopsis thaliana TON2 gene Proteins 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000010753 BS 2869 Class E Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H02J5/005—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Dc-Dc Converters (AREA)
- Amplifiers (AREA)
- Inverter Devices (AREA)
- Control Of Electrical Variables (AREA)
Abstract
公开了一种全集成反馈控制线圈驱动器(500)以用于至电子设备的感应电力传输。为了高效的电力传输,对开关(516)两端的电压进行采样,并且将采样电压与预选参考电压(536)进行比较以生成误差电压(542),其中所述开关(516)将线圈(512)可切换地耦合在DC输入电源(501)与地之间。在时间上对误差电压(542)进行积分并将误差电压(542)与电压斜坡(554)进行比较。使用积分的误差电压相对于电压斜坡的值来获得用于开关(516)的最优接通时间,使得针对给定的DC输入电力来使线圈电流最大化。
Description
相关申请的交叉引用
根据美国法典第35卷119条(e)款,本申请要求于2012年8月31日提交的第61/695,815号美国临时申请的权益,该美国临时申请的全部内容通过引用合并在本文中。
背景技术
感应电力传输或发射经常用于以无线方式向便携式电子设备传送电力。无线电力传输被用在各种应用中,比如,对诸如智能电话、平板计算机和膝上型计算机的便携式设备中的电池进行再充电。这种电力传输系统还用于经皮(即,通过皮肤)将电力发射至植入的医疗设备,以直接对植入物进行供电或者对植入物的电池进行再充电。
如图1所示,传统的电力传输系统100通常包括驱动初级线圈LP(112)的线圈驱动器114,该初级线圈LP(112)以感应方式与位于电子设备120内部的次级线圈LS(112)耦合并且对该次级线圈LS(112)进行供电。下述文献中描述了各种经皮电力传输系统:W.Loke等人的“用于放射治疗的0.5V亚mW无线磁跟踪应答器(A 0.5V sub-mW wireless magnetictracking transponder for radiation therapy)”Sym.on VLSI Cir.,第172-173页,2011年;Y.Liao等人的“用于主动接触镜的3μW无线供电的COMS葡萄糖传感器(A 3μW wirelesspowered CMOS glucose sensor for an active contact lens)”ISSCCDig.Tech.papers,第38-39页,2011年;以及S.Lee等人的“用于心脏微型刺激器的具有近场充电特征的低电力双向遥测装置(A low-power bidirectional telemetry device witha near-field charging feature for a cardiac microstimulator)”IEEETran.Bio.Cir.Syst.,第5卷,第357-367页,2011年8月。尽管一些植入物被设计成直接从植入物内的电池获得电力,然而仍必须通过外部电力发射器以无线方式对这些可再充电的电池进行再充电。参见See E.Lee等人的“生物医学可植入的FES电池供电的微型刺激器(Abiomedical implantable FES battery-powered micro-stimulator)”IEEETran.Cir.Syst.I,第56卷,第2583-2596页,2009年12月。在最近的发展中,已投入了许多努力来改进植入物内部的电力接收和电力管理。参见例如H.Lee和M.Ghovanloo的“电感供电生物医学应用中的完全集成高能效直流至交流转换器设计(Fully integrated powerefficient AC-to-DC converter design in inductively powered biomedicalapplications)”Proc.of IEEE 2011CICC,paper 8.7,2011年。然而,外部发射器中的线圈驱动器仍需要许多分立部件。参见以上引用的S.Lee等人2011年的文章并且还参见G.Kendir等人的“对E类放大器的感应电力链路的优化设计方法(An optimal designmethodology for inductive power link with class-E amplifier)”IEEETran.Cir.Syst.I,第52卷,第857-866页,2005年5月。
在线圈驱动器设计中通常使用如图2所示的E类放大器型系统210,参见以上引用的S.Lee等人2011年和G.Kendir等人2005年。除了分立电容器CT1(213)和CT2(215)之外,在此电路拓扑中还需要笨重的RF扼流圈LC(211)。由于电力发射器通常是用于植入的医疗设备220的病人外部控制器的一部分,所以外部控制器小且轻量是重要的。因此,用于这种无线电力传输系统的线圈驱动器应当使用最小数目的分立部件来实现小尺寸,并且应当具有低功耗使得仅需要小电池。
发明内容
本发明涉及用于实现最优线圈驱动器开关“接通时间”的反馈控制线圈驱动器的设计。该线圈是LC槽路的一部分,并且针对不同的工作频率可实现最优线圈驱动器开关“接通时间”而无需调节LC槽路的电感和电容的值。最优线圈驱动器开关“接通时间”还引起峰峰线圈电流的平方与由LC槽路电源传送的电力的比率的最大化值。
通过在控制时间将LC槽路可切换地耦合在电源与地之间来获得最优线圈驱动器开关“接通时间”。采样和保持电路监测LC槽路输出电压,并且积分器电路对输出电压与指定参考电压之间的差进行积分,其中该指定参考电压通常被设定成零伏特。本发明的许多独特属性之一是:在LC槽路耦合至地时生成斜坡电压,然后将该斜坡电压与积分器电路的输出进行比较。线圈驱动器开关在斜坡电压的值超过积分的差电压的值时使LC槽路与地去耦。
重复脉冲信号生成器以预定频率向线圈驱动器开关提供脉冲串。该脉冲串中的每个脉冲具有起始时间和脉冲宽度(“接通时间”),其中,通过如上所述的反馈回路来控制该脉冲宽度(“接通时间”),该反馈回路在识别的益处和优点下使“接通时间”最优化。
附图说明
图1是用于电子设备的电力传输系统的框图。
图2是使用基于E类放大器的现有技术线圈驱动器的电力传输系统的框图。
图3是使用基于谐振直流-交流转换器拓扑的线圈驱动器的电力传输系统的框图。
图4A-4D是根据本发明的实施例的针对用于线圈驱动器的开关的接通时间的各种值的定时波形。
图5A是根据本发明的实施例的反馈控制线圈驱动器的框图。
图5B是针对图5A中的斜坡生成器的输出的定时波形。
图6是图5A的电感器开关以及采样和保持的示例性示意图。
图7A-7B是示出根据本发明的实施例的对用于感应电力传输的线圈驱动器进行反馈控制的方法的流程图。
具体实施方式
图3是使用基于谐振直流-交流转换器拓扑的线圈驱动器310的电力传输系统300的框图。针对关于谐振直流-交流转换器设计的更多信息,参见N.Mohan,T.Undeland和W.Robbins,Power electronics:converters,applications,and design,John Wiley&Sons,2003年,并且还参见M.Paemel的“用于医疗植入物的高效传输(High-efficiencytransfer for medical implants)”IEEE Solid-State Cir.Mag.,第3卷,第47-59页,2011年。初级线圈LP(312)和分立电容器CT(314)形成用于向植入物320中的次级线圈LS(322)发射电力的谐振LC槽路。针对这样的感应链路,一个可能的工作频率FO是在约120kHz处。参见E.Lee等人的“生物医学可植入的FES电池供电的微型刺激器(A biomedical implantableFES battery-powered micro-stimulator)”IEEE Tran.Cir.Syst.I,第56卷,第2583-2596页,2009年12月。针对更高的工作频率(例如,13.56MHz),电容器CT(314)可以潜在地集成在芯片上以用于进一步减少部件。
如将相对于图4A-4D和图5A-5B所论述的,反馈回路通过控制开关MS(316)的“接通时间”(TON)来使线圈驱动器310上的电力耗散最小化。线圈驱动器310还能够提供关于电力传输的幅移键控(ASK)调制,这是由于在一些应用中从外部控制器经由相同的感应链路向植入物发送数据。参见例如以上引用的S.Lee等人2011年,并且还参见例如R.Sarpeshkar,Ultra low power bioelectronics:fundamentals,biomedical applications,and bio-inspired systems,Cambridge University Press,2010年。
从输入时钟频率FCLOCK得到线圈驱动器310的工作频率FO,其中,针对当前应用,FCLOCK=20×FO。针对线圈驱动器310的适当操作,选择电容器CT(314)使得初级线圈LP(312)和CT(314)的谐振频率是FLC=1/2π/(LP×CT)0.5并且比FO大(参见M.Paemel的“用于医疗植入物的高效发射(High-efficiency transmission for medical implants)”IEEESolid-State Cir.Mag.,第3卷,第47-59页,2011年)。由于线圈在植入物和外部控制器内的物理尺寸和位置约束,导致线圈的耦合系数KC(306)和Q因子在这些类型的系统中相对小。因此,感应耦合的电力效率也低。
为了使至次级线圈LS(322)的电力传输最大化,针对来自初级线圈供给电压VLP(301)的给定电力传送必须使图3中的初级线圈LP(312)上的电流—给定为初级线圈电流IL(313)—最大化(参见以上引用的R.Sarpeshkar 2012年)。通过在受控制的时间接通开关MS(316)使得通过供给电压VLP(301)激励初级线圈LP(312),来生成初级线圈电流IL(313)。当开关MS(316)断开时,初级线圈LP(312)和电容器CT(314)与地去耦并且将进行谐振,从而产生正弦初级线圈电流IL(313),直到在下一周期中再次接通开关MS(316)为止,如图4A所示。针对给定电力PLP,根据供给电压VLP(316),通过针对开关MS(316)控制接通时间TON(404)使得开关MS(316)仅在开关MS(316)两端的线圈驱动器输出电压VL(304)确切达到0V并且在接通时间TON(404)的持续时间期间基本上保持0V时允许电流流动,来使初级线圈电流IL的峰峰值—给定为ILP-P—最大化。在此情况下,开关MS(316)的电力耗散被最小化并且接通时间TON(404)将等于最优接通时间—给定为TOP(405),并且将满足下面的条件,如以下等式(1)中所示。
开关MS(316)两端的线圈驱动器输出电压VL(304)的最大值VLMAX和峰峰初级线圈电流ILP-P可以写为:
VLMAX=VLP(1+1/sinθ) (2)
其中,θ=arctan[2/TOP×(CT×LP)0.5]。
将使用被定义为FO×LP×ILP-P2/PLP的优值系数FM(408)来测量在接通时间TON、最优接通时间TOP时生成初级线圈电流IL的效率,然后将使FM最大化。针对给定工作频率FO,常常需要对初级线圈LP、电容器CT或者接通时间TON进行手动调节以使至植入物的电力传输最大化(参见以上引用的S.Lee等人2011年和R.Sarpeshkar 2010年)。当初级线圈LP(312)靠近任何金属物体或具有关于初级线圈LP(312)的大耦合系数(KC>0.1)的植入物时,在手动调节之后,初级线圈LP(312)的阻抗以及因此初级线圈LP(312)和电容器CT(314)的谐振频率可能偏离标称值(参见以上引用的R.Sarpeshkar 2010年)。本发明提供自动调节方案来实现用于初级线圈LP(312)的最优接通时间TOP。
图4A-4D是针对用于线圈驱动器500的开关MS(516)的接通时间TON(404)的各种值的定时波形。图4A-4D示出了针对接通时间TON(404)关于最优接通时间TOP(405)的各种值的四个定时波形:施加至开关MS(516)的电压VSW(503)、线圈电流IL(513)和线圈驱动器输出电压VL(504)。在施加至开关MS(516)的电压VSW(503)的每个周期1/FO(412)期间,接通时间TON(404)开始于接通起始时间TST(402)。施加至开关MS(516)的电压VSW(503)是具有与工作频率FO相等的频率的重复脉冲信号。
图5A是根据本发明的实施例的反馈控制线圈驱动器500的框图。图5B是针对图5A中的斜坡生成器552的输出的定时波形。初级线圈LP(512)和电容器CT(514)形成用于至次级线圈的电力传输的LC槽路,其中该次级线圈没有被示出在图5A中。在本发明中,使用反馈控制技术来自动实现最优接通时间TOP(504)。使用采样和保持电路S/H(534)来在开关MS(516)被接通的时刻对开关MS(516)两端的线圈驱动器输出电压VL(504)进行采样。此时刻被表示为接通起始时间TST(402),并且线圈驱动器输出VL(504)在接通起始时间TST的采样电压被表示为VLS(538),如图4A-4D和图5A所示。通过包括跨导器GM(540)和电容器CI(546)的积分器541来对采样电压VLS(538)与参考电压VREF(536)之间的差进行积分,以产生图5A中指定为电压VIO的VER在时间上的积分,其中该差表示误差电压VER(没有示出)。为了实现与最优接通时间TOP相等的接通时间TON,将参考电压VREF(536)设定为0V。用于控制MS(516)的反馈回路将在MS(516)开始接通时具有等于零的线圈驱动器输出电压VL(504)。在MS(516)开始接通时的时刻对VL(504)进行采样之后,将VL(504)与VREF(536)进行比较。此比较在正确方向上驱动接通时间直到VL(504)等于VREF(536)为止。在等于零的VREF情况下,将会以稳定状态将VL驱动为零并且将会实现最优接通时间TON。使用积分器541输出电压VIO(542)作为用于比较器CO1(550)的阈值。通过比较器CO1(550)的输出、斜坡生成器552和VIO(542)的值来确定接通时间TON(404)。当开关MS(516)在接通起始时间TST(402)接通时,斜坡生成器552开始产生图5B所示的斜坡电压VRAMP(554)。当VRAMP大于VIO时,比较器CO1(550)将经由控制信号556来传信数字电路522断开开关MS(516)。因此,接通时间TON(404)是从TST(402)至在比较器CO1(550)使MS(516)断开时的时刻取得的时间。数字电路522包括重复脉冲信号生成器从而以工作频率FO向线圈驱动器开关MS(516)提供脉冲串VSW(503)。脉冲串VSW(503)的每个脉冲具有接通起始时间TST(402)和脉冲宽度(“接通时间”)TON(404),其中通过反馈控制器530经由控制信号556来控制该脉冲宽度(“接通时间”)TON(404)。
