US3646940A - Implantable electronic stimulator electrode and method - Google Patents
Implantable electronic stimulator electrode and method Download PDFInfo
- Publication number
- US3646940A US3646940A US841756A US3646940DA US3646940A US 3646940 A US3646940 A US 3646940A US 841756 A US841756 A US 841756A US 3646940D A US3646940D A US 3646940DA US 3646940 A US3646940 A US 3646940A
- Authority
- US
- United States
- Prior art keywords
- electrically
- pulse
- electrode
- tissue
- pulses
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000004020 conductor Substances 0.000 claims abstract description 25
- 230000004936 stimulating effect Effects 0.000 claims abstract description 24
- 230000000638 stimulation Effects 0.000 claims abstract description 23
- 230000008878 coupling Effects 0.000 claims abstract description 16
- 238000010168 coupling process Methods 0.000 claims abstract description 16
- 238000005859 coupling reaction Methods 0.000 claims abstract description 16
- 230000004044 response Effects 0.000 claims description 19
- 238000009413 insulation Methods 0.000 claims description 14
- 238000002955 isolation Methods 0.000 claims description 12
- 230000001537 neural effect Effects 0.000 claims description 6
- 230000002401 inhibitory effect Effects 0.000 claims description 3
- 238000002513 implantation Methods 0.000 abstract description 2
- 210000003205 muscle Anatomy 0.000 description 54
- 210000001519 tissue Anatomy 0.000 description 41
- 210000003932 urinary bladder Anatomy 0.000 description 36
- 230000001681 protective effect Effects 0.000 description 5
- 210000005070 sphincter Anatomy 0.000 description 5
- 230000008602 contraction Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000036724 intravesical pressure Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000027939 micturition Effects 0.000 description 3
- 210000004126 nerve fiber Anatomy 0.000 description 3
- 210000002460 smooth muscle Anatomy 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 210000004439 collateral ligament Anatomy 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 231100000344 non-irritating Toxicity 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000012260 resinous material Substances 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 229920000260 silastic Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 206010001497 Agitation Diseases 0.000 description 1
- 201000004538 Bacteriuria Diseases 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 208000000693 Neurogenic Urinary Bladder Diseases 0.000 description 1
- 206010029279 Neurogenic bladder Diseases 0.000 description 1
- 206010033892 Paraplegia Diseases 0.000 description 1
- 206010037596 Pyelonephritis Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 208000006568 Urinary Bladder Calculi Diseases 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 210000005068 bladder tissue Anatomy 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000009989 contractile response Effects 0.000 description 1
- 201000003146 cystitis Diseases 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000003767 neural control Effects 0.000 description 1
- 230000001272 neurogenic effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- NRNCYVBFPDDJNE-UHFFFAOYSA-N pemoline Chemical compound O1C(N)=NC(=O)C1C1=CC=CC=C1 NRNCYVBFPDDJNE-UHFFFAOYSA-N 0.000 description 1
- HWLDNSXPUQTBOD-UHFFFAOYSA-N platinum-iridium alloy Chemical compound [Ir].[Pt] HWLDNSXPUQTBOD-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36007—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
Definitions
- the apparatus includes a plurality of electrodes, each of the electrodes including a pair of conductors [52] US. Cl ..l28/42l, 128/418 f carrying i l f positive and negative polarity, each f [51] Int. Cl.
- This invention relates to apparatus and method for artificially and electrically stimulating masses of electrically excitable tissue. More specifically, this invention relates to an apparatus and method for electrically stimulating tissue in those persons who have lost the voluntary neural control of this excitable mass because of injury or disease, such as for example, loss of bladder function due to spinal cord injury.
- Previous methods and apparatus of stimulating large tissue masses exhibit a disadvantage in that additive fields in the vicinity of the stimulated muscle can still occur owing to the parallel connection of multiple electrodes. That is, by the simultaneous application of a plurality of electrical fields resulting from the application of equal voltages to each of the electrodes, there will be generated at various points in the stimulated muscle, electrical fields that are greater than the individual fields resulting from each of the electrodes. Since the surrounding muscle tissue of concern often contains rapidly accommodating nerve fibers with low stimulus thresholds, these increases in field strength can be sufiicient to cause undesired muscle fiber stimulation.
- this invention comprises a method and apparatus for locally stimulating masses of electrically excitable tissue in the presence of other excitable physiologic structures.
- muscle will often be used generically to cover all masses of electrically excitable tissue structures.
- the apparatus developed includes circuitry for providing nonsimultaneous or sequentially timed electrical impulses to various portions of the excitable mass.
- a plurality of electrodes are electrically coupled to the mass, for instance the detrusor muscle of a urinary bladder, for providing electrical stimulation to the neural conducting system innervating the muscle in response to the application of electrical energy to individual ones of the electrodes.
- Clocking and gating circuits are used for controlling the time and sequence of application of electrical impulses to the electrodes in a manner such that only one electrode is energized at any given time.
- specially formed electrodes are utilized. These electrodes are bipolar in construction and are arranged to have a plurality of electrically conductive connection points for coupling to the muscle at a plurality of positions. Insulation is provided for electrically isolating the electrodes from contiguous muscle structures that might receive undesired stimulations.
- Urinary sepsis secondary to neurogenic dysfunction associated with spinal cord trauma has been recognized as a clinical problem. Further, it has been recognized that prolonged use of indwelling catheters in paraplegic patients produces significant bacteriuria, cystitis, vesical calculi, and
- Bladder tonus or the response of the bladder smooth muscle to the stretch imposed by filling, has been described as anintrinsic property of smooth muscle and not reflex in nature. Changes in this response are shown to follow physical alteration in the bladder tissue. Regular, complete evacuation of the neurogenic bladder with avoidance of inflection and damage, is therefore an aid in preserving normal tonus and facilitating rehabilitation of bladder function. Electrical excitability of the mammalian bladder has been demonstrated. Further, various forms of implantable muscle or bladder stimulators have been described, as indicated by U.S. Pat. No. 3,236,240.
- Still another object of this invention is to provide a passive internal bladder muscle stimulator adapted to be implanted subcutaneously and being provided with electrodes which are electrically attached to the bladder muscle, wherein the stimulator derives its properly timed stimulation power for each of the electrodes from an external high-power radiofrequency transmitter.
- Yet a further object of this invention is to provide an implantable muscle stimulator that is so operated in a nonsimultaneous manner of activation of a plurality of electrodes, and is so insulated, that contiguous tissue structures to which the electrodes are coupled are not stimulated.
- the stimulator provides nonsimultaneous impulses to a plurality of electrodes by way of output circuits electrically isolated and arranged so that current flow between the output circuits is prevented thereby preventing the generation of massive current fields between the electrodes.
- FIG. 1 is a perspective view of an internal implantable stimulator according to the present invention
- FIG. 3 illustrates a type of bipolar electrode design utilizing two coils of conductor and having a plurality of electrical interconnection points
- FIG. 4 illustrates a characteristic placement of electrodes on a urinary bladder, with two electrodes near the lateral ligaments on the ventral surface and one electrode on the caudalrostral midline of the dorsal surface;
- FIG. 5 illustrates a method of electrically connecting an electrode into the depth of a muscle structure, and illustrates the insulating backing for providing electrical isolation of stimuli from contiguous excitable structures surrounding a muscle;
- FIG. 6 is a schematic block circuit diagram of an implantable muscle stimulator deriving its stimulation power from an external power transmitter, and having clocking and pulse circuits for applying electrical impulses to only one electrode at a time;
- FIG. 7 is an alternative embodiment of the invention, and is a schematic block circuit diagram of an implantable muscle stimulator utilizing a separate power source and pulse circuit for each bipolar electrode with isolating clock circuitry for determining the pulse application sequence so that only one electrode is energized at any instant of time;
- FIG. 8 is a plot of a characteristic muscle pressure response derived from the simultaneous application of a plurality of electrical impulses.
- FIG. 9 is a characteristic plot of pressure response obtained from a muscle having a plurality of electrical impulses sequentially applied.
- the implantable stimulator comprises a receiver, indicated generally at 10, and a plurality of bipolar electrodes 11 for attachment to the muscle.
- the electrodes 11 are connected to the receiver 10 by electrical conductors 12.
- the receiver I0 is encased in a protective mass 13, preferably sterilizable, inert, nonirritating and nontoxic protective material, for example composed of a synthetic resinous material.
- the conductors 12 are similarly encased in protective sheets 14, shown foreshortened to expose the conductive wires 12.
- the electrodes 11 are bipolar and receive voltage signals VI through Vn respectively.
- Each of the electrodes 11 is adapted for coupling to a pair of lines 12, with one of the lines 12 being designated and others of the line 12 being designated.
- the invention embodies a method and apparatus for applying electrical stimuli to large masses of excitable muscle tissue without current spread to excitable tissue contiguous to the muscle to be stimulated.
- the stimuli are applied through the multiple bipolar electrodes 11 with the two poles of each electrode being electrically isolated from any of the poles of the other electrodes.
- the stimuli are developed in a manner whereby only one electrode has a voltage applied between its poles at any given time. In this regard, attention is directed to FIG. 2.
- voltage pulses are applied to the bipolar electrodes in a nonsimultaneous or ordered manner so that additive stimulus fields are prevented.
- voltage along the vertical axis is plotted versus time along the horizontal axis, with the time being expressed in groupings of milliseconds.
- the bipolar electrode is referred to generally as 11, with the leads being designated 12+ and 12. It has been determined electrode 11 of this design is especially efficient for providing a stimulus current over an adequate mass and at a sufiicient depth in the detrusor muscle to activate the neural conduction system innervating it.
- the conductors 12+ and 12- are fashioned from flexible coils or wires of Platinum-Iridium (Pt-Ir) wire or other suitable implantable conductor such as carbon-impregnated cloth, etc.
- the conductors 12+ and 12- may be constructed from other metals such as tantalum, gold, silver, and alloys of these metals with other metals.
- the receiver 10 components are encased or embedded in a sterilizable, inert, nonirritating and nontoxic protective insulating mass 13, preferably of a synthetic resinous material, with only the conductors 12 leading to the muscle stimulating electrodes 1 1 extending therefrom.
- These conductors 12 are insulated by encasing them in a similar synthetic resinous protective and insulating material, or by coating them with a similar substance.
- Substances which operate both for the stimulator l0 and the wires 12, with the desired insulating characteristics are silicone rubber, silastic resins, tetrafiuoroethylene polymers, vinyl chloride and the like, and are suitable materials for these purposes. Pure natural rubber may also be used.