图5B示出了VIO的值对开关接通时间TON的影响。例如,针对VIO1的VIO值,对应接通时间是TON1,并且针对VIO2的VIO值,对应接通时间是TON2。由于在积分器541的输出处出现的信号在VIO2比在VIO1大,所以开关接通时间TON2将长于接通时间TON1。通过斜坡生成器(552)来固定VRAMP(554)信号的斜率,然而可以调节该斜率来建立反馈响应的速度。斜坡电压VRAMP(544)在工作频率FO的任何一个周期(412)期间的最大值小于或等于斜坡生成器552的供给电压。因此,采样和保持电路S/H(534)、积分器541、斜坡生成器552和比较器CO1(550)可以按照组合方式被视为反馈控制器,其中该反馈控制器提供用于控制开关MS(516)的接通时间的控制信号556。控制信号包括采样输出电压VLS与VREF之差的积分,其中该VREF受比较器CO1中的斜坡电压VRAMP(554)影响。针对小于最优接通时间TOP的接通时间TON,采样电压VLS(538)以及因此误差电压VER将小于0V,如图4B所示。积分器541要将电压VIO(542)驱动为更高值,从而引起更长的接通时间TON。
针对大于最优接通时间TOP的接通时间TON,采样电压VLS将大于0V,如图4C所示。要将积分器541输出电压VIO(542)驱动为更低值,从而引起更短的接通时间TON。在稳定状态下,反馈回路要将采样电压VLS(538)驱动为参考电压VREF(536)的值,并且作为结果,误差电压VER=0V并且电压VIO(542)将保持恒定。这时,针对VREF=0V,TON(404)处于其最优值并且等于TOP(405)。即使初级线圈LP(512)的值由于附近的金属物体而偏离标称值,反馈回路也将根据采样电压VLS(538)来调节TON(404)直到VLS=0V为止,并且实现最优接通时间TOP(405)。将电阻器RI(544)和电容器CR(548)添加至反馈回路以用于电压VIO(542)上的纹波减少和重复稳定性补偿。
在接通时间TON(404)在上电期间太短的情况下,开关MS(516)两端的线圈驱动器输出电压VL(504)将在开关MS(516)在接通起始时间TST接通之前变成负并且接通开关MS(516)的寄生二极管,如图4D所示。在开关MS(516)在接通起始时间TST接通之前,将通过开关MS(516)的寄生二极管来对初级线圈LP(512)进行充电并且线圈驱动器输出电压VL(504)甚至可以开始升高,从而引起正采样电压VLS(538)。反馈回路可能错误地理解为接通时间TON太长并继续进一步减少该接通时间TON,从而最终完全断开开关MS(516)。结果,将单独通过寄生二极管对初级线圈LP(512)进行再充电,并且线圈驱动器500将以与工作频率FO不同的频率进行操作。另外,驱动器将具有非常低的优值系数FM。可以通过确保针对TON的最小脉冲宽度并且通过添加如图5A中示出的比较器CO2(532)来避免此状况。
当跨开关MS(516)的电压VL小于0V时,比较器CO2(532)将传信采样和保持S/H(534)来在下一时钟520周期甚至在接通起始时间TST之前对电压VL(504)进行采样。因此,采样电压VLS将小于0V,使得积分器541要将其输出电压VIO(542)驱动为更高值,从而引起更长的接通时间TON并且最终引起在稳定状态下的最优接通时间TOP。
可以在不影响接通时间TON的情况下通过调节线圈供给电压VLP(501)来控制线圈驱动器500的电力传输水平,这是因为根据等式(3)峰峰初级线圈电流ILP-P与供给电压VLP(501)成正比。
图6是图5A的电感器开关MS(516)以及采样和保持S/H(534)的示例性实现方式的示意图。例如,如果使用5V 0.8μm的CMOS处理来实现线圈驱动器500,则MOSFET的VGS和VDS将分别限于~5V和~12V。根据等式(2),针对供给电压VLP=5V,此示例中电感器开关610两端的线圈驱动器输出电压VL(604)可以上升至~15V。为了适应针对开关MS(616)的所需高VDS,将MOSFET晶体管MC(618)串联地添加至开关MS(616),如图6所示。针对VDD=5V,开关MS(616)的用VLD(609)来表示的漏极电压现在被限制成<5V,并且晶体管MC(618)的VDS将被限制成<12V。由于晶体管MC(618)和开关MS(616)需要大晶体管尺寸来使总接通电阻最小化,所以针对基本上等于0V的VL,电压VL(604)近似等于VLD(609)。
代替直接对线圈驱动器输出电压VL(604)进行采样,可以通过对VLD(609)进行采样来获得采样电压VLS,其中该VLD(609)具有小于VDD的更低的电压摆幅。因此,采样和保持S/H(534)的输入不需要具有高电压容差。由于电压VL(604)和VLD(609)还可以变成低于0V,如图4B和图4D所示,所以使用MOSFET M1-M2(621,622)作为电平移位器以及缓冲器,以经由与开关S1(641)相关联的寄生NPN来防止从采样电容器CS(654)至VLD(609)的电荷泄漏。针对参考电压输入VREF(636)使用类似电路布置来匹配VLD(609)电压输入。在对电压VL(604)进行采样之后,采样电容器CS(654)上的电荷重新分布到保持电容器CH(656)。保持电容器CH(656)之间的电压差表示VLD(609)与VREF(636)之间的电压差或者VER(612)。然而,此操作还在反馈回路中引入额外极点。使用开关电容器CD(664)来补偿此额外极点,其中该开关电容器CD(664)允许对采样和保持S/H(634)的DC增益以及极点位置进行更好的控制,以用于实现线圈驱动器500的总稳定性。通过两个非重叠时钟信号S(650)和T(652)来控制在采样和保持S/H(634)内部的开关S1-S7。信号S控制开关S1、S3、S5和S6。信号T控制开关S2、S4和S7。针对包括跨导器GM(540)、比较器CO1(550)和CO2(532)的其他电路,可以使用传统电路设计技术。
如先前论述的,线圈驱动器500还被设计用于使用ASK调制来向植入物发送数据。针对这样的植入物可以使用在5%与25%之间的范围内的低调制指数。尽管可以通过根据数字输入DATA(524)调制线圈供给VLP(501)来实现关于初级线圈电流IL(513)的ASK调制,然而可以需要用于快速稳定的复杂混合放大器来驱动供给电压VLP(501)(参见例如Y.Wu和P.Mok的“具有9%效率改善的用于极坐标发射器的两相开关混合供给调制器(A two-phaseswitching hybrid supply modulator for polar transmitters with 9%efficiencyimprovement)”ISSCC Dig.Tech.papers,第196-197页,2010年)。
可以使用不需要任何另外的分立部件来实现ASK调制的更简单的方案。该方案基于根据数字输入DATA来改变开关MS(516)的尺寸。针对DATA=1,开关MS(516)的尺寸保持标称,并且初级线圈电流IL的幅度是在以上论述的正常电力传输操作期间的幅度。针对DATA=0,通过针对更高接通电阻(RON)减小开关MS(516)的尺寸来将初级线圈电流IL(513)调制成具有更低幅度,从而限制从供给电压VLP(501)至初级线圈LP(512)的电流流动。然而,在此情况下甚至在开关MS(516)接通时,开关MS(516)两端的电压是非零的。作为结果,电力耗散高于在正常电力传输操作期间实现的最优值。然而,取决于应用,可能不会频繁发生向植入物发送数据。用于利用槽路的数据传输的技术将补充具有多个开关的开关MS(516),其中,该多个开关的数目通过数字DATA输入信号来控制或者是该数字DATA输入信号的函数,可以通过用于数据传输的ASK来调制该数字DATA输入信号。
图7A-7B是示出根据本发明的实施例的对用于感应电力传输的线圈驱动器(比如图5A中的线圈驱动器500)来进行反馈控制的方法的流程图。在块702中,生成以工作频率FO的重复脉冲信号,从而具有时钟520除以N的频率。因此,将在FO的连续脉冲之间发生时钟520的N个脉冲。将积分器电压VIO(542)设定成初始值。流程进行至块704,其中在接通起始时间TST接通开关MS(516),该接通起始时间TST是在发生开关电压VSW(503)的前沿时的时间。开关电压VSW(503)是在块702中生成的脉冲信号。流程进行至块706。
在块706中,根据初始预设接通时间来断开开关MS(516)。流程进行至块708,在块708中,反馈控制线圈驱动器协议开始。在块708中,对开关MS(516)两端的线圈驱动器输出电压VL(504)进行采样。流程进行至块710。在块710中,检查电压VL(504)以确定该电压VL(504)是否小于0伏特。如果VL等于或大于0伏特,则流程进行至块712。如果VL小于0伏特,则流程进行至块730。
在块712中,发生针对下一连续接通起始时间TST的开始的测试。如果没有发生下一连续接通起始时间TST,那么流程返回至块710。块710和712包括连续循环或重复循环直到发生下一接通起始时间TST为止。
在块730中,在下一时钟520周期的开始时对线圈驱动器输出电压VL(504)进行采样。换句话说,在定义时钟520的脉冲串中的下一脉冲发生时对VL进行采样。将在发生TST之前发生不多于N个的时钟脉冲。流程进行至块732,在该块732中,发生针对下一接通起始时间TST的开始的测试。如果没有发生下一接通起始时间TST,那么流程返回至块732。如果发生了下一接通起始时间TST,那么流程进行至块714,在该块714中,对电压VL(504)进行采样并且流程进行至块716。
在块716中,接通开关MS(516),斜坡生成器552开始生成VRAMP(554)。流程进行至块718,在该块718中,基于等式VIO(新)=VIO(旧)+C×VL来更新积分器电压VIO(542),其中,C是常数。流程进行至块720。
在块720中,检查斜坡生成器552的输出VRAMP(554)以确定该输出VRAMP(554)是否大于积分器电压VIO。如果VRAMP小于或等于VIO,那么流程进行至块734,在块734中,保持开关MS(516)接通并且流程返回至块720。如果VRAMP大于VIO,那么流程进行至块722。
在块722中,对开关MS(516)的接通时间进行测试以查看该接通时间是否大于预设最小接通时间。如果开关MS(516)的接通时间不大于预设最小接通时间,那么流程进行至块736,在块736中,保持开关MS(516)接通并且流程返回进行至块722。如果开关(516)的接通时间大于预设最小接通时间,那么流程进行至块724,在块724中,断开开关MS(516)并且流程进行至块726。块722和724本质上对于补偿下述情形是预防性的:当针对适当电路操作会认为如图4D所示的TON太短时的情形。然而,在比较器(532)和关联电路如预期地进行操作情况下,将正确地调节接通时间TON,并且可以消除块722和724。
在块726中,发生测试以确定是否应当断开线圈驱动器500。如果要断开线圈驱动器500,那么方法700结束。如果不要断开线圈驱动器500,那么流程返回至块708。
尽管先前的描述对系统的各个实施例进行了描述,然而本发明不限于这样的实施例,而覆盖落入本发明的精神和范围内的所有修改、替选和等同内容。由于可以在不偏离本发明的精神和范围的情况下构成本发明的许多实施例,所以本发明在于后文所附权利要求。
Claims (20)
1.一种反馈控制线圈驱动器(500),包括:
LC槽路(512、514);
直流电源(501),所述直流电源(501)耦合至所述LC槽路;
开关(516),所述开关(516)被互连在所述LC槽路与地之间以在接通所述开关时将所述LC槽路可切换地耦合在所述电源与地之间,其中,所述LC槽路与所述开关之间的互连的点提供线圈驱动器输出电压VL(504);
采样和保持电路(534),所述采样和保持电路(534)被布置成监测所述VL;
积分器电路(541),所述积分器电路(541)被配置成提供电压VIO(542),所述电压VIO(542)等于所采样的所述VL与指定参考电压(536)之间的差在时间上的积分;
电压斜坡生成器(552),所述电压斜坡生成器(552)被布置成在所述开关将所述LC槽路耦合至地时提供斜坡电压(554);
第一比较器(550),所述第一比较器(550)被布置成将VIO与所述斜坡电压进行比较;以及
开关驱动器(525),所述开关驱动器(525)耦合至所述第一比较器,并且被布置成在所述斜坡电压超过VIO时断开所述开关。
2.根据权利要求1所述的反馈控制线圈驱动器,其中,所述采样和保持电路在所述开关被接通的时刻TON(404)监测并且保持所述VL。
3.根据权利要求2所述的反馈控制线圈驱动器,其中,所述电压斜坡生成器在所述开关被接通时的时刻开始生成斜坡电压。
4.根据权利要求3所述的反馈控制线圈驱动器,还包括第一重复脉冲信号生成器(522),所述第一重复脉冲信号生成器(522)耦合至所述开关驱动器,并且被配置成以第一指定频率(FO)提供重复脉冲信号(503),其中,所述脉冲各自具有接通起始时间,并且其中,所述开关驱动器在每个连续的接通起始时间使所述开关接通。
5.根据权利要求4所述的反馈控制线圈驱动器,其中,所述指定参考电压是零伏特。
6.根据权利要求4所述的反馈控制线圈驱动器,还包括第二比较器(556),所述第二比较器(556)被布置成将所述VL与地进行比较,并且被配置成在所述VL小于地时使所述采样和保持电路对所述VL进行采样和保持。
7.根据权利要求6所述的反馈控制线圈驱动器,还包括第二重复脉冲信号生成器,所述第二重复脉冲信号生成器被配置成以比所述第一指定频率大的第二指定频率提供第二重复脉冲信号(520),并且其中,所述第二比较器电路在所述第二重复脉冲信号中的所选脉冲发生时使所述采样和保持电路对所述VL进行采样和保持。
8.根据权利要求7所述的反馈控制线圈驱动器,其中,所述所选脉冲被定义在连续的接通起始时间之间的在所述VL小于零时的时刻。
9.根据权利要求8所述的反馈控制线圈驱动器,其中,所述开关包括多个开关,其中,所述多个开关的数目是数据输入信号的函数,所述数据输入信号通过幅移键控来调制以用于利用所述槽路的数据传输。
10.一种对LC电路中的线圈进行驱动的方法,包括下述步骤:
提供被配置成具有输出电压的LC槽路(512、514);
根据定时波形在电源(501)和地之间切换所述LC槽路;
监测所述输出电压并且对所述输出电压与预选参考电压之间的差在时间上进行积分,以提供积分差电压(542);
提供在所述LC槽路连接在所述电源与地之间时开始的斜坡电压(554);以及
当所述斜坡电压超过所述积分差电压时将所述LC槽路与地断开。
11.根据权利要求10所述的方法,还包括下述步骤:以第一频率(FO)提供第一重复脉冲信号,其中,所述脉冲各自具有接通起始时间和脉冲持续时间TON(404)。
12.根据权利要求11所述的方法,还包括下述步骤:在每个连续的接通起始时间将所述LC槽路连接至地。
13.根据权利要求12所述的方法,其中,所述监测的步骤还包括下述步骤:在所述LC槽路连接至地时的时刻对所述输出电压进行监测和保持。
14.根据权利要求13所述的方法,还包括下述步骤:在所述输出电压小于地时对所述输出电压进行监测和保持。
15.根据权利要求14所述的方法,还包括下述步骤:
提供第二重复脉冲信号(520),所述第二重复脉冲信号(520)的频率比所述第一重复脉冲信号的频率大;以及
在连续的接通起始时间之间的在输出电压小于零时的时刻发生所述第二重复脉冲信号中的脉冲期间对所述输出电压进行监测和保持。
16.一种反馈控制线圈驱动器电路,包括:
LC槽路(512、514),所述LC槽路(512、514)具有输出电压(504);
开关(516),所述开关(516)被配置成将所述LC槽路可切换地耦合在电源(501)与地之间;
重复脉冲信号生成器(522),所述重复脉冲信号生成器(522)耦合至所述开关,由所述脉冲信号生成器生成的脉冲信号(503)具有可控接通时间(404),其中,在该接通时间期间,所述开关将所述LC槽路耦合在所述电源与地之间;以及
反馈控制器(530),所述反馈控制器(530)被配置成提供对所述脉冲信号的接通时间进行控制的控制信号(556),所述控制信号包括所述输出电压与参考电压(536)之间的差在时间上的积分,其中所述参考电压(536)受预选斜坡电压(554)影响。