- a first plurality of conductive tabs 16 may be electrically connected to the wire 12+, and a second plurality of tabs 18 may be electrically coupled to wire 12- for ease of connection.
- Each of the tabs contains an aperture for use in fastening the electrode 11 to the muscle. This will be described in more detail below.
- These tabs 16 and 18 are constructed of the same material as the conductors 12+ and l2. The distances D1 and D2 can be varied and adjusted to accommodate different muscle sizes. It should be noted also that greater or fewer numbers of tabs 16 and 18 can be utilized both in parallel or in series with the conductors 12+ and 12. Further, for any particular muscle stimulation, the number of tabs and electrical interconnections may vary among the various electrodes 11.
- Electrodes may be successfully employed in connection with the present invention.
- various areas of electrical insulation may be bared from the conductor surface, and the electrodes effectively coupled to the tissue in this fashion.
- FIG. 3 of the drawings a single electrode is illustrated, and it will be appreciated that two, three, or more electrodes may be utilized, and may be energized in sequential order, or may be energized as multiple pairs. In some instances, it may be desirable to utilize relatively large grid patterns which include a substantial number of individual electrode elements.
- FIG. 4 A characteristic placement when three electrodes 11 are used is illustrated in FIG. 4 on a bladder 20.
- the electrode 11 supplied with energy source V1 is applied at the caudal-rostral midline of the dorsal surface, shown in dashed line, and the two electrodes 1 1 energized by sources V2 and V3, are placed near the lateral ligaments on the ventral surface.
- the number of attachment points can be varied to accommodate different sized bladders 20.
- the ventral electrodes each utilize six tabs, whereas the single dorsal electrode utilizes eight tabs.
- bladders of approximately ISO to 300 cc. capacities can be accommodated. Additional electrodes 11 may also be added to stimulate larger bladders.
- FIG. 5 there is shown a sectional view of a portion of the bladder muscle 20, together with a portion of an electrode 1 I. Only the 12+ wire together with the 14+ insulation is shown. in this arrangement, there are three tabs 16, each having wires or thread 22 sewn through the apertures therein and for a predetermined depth into the muscle. In this arrangement, the wires 22 are metal sutures, and are inserted approximately 2 to 3 millimeters into the bladder wall and tied to the holes in tabs 16. This arrangement provides for electrical contact from the conductor 12+ into the detrusor muscle.
- the electrodes 11 so designed and attached were made of a flexible design to follow the contour of the bladder during micturition.
- the wires 22 can be of the same material as the electrode wires 12+ and l2, or other suitable electrically conductive materials.
- a thin sheet of insulating material for instance, silastic, is placed over the electrodes to prevent stimulation of contiguous excitable structures.
- this insulation is represented in cross section as element 24, and characteristically, can be in the order of 0.005 inch in thickness.
- FIG. 6 a schematic block circuit diagram of an implantable muscle stimulator deriving its stimulation power from an external transmitter.
- the portion of the stimulator shown enclosed within dashed block 30 includes a tuned resonant circuit 32, which characteristically can be comprised of an inductor and a capacitor in a parallel-connected resonant circuit.
- a tuned resonant circuit 32 has the ability to store energy for short periods of time and tends to act as an energy reservoir.
- the inductor of the tuned circuit 32 acts as an antenna, for picking up pulses of radiofrequency energy from an external highpower transmitter of conventional design (not shown), where such energy is transmitted through layers of body tissue to the tuned circuit 32.
- the tuned circuit 32 is coupled to a circuit identified as rectifiers and filters 34 as indicated by arrow 36.
- the signals provided by the tuned resonant circuit 32 are rectified into DC signals by filtering out the radiofrequency and the DC voltage so developed is applied at the output of the rectifiers and filters 34.
- the signals are directed on lines 38 to clocking and pulse circuits 40 wherein the signals applied from lines 38 are converted to pulses and are alternatively applied to lines 42, 44, and 46 in substantially nonsimultaneous order.
- the signals provided on lines 38 are converted to pulses by means of pulse generators, or multivibrators, of types available commercially, and these pulses are applied to the bipolar electrodes 42, 44, and 46 for durations determined by the clocking circuitry.
- the clocking circuitry can be selected from various types of circuit components and arrangements well known in the prior art. Isolation elements 11, labeled 48; I2 labeled 50; and In labeled 52, are provided for isolating the electrodes electrically. Such isolation between electrodes can be provided for example by isolation transformers, or by simple diode arrangements for performing isolation as is well known. The signals provided from the isolation elements are taken directly to the electrodes with the wires being indicated by reference numeral 12, as previously used. It can be seen that the function of the clocking and pulse circuits 40 is to provide a planned application of signals to the isolation elements 48, 50, and 52 in a manner similar to that illustrated in FIG. 2. Only one of the bipolar lines 12 will carry signals at any given time.
- FIG 7, An alternative embodiment is illustrated in FIG 7, wherein there is shown in schematic block diagram form an alternative implantable muscle stimulator 10.
- a plurality of power sources indicated as PS1 labeled 54; PS2 labeled 56; and PSn labeled 58 is utilized, with a separate one of the power sources used for each of the bipolar electrodes 11.
- a plurality of pulse generators with pulse generator 1, labeled 60, being coupled by line 62 to power source PSI.
- pulse generator 2, labeled 64 is coupled by lines 66 to power source PS2.
- pulse generator n, labeled 68 is coupled by lines 70 to PSn.
- the output signals from the pulse generators 60, 64 and 68 are controlled by the clock circuit 72 respectively.
- a clock circuit 72 can be any well-known isolating clock circuitry, such as ring counters, or the like, used to determine the pulse enabling sequence to each of the electrodes.
- the output line 74 from clock circuit 72 controls pulse generator 1
- a signal on line 76 controls pulse generator 2,7
- the signal on line 78 controls pulse generator n.
- the output signals from the pulse generators 60, 64 and 68 are applied on lines 12 in a nonsimultaneous arrangement as described above. It is readily apparent that the duration of the pulses occurring on lines 74, 76 and 78 determine the duration d of the power pulses in conjunction of the availability of energy signals on lines 62, 66 and 70, respectively.
- the time duration between occurrences of signals on lines 74, 76 and 78 will determine the elapsed time between the activating pulses available on lines 12. Further, the duration of the count in clock circuit 72 until it completes the cycle will determine the duration d between consecutive signals on any given line V1, V2, and Vn.
- FIG. 8 there is illustrated on characteristic pressure response curve for the situation wherein a muscle is stimulated by the simultaneous occurrence of three electrical signals. Application thereby indicating that only partial voiding of the bladder has occurred.
- M denotes micturition.
- FIG. 9 illustrates a characteristic pressure response obtained in a bladder wherein pulses were applied nonsimultaneously through three electrodes as described above. In this operation, it can be seen that the intravesical pressure rise upon stimulus S application led to a more complete bladder evacuation as indicated by a drop in residual pressure following the termination of the application of the stimulus S. Again, M denotes micturition.
- Sequencing results in decreases in the field at the point, with this decrease being realized when changing from simultaneous to nonsimultaneous stimulus application.
- a further decrease in the contribution of each electrode to a distant current field is realized by electrically insulating the electrodes from any contiguous tissue other than the muscle to be stimulated, with this insulation being accomplished by the placing of an insulating material between the attached electrodes and the contiguous structures.
- Further current field localization can be realized by electrically isolating the electrode poles so that no current can flow between them.
- Apparatus for stimulating a mass of electrically excitable tissue comprising:
- pulsegenerating means for providing predetermined timed sequences of electrical pulses, said pulse-generating means including tuned circuit means for responding to radiofrequency signals for providing power signals; rectifier and filter means coupled to said tuned circuit means for providing direct current signals in response to said power signals; and
- control means coupled intermediate said plurality of electrodes and said pulse-generating means for controlling the time and sequence of application of said electrical pulses to individual ones of said electrode means, said control means including clocking means for controlling said time and sequence of application of said electrical pulses to only one of said electrode means at any given time, and including pulse circuit means coupled to said rectifier and filter means for generating pulses in response to said direct current signals, a plurality of insulated electrical conductors electrically coupled intermediate said pulse circuit means and said plurality of electrically conductive electrode means for transmitting said pulses to said electrode means; said clocking means coupled to said pulse circuit means for controlling the sequence of said transmitting of said pulses to individual ones of said plurality of electrically conductive electrode means in a predetermined order.
- Apparatus for stimulating a mass of electrically excitable tissue comprising:
- pulse-generating means for providing predetennined timed sequences of electrical pulses, said pulse generating means including a like plurality of power source means for generating sequences of signals, and a like plurality of pulse-generating means, each of said pulse-generating means electrically coupled to a respectively associated one of said plurality of power source means for providing said pulses to an associated one of said plurality of electrodes;
- control means coupled intermediate said plurality of electrodes andsaid pulse-generating means for controlling the time and sequence of application of said electrical pulses to individual ones of said electrode means, said control means including clock circuit means coupled to said plurality of pulse-generating means for controlling said time and sequence of application of said pulses to only one of said electrode means at any given time, said clock circuit means including means for isolating each of said electrode means from the others of said electrode means.
- each of said electrode means includes a pair of electrically conductive wires, a first plurality of electrical interconnection elements electrically coupled to one of said pair of conductive wires, and a second plurality of electrical interconnection elements electrically coupled to the other of said pair of conductive wires, and insulation means for insulating said pair of electrically conductive wires while leaving said first and second pluralities of interconnection elements exposed.
- Apparatus for stimulating a mass of electrically excitable tissue comprising:
- pulsegenerating means for providing predetermined timed sequences of electrical pulses, said pulse-generat- 5 ing means includingtuned circuit means for responding to high-frequency signals for providing power signals; rectifier and filter means coupled to said tuned circuit means for providing direct current signals in response to said power signals; and v c. control means coupled intermediate said plurality of elec- 3. suturing with electrically conductive wire each of the electrical interconnection points to predetermined depths in the tissue to be stimulated for electrically coupling to the neural system innervating the tissue to be stimulated; and
- said control means including clocking means for controlling said time and'sequence of application of said electrical pulses to only one of said electrode means at any given time, and including pulse circuit means coupled to said rectifier and filter means for generating pulses in response source and those portions of the electrodes other than said predetermined points of contact for further minimizing undesired stimulation of contiguous tissue structures.
- a bipolar electrode for use with an implantable stimulator for stimulating electrically excitable tissue comprising:
- the method of stimulating a mass of electrically excitable tissue while preventing undesired stimulation of contiguous tissue structures comprising the steps of:
- insulation means for insulating said pair of electrically
Landscapes
- Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Electrotherapy Devices (AREA)
Abstract
An apparatus for implantation in the body to locally stimulate a mass of electrically excitable tissue without stimulating nearby tissue structures, and the method of so stimulating the tissue is described. The apparatus includes a plurality of electrodes, each of the electrodes including a pair of conductors for carrying signals of positive and negative polarity, each of said conductors having a plurality of electrically conductive coupling points for coupling to the mass of tissue. Apparatus is also described for providing timed sequenced electrical impulses to the plurality of electrodes so that only one of the electrodes has a voltage applied between its input terminals at any given time. An insulating backing placed between the electrodes and tissue structures surrounding the implanted stimulator for eliminating undesirable secondary tissue stimulation is also described. The method of applying controlled time-spaced electrical impulses to a mass of electrically excitable tissue structure for causing stimulation of that tissue structure is also described.
Description
United States Patent Timm et al.
[ Mar. 7, 1972 [54] IMPLANTABLE ELECTRONIC STIMULATOR ELECTRODE AND FOREIGN PATENTS OR APPLICATIONS 130,797 l/l969 Czechoslovakia ..l28/4l8 METHOD 72 l t Gerald w. T'mm' William E. Bradle Emmi'ler-"william (3mm 1 men ors both of Minnegpolis Minn. Attorney-Burd, Braddock & Bartz [73] Assignee: The Regents of the University of Min- 1 57 S T nesota, Minneapolis, Minn. An apparatus for implantation in the body to locally stimulate Filed: y 15, 1969 a mass of electrically excitable tissue without stimulating near- [21] Appl' 841,756 by tissue structures, and the method of so stimulating the tissue is described. The apparatus includes a plurality of electrodes, each of the electrodes including a pair of conductors [52] US. Cl ..l28/42l, 128/418 f carrying i l f positive and negative polarity, each f [51] Int. Cl. ..A6ln l/36 Said Conductors having a plurality pf electrically conductive [58] Field 01' Search ..128/404, 410, 41 1, 416, 418 P, coupling points for coupling to the m of tissue Apparatus is 128/419 422 also described for providing timed sequenced electrical impulses to the plurality of electrodes so that only one of the elec- [56] References cued trodes has a voltage applied between its input terminals at any UNITED STATES PATENTS given time. An insulating backing placed between the electrodes and tissue structures surrounding the implanted stimul,597,061 8/1926 Cultra 128/404 lator for eliminating undesirable secondary tissue stimulation 2,065,295 12/1936 Sullivan 128/418 is also described. The method of applying controlled time- 2,338,672 6/1958 Faust Mus/422 spaced electrical impulses to a mass of electrically excitable 3,195,540 7/ 1965 Waller tissue structure for causing stimulation of that tissue structure 3,236,240 2/1966 Bradley ..128/42l is also described 3,279,468 10/1966 Levine .128/419 R 3,405,715 10/1968 Hagfors 128/418 9 Claims, 9 Drawing Figures V GEN. l 74 4 I2 56 P52 PULSE 1321:6112 v2 V GEN. 2 7e 2 g 68 z 2 PSn l l PULSE Vn GEN. n mil-I! O O O l I 78 72 fi' gfl ISOLATION CIRCUITS PAIENTEnm 11972 SHEET 1 OF 2 n M m S A R m mm Wm m M M M L M w s m E 2 m T ATTORNEYS IMPLANTABLE ELECTRONIC STIMULATOR ELECTRODE AND METHOD The invention described herein was made in the course of work under a grant or award from the Department of Health, Education and Welfare.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to apparatus and method for artificially and electrically stimulating masses of electrically excitable tissue. More specifically, this invention relates to an apparatus and method for electrically stimulating tissue in those persons who have lost the voluntary neural control of this excitable mass because of injury or disease, such as for example, loss of bladder function due to spinal cord injury.
2. Description of the Prior Art Certain systems for artificially stimulating muscle activity are known to the prior art. One of the systems developed in the prior art is described in U.S. Pat. No. 3,236,240. The apparatus therein disclosed utilized spaced-apart electrodes to stimulate large areas of the bladder smooth muscle with volitionally generated electrical signals. It has been found that stimulation of such large areas usually results in stray electrical signals causing stimulation of nearby muscles and excitable tissue, an undesired secondary effect. In some instances, it has been determined that the stimulating signals cause a dual effect, the bladder muscle attempts to contract, as desired for evacuation thereof, but also the contraction of the external urethral sphincter takes place thereby inhibiting the evacuation of fluid from the bladder. Previous methods and apparatus of stimulating large tissue masses exhibit a disadvantage in that additive fields in the vicinity of the stimulated muscle can still occur owing to the parallel connection of multiple electrodes. That is, by the simultaneous application of a plurality of electrical fields resulting from the application of equal voltages to each of the electrodes, there will be generated at various points in the stimulated muscle, electrical fields that are greater than the individual fields resulting from each of the electrodes. Since the surrounding muscle tissue of concern often contains rapidly accommodating nerve fibers with low stimulus thresholds, these increases in field strength can be sufiicient to cause undesired muscle fiber stimulation.
SUMMARY ln summary, then, this invention comprises a method and apparatus for locally stimulating masses of electrically excitable tissue in the presence of other excitable physiologic structures. Unless specific limitation is set forth, muscle will often be used generically to cover all masses of electrically excitable tissue structures. The apparatus developed includes circuitry for providing nonsimultaneous or sequentially timed electrical impulses to various portions of the excitable mass. A plurality of electrodes are electrically coupled to the mass, for instance the detrusor muscle of a urinary bladder, for providing electrical stimulation to the neural conducting system innervating the muscle in response to the application of electrical energy to individual ones of the electrodes. Clocking and gating circuits are used for controlling the time and sequence of application of electrical impulses to the electrodes in a manner such that only one electrode is energized at any given time. In order to maximize the effectiveness of the nonsimultaneous or sequentially timed electrical impulses, specially formed electrodes are utilized. These electrodes are bipolar in construction and are arranged to have a plurality of electrically conductive connection points for coupling to the muscle at a plurality of positions. Insulation is provided for electrically isolating the electrodes from contiguous muscle structures that might receive undesired stimulations.
Urinary sepsis secondary to neurogenic dysfunction associated with spinal cord trauma, has been recognized as a clinical problem. Further, it has been recognized that prolonged use of indwelling catheters in paraplegic patients produces significant bacteriuria, cystitis, vesical calculi, and
pyelonephritis. Bladder tonus, or the response of the bladder smooth muscle to the stretch imposed by filling, has been described as anintrinsic property of smooth muscle and not reflex in nature. Changes in this response are shown to follow physical alteration in the bladder tissue. Regular, complete evacuation of the neurogenic bladder with avoidance of inflection and damage, is therefore an aid in preserving normal tonus and facilitating rehabilitation of bladder function. Electrical excitability of the mammalian bladder has been demonstrated. Further, various forms of implantable muscle or bladder stimulators have been described, as indicated by U.S. Pat. No. 3,236,240.
It is a primary object of this invention to provide a method and apparatus for providing electrode means, delivering electrical impulses to the electrode means extending over an adequate mass and at a sufficient depth in the mass of excitable tissue to activate the neural conduction system innervating the mass. Yet another object of this invention is to provide apparatus including electrode means, circuitry for providing nonsimultaneous electrical impulses to the electrode means electrically coupled to various portions of an excitable tissue structure. Still another object of this invention is to provide an implantable stimulator that utilizes a plurality of electrodes with the electrode being electrically coupled to the excitable tissue structure, for instance the detrusor muscle of the urinary bladder, for providing electrical stimulation to the neural conducting system innervating the structure, in response to the application of timed electrical energy impulses. Still another object of this invention, is to provide an implantable muscle stimulator apparatus having electrode means with circuitry including clocking and gating circuits being utilized for controlling the time and sequence of application of electrical impulses to a plurality of such electrodes in a manner such that only one electrode is energized at any given time. Still another object of this invention is to provide a practical method and means for artificially and electrically stimulating the bladder muscle to permit regular, complete evacuation, with the avoidance of infection and tissue damage. It is a further object of this invention to provide an implantable internal bladder stimulator in the form of electrodes coupled to a radio frequency receiver with the electrodes attached at a plurality of points to the bladder muscle, capable of providing properly timed stimuli of the bladder muscle when used in conjunction with an external radiofrequency transmitter. Still another object of this invention is to provide a passive internal bladder muscle stimulator adapted to be implanted subcutaneously and being provided with electrodes which are electrically attached to the bladder muscle, wherein the stimulator derives its properly timed stimulation power for each of the electrodes from an external high-power radiofrequency transmitter. Yet a further object of this invention is to provide an implantable muscle stimulator that is so operated in a nonsimultaneous manner of activation of a plurality of electrodes, and is so insulated, that contiguous tissue structures to which the electrodes are coupled are not stimulated. Also, the stimulator provides nonsimultaneous impulses to a plurality of electrodes by way of output circuits electrically isolated and arranged so that current flow between the output circuits is prevented thereby preventing the generation of massive current fields between the electrodes. The foregoing and other more detailed and specific objectives will become apparent from the following detailed description of the invention setting forth in detail certain illustrative embodiments of the invention, these being indicative, however, of but a few of the various ways in which the principle of the invention may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be described with reference to the drawings in which:
FIG. 1 is a perspective view of an internal implantable stimulator according to the present invention;
FIG. 2 illustrates the timed sequential application of electrical pulses to individual stimulator electrodes when, for example, n=3, or three output circuits are utilized;
FIG. 3 illustrates a type of bipolar electrode design utilizing two coils of conductor and having a plurality of electrical interconnection points;
FIG. 4 illustrates a characteristic placement of electrodes on a urinary bladder, with two electrodes near the lateral ligaments on the ventral surface and one electrode on the caudalrostral midline of the dorsal surface;
FIG. 5 illustrates a method of electrically connecting an electrode into the depth of a muscle structure, and illustrates the insulating backing for providing electrical isolation of stimuli from contiguous excitable structures surrounding a muscle;
FIG. 6 is a schematic block circuit diagram of an implantable muscle stimulator deriving its stimulation power from an external power transmitter, and having clocking and pulse circuits for applying electrical impulses to only one electrode at a time;
FIG. 7 is an alternative embodiment of the invention, and is a schematic block circuit diagram of an implantable muscle stimulator utilizing a separate power source and pulse circuit for each bipolar electrode with isolating clock circuitry for determining the pulse application sequence so that only one electrode is energized at any instant of time;
FIG. 8 is a plot of a characteristic muscle pressure response derived from the simultaneous application of a plurality of electrical impulses; and
FIG. 9 is a characteristic plot of pressure response obtained from a muscle having a plurality of electrical impulses sequentially applied.