17.根据权利要求16所述的线圈驱动器电路,其中,所述反馈控制器包括:采样和保持电路(534),所述采样和保持电路(534)被配置成在所述开关被接通时的时刻对采样输出电压(538)的值进行采样和保持;以及积分器电路(541),所述积分器电路(541)被配置成对所述采样输出电压与预选参考电压之间的差进行积分,以从而提供积分器电路输出电压542。
18.根据权利要求17所述的线圈驱动器电路,其中,所述反馈控制器还包括:电压斜坡生成器(552),所述电压斜坡生成器(552)被布置成在所述开关将所述LC槽路耦合在所述电源与地之间时开始提供斜坡电压(554);以及第一比较器(550),所述第一比较器(550)被布置成将所述积分器电路输出电压与所述斜坡电压进行比较以用于提供所述控制信号,并且其中,所述控制信号影响所述脉冲信号接通时间,以在所述斜坡电压超过所述积分器电路输出电压时使所述LC槽路在所述电源与地之间去耦。
19.根据权利要求18所述的线圈驱动器电路,其中,所述反馈控制器还包括第二比较器(532),所述第二比较器(532)被布置成将所述输出电压与地进行比较,并且被配置成在所述输出电压小于地时使所述采样和保持电路对所述输出电压进行采样和保持。
20.根据权利要求19所述的线圈驱动器电路,其中,所述参考电压是零伏特。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261695815P | 2012-08-31 | 2012-08-31 | |
US61/695,815 | 2012-08-31 | ||
PCT/US2013/057592 WO2014036449A1 (en) | 2012-08-31 | 2013-08-30 | Feedback controlled coil driver for inductive power transfer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104662787A CN104662787A (zh) | 2015-05-27 |
CN104662787B true CN104662787B (zh) | 2017-08-25 |
Family
ID=49182516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380045573.XA Active CN104662787B (zh) | 2012-08-31 | 2013-08-30 | 用于感应电力传输的反馈控制线圈驱动器 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9728981B2 (zh) |
EP (1) | EP2891239B1 (zh) |
JP (1) | JP6062556B2 (zh) |
CN (1) | CN104662787B (zh) |
AU (1) | AU2013308541B2 (zh) |
CA (1) | CA2882974C (zh) |
WO (1) | WO2014036449A1 (zh) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014036449A1 (en) * | 2012-08-31 | 2014-03-06 | Alfred E. Mann Foundation For Scientific Research | Feedback controlled coil driver for inductive power transfer |
EP2928551B1 (en) | 2012-12-07 | 2024-02-21 | Medtronic, Inc. | Minimally invasive implantable neurostimulation system |
US9825553B2 (en) | 2014-04-17 | 2017-11-21 | Linear Technology Corporation | Voltage regulation in resonant power wireless receiver |
DE102015112097A1 (de) | 2014-07-25 | 2016-01-28 | Minnetronix, Inc. | Leistungsskalierung |
DE102015112098A1 (de) | 2014-07-25 | 2016-01-28 | Minnetronix, Inc. | Spulenparameter und Steuerung |
US10342908B2 (en) | 2015-01-14 | 2019-07-09 | Minnetronix, Inc. | Distributed transformer |
US10406267B2 (en) | 2015-01-16 | 2019-09-10 | Minnetronix, Inc. | Data communication in a transcutaneous energy transfer system |
US10193395B2 (en) | 2015-04-14 | 2019-01-29 | Minnetronix, Inc. | Repeater resonator |
US10516284B2 (en) | 2016-09-15 | 2019-12-24 | Qualcomm Incorporated | Voltage controlled charge pump and battery charger |
WO2018098436A1 (en) | 2016-11-28 | 2018-05-31 | Spy Eye, Llc | Unobtrusive eye mounted display |
US10673414B2 (en) * | 2018-02-05 | 2020-06-02 | Tectus Corporation | Adaptive tuning of a contact lens |
JP2021518249A (ja) | 2018-03-20 | 2021-08-02 | セカンド・ハート・アシスト・インコーポレイテッド | 循環補助ポンプ |
US10505394B2 (en) | 2018-04-21 | 2019-12-10 | Tectus Corporation | Power generation necklaces that mitigate energy absorption in the human body |
US10895762B2 (en) | 2018-04-30 | 2021-01-19 | Tectus Corporation | Multi-coil field generation in an electronic contact lens system |
US10838239B2 (en) | 2018-04-30 | 2020-11-17 | Tectus Corporation | Multi-coil field generation in an electronic contact lens system |
US10790700B2 (en) | 2018-05-18 | 2020-09-29 | Tectus Corporation | Power generation necklaces with field shaping systems |
US11137622B2 (en) | 2018-07-15 | 2021-10-05 | Tectus Corporation | Eye-mounted displays including embedded conductive coils |
US10529107B1 (en) | 2018-09-11 | 2020-01-07 | Tectus Corporation | Projector alignment in a contact lens |
US10838232B2 (en) | 2018-11-26 | 2020-11-17 | Tectus Corporation | Eye-mounted displays including embedded solenoids |
US10644543B1 (en) | 2018-12-20 | 2020-05-05 | Tectus Corporation | Eye-mounted display system including a head wearable object |
US10944290B2 (en) | 2019-08-02 | 2021-03-09 | Tectus Corporation | Headgear providing inductive coupling to a contact lens |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4468723A (en) * | 1981-04-24 | 1984-08-28 | Hewlett-Packard Company | Magnetically regulated power supply |
US5488552A (en) * | 1992-10-07 | 1996-01-30 | Hiroshi Sakamoto | Inverter power supply |
CN1347192A (zh) * | 2001-09-23 | 2002-05-01 | 石家庄通合电子有限公司 | 谐振电压控制型功率变换器 |
CN1721013A (zh) * | 2004-06-24 | 2006-01-18 | 伊西康内外科公司 | 具有闭合环路经皮能量传递功率传递调节电路的医疗植入体 |
CN101834473A (zh) * | 2010-05-21 | 2010-09-15 | 西安电子科技大学 | 谐振跟踪式非接触供电装置及供电方法 |
Family Cites Families (232)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3646940A (en) | 1969-07-15 | 1972-03-07 | Univ Minnesota | Implantable electronic stimulator electrode and method |
US3942535A (en) | 1973-09-27 | 1976-03-09 | G. D. Searle & Co. | Rechargeable tissue stimulating system |
US4019518A (en) | 1975-08-11 | 1977-04-26 | Medtronic, Inc. | Electrical stimulation system |
US4044774A (en) | 1976-02-23 | 1977-08-30 | Medtronic, Inc. | Percutaneously inserted spinal cord stimulation lead |
US4082097A (en) | 1976-05-20 | 1978-04-04 | Pacesetter Systems Inc. | Multimode recharging system for living tissue stimulators |
US4340062A (en) | 1978-11-06 | 1982-07-20 | Medtronic, Inc. | Body stimulator having selectable stimulation energy levels |
JPS57182216A (en) * | 1981-04-24 | 1982-11-10 | Yokogawa Hewlett Packard Ltd | Stabilized power source device |
US4558702A (en) | 1983-01-21 | 1985-12-17 | Cordis Corporation | Cardiac pacer having input/output circuit programmable for use with unipolar and bipolar pacer leads |
US4673867A (en) | 1986-06-30 | 1987-06-16 | Motorola, Inc. | Current mirror circuit and method for providing zero temperature coefficient trimmable current ratios |
US4744371A (en) | 1987-04-27 | 1988-05-17 | Cordis Leads, Inc. | Multi-conductor lead assembly for temporary use |
DE3914662A1 (de) | 1989-05-03 | 1990-11-08 | Alt Eckhard | Vorrichtung zum uebertragen elektrischer signale zwischen einem implantierbaren medizinischen geraet und elektrisch erregbarem menschlichen gewebe |
GB9211085D0 (en) | 1992-05-23 | 1992-07-08 | Tippey Keith E | Electrical stimulation |
JPH06197554A (ja) * | 1992-12-25 | 1994-07-15 | Matsushita Electric Ind Co Ltd | インバータ制御回路 |
FR2714548B1 (fr) * | 1993-12-23 | 1996-03-15 | Sgs Thomson Microelectronics | Amplificateur à correction de tension de décalage. |
US6249703B1 (en) | 1994-07-08 | 2001-06-19 | Medtronic, Inc. | Handheld patient programmer for implantable human tissue stimulator |
US6035237A (en) | 1995-05-23 | 2000-03-07 | Alfred E. Mann Foundation | Implantable stimulator that prevents DC current flow without the use of discrete output coupling capacitors |
US5702431A (en) | 1995-06-07 | 1997-12-30 | Sulzer Intermedics Inc. | Enhanced transcutaneous recharging system for battery powered implantable medical device |