DESCRIPTION OF THE PREFERRED EMBODIMENT As shown in FIG. 1, the implantable stimulator comprises a receiver, indicated generally at 10, and a plurality of bipolar electrodes 11 for attachment to the muscle. The electrodes 11 are connected to the receiver 10 by electrical conductors 12. The receiver I0 is encased in a protective mass 13, preferably sterilizable, inert, nonirritating and nontoxic protective material, for example composed of a synthetic resinous material. The conductors 12 are similarly encased in protective sheets 14, shown foreshortened to expose the conductive wires 12. The electrodes 11 are bipolar and receive voltage signals VI through Vn respectively. Each of the electrodes 11 is adapted for coupling to a pair of lines 12, with one of the lines 12 being designated and others of the line 12 being designated As summarized above, the invention embodies a method and apparatus for applying electrical stimuli to large masses of excitable muscle tissue without current spread to excitable tissue contiguous to the muscle to be stimulated. The stimuli are applied through the multiple bipolar electrodes 11 with the two poles of each electrode being electrically isolated from any of the poles of the other electrodes. In addition, the stimuli are developed in a manner whereby only one electrode has a voltage applied between its poles at any given time. In this regard, attention is directed to FIG. 2. There it can be seen that voltage pulses are applied to the bipolar electrodes in a nonsimultaneous or ordered manner so that additive stimulus fields are prevented. In FIG. 2, voltage along the vertical axis is plotted versus time along the horizontal axis, with the time being expressed in groupings of milliseconds.
While it is intended that the implantable stimulator 10 will be utilized with various kinds of muscles, specific examples of pulsing rates have been developed for the detrusor muscle of a urinary bladder. In this regard, experiments show effective stimulus application rates for bladder muscles is between approximately IO and 40 pulses per second with pulse durations between 0.5 and 5 milliseconds at each bipolar electrode 11, with voltage amplitude of up to about 50 volts.-Stimulus rates up to 120 pulses per second with durations as short as 0.1 millisecond are found to be effective for intestine and other muscle stimulation. Of course it is readily apparent that different times and rates of pulse occurrence and sequencing for the turning on and off of pulses to the electrodes 11 are contemplated by this invention, when certain contractile sequences of acceptable tissue are desired. It should further be understood that the manner of coupling the electrodes 11 to the muscle structure is important, and that other durations d and different pulse spacings p will be required to achieve the desired contractile operation.
To facilitate the proper electrical coupling to the muscle, the electrode shown in FIG. 3 was developed. The bipolar electrode is referred to generally as 11, with the leads being designated 12+ and 12. It has been determined electrode 11 of this design is especially efficient for providing a stimulus current over an adequate mass and at a sufiicient depth in the detrusor muscle to activate the neural conduction system innervating it. The conductors 12+ and 12- are fashioned from flexible coils or wires of Platinum-Iridium (Pt-Ir) wire or other suitable implantable conductor such as carbon-impregnated cloth, etc. The conductors 12+ and 12- may be constructed from other metals such as tantalum, gold, silver, and alloys of these metals with other metals. As stated above, the receiver 10 components are encased or embedded in a sterilizable, inert, nonirritating and nontoxic protective insulating mass 13, preferably of a synthetic resinous material, with only the conductors 12 leading to the muscle stimulating electrodes 1 1 extending therefrom. These conductors 12 are insulated by encasing them in a similar synthetic resinous protective and insulating material, or by coating them with a similar substance. Substances which operate both for the stimulator l0 and the wires 12, with the desired insulating characteristics, are silicone rubber, silastic resins, tetrafiuoroethylene polymers, vinyl chloride and the like, and are suitable materials for these purposes. Pure natural rubber may also be used. A first plurality of conductive tabs 16 may be electrically connected to the wire 12+, and a second plurality of tabs 18 may be electrically coupled to wire 12- for ease of connection. Each of the tabs contains an aperture for use in fastening the electrode 11 to the muscle. This will be described in more detail below. These tabs 16 and 18 are constructed of the same material as the conductors 12+ and l2. The distances D1 and D2 can be varied and adjusted to accommodate different muscle sizes. It should be noted also that greater or fewer numbers of tabs 16 and 18 can be utilized both in parallel or in series with the conductors 12+ and 12. Further, for any particular muscle stimulation, the number of tabs and electrical interconnections may vary among the various electrodes 11. It will be appreciated, of course, that a variety of electrode configurations may be successfully employed in connection with the present invention. For example, in lieu of the conductive tabs referred to hereinabove, various areas of electrical insulation may be bared from the conductor surface, and the electrodes effectively coupled to the tissue in this fashion. Also, in FIG. 3 of the drawings, a single electrode is illustrated, and it will be appreciated that two, three, or more electrodes may be utilized, and may be energized in sequential order, or may be energized as multiple pairs. In some instances, it may be desirable to utilize relatively large grid patterns which include a substantial number of individual electrode elements.
A characteristic placement when three electrodes 11 are used is illustrated in FIG. 4 on a bladder 20. In this arrangement, the electrode 11 supplied with energy source V1 is applied at the caudal-rostral midline of the dorsal surface, shown in dashed line, and the two electrodes 1 1 energized by sources V2 and V3, are placed near the lateral ligaments on the ventral surface. In this arrangement, it is noted that the number of attachment points can be varied to accommodate different sized bladders 20. In the configuration shown, the ventral electrodes each utilize six tabs, whereas the single dorsal electrode utilizes eight tabs. For this arrangement, bladders of approximately ISO to 300 cc. capacities can be accommodated. Additional electrodes 11 may also be added to stimulate larger bladders.
In FIG. 5 there is shown a sectional view of a portion of the bladder muscle 20, together with a portion of an electrode 1 I. Only the 12+ wire together with the 14+ insulation is shown. in this arrangement, there are three tabs 16, each having wires or thread 22 sewn through the apertures therein and for a predetermined depth into the muscle. In this arrangement, the wires 22 are metal sutures, and are inserted approximately 2 to 3 millimeters into the bladder wall and tied to the holes in tabs 16. This arrangement provides for electrical contact from the conductor 12+ into the detrusor muscle. The electrodes 11 so designed and attached were made of a flexible design to follow the contour of the bladder during micturition. The wires 22 can be of the same material as the electrode wires 12+ and l2, or other suitable electrically conductive materials. Once the electrodes are sutured to the muscle, a thin sheet of insulating material, for instance, silastic, is placed over the electrodes to prevent stimulation of contiguous excitable structures. In FIG. 5, this insulation is represented in cross section as element 24, and characteristically, can be in the order of 0.005 inch in thickness.
Having considered the general operational system, and the application of electrodes to the muscles, attention will next be directed to FIG. 6 wherein there is shown a schematic block circuit diagram of an implantable muscle stimulator deriving its stimulation power from an external transmitter. The portion of the stimulator shown enclosed within dashed block 30 includes a tuned resonant circuit 32, which characteristically can be comprised of an inductor and a capacitor in a parallel-connected resonant circuit. Such a circuit has the ability to store energy for short periods of time and tends to act as an energy reservoir. Further, the inductor of the tuned circuit 32 acts as an antenna, for picking up pulses of radiofrequency energy from an external highpower transmitter of conventional design (not shown), where such energy is transmitted through layers of body tissue to the tuned circuit 32. The tuned circuit 32 is coupled to a circuit identified as rectifiers and filters 34 as indicated by arrow 36. The signals provided by the tuned resonant circuit 32 are rectified into DC signals by filtering out the radiofrequency and the DC voltage so developed is applied at the output of the rectifiers and filters 34. In this invention, the signals are directed on lines 38 to clocking and pulse circuits 40 wherein the signals applied from lines 38 are converted to pulses and are alternatively applied to lines 42, 44, and 46 in substantially nonsimultaneous order. The signals provided on lines 38 are converted to pulses by means of pulse generators, or multivibrators, of types available commercially, and these pulses are applied to the bipolar electrodes 42, 44, and 46 for durations determined by the clocking circuitry. The clocking circuitry can be selected from various types of circuit components and arrangements well known in the prior art. Isolation elements 11, labeled 48; I2 labeled 50; and In labeled 52, are provided for isolating the electrodes electrically. Such isolation between electrodes can be provided for example by isolation transformers, or by simple diode arrangements for performing isolation as is well known. The signals provided from the isolation elements are taken directly to the electrodes with the wires being indicated by reference numeral 12, as previously used. It can be seen that the function of the clocking and pulse circuits 40 is to provide a planned application of signals to the isolation elements 48, 50, and 52 in a manner similar to that illustrated in FIG. 2. Only one of the bipolar lines 12 will carry signals at any given time.
An alternative embodiment is illustrated in FIG 7, wherein there is shown in schematic block diagram form an alternative implantable muscle stimulator 10. In this arrangement, a plurality of power sources indicated as PS1 labeled 54; PS2 labeled 56; and PSn labeled 58, is utilized, with a separate one of the power sources used for each of the bipolar electrodes 11. In this arrangement, there is utilized a plurality of pulse generators, with pulse generator 1, labeled 60, being coupled by line 62 to power source PSI. In a similar manner, pulse generator 2, labeled 64, is coupled by lines 66 to power source PS2. Finally, pulse generator n, labeled 68, is coupled by lines 70 to PSn. The output signals from the pulse generators 60, 64 and 68 are controlled by the clock circuit 72 respectively. A clock circuit 72 can be any well-known isolating clock circuitry, such as ring counters, or the like, used to determine the pulse enabling sequence to each of the electrodes. In this manner, the output line 74 from clock circuit 72 controls pulse generator 1, a signal on line 76 controls pulse generator 2,7 and the signal on line 78 controls pulse generator n. The output signals from the pulse generators 60, 64 and 68 are applied on lines 12 in a nonsimultaneous arrangement as described above. It is readily apparent that the duration of the pulses occurring on lines 74, 76 and 78 determine the duration d of the power pulses in conjunction of the availability of energy signals on lines 62, 66 and 70, respectively. It is further apparent, that the time duration between occurrences of signals on lines 74, 76 and 78 will determine the elapsed time between the activating pulses available on lines 12. Further, the duration of the count in clock circuit 72 until it completes the cycle will determine the duration d between consecutive signals on any given line V1, V2, and Vn.
In FIG. 8 there is illustrated on characteristic pressure response curve for the situation wherein a muscle is stimulated by the simultaneous occurrence of three electrical signals. Application thereby indicating that only partial voiding of the bladder has occurred. In this figure, M denotes micturition.
FIG. 9 illustrates a characteristic pressure response obtained in a bladder wherein pulses were applied nonsimultaneously through three electrodes as described above. In this operation, it can be seen that the intravesical pressure rise upon stimulus S application led to a more complete bladder evacuation as indicated by a drop in residual pressure following the termination of the application of the stimulus S. Again, M denotes micturition.
Experimentation with the evacuation of the urinary bladder leads to the conclusion that it is necessary to select the appropriate application of electrical stimuli to effect a detrusor contraction leading to sequential opening of the sphincters. Pressure increases leading to sphincter opening are achieved in an optimum fashion when the stimuli are nonsimultaneously applied via electrically isolated bipolar electrodes to the detrusor muscle, while limiting the current spread to surrounding excitable structures below their stimulus threshold. In a specific example of the simultaneous stimulation of three electrodes, as illustrated characteristically in FIG. 8, experimental results yielded an intravesical pressure rise to approximately 33 centimeters of water, but with only 20 cc. of a 200 cc. bladder being voided. In the experimental operation, there was no visible sign of current field spread observed, but due to the poor voiding response, it is believed that there was current spread to the pudendal nerve, thereby forcing the external sphincter to contract. Further experimentation with the application of sequential stimulating pulses, with a characteristic response curve shown in FIG. 9, demonstrated that there was a sharp intravesical pressure increase followed by rapid evacuation of the entire capacity of the 200 cc. bladder with no sign of stimulus spread. In FIG. 9, the sharp peaks in the pressure response curve correspond to the pulsatile contractions of the bladder and forceful streams from the urethra.
As indicated above, evacuation of the urinary bladder requires appropriate application of the electrical stimuli to effect a detrusor contraction, leading to sequential opening of the sphincters. It has been determined that these contractile responses are obtained when pulses are applied at a rate of approximately l0-40 per second with durations of approximately 0.5 to 5 milliseconds and amplitudes up to about 50 volts. The foregoing mentioned experiments were conducted by applying bipolar pulses of l-millisecond duration at a rate of 20 per second with an approximate amplitude of 30 volts.
Since relatively large current fields are generated when stimulating the detrusor muscle, a combination of insulating the electrodes from the contiguous muscle structures, together with the nonsimultaneous application of energizing signals to the electrodes from electrically isolated outputs has been employed to restrict the spread of current fields to excitable structures surrounding the bladder. The nonsimultaneous application of pulses to the electrodes attached to the muscle causes less spread than simultaneous application of pulses thereto. This can clearly be understood by considering that the stimuli applied to each electrode are electrically independent and electrically isolated from one another. If a point in the muscle equidistant from the three electrodes is considered, the field generated at this point by each electrode is identical if the electrodes are the same and equal voltages are applied to them. Consequently; the application of pulses to the electrodes simultaneously results in a field at this point of approximately triple intensity, where three electrodes are used, while nonsimultaneous application gives a single field intensity occurring three times as often. Since the surrounding tissue of concern contains rapidly accommodating nerve fibers with low stimulus thresholds, the increase in frequency of stimulus application to these fibers does not greatly afiect their function, but the lower current at this point helps the field of strength to remain below simulus thresholds of the nerve fibers. If a point nonequidistant from the electrodes is considered, the contribution of each electrode to the current field will be different and the total field somewhat less than that described above. Sequencing results in decreases in the field at the point, with this decrease being realized when changing from simultaneous to nonsimultaneous stimulus application. A further decrease in the contribution of each electrode to a distant current field is realized by electrically insulating the electrodes from any contiguous tissue other than the muscle to be stimulated, with this insulation being accomplished by the placing of an insulating material between the attached electrodes and the contiguous structures. Further current field localization can be realized by electrically isolating the electrode poles so that no current can flow between them.
From the foregoing, it is clear that the various stated objectives and purposes of the invention have been achieved by the apparatus and method described. it is recognized that various alternations in dimensions, circuit component selections, tolerances, and timing, and the like, will become apparent to those skilled in the art without departing from the spirit and scope of the invention. Accordingly, what is intended to be protected by Letters Patent is set forth in the appended claims.
We claim:
1. Apparatus for stimulating a mass of electrically excitable tissue comprising:
a. a plurality of electrically conductive electrode means for electrically coupling to a mass of electrically excitable tissue, said electrode means including a pair of electrically conductive wires, a first plurality of electrical interconnection elements electrically coupled to one of said pair of conductive wires, and a second plurality of electrical interconnection elements electrically coupled to the other of said pair of conductive wires, electrically conductive connection means for electrically interconnecting each of said interconnection elements with predetermined portions of the tissue to be stimulated, insulation means for insulating said pair of electrically conductive wires while leaving said first and second pluralities of interconnection elements exposed, and isolation means coupled to said plurality of conductors for electrically isolating each of said electrode means from the others of said electrode means;
b. pulsegenerating means for providing predetermined timed sequences of electrical pulses, said pulse-generating means including tuned circuit means for responding to radiofrequency signals for providing power signals; rectifier and filter means coupled to said tuned circuit means for providing direct current signals in response to said power signals; and
c. control means coupled intermediate said plurality of electrodes and said pulse-generating means for controlling the time and sequence of application of said electrical pulses to individual ones of said electrode means, said control means including clocking means for controlling said time and sequence of application of said electrical pulses to only one of said electrode means at any given time, and including pulse circuit means coupled to said rectifier and filter means for generating pulses in response to said direct current signals, a plurality of insulated electrical conductors electrically coupled intermediate said pulse circuit means and said plurality of electrically conductive electrode means for transmitting said pulses to said electrode means; said clocking means coupled to said pulse circuit means for controlling the sequence of said transmitting of said pulses to individual ones of said plurality of electrically conductive electrode means in a predetermined order.
2. Apparatus as in claim 1 and further including further insulation means for electrically insulating said plurality of electrode means from contiguous stimulatable tissue structures for inhibiting undesired stimulation thereof.
3. Apparatus for stimulating a mass of electrically excitable tissue comprising:
a. a plurality of electrically conductive electrode means for electrically coupling to a mass of electrically excitable tissue:
b. pulse-generating means for providing predetennined timed sequences of electrical pulses, said pulse generating means including a like plurality of power source means for generating sequences of signals, and a like plurality of pulse-generating means, each of said pulse-generating means electrically coupled to a respectively associated one of said plurality of power source means for providing said pulses to an associated one of said plurality of electrodes; and
c. control means coupled intermediate said plurality of electrodes andsaid pulse-generating means for controlling the time and sequence of application of said electrical pulses to individual ones of said electrode means, said control means including clock circuit means coupled to said plurality of pulse-generating means for controlling said time and sequence of application of said pulses to only one of said electrode means at any given time, said clock circuit means including means for isolating each of said electrode means from the others of said electrode means.
4. Apparatus as in claim 3 wherein each of said electrode means includes a pair of electrically conductive wires, a first plurality of electrical interconnection elements electrically coupled to one of said pair of conductive wires, and a second plurality of electrical interconnection elements electrically coupled to the other of said pair of conductive wires, and insulation means for insulating said pair of electrically conductive wires while leaving said first and second pluralities of interconnection elements exposed.
5. Apparatus as in claim 4 and further including electrically conductive connection means for electrically interconnecting each of said interconnection elements with predetermined portions of the tissue to be stimulated.
6. Apparatus for stimulating a mass of electrically excitable tissue comprising:
a. a plurality of electrically conductive electrode means for electrically coupling to a mass of electrically excitable tissue, said electrode means including a pair of electrically conductive wires, a first plurality of electrical interconnection elements electrically coupled to one of said pair of conductive wires, and a second plurality of electrical interconnection elements electrically coupled to the other of said pair of conductive wires, electrically conductive connection means for electrically interconnecting each of said interconnection elements with predetermined portions of the tissue to be stimulated, insulation means for insulating said pair of electrically conductive wires while leaving said first and second pluralities of interconnection elements exposed, and isolation means 3 ,646,940 ,9 10 coupled to said plurality of conductors for electrically isolating each of said electrode means from the others of said electrode means;
b. pulsegenerating means for providing predetermined timed sequences of electrical pulses, said pulse-generat- 5 ing means includingtuned circuit means for responding to high-frequency signals for providing power signals; rectifier and filter means coupled to said tuned circuit means for providing direct current signals in response to said power signals; and v c. control means coupled intermediate said plurality of elec- 3. suturing with electrically conductive wire each of the electrical interconnection points to predetermined depths in the tissue to be stimulated for electrically coupling to the neural system innervating the tissue to be stimulated; and
b. generating pulses with a pulse source and applying the generated pulses to one electrode at a time in a predetermined sequence.
8. The method of claim 7 and further including the steps of:
a a. implanting a controlled pulse source in the body; and
b. placing an insulating cover over the implanted pulse trodes and said pulse-generating means for controlling the time and sequence of application of said electrical pulses to individual ones of said electrode means, said control means including clocking means for controlling said time and'sequence of application of said electrical pulses to only one of said electrode means at any given time, and including pulse circuit means coupled to said rectifier and filter means for generating pulses in response source and those portions of the electrodes other than said predetermined points of contact for further minimizing undesired stimulation of contiguous tissue structures.