US5690693A (en) | 1995-06-07 | 1997-11-25 | Sulzer Intermedics Inc. | Transcutaneous energy transmission circuit for implantable medical device |
US5877472A (en) | 1996-02-22 | 1999-03-02 | Pacesetter, Inc. | System for laser-welding components of an implantable device |
DE19623788A1 (de) | 1996-06-04 | 1997-12-11 | Biotronik Mess & Therapieg | Implantierbares Stimulationsgerät |
US6609031B1 (en) | 1996-06-07 | 2003-08-19 | Advanced Neuromodulation Systems, Inc. | Multiprogrammable tissue stimulator and method |
US5741316A (en) | 1996-12-02 | 1998-04-21 | Light Sciences Limited Partnership | Electromagnetic coil configurations for power transmission through tissue |
US5735887A (en) | 1996-12-10 | 1998-04-07 | Exonix Corporation | Closed-loop, RF-coupled implanted medical device |
JP3954177B2 (ja) | 1997-01-29 | 2007-08-08 | 日本碍子株式会社 | 金属部材とセラミックス部材との接合構造およびその製造方法 |
US6164284A (en) | 1997-02-26 | 2000-12-26 | Schulman; Joseph H. | System of implantable devices for monitoring and/or affecting body parameters |
DE69832713T2 (de) | 1997-02-26 | 2006-07-27 | Alfred E. Mann Foundation For Scientific Research, Santa Clarita | Batterie-betriebsgerät zur implantation in einem patienten |
US7114502B2 (en) | 1997-02-26 | 2006-10-03 | Alfred E. Mann Foundation For Scientific Research | Battery-powered patient implantable device |
US8555894B2 (en) | 1997-02-26 | 2013-10-15 | Alfred E. Mann Foundation For Scientific Research | System for monitoring temperature |
US8684009B2 (en) | 1997-02-26 | 2014-04-01 | Alfred E. Mann Foundation For Scientific Research | System for determining relative distance(s) and/or angle(s) between at least two points |
US6208894B1 (en) | 1997-02-26 | 2001-03-27 | Alfred E. Mann Foundation For Scientific Research And Advanced Bionics | System of implantable devices for monitoring and/or affecting body parameters |
US7460911B2 (en) | 1997-02-26 | 2008-12-02 | Alfred E. Mann Foundation For Scientific Research | System and method suitable for treatment of a patient with a neurological deficit by sequentially stimulating neural pathways using a system of discrete implantable medical devices |
US5871513A (en) | 1997-04-30 | 1999-02-16 | Medtronic Inc. | Centerless ground feedthrough pin for an electrical power source in an implantable medical device |
US6191365B1 (en) | 1997-05-02 | 2001-02-20 | General Science And Technology Corp | Medical devices incorporating at least one element made from a plurality of twisted and drawn wires |
DE69826675T2 (de) | 1997-08-01 | 2006-02-16 | Alfred E. Mann Foundation For Scientific Research, Valenica | Implantierbare einrichtung mit verbesserter anordnung zur ladung der batterie und zur energiezufuhr |
US6427086B1 (en) | 1997-10-27 | 2002-07-30 | Neuropace, Inc. | Means and method for the intracranial placement of a neurostimulator |
JP3887828B2 (ja) | 1997-11-20 | 2007-02-28 | セイコーエプソン株式会社 | 電子機器 |
US6306100B1 (en) | 1997-12-16 | 2001-10-23 | Richard L. Prass | Intraoperative neurophysiological monitoring system |
US6402793B1 (en) | 1998-04-03 | 2002-06-11 | Medtronic, Inc. | Implantable medical device having flat electrolytic capacitor with cathode/case electrical connections |
US6221513B1 (en) | 1998-05-12 | 2001-04-24 | Pacific Coast Technologies, Inc. | Methods for hermetically sealing ceramic to metallic surfaces and assemblies incorporating such seals |
US6735474B1 (en) | 1998-07-06 | 2004-05-11 | Advanced Bionics Corporation | Implantable stimulator system and method for treatment of incontinence and pain |
US6941171B2 (en) | 1998-07-06 | 2005-09-06 | Advanced Bionics Corporation | Implantable stimulator methods for treatment of incontinence and pain |
US6027456A (en) | 1998-07-10 | 2000-02-22 | Advanced Neuromodulation Systems, Inc. | Apparatus and method for positioning spinal cord stimulation leads |
US6178353B1 (en) | 1998-07-27 | 2001-01-23 | Advanced Bionics Corporation | Laminated magnet keeper for implant device |
US7231254B2 (en) | 1998-08-05 | 2007-06-12 | Bioneuronics Corporation | Closed-loop feedback-driven neuromodulation |
US6212431B1 (en) | 1998-09-08 | 2001-04-03 | Advanced Bionics Corporation | Power transfer circuit for implanted devices |
US7142925B1 (en) | 1998-09-16 | 2006-11-28 | Axon Engineering, Inc. | Combined stimulation of ventral and dorsal sacral roots for control of bladder function |
WO2000019939A1 (en) | 1998-10-06 | 2000-04-13 | Bio Control Medical, Ltd. | Control of urge incontinence |
IL127481A (en) | 1998-10-06 | 2004-05-12 | Bio Control Medical Ltd | Urine excretion prevention device |
WO2000025859A1 (en) | 1998-10-30 | 2000-05-11 | Aalborg University | A method to control an overactive bladder |
US6393325B1 (en) | 1999-01-07 | 2002-05-21 | Advanced Bionics Corporation | Directional programming for implantable electrode arrays |
US7555346B1 (en) | 1999-01-07 | 2009-06-30 | Boston Scientific Neuromodulation Corporation | Implantable pulse generator having current steering means |
AU772100B2 (en) | 1999-02-08 | 2004-04-08 | Cochlear Limited | Offset coils for radio frequency transcutaneous links |
US6172556B1 (en) | 1999-03-04 | 2001-01-09 | Intersil Corporation, Inc. | Feedback-controlled low voltage current sink/source |
US8666495B2 (en) | 1999-03-05 | 2014-03-04 | Metacure Limited | Gastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar |
EP1171188B1 (en) | 1999-03-24 | 2009-05-06 | Second Sight Medical Products, Inc. | Retinal color prosthesis for color sight restoration |
WO2000056677A1 (en) | 1999-03-24 | 2000-09-28 | Alfred E. Mann Foundation | Method and apparatus of a strong metal-ceramic braze bond |
US6055456A (en) | 1999-04-29 | 2000-04-25 | Medtronic, Inc. | Single and multi-polar implantable lead for sacral nerve electrical stimulation |
US6212430B1 (en) | 1999-05-03 | 2001-04-03 | Abiomed, Inc. | Electromagnetic field source with detection of position of secondary coil in relation to multiple primary coils |
US6505075B1 (en) | 1999-05-29 | 2003-01-07 | Richard L. Weiner | Peripheral nerve stimulation method |
US6516227B1 (en) | 1999-07-27 | 2003-02-04 | Advanced Bionics Corporation | Rechargeable spinal cord stimulator system |
US7177690B2 (en) | 1999-07-27 | 2007-02-13 | Advanced Bionics Corporation | Implantable system having rechargeable battery indicator |
US7047082B1 (en) | 1999-09-16 | 2006-05-16 | Micronet Medical, Inc. | Neurostimulating lead |
US6654642B2 (en) | 1999-09-29 | 2003-11-25 | Medtronic, Inc. | Patient interactive neurostimulation system and method |
US6442434B1 (en) | 1999-10-19 | 2002-08-27 | Abiomed, Inc. | Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system |
US6466817B1 (en) | 1999-11-24 | 2002-10-15 | Nuvasive, Inc. | Nerve proximity and status detection system and method |
KR20020077346A (ko) | 1999-11-24 | 2002-10-11 | 너바시브 인코퍼레이티드 | 근전도검사 시스템 |