9. A bipolar electrode for use with an implantable stimulator for stimulating electrically excitable tissue comprising:
a. a pair of electrically conductive wires for receiving bipolar pulses, one of said pair of electrically conductive wires being arranged in a predetermined serpentine patto said direct current signals, a plurality of insulated electefn, the other of said P electrically cQnductive trical conductors electrically coupled intermediate said wlfes being P E sulimamlally a mlrfol Image 9 pulse circuit means and said plurality of electrically con- 531d py =q serpentme Pattern and Overlap-S ductive electrode means for transmitting said pulses to one at {P i p i said electrode means; said clocking means coupled to said a first Plumhty P spacedrapafl electrical "ftefcQnnecllon pu|se circuit means f controlling the Sequence f said elements electrically coupled to one of said pair of contransmitting of said pulses to individual ones of said plurality of electrically conductive electrode means.
ductive wires; a second plurality of spaced-apart electrical interconnection elements electrically coupled to the other of said pair of conductive wires; with individual ones of said first and second pluralities of interconnection elements paired and positioned at approximately the midpoints between associated ones of said plurality of over- 7. The method of stimulating a mass of electrically excitable tissue while preventing undesired stimulation of contiguous tissue structures comprising the steps of:
a. electrically affixing a set of spaced-apart electrodes to the mass of tissue to be stimulated, said step of affixing including the steps of:
1. providing a plurality of electrical interconnection points on each of the electrodes;
2. selecting predetermined points of contact; and
lap points; and
. insulation means for insulating said pair of electrically
Claims (11)
1. Apparatus for stimulating a mass of electrically excitable tissue comprising: a. a plurality of electrically conductive electrode means for electrically coupling to a mass of electrically excitable tissue, said electrode means including a pair of electrically conductive wires, a first plurality of electrical interconnection elements electrically coupled to one of said pair of conductive wires, and a second plurality of electrical interconnection elements electrically coupled to the other of said pair of conductive wires, electrically conductive connection means for electrically interconnecting each of said interconnection elements with predetermined portions of the tissue to be stimulated, insulation means for insulating said pair of electrically conductive wires while leaving said first and second pluralities of interconnection elements exposed, and isolation means coupled to said plurality of conductors for electrically isolating each of said electrode means from the others of said electrode means; b. pulse-generating means for providing predetermined timed sequences of electrical pulses, said pulse-generating means including tuned circuit means for responding to radiofrequency signals for providing power signals; rectifier and filter means coupled to said tuned circuit means for providing direct current signals in response to said power signals; and c. control means coupled intermediate said plurality of electrodes and said pulse-generating means for controlling the time and sequence of application of said electrical pulsEs to individual ones of said electrode means, said control means including clocking means for controlling said time and sequence of application of said electrical pulses to only one of said electrode means at any given time, and including pulse circuit means coupled to said rectifier and filter means for generating pulses in response to said direct current signals, a plurality of insulated electrical conductors electrically coupled intermediate said pulse circuit means and said plurality of electrically conductive electrode means for transmitting said pulses to said electrode means; said clocking means coupled to said pulse circuit means for controlling the sequence of said transmitting of said pulses to individual ones of said plurality of electrically conductive electrode means in a predetermined order.
2. Apparatus as in claim 1 and further including further insulation means for electrically insulating said plurality of electrode means from contiguous stimulatable tissue structures for inhibiting undesired stimulation thereof.
2. selecting predetermined points of contact; and
3. suturing with electrically conductive wire each of the electrical interconnection points to predetermined depths in the tissue to be stimulated for electrically coupling to the neural system innervating the tissue to be stimulated; and b. generating pulses with a pulse source and applying the generated pulses to one electrode at a time in a predetermined sequence.
3. Apparatus for stimulating a mass of electrically excitable tissue comprising: a. a plurality of electrically conductive electrode means for electrically coupling to a mass of electrically excitable tissue: b. pulse-generating means for providing predetermined timed sequences of electrical pulses, said pulse generating means including a like plurality of power source means for generating sequences of signals, and a like plurality of pulse-generating means, each of said pulse-generating means electrically coupled to a respectively associated one of said plurality of power source means for providing said pulses to an associated one of said plurality of electrodes; and c. control means coupled intermediate said plurality of electrodes and said pulse-generating means for controlling the time and sequence of application of said electrical pulses to individual ones of said electrode means, said control means including clock circuit means coupled to said plurality of pulse-generating means for controlling said time and sequence of application of said pulses to only one of said electrode means at any given time, said clock circuit means including means for isolating each of said electrode means from the others of said electrode means.
4. Apparatus as in claim 3 wherein each of said electrode means includes a pair of electrically conductive wires, a first plurality of electrical interconnection elements electrically coupled to one of said pair of conductive wires, and a second plurality of electrical interconnection elements electrically coupled to the other of said pair of conductive wires, and insulation means for insulating said pair of electrically conductive wires while leaving said first and second pluralities of interconnection elements exposed.
5. Apparatus as in claim 4 and further including electrically conductive connection means for electrically interconnecting each of said interconnection elements with predetermined portions of the tissue to be stimulated.
6. Apparatus for stimulating a mass of electrically excitable tissue comprising: a. a plurality of electrically conductive electrode means for electrically coupling to a mass of electrically excitable tissue, said electrode means including a pair of electrically conductive wires, a first plurality of electrical interconnection elements electrically coupled to one of said pair of conductive wires, and a second plurality of electrical interconnection elements electrically coupled to the other of said pair of conductive wires, electrically conductive connection means for electrically interconnecting each of said interconnection elements with predetermined portions of the tissue to be stimulated, insulation means for insulating said pair of electrically conductive wires while leaving said first and second pluralities of interconnection elements exposed, and isolation means coupled to said plurality of conductors for electrically isoLating each of said electrode means from the others of said electrode means; b. pulse-generating means for providing predetermined timed sequences of electrical pulses, said pulse-generating means including tuned circuit means for responding to high-frequency signals for providing power signals; rectifier and filter means coupled to said tuned circuit means for providing direct current signals in response to said power signals; and c. control means coupled intermediate said plurality of electrodes and said pulse-generating means for controlling the time and sequence of application of said electrical pulses to individual ones of said electrode means, said control means including clocking means for controlling said time and sequence of application of said electrical pulses to only one of said electrode means at any given time, and including pulse circuit means coupled to said rectifier and filter means for generating pulses in response to said direct current signals, a plurality of insulated electrical conductors electrically coupled intermediate said pulse circuit means and said plurality of electrically conductive electrode means for transmitting said pulses to said electrode means; said clocking means coupled to said pulse circuit means for controlling the sequence of said transmitting of said pulses to individual ones of said plurality of electrically conductive electrode means.
7. The method of stimulating a mass of electrically excitable tissue while preventing undesired stimulation of contiguous tissue structures comprising the steps of: a. electrically affixing a set of spaced-apart electrodes to the mass of tissue to be stimulated, said step of affixing including the steps of:
8. The method of claim 7 and further including the steps of: a. implanting a controlled pulse source in the body; and b. placing an insulating cover over the implanted pulse source and those portions of the electrodes other than said predetermined points of contact for further minimizing undesired stimulation of contiguous tissue structures.
9. A bipolar electrode for use with an implantable stimulator for stimulating electrically excitable tissue comprising: a. a pair of electrically conductive wires for receiving bipolar pulses, one of said pair of electrically conductive wires being arranged in a predetermined serpentine pattern, and the other of said pair of electrically conductive wires being arranged in substantially a mirror image of said predetermined serpentine pattern and overlaps said one wire at a plurality of points; b. a first plurality of spaced-apart electrical interconnection elements electrically coupled to one of said pair of conductive wires; a second plurality of spaced-apart electrical interconnection elements electrically coupled to the other of said pair of conductive wires; with individual ones of said first and second pluralities of interconnection elements paired and positioned at approximately the midpoints between associated ones of said plurality of overlap points; and c. insulation means for insulating said pair of electrically conductive wires while leaving said first and second pluralities of interconnection elements exposed.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US84175669A | 1969-07-15 | 1969-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3646940A true US3646940A (en) | 1972-03-07 |