US6438423B1 (en) | 2000-01-20 | 2002-08-20 | Electrocore Technique, Llc | Method of treating complex regional pain syndromes by electrical stimulation of the sympathetic nerve chain |
US6662051B1 (en) | 2000-03-31 | 2003-12-09 | Stephen A. Eraker | Programmable pain reduction device |
WO2001080795A1 (en) | 2000-04-20 | 2001-11-01 | Cochlear Limited | Transcutaneous power optimization circuit for cochlear implant |
US6456220B1 (en) | 2000-06-19 | 2002-09-24 | Cygnal Integrated Products, Inc. | Analog-to-digital converter for processing differential and single-ended inputs |
US7305268B2 (en) | 2000-07-13 | 2007-12-04 | Northstar Neurscience, Inc. | Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators |
IT1316598B1 (it) | 2000-08-07 | 2003-04-24 | Caen Microelettronica E Sistem | Manufatto tessile con fibre illuminate, capo di abbigliamento daquesto ottenuto e metodo di produzione del manufatto. |
US7054689B1 (en) | 2000-08-18 | 2006-05-30 | Advanced Bionics Corporation | Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction |
US6864755B2 (en) | 2000-10-06 | 2005-03-08 | Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California | Switched reactance modulated E-class oscillator design |
US6745077B1 (en) | 2000-10-11 | 2004-06-01 | Advanced Bionics Corporation | Electronic impedance transformer for inductively-coupled load stabilization |
US6847849B2 (en) | 2000-11-15 | 2005-01-25 | Medtronic, Inc. | Minimally invasive apparatus for implanting a sacral stimulation lead |
US6971393B1 (en) | 2000-11-15 | 2005-12-06 | George Mamo | Minimally invasive method for implanting a sacral stimulation lead |
US6600954B2 (en) | 2001-01-25 | 2003-07-29 | Biocontrol Medical Bcm Ltd. | Method and apparatus for selective control of nerve fibers |
US7069081B2 (en) | 2001-02-08 | 2006-06-27 | Wilson Greatbatch Ltd. | One piece header assembly for an implantable medical device |
US6901287B2 (en) | 2001-02-09 | 2005-05-31 | Medtronic, Inc. | Implantable therapy delivery element adjustable anchor |
US6597953B2 (en) | 2001-02-20 | 2003-07-22 | Neuropace, Inc. | Furcated sensing and stimulation lead |
US6708065B2 (en) | 2001-03-02 | 2004-03-16 | Cardiac Pacemakers, Inc. | Antenna for an implantable medical device |
US6584355B2 (en) | 2001-04-10 | 2003-06-24 | Cardiac Pacemakers, Inc. | System and method for measuring battery current |
US8145324B1 (en) | 2001-04-13 | 2012-03-27 | Greatbatch Ltd. | Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices |
US6892098B2 (en) | 2001-04-26 | 2005-05-10 | Biocontrol Medical Ltd. | Nerve stimulation for treating spasticity, tremor, muscle weakness, and other motor disorders |
US6521350B2 (en) | 2001-06-18 | 2003-02-18 | Alfred E. Mann Foundation For Scientific Research | Application and manufacturing method for a ceramic to metal seal |
JP4295086B2 (ja) | 2001-07-11 | 2009-07-15 | ヌバシブ, インコーポレイテッド | 手術の間の神経近接度、神経の方向、および病理学を決定するシステムおよび方法 |
JP2003047179A (ja) * | 2001-07-26 | 2003-02-14 | Matsushita Electric Works Ltd | 非接触電力伝達装置 |
US6456256B1 (en) | 2001-08-03 | 2002-09-24 | Cardiac Pacemakers, Inc. | Circumferential antenna for an implantable medical device |
US7151914B2 (en) | 2001-08-21 | 2006-12-19 | Medtronic, Inc. | Transmitter system for wireless communication with implanted devices |
US6999819B2 (en) | 2001-08-31 | 2006-02-14 | Medtronic, Inc. | Implantable medical electrical stimulation lead fixation method and apparatus |
US7734355B2 (en) | 2001-08-31 | 2010-06-08 | Bio Control Medical (B.C.M.) Ltd. | Treatment of disorders by unidirectional nerve stimulation |
EP2481338A3 (en) | 2001-09-25 | 2012-09-05 | Nuvasive, Inc. | System for performing surgical procedures and assessments |
WO2003026736A2 (en) | 2001-09-28 | 2003-04-03 | Northstar Neuroscience, Inc. | Methods and implantable apparatus for electrical therapy |
US7187978B2 (en) | 2001-11-01 | 2007-03-06 | Medtronic, Inc. | Method and apparatus for programming an implantable medical device |
US6894456B2 (en) | 2001-11-07 | 2005-05-17 | Quallion Llc | Implantable medical power module |
US6721603B2 (en) | 2002-01-25 | 2004-04-13 | Cyberonics, Inc. | Nerve stimulation as a treatment for pain |
US7317948B1 (en) | 2002-02-12 | 2008-01-08 | Boston Scientific Scimed, Inc. | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance |
US7582058B1 (en) | 2002-06-26 | 2009-09-01 | Nuvasive, Inc. | Surgical access system and related methods |
ES2426255T3 (es) | 2002-06-28 | 2013-10-22 | Boston Scientific Neuromodulation Corporation | Microestimulador que tiene incorporado una fuente de energía y un sistema de telemetría bidireccional |
US8386048B2 (en) | 2002-06-28 | 2013-02-26 | Boston Scientific Neuromodulation Corporation | Systems and methods for communicating with or providing power to an implantable stimulator |
US7369894B2 (en) | 2002-09-06 | 2008-05-06 | Medtronic, Inc. | Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the sacral and/or pudendal nerves |
US7328068B2 (en) | 2003-03-31 | 2008-02-05 | Medtronic, Inc. | Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudendal and associated nerves, and the optional delivery of drugs in association therewith |
AU2002951739A0 (en) | 2002-09-30 | 2002-10-17 | Cochlear Limited | Feedthrough with multiple conductive pathways extending therethrough |
US7127298B1 (en) | 2002-10-18 | 2006-10-24 | Advanced Bionics Corporation | Switched-matrix output for multi-channel implantable stimulator |
EP1572292B1 (en) | 2002-10-31 | 2010-09-29 | Medtronic, Inc. | Method and device for applying filter information to identify combinations of electrodes |
US7933655B2 (en) | 2002-10-31 | 2011-04-26 | Medtronic, Inc. | Neurostimulation therapy manipulation |
WO2004041352A1 (en) | 2002-10-31 | 2004-05-21 | Medtronic, Inc. | Distributed system for neurostimulation therapy programming |
US7167749B2 (en) | 2002-11-05 | 2007-01-23 | Wilson Greatbatch Technologies, Inc. | One piece header assembly for an implantable medical device |
US6990376B2 (en) | 2002-12-06 | 2006-01-24 | The Regents Of The University Of California | Methods and systems for selective control of bladder function |
US7952349B2 (en) | 2002-12-09 | 2011-05-31 | Ferro Solutions, Inc. | Apparatus and method utilizing magnetic field |
TR200202651A2 (tr) | 2002-12-12 | 2004-07-21 | Met�N�Tulgar | VücutÁdışındanÁdirekÁtedaviÁsinyaliÁtransferliÁÁbeyinÁpili |
US7742821B1 (en) | 2003-06-11 | 2010-06-22 | Boston Scientific Neutomodulation Corporation | Remote control for implantable medical device |
US7463928B2 (en) | 2003-04-25 | 2008-12-09 | Medtronic, Inc. | Identifying combinations of electrodes for neurostimulation therapy |
US7317947B2 (en) | 2003-05-16 | 2008-01-08 | Medtronic, Inc. | Headset recharger for cranially implantable medical devices |
US7813809B2 (en) | 2004-06-10 | 2010-10-12 | Medtronic, Inc. | Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue |
US7617002B2 (en) | 2003-09-15 | 2009-11-10 | Medtronic, Inc. | Selection of neurostimulator parameter configurations using decision trees |
US20050075696A1 (en) | 2003-10-02 | 2005-04-07 | Medtronic, Inc. | Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device |
US8140168B2 (en) | 2003-10-02 | 2012-03-20 | Medtronic, Inc. | External power source for an implantable medical device having an adjustable carrier frequency and system and method related therefore |
US7286880B2 (en) | 2003-10-02 | 2007-10-23 | Medtronic, Inc. | System and method for transcutaneous energy transfer achieving high efficiency |
US7515967B2 (en) | 2003-10-02 | 2009-04-07 | Medtronic, Inc. | Ambulatory energy transfer system for an implantable medical device and method therefore |
US7225032B2 (en) | 2003-10-02 | 2007-05-29 | Medtronic Inc. | External power source, charger and system for an implantable medical device having thermal characteristics and method therefore |
US6989200B2 (en) | 2003-10-30 | 2006-01-24 | Alfred E. Mann Foundation For Scientific Research | Ceramic to noble metal braze and method of manufacture |
US6986453B2 (en) | 2003-11-13 | 2006-01-17 | Alfred E. Mann Foundation For Scientific Research | Manufacturing method for a ceramic to metal seal |
US7508898B2 (en) * | 2004-02-10 | 2009-03-24 | Bitwave Semiconductor, Inc. | Programmable radio transceiver |
WO2005082453A1 (en) | 2004-02-25 | 2005-09-09 | Advanced Neuromodulation Systems, Inc. | System and method for neurological stimulation of peripheral nerves to treat low back pain |
US7738963B2 (en) | 2004-03-04 | 2010-06-15 | Advanced Neuromodulation Systems, Inc. | System and method for programming an implantable pulse generator |
US7212110B1 (en) | 2004-04-19 | 2007-05-01 | Advanced Neuromodulation Systems, Inc. | Implantable device and system and method for wireless communication |
US7532936B2 (en) | 2004-04-20 | 2009-05-12 | Advanced Neuromodulation Systems, Inc. | Programmable switching device for implantable device |
US7245972B2 (en) | 2004-04-29 | 2007-07-17 | Alfred E. Mann Foundation For Scientific Research | Electrical treatment to treat shoulder subluxation |
US7359751B1 (en) | 2004-05-05 | 2008-04-15 | Advanced Neuromodulation Systems, Inc. | Clinician programmer for use with trial stimulator |
US7450991B2 (en) | 2004-05-28 | 2008-11-11 | Advanced Neuromodulation Systems, Inc. | Systems and methods used to reserve a constant battery capacity |
US7539538B2 (en) | 2004-05-28 | 2009-05-26 | Boston Science Neuromodulation Corporation | Low power loss current digital-to-analog converter used in an implantable pulse generator |
WO2006012426A2 (en) | 2004-07-20 | 2006-02-02 | Medtronic, Inc. | Locating an implanted object based on external antenna loading |
US7061780B2 (en) * | 2004-09-09 | 2006-06-13 | System General Corp. | Switching control circuit with variable switching frequency for primary-side-controlled power converters |
US7771838B1 (en) | 2004-10-12 | 2010-08-10 | Boston Scientific Neuromodulation Corporation | Hermetically bonding ceramic and titanium with a Ti-Pd braze interface |
US7578819B2 (en) | 2005-05-16 | 2009-08-25 | Baxano, Inc. | Spinal access and neural localization |
US7054176B2 (en) * | 2004-11-03 | 2006-05-30 | Intersil Americas Inc. | Architecture for achieving resonant circuit synchronization of multiple zero voltage switched push-pull DC-AC converters |
US7415308B2 (en) | 2005-02-23 | 2008-08-19 | Medtronic, Inc. | Implantable medical device providing adaptive neurostimulation therapy for incontinence |
US8774912B2 (en) | 2005-02-23 | 2014-07-08 | Medtronic, Inc. | Implantable neurostimulator supporting trial and chronic modes |
US8768452B2 (en) | 2005-02-23 | 2014-07-01 | Medtronic, Inc. | Implantable neurostimulator supporting trial and chronic modes |
US7979119B2 (en) | 2005-04-26 | 2011-07-12 | Boston Scientific Neuromodulation Corporation | Display graphics for use in stimulation therapies |
US7406351B2 (en) | 2005-04-28 | 2008-07-29 | Medtronic, Inc. | Activity sensing for stimulator control |
US7774069B2 (en) | 2005-04-29 | 2010-08-10 | Medtronic, Inc. | Alignment indication for transcutaneous energy transfer |
US7813803B2 (en) | 2005-06-09 | 2010-10-12 | Medtronic, Inc. | Regional therapies for treatment of pain |
EP1904160B1 (en) | 2005-06-09 | 2011-12-21 | Medtronic, Inc. | Peripheral nerve field stimulation and spinal cord stimulation |
KR100792311B1 (ko) | 2005-07-30 | 2008-01-07 | 엘에스전선 주식회사 | 충전전력 공급장치, 충전 장치, 배터리 장치, 무접점 충전 시스템 및 무접점 충전 방법 |
US8175717B2 (en) | 2005-09-06 | 2012-05-08 | Boston Scientific Neuromodulation Corporation | Ultracapacitor powered implantable pulse generator with dedicated power supply |
US7551960B2 (en) | 2005-09-08 | 2009-06-23 | Medtronic, Inc. | External presentation of electrical stimulation parameters |
US7640059B2 (en) | 2005-09-08 | 2009-12-29 | Medtronic, Inc. | External presentation of electrical stimulation parameters |
US7444181B2 (en) | 2005-12-14 | 2008-10-28 | Boston Scientific Neuromodulation Corporation | Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device |
US7720547B2 (en) | 2006-01-04 | 2010-05-18 | Kenergy, Inc. | Extracorporeal power supply with a wireless feedback system for an implanted medical device |
US7809443B2 (en) | 2006-01-31 | 2010-10-05 | Medtronic, Inc. | Electrical stimulation to alleviate chronic pelvic pain |
US20070189431A1 (en) * | 2006-02-15 | 2007-08-16 | Texas Instruments Incorporated | Delay alignment in a closed loop two-point modulation all digital phase locked loop |
US8019423B2 (en) | 2006-02-17 | 2011-09-13 | Marc Possover | Laparoscopic implantation of neurostimulators |
US7747330B2 (en) | 2006-03-09 | 2010-06-29 | Medtronic, Inc. | Global parameter adjustment for multiple stimulation programs |
US8447402B1 (en) | 2006-03-31 | 2013-05-21 | Alfred E. Mann Foundation For Scientific Research | Zirconia to platinum assembly using a titanium connector |
US8219202B2 (en) | 2006-04-28 | 2012-07-10 | Medtronic, Inc. | Electrical stimulation of ilioinguinal nerve to alleviate chronic pelvic pain |
US7715920B2 (en) | 2006-04-28 | 2010-05-11 | Medtronic, Inc. | Tree-based electrical stimulator programming |
US7761166B2 (en) | 2006-04-28 | 2010-07-20 | Medtronic, Inc. | Electrical stimulation of iliohypogastric nerve to alleviate chronic pelvic pain |
US7738965B2 (en) | 2006-04-28 | 2010-06-15 | Medtronic, Inc. | Holster for charging pectorally implanted medical devices |
US20070265675A1 (en) | 2006-05-09 | 2007-11-15 | Ams Research Corporation | Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation |
AU2007258756B2 (en) | 2006-06-05 | 2012-03-01 | Ams Research Corporation | Electrical muscle stimulation to treat fecal incontinence and/or pelvic prolapse |
US20070282376A1 (en) | 2006-06-06 | 2007-12-06 | Shuros Allan C | Method and apparatus for neural stimulation via the lymphatic system |
US8116862B2 (en) | 2006-06-08 | 2012-02-14 | Greatbatch Ltd. | Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility |
WO2008021524A2 (en) | 2006-08-18 | 2008-02-21 | Second Sight Medical Products, Inc. | Package for an implantable neural stimulation device |
US7979126B2 (en) | 2006-10-18 | 2011-07-12 | Boston Scientific Neuromodulation Corporation | Orientation-independent implantable pulse generator |
US20100076534A1 (en) | 2006-10-25 | 2010-03-25 | William Alan Mock | Malleable needle having a plurality of electrodes for facilitating implantation of stimulation lead and method of implanting an electrical stimulation lead |
US7857819B2 (en) | 2006-11-30 | 2010-12-28 | Boston Scientific Neuromodulation Corporation | Implant tool for use with a microstimulator |
US8010205B2 (en) | 2007-01-11 | 2011-08-30 | Boston Scientific Neuromodulation Corporation | Multiple telemetry and/or charging coil configurations for an implantable medical device system |
US8549015B2 (en) | 2007-05-01 | 2013-10-01 | Giancarlo Barolat | Method and system for distinguishing nociceptive pain from neuropathic pain |
US7932696B2 (en) | 2007-05-14 | 2011-04-26 | Boston Scientific Neuromodulation Corporation | Charger alignment indicator with adjustable threshold |
US8045670B2 (en) * | 2007-06-22 | 2011-10-25 | Texas Instruments Incorporated | Interpolative all-digital phase locked loop |
EP2183019A4 (en) | 2007-08-06 | 2012-12-12 | Great Lakes Biosciences Llc | METHOD AND APPARATUS FOR ELECTRICAL STIMULATION OF TISSUES USING SIGNALS THAT MINIMIZE THE EFFECTS OF TISSUE IMPEDANCE |
WO2009035711A2 (en) | 2007-09-13 | 2009-03-19 | Medtronic, Inc. | Medical electrical lead with jacketed conductive elements |
EP2207590A1 (en) | 2007-09-26 | 2010-07-21 | Medtronic, INC. | Therapy program selection |
EP2214778B1 (en) | 2007-10-16 | 2021-09-15 | Implantica Patent Ltd. | A method for controlling supply of energy to an implantable medical device |
WO2009055203A1 (en) | 2007-10-26 | 2009-04-30 | Medtronic, Inc. | Method and apparatus for dynamic adjustment of recharge parameters |
US8244367B2 (en) | 2007-10-26 | 2012-08-14 | Medtronic, Inc. | Closed loop long range recharging |
NZ565234A (en) | 2008-01-18 | 2010-11-26 | Telemetry Res Ltd | Selectable resonant frequency transcutaneous energy transfer system |
US8332040B1 (en) | 2008-03-10 | 2012-12-11 | Advanced Neuromodulation Systems, Inc. | External charging device for charging an implantable medical device and methods of regulating duty of cycle of an external charging device |
US8509909B2 (en) | 2008-04-10 | 2013-08-13 | Medtronic, Inc. | Using telemetry coupling as a surrogate for recharger coupling |
EP2262442B1 (en) | 2008-04-11 | 2015-03-25 | BAL Seal Engineering | Connector cartridge stack for electrical transmission |
US8314594B2 (en) | 2008-04-30 | 2012-11-20 | Medtronic, Inc. | Capacity fade adjusted charge level or recharge interval of a rechargeable power source of an implantable medical device, system and method |
US8103360B2 (en) | 2008-05-09 | 2012-01-24 | Foster Arthur J | Medical lead coil conductor with spacer element |
EP2138203B1 (en) | 2008-06-26 | 2013-01-30 | Greatbatch Ltd. | Stimulation lead design |
WO2010011721A1 (en) | 2008-07-24 | 2010-01-28 | Boston Scientific Neuromodulation Corporation | System and method for maintaining a distribution of currents in an electrode array using independent voltage sources |
US8947041B2 (en) * | 2008-09-02 | 2015-02-03 | Qualcomm Incorporated | Bidirectional wireless power transmission |
JP5238420B2 (ja) * | 2008-09-11 | 2013-07-17 | 矢崎総業株式会社 | 車両用ワイヤレス充電システム |
US20120119698A1 (en) | 2008-09-27 | 2012-05-17 | Aristeidis Karalis | Wireless energy transfer for vehicles |
WO2010042057A1 (en) | 2008-10-10 | 2010-04-15 | Milux Holding S.A. | Charger for implant |
WO2010042056A1 (en) | 2008-10-10 | 2010-04-15 | Milux Holding S.A. | Charger for implant with means for indicating alignment between charger and implant |
US8219196B2 (en) | 2008-10-31 | 2012-07-10 | Medtronic, Inc. | Determination of stimulation output capabilities throughout power source voltage range |
US8255057B2 (en) | 2009-01-29 | 2012-08-28 | Nevro Corporation | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
US8538530B1 (en) | 2008-11-19 | 2013-09-17 | Advanced Bionics | Hermetically sealed feedthrough case |
US20110278948A1 (en) | 2008-11-21 | 2011-11-17 | Milux Holdings SA | System for supplying energy |
JP5173901B2 (ja) * | 2009-03-13 | 2013-04-03 | 三菱電機株式会社 | 非接触受給電装置 |
JP5167196B2 (ja) * | 2009-05-14 | 2013-03-21 | シャープ株式会社 | 信号補正装置、音声処理装置及びパルス増幅方法 |
US8214042B2 (en) | 2009-05-26 | 2012-07-03 | Boston Scientific Neuromodulation Corporation | Techniques for controlling charging of batteries in an external charger and an implantable medical device |
US8571677B2 (en) | 2009-10-21 | 2013-10-29 | Medtronic, Inc. | Programming techniques for stimulation with utilization of case electrode |
US8457756B2 (en) | 2009-11-11 | 2013-06-04 | Boston Scientific Neuromodulation Corporation | Using the case of an implantable medical device to broaden communication bandwidth |
US8577474B2 (en) | 2009-11-11 | 2013-11-05 | Boston Scientific Neuromodulation Corporation | Minimizing interference between charging and telemetry coils in an implantable medical device |
US9123470B2 (en) | 2009-12-18 | 2015-09-01 | Cardiac Pacemakers, Inc. | Implantable energy storage device including a connection post to connect multiple electrodes |
DE102010006837B4 (de) | 2010-02-03 | 2013-01-17 | Heraeus Precious Metals Gmbh & Co. Kg | (Meth)acrylsäurealkylester aufweisende elektrische Durchführung |
US9242104B2 (en) | 2010-05-11 | 2016-01-26 | Cardiac Pacemakers, Inc. | Systems for patient control of implantable medical device therapy |
WO2011156286A2 (en) | 2010-06-07 | 2011-12-15 | Medtronic, Inc. | Stimulation therapy for bladder dysfunction |
US8700165B2 (en) | 2010-07-16 | 2014-04-15 | Boston Scientific Neuromodulation Corporation | System and method for estimating lead configuration from neighboring relationship between electrodes |
JP5653137B2 (ja) * | 2010-08-31 | 2015-01-14 | キヤノン株式会社 | 給電装置及び方法 |
US9155891B2 (en) | 2010-09-20 | 2015-10-13 | Neuropace, Inc. | Current management system for a stimulation output stage of an implantable neurostimulation system |
US8543223B2 (en) | 2011-03-11 | 2013-09-24 | Greatbach Ltd. | Implantable lead with braided conductors |
US8738141B2 (en) | 2011-04-07 | 2014-05-27 | Greatbatch, Ltd. | Contact assembly for implantable pulse generator and method of use |
US9623257B2 (en) | 2011-04-18 | 2017-04-18 | Medtronic, Inc. | Recharge tuning techniques for an implantable device |