Family
ID=25285621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US841756A Expired - Lifetime US3646940A (en) | 1969-07-15 | 1969-07-15 | Implantable electronic stimulator electrode and method |
Country Status (1)
Country | Link |
---|---|
US (1) | US3646940A (en) |
Cited By (196)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3727616A (en) * | 1971-06-15 | 1973-04-17 | Gen Dynamics Corp | Electronic system for the stimulation of biological systems |
FR2196783A1 (en) * | 1972-08-28 | 1974-03-22 | Areca | |
US3851651A (en) * | 1972-12-22 | 1974-12-03 | P Icenbice | Facial stimulating apparatus having sequentially energized electrodes |
US3888261A (en) * | 1973-12-07 | 1975-06-10 | Medtronic Inc | Time shared stimulator |
DE2457850A1 (en) * | 1973-12-07 | 1975-06-12 | Medtronic Inc | CIRCUIT ARRANGEMENT FOR STIMULATING A BIOLOGICAL SYSTEM |
US3893463A (en) * | 1973-12-07 | 1975-07-08 | Medtronic Inc | Dual channel stimulator |
US3945387A (en) * | 1974-09-09 | 1976-03-23 | General Electric Company | Implantable cardiac pacer with characteristic controllable circuit and control device therefor |
US3955560A (en) * | 1974-06-10 | 1976-05-11 | Stein Richard B | Implantable neural electrode |
FR2320762A1 (en) * | 1975-08-11 | 1977-03-11 | Medtronic Inc | ELECTRICAL STIMULATION AND STIMULATOR DEVICE IMPLANTABLE IN A BODY |
DE2742956A1 (en) * | 1976-09-27 | 1978-03-30 | Harry Henry Dr Leveen | DEVICE FOR TREATMENT OF DISEASES IN ANIMALS WITH HIGH FREQUENCY RADIANT ENERGY |
US4120306A (en) * | 1976-01-22 | 1978-10-17 | Vitatron Medical B.V. | Cardiac pacer with pre-programmed power source interface means |
US4157087A (en) * | 1978-03-06 | 1979-06-05 | Med General, Inc. | Peripheral nerve stimulator |
DE2811463A1 (en) * | 1978-03-18 | 1979-09-20 | Inst Kib Akademii Nauk Uk Ssr | ELECTRIC STIMULATOR FOR HUMAN MUSCLES WITH BIOELECTRIC CONTROL |
DE2926861A1 (en) * | 1978-07-03 | 1980-01-24 | Technion Res & Dev Foundation | THROUGH THE SKIN-WORKING ARRANGEMENT TO REDUCE PAIN |
DE2929293A1 (en) * | 1979-07-11 | 1981-02-05 | Sp Ni Ok Bjuro Marijskogo Resp | DEVICE FOR ELECTRICALLY INFLUENCING MILK Glands |
US4340063A (en) * | 1980-01-02 | 1982-07-20 | Empi, Inc. | Stimulation device |
US4431002A (en) * | 1981-06-08 | 1984-02-14 | Empi Inc. | Modulated deep afferent stimulator |
US4442839A (en) * | 1981-04-27 | 1984-04-17 | Empi, Inc. | Method of modulating energy in train of electrical pulses |
US4456012A (en) * | 1982-02-22 | 1984-06-26 | Medtronic, Inc. | Iontophoretic and electrical tissue stimulation device |
US4567900A (en) * | 1984-06-04 | 1986-02-04 | Moore J Paul | Internal deployable defibrillator electrode |
US4569351A (en) * | 1984-12-20 | 1986-02-11 | University Of Health Sciences/The Chicago Medical School | Apparatus and method for stimulating micturition and certain muscles in paraplegic mammals |
US4585005A (en) * | 1984-04-06 | 1986-04-29 | Regents Of University Of California | Method and pacemaker for stimulating penile erection |
US4592359A (en) * | 1985-04-02 | 1986-06-03 | The Board Of Trustees Of The Leland Stanford Junior University | Multi-channel implantable neural stimulator |
US4690146A (en) * | 1985-06-17 | 1987-09-01 | Chattanooga Corporation | Neuromuscular stimulating apparatus |
EP0234457A2 (en) * | 1986-02-24 | 1987-09-02 | Medtronic, Inc. | Intramuscular lead |
US4708145A (en) * | 1982-06-01 | 1987-11-24 | Medtronic, Inc. | Sequential-pulse, multiple pathway defibrillation method |
DK152609B (en) * | 1979-07-04 | 1988-03-28 | Sp Ni Ok | Apparatus for electrical stimulation |
US4763656A (en) * | 1985-06-13 | 1988-08-16 | Beatrice T. Kester | Transcutaneous electrical nerve stimulation device and method |
US4841973A (en) * | 1987-09-21 | 1989-06-27 | Stecker Harold D | Electrical stimulators |
US5105811A (en) * | 1982-07-27 | 1992-04-21 | Commonwealth Of Australia | Cochlear prosthetic package |
US5121754A (en) * | 1990-08-21 | 1992-06-16 | Medtronic, Inc. | Lateral displacement percutaneously inserted epidural lead |
US5193540A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Structure and method of manufacture of an implantable microstimulator |
US5193539A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Implantable microstimulator |
US5281219A (en) * | 1990-11-23 | 1994-01-25 | Medtronic, Inc. | Multiple stimulation electrodes |
US5291902A (en) * | 1993-01-11 | 1994-03-08 | Brent Carman | Incontinence treatment |
US5358514A (en) * | 1991-12-18 | 1994-10-25 | Alfred E. Mann Foundation For Scientific Research | Implantable microdevice with self-attaching electrodes |
US5425752A (en) * | 1991-11-25 | 1995-06-20 | Vu'nguyen; Dung D. | Method of direct electrical myostimulation using acupuncture needles |
US5447526A (en) * | 1992-12-24 | 1995-09-05 | Karsdon; Jeffrey | Transcutaneous electric muscle/nerve controller/feedback unit |
US5501703A (en) * | 1994-01-24 | 1996-03-26 | Medtronic, Inc. | Multichannel apparatus for epidural spinal cord stimulator |
US5524624A (en) * | 1994-05-05 | 1996-06-11 | Amei Technologies Inc. | Apparatus and method for stimulating tissue growth with ultrasound |
WO1998009679A1 (en) * | 1996-09-05 | 1998-03-12 | The Governors Of The University Of Alberta | Gastro-intestinal electrical pacemaker |
WO1998030280A1 (en) * | 1997-01-13 | 1998-07-16 | Medtronic, Inc. | Apparatus and method for treating chronic constipation |
US5833714A (en) * | 1996-01-18 | 1998-11-10 | Loeb; Gerald E. | Cochlear electrode array employing tantalum metal |
US5957958A (en) * | 1997-01-15 | 1999-09-28 | Advanced Bionics Corporation | Implantable electrode arrays |
WO2002009808A1 (en) | 2000-07-26 | 2002-02-07 | Advanced Bionics Corporation | Rechargeable spinal cord stimulator system |
US6381496B1 (en) | 1999-10-01 | 2002-04-30 | Advanced Bionics Corporation | Parameter context switching for an implanted device |
WO2002038217A3 (en) * | 2000-11-09 | 2002-10-31 | Neuropace Inc | Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders |
US20020165589A1 (en) * | 2001-05-01 | 2002-11-07 | Imran Mir A. | Gastric treatment and diagnosis device and method |
US20020183817A1 (en) * | 2000-12-07 | 2002-12-05 | Paul Van Venrooij | Directional brain stimulation and recording leads |
US6516227B1 (en) | 1999-07-27 | 2003-02-04 | Advanced Bionics Corporation | Rechargeable spinal cord stimulator system |
US20030032992A1 (en) * | 2001-08-13 | 2003-02-13 | Thacker James R. | System and method of rapid, Comfortable parameter switching in spinal cord stimulation |
US6542776B1 (en) * | 1999-04-14 | 2003-04-01 | Transneuronix Inc. | Gastric stimulator apparatus and method for installing |
US20030078633A1 (en) * | 2001-09-28 | 2003-04-24 | Firlik Andrew D. | Methods and implantable apparatus for electrical therapy |
US20030093134A1 (en) * | 2001-11-02 | 2003-05-15 | Kerry Bradley | Method for increasing the therapeutic ratio/usage range in a neurostimulator |
US6606523B1 (en) * | 1999-04-14 | 2003-08-12 | Transneuronix Inc. | Gastric stimulator apparatus and method for installing |
US20030153959A1 (en) * | 2002-02-12 | 2003-08-14 | Thacker James R. | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed coupling efficiency |
US20030191504A1 (en) * | 1999-07-30 | 2003-10-09 | Meadows Paul M. | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
US20030195591A1 (en) * | 1996-06-07 | 2003-10-16 | Jay Law | Multiprogrammable tissue stimulator and method |
US6659968B1 (en) | 2000-06-01 | 2003-12-09 | Advanced Bionics Corporation | Activity monitor for pain management efficacy measurement |
US20030229387A1 (en) * | 2000-02-08 | 2003-12-11 | Medtronic, Inc. | Surgical lead body |
US6684104B2 (en) | 1999-04-14 | 2004-01-27 | Transneuronix, Inc. | Gastric stimulator apparatus and method for installing |
US6735474B1 (en) | 1998-07-06 | 2004-05-11 | Advanced Bionics Corporation | Implantable stimulator system and method for treatment of incontinence and pain |
US20040116978A1 (en) * | 2002-12-06 | 2004-06-17 | Kerry Bradley | Method for determining stimulation parameters |
US20040158170A1 (en) * | 2003-02-04 | 2004-08-12 | Overstreet Edward H. | Method of rapid neural response measurement without amplitude attenuation |
US20040260310A1 (en) * | 2002-10-23 | 2004-12-23 | Medtronic, Inc. | Medical lead and method |
US20050004622A1 (en) * | 2003-07-03 | 2005-01-06 | Advanced Neuromodulation Systems | System and method for implantable pulse generator with multiple treatment protocols |
US20050055063A1 (en) * | 2001-07-20 | 2005-03-10 | Loeb Gerald E. | Method and apparatus for the treatment of urinary tract dysfunction |
US6871099B1 (en) | 2000-08-18 | 2005-03-22 | Advanced Bionics Corporation | Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain |
US20050090885A1 (en) * | 2003-10-23 | 2005-04-28 | Medtronic, Inc. | Medical lead and manufacturing method therefor |
US20050143784A1 (en) * | 2001-05-01 | 2005-06-30 | Imran Mir A. | Gastrointestinal anchor with optimal surface area |
US20050182470A1 (en) * | 2002-10-23 | 2005-08-18 | Medtronic, Inc. | Paddle-style medical lead and method |
US6941171B2 (en) | 1998-07-06 | 2005-09-06 | Advanced Bionics Corporation | Implantable stimulator methods for treatment of incontinence and pain |
US20050245987A1 (en) * | 2002-02-04 | 2005-11-03 | Woods Carla M | Method for programming implantable device |
US20050267546A1 (en) * | 2004-05-28 | 2005-12-01 | Jordi Parramon | Low power loss current digital-to-analog converter used in an implantable pulse generator |
US20060030918A1 (en) * | 2004-08-04 | 2006-02-09 | Chinn Kenny K | Operating room lead connector |
US7009313B1 (en) | 2001-03-16 | 2006-03-07 | Advanced Bionics Corporation | Multi-compliance voltage generator in a multichannel current stimulator |
US20060052782A1 (en) * | 2004-06-07 | 2006-03-09 | Chad Morgan | Orthopaedic implant with sensors |
US7020531B1 (en) | 2001-05-01 | 2006-03-28 | Intrapace, Inc. | Gastric device and suction assisted method for implanting a device on a stomach wall |
US20060074457A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Pseudounipolar lead for stimulating a digestive organ |
US20060070334A1 (en) * | 2004-09-27 | 2006-04-06 | Blue Hen, Llc | Sidewall plank for constructing a trailer and associated trailer sidewall construction |
US20060074458A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Digestive organ retention device |
US20060089699A1 (en) * | 2001-05-01 | 2006-04-27 | Imran Mir A | Abdominally implanted stimulator and method |
US20060111753A1 (en) * | 2001-05-01 | 2006-05-25 | Imran Mir A | Gastric stimulation anchor and method |
US7054689B1 (en) | 2000-08-18 | 2006-05-30 | Advanced Bionics Corporation | Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction |
US20060122653A1 (en) * | 2001-12-04 | 2006-06-08 | Kerry Bradley | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
US20060168805A1 (en) * | 2005-01-31 | 2006-08-03 | Michael Hegland | Method of manufacturing a medical lead |
US7099718B1 (en) | 2001-05-29 | 2006-08-29 | Advanced Bionics Corporation | Neural stimulation lead fixation |
US20060195159A1 (en) * | 2004-12-03 | 2006-08-31 | Kerry Bradley | System and method for choosing electrodes in an implanted stimulator device |
US20060224222A1 (en) * | 2005-04-01 | 2006-10-05 | Kerry Bradley | Apparatus and methods for detecting migration of neurostimulation leads |
US7127298B1 (en) | 2002-10-18 | 2006-10-24 | Advanced Bionics Corporation | Switched-matrix output for multi-channel implantable stimulator |
US20060241722A1 (en) * | 2005-04-26 | 2006-10-26 | Thacker James R | Evaluating stimulation therapies and patient satisfaction |
US20060241721A1 (en) * | 2005-04-26 | 2006-10-26 | Sridhar Kothandaraman | Display graphics for use in stimulation therapies |
US7146223B1 (en) | 2002-02-04 | 2006-12-05 | Advanced Bionics Corporation | Method for optimizing search for spinal cord stimulation parameter settings |
US20060293723A1 (en) * | 2003-12-19 | 2006-12-28 | Whitehurst Todd K | Skull-mounted electrical stimulation system and method for treating patients |
US7162304B1 (en) | 2003-05-08 | 2007-01-09 | Advanced Bionics Corporation | System for measuring cardiac rhythm parameters for assessment of spinal cord stimulation |
WO2007008212A1 (en) | 2005-07-08 | 2007-01-18 | Advanced Bionics Corporation | Current output architecture for an implantable stimulator device |
US20070049986A1 (en) * | 2005-09-01 | 2007-03-01 | Imran Mir A | Randomized stimulation of a gastrointestinal organ |
US20070049991A1 (en) * | 2005-08-30 | 2007-03-01 | Klostermann Daniel J | Telemetry-based wake up of an implantable medical device |
US20070049990A1 (en) * | 2005-08-30 | 2007-03-01 | Klostermann Daniel J | Telemetry protocol for ultra low error rates useable in implantable medical devices |
US20070055308A1 (en) * | 2005-09-06 | 2007-03-08 | Haller Matthew I | Ultracapacitor powered implantable pulse generator with dedicated power supply |
US20070053466A1 (en) * | 2005-09-08 | 2007-03-08 | Klostermann Daniel J | Frequency shift keying demodulation technique |
US20070073354A1 (en) * | 2005-09-26 | 2007-03-29 | Knudson Mark B | Neural blocking therapy |
US20070083240A1 (en) * | 2003-05-08 | 2007-04-12 | Peterson David K L | Methods and systems for applying stimulation and sensing one or more indicators of cardiac activity with an implantable stimulator |
US20070100399A1 (en) * | 2005-07-08 | 2007-05-03 | Advanced Bionics Corporation | Current Generation Architecture for an Implantable Stimulator Device Having Coarse and Fine Current Control |
US20070135868A1 (en) * | 2005-12-14 | 2007-06-14 | Shi Jess W | Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device |
WO2007067825A1 (en) | 2005-12-07 | 2007-06-14 | Advanced Bionics Corporation | Battery protection and zero-volt battery recovery system for an implantable medical device |
US7239920B1 (en) | 2002-02-12 | 2007-07-03 | Advanced Bionics Corporation | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed pressure changes |
US20070156207A1 (en) * | 2006-01-04 | 2007-07-05 | Sridhar Kothandaraman | Expanding single channel stimulator capability on multi-area stimulation programs |
US20070239228A1 (en) * | 2006-04-07 | 2007-10-11 | Kerry Bradley | System and method using multiple timing channels for electrode adjustement during set up of an implanted stimulator device |
US20070260288A1 (en) * | 2006-03-03 | 2007-11-08 | Yossi Gross | Apparatus for treating stress and urge incontinence |
US7295878B1 (en) | 1999-07-30 | 2007-11-13 | Advanced Bionics Corporation | Implantable devices using rechargeable zero-volt technology lithium-ion batteries |
US20070265679A1 (en) * | 2002-02-04 | 2007-11-15 | Advanced Bionics Corporation | Method for optimizing search for spinal cord stimulation parameter setting |
US20070265675A1 (en) * | 2006-05-09 | 2007-11-15 | Ams Research Corporation | Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation |
US20070293914A1 (en) * | 1999-07-27 | 2007-12-20 | Advanced Bionics Corporation | Patient programmer for implantable devices |
US7317948B1 (en) | 2002-02-12 | 2008-01-08 | Boston Scientific Scimed, Inc. | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance |
US20080009914A1 (en) * | 2006-07-10 | 2008-01-10 | Ams Research Corporation | Systems and Methods for Implanting Tissue Stimulation Electrodes in the Pelvic Region |
US20080027500A1 (en) * | 2006-07-28 | 2008-01-31 | Advanced Bionics Corporation | Charger With Orthogonal PCB For Implantable Medical Device |
US20080058876A1 (en) * | 2006-09-06 | 2008-03-06 | Giancarlo Barolat | Implantable reel for coiling an implantable elongated member |
US20080065169A1 (en) * | 2001-05-01 | 2008-03-13 | Intrapace, Inc. | Endoscopic Instrument for Engaging a Device |
US20080071325A1 (en) * | 2002-02-04 | 2008-03-20 | Advanced Bionics Corporation | Method for optimizing search for spinal cord stimulation parameter setting |
US7363079B1 (en) | 2002-09-26 | 2008-04-22 | Boston Scientific Neuromodulation Corporation | Power qualifier for electrical stimulation configurations |
US20080103559A1 (en) * | 2006-10-26 | 2008-05-01 | Advanced Bionics Corporation | Method of maintaining intensity output while adjusting pulse width or amplitude |
US20080132970A1 (en) * | 2006-12-05 | 2008-06-05 | Giancarlo Barolat | Method and system for treatment of intractable scrotal and/or testicular pain |
US20080183224A1 (en) * | 2007-01-25 | 2008-07-31 | Giancarlo Barolat | Electrode paddle for neurostimulation |
US20080188909A1 (en) * | 2007-02-01 | 2008-08-07 | Boston Scientific Neuromodulation Corporation | Neurostimulation system and method for measuring patient activity |
US20080215119A1 (en) * | 1999-01-07 | 2008-09-04 | Boston Scientific Neuromodulation Corporation | System and method for displaying stimulation field generated by electrode array |
WO2008142402A1 (en) | 2007-05-22 | 2008-11-27 | Ivor Stephen Gillbe | Array stimulator |
US20090012592A1 (en) * | 2006-07-10 | 2009-01-08 | Ams Research Corporation | Tissue anchor |
US20090018606A1 (en) * | 2005-10-12 | 2009-01-15 | Intrapace, Inc. | Methods and Devices for Stimulation of an Organ with the Use of a Transectionally Placed Guide Wire |
US20090036946A1 (en) * | 2001-11-29 | 2009-02-05 | American Medical Systems, Inc. | Pelvic disorder treatments |
US7509175B2 (en) | 2006-08-03 | 2009-03-24 | Intrapace, Inc. | Method and devices for stimulation of an organ with the use of a transectionally placed guide wire |
US20090099439A1 (en) * | 2007-10-16 | 2009-04-16 | Giancarlo Barolat | Surgically implantable electrodes |
US20090112281A1 (en) * | 2007-10-26 | 2009-04-30 | Medtronic, Inc. | Medical device configuration based on sensed brain signals |
US20090157091A1 (en) * | 2006-04-04 | 2009-06-18 | Ams Research Corporation | Apparatus for Implanting Neural Stimulation Leads |
US7603179B1 (en) | 2003-09-16 | 2009-10-13 | Boston Scientific Neuromodulation Corporation | System and method for lead fixation |
US20090287279A1 (en) * | 2008-05-15 | 2009-11-19 | Boston Scientific Neuromodulation Corporation | Current steering for an implantable stimulator device involving fractionalized stimulation pulses |
US20100010582A1 (en) * | 2008-07-11 | 2010-01-14 | Boston Scientific Neuromodulation Corporation | Medical system and method for setting programmable heat limits |
US20100023070A1 (en) * | 2008-07-24 | 2010-01-28 | Boston Scientific Neuromodulation Corporation | System and method for maintaining a distribution of currents in an electrode array using independent voltage sources |
US20100049289A1 (en) * | 2007-07-10 | 2010-02-25 | Ams Research Corporation | Tissue anchor |
US20100076254A1 (en) * | 2006-06-05 | 2010-03-25 | Ams Research Corporation | Electrical muscle stimulation to treat fecal incontinence and/or pelvic prolapse |
US20100087706A1 (en) * | 2008-09-30 | 2010-04-08 | Intrapace, Inc. | Lead Access |
US7702394B2 (en) | 2001-05-01 | 2010-04-20 | Intrapace, Inc. | Responsive gastric stimulator |
US20100137948A1 (en) * | 2008-12-03 | 2010-06-03 | Boston Scientific Neuromodulation Corporation | External charger with adjustable alignment indicator |
US20100217340A1 (en) * | 2009-02-23 | 2010-08-26 | Ams Research Corporation | Implantable Medical Device Connector System |
US20100234917A1 (en) * | 2001-05-01 | 2010-09-16 | Intrapace, Inc. | Digestive Organ Retention Device |
US20100305631A1 (en) * | 2001-12-04 | 2010-12-02 | Boston Scientific Neuromodulation Corporation | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
US20110034760A1 (en) * | 2009-04-03 | 2011-02-10 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments |
US20110046660A1 (en) * | 2009-02-13 | 2011-02-24 | Intrapace, Inc. | Endoscopic Forceps With Removable Handle |
US7932696B2 (en) | 2007-05-14 | 2011-04-26 | Boston Scientific Neuromodulation Corporation | Charger alignment indicator with adjustable threshold |
US7953497B1 (en) | 2002-08-06 | 2011-05-31 | Boston Scientific Neuromodulation Corporation | Insertion stylet |
US20110160793A1 (en) * | 2009-12-31 | 2011-06-30 | Ams Research Corporation | Multi-Zone Stimulation Implant System and Method |
US7983766B1 (en) | 2001-05-29 | 2011-07-19 | Boston Scientific Neuromodulation Corporation | Method of securing a neural stimulation lead |
US20110298304A1 (en) * | 2010-06-07 | 2011-12-08 | Thoratec Corporation | Bi-ventricular percutaneous cable |
US8224459B1 (en) | 2004-04-30 | 2012-07-17 | Boston Scientific Neuromodulation Corporation | Insertion tool for paddle-style electrode |
US8255057B2 (en) | 2009-01-29 | 2012-08-28 | Nevro Corporation | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
US8295945B1 (en) | 2001-05-29 | 2012-10-23 | Boston Scientific Neuromodulation Corporation | Neural stimulation lead fixation |
US8549015B2 (en) | 2007-05-01 | 2013-10-01 | Giancarlo Barolat | Method and system for distinguishing nociceptive pain from neuropathic pain |
US8706259B2 (en) | 2004-04-30 | 2014-04-22 | Boston Scientific Neuromodulation Corporation | Insertion tool for paddle-style electrode |
US8934976B2 (en) | 2004-09-23 | 2015-01-13 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US9220887B2 (en) | 2011-06-09 | 2015-12-29 | Astora Women's Health LLC | Electrode lead including a deployable tissue anchor |
US9308378B2 (en) | 2013-05-03 | 2016-04-12 | Alfred E. Mann Foundation For Scientific Research | Implant recharger handshaking system and method |
US9427573B2 (en) | 2007-07-10 | 2016-08-30 | Astora Women's Health, Llc | Deployable electrode lead anchor |
US9427574B2 (en) | 2014-08-15 | 2016-08-30 | Axonics Modulation Technologies, Inc. | Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication |
US9433779B2 (en) | 2013-05-03 | 2016-09-06 | Alfred E. Mann Foundation For Scientific Research | Multi-branch stimulation electrode for subcutaneous field