US9136728B2 (en) | 2011-04-28 | 2015-09-15 | Medtronic, Inc. | Implantable medical devices and systems having inductive telemetry and recharge on a single coil |
US9259582B2 (en) | 2011-04-29 | 2016-02-16 | Cyberonics, Inc. | Slot antenna for an implantable device |
US9089712B2 (en) | 2011-04-29 | 2015-07-28 | Cyberonics, Inc. | Implantable medical device without antenna feedthrough |
US8515545B2 (en) | 2011-04-29 | 2013-08-20 | Greatbatch Ltd. | Current steering neurostimulator device with unidirectional current sources |
US9265958B2 (en) | 2011-04-29 | 2016-02-23 | Cyberonics, Inc. | Implantable medical device antenna |
US9240630B2 (en) | 2011-04-29 | 2016-01-19 | Cyberonics, Inc. | Antenna shield for an implantable medical device |
US8954148B2 (en) | 2011-06-28 | 2015-02-10 | Greatbatch, Ltd. | Key fob controller for an implantable neurostimulator |
US20130006330A1 (en) | 2011-06-28 | 2013-01-03 | Greatbatch, Ltd. | Dual patient controllers |
US8571667B2 (en) | 2011-07-01 | 2013-10-29 | Greatbatch Ltd. | Active current control using the enclosure of an implanted pulse generator |
US8700175B2 (en) | 2011-07-19 | 2014-04-15 | Greatbatch Ltd. | Devices and methods for visually indicating the alignment of a transcutaneous energy transfer device over an implanted medical device |
US9446254B2 (en) | 2011-10-13 | 2016-09-20 | Boston Scientific Neuromodulation Corporation | Charger alignment in an implantable medical device system employing reflected impedance modulation |
US9981137B2 (en) | 2012-01-27 | 2018-05-29 | Nuvectra Corporation | Heat dispersion for implantable medical devices |
EP2846680B1 (en) | 2012-05-08 | 2022-08-31 | The Cleveland Clinic Foundation | Implantable pressure sensor |
US9379721B2 (en) * | 2012-07-06 | 2016-06-28 | Freescale Semiconductor, Inc. | Capacitive arrangement for frequency synthesizers |
US9837831B2 (en) * | 2012-08-31 | 2017-12-05 | The Alfred E. Mann Foundation For Scientific Research | Class E coil driver with switched capacitor ASK modulation |
WO2014036449A1 (en) * | 2012-08-31 | 2014-03-06 | Alfred E. Mann Foundation For Scientific Research | Feedback controlled coil driver for inductive power transfer |
US8761897B2 (en) | 2012-08-31 | 2014-06-24 | Greatbatch Ltd. | Method and system of graphical representation of lead connector block and implantable pulse generators on a clinician programmer |
US9502754B2 (en) | 2014-01-24 | 2016-11-22 | Medtronic, Inc. | Implantable medical devices having cofire ceramic modules and methods of fabricating the same |
US10103644B2 (en) * | 2014-10-01 | 2018-10-16 | University Of Maryland, College Park | Bridgeless resonant AC-DC converters and systems and control systems therefor |
EP3118963B1 (en) * | 2015-07-13 | 2019-06-12 | Nxp B.V. | Wireless power receiver |
-
2013
- 2013-08-30 WO PCT/US2013/057592 patent/WO2014036449A1/en unknown
- 2013-08-30 JP JP2015530105A patent/JP6062556B2/ja active Active
- 2013-08-30 CN CN201380045573.XA patent/CN104662787B/zh active Active
- 2013-08-30 AU AU2013308541A patent/AU2013308541B2/en active Active
- 2013-08-30 CA CA2882974A patent/CA2882974C/en active Active
- 2013-08-30 EP EP13762954.9A patent/EP2891239B1/en active Active
-
2015
- 2015-02-25 US US14/631,627 patent/US9728981B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4468723A (en) * | 1981-04-24 | 1984-08-28 | Hewlett-Packard Company | Magnetically regulated power supply |
US5488552A (en) * | 1992-10-07 | 1996-01-30 | Hiroshi Sakamoto | Inverter power supply |
CN1347192A (zh) * | 2001-09-23 | 2002-05-01 | 石家庄通合电子有限公司 | 谐振电压控制型功率变换器 |
CN1721013A (zh) * | 2004-06-24 | 2006-01-18 | 伊西康内外科公司 | 具有闭合环路经皮能量传递功率传递调节电路的医疗植入体 |
CN101834473A (zh) * | 2010-05-21 | 2010-09-15 | 西安电子科技大学 | 谐振跟踪式非接触供电装置及供电方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2015534428A (ja) | 2015-11-26 |
CN104662787A (zh) | 2015-05-27 |
CA2882974A1 (en) | 2014-03-06 |
US20150171637A1 (en) | 2015-06-18 |
WO2014036449A1 (en) | 2014-03-06 |
JP6062556B2 (ja) | 2017-01-18 |
CA2882974C (en) | 2018-10-23 |
EP2891239B1 (en) | 2019-02-13 |
AU2013308541B2 (en) | 2016-05-05 |
AU2013308541A1 (en) | 2015-03-12 |
EP2891239A1 (en) | 2015-07-08 |
US9728981B2 (en) | 2017-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104662787B (zh) | 用于感应电力传输的反馈控制线圈驱动器 | |
Kiani et al. | A Q-modulation technique for efficient inductive power transmission | |
Baker et al. | Feedback analysis and design of RF power links for low-power bionic systems | |
US9837831B2 (en) | Class E coil driver with switched capacitor ASK modulation | |
JP4689270B2 (ja) | 移植医療装置からの情報送信 | |
Lee et al. | Wireless front-end with power management for an implantable cardiac microstimulator | |
EP2333946B1 (en) | Timing controlled AC to DC converter | |
US11342963B2 (en) | Device and method for low-power bidirectional wireless data telemetry | |
EP3097636B1 (en) | Electronic apparatus and control method for high frequency ac to dc conversion | |
Namgoong et al. | A 13.56 MHz wireless power transfer system with fully integrated PLL-based frequency-regulated reconfigurable duty control for implantable medical devices | |
Yao et al. | A 6.78-MHz wireless power transfer system with dual-output resonant current-mode regulating rectifier and transmission power regulation | |
US6600376B1 (en) | High efficiency power amplifier | |
Peng et al. | A simultaneous power and downlink data transfer system with pulse phase modulation | |
Anwar et al. | A 6.78-MHz burst-mode controlled inductive wireless power transfer system for biomedical implants with back-channel communication eliminated using transmitter Q-factor detection | |
US10763698B2 (en) | Self-regulated reconfigurable resonant voltage/current-mode method and device for extended-range inductive power transmission | |
CN110875636A (zh) | 系统控制的无线电力最大效率跟踪 | |
US20170244254A1 (en) | Devices, systems, and methods for adjusting output power using synchronous rectifier control | |
Lee | A discrete controlled fully integrated class E coil driver with power efficient ASK modulation for powering biomedical implants | |
Lee et al. | Advanced wireless power and data transmission techniques for implantable medical devices | |
Lee | A feedback controlled coil driver for transcutaneous power transmission | |
Mohamadi | Working frequency in wireless power transfer for implantable biomedical sensors | |
Liu et al. | An Out-Tuned Wireless Power Transfer System Based Machine Learning for Implantable Medical Devices | |
Yao et al. | A Wireless-Powered Battery-Less Electrical Stimulator With Delay-Shift Keying (DSK) Based Downlink Data Communication | |
Lee | An integrated coil driver with discrete control and power efficient ASK modulation for transcutaneous power transmission | |
Lee et al. | Energy management integrated circuits for wireless power transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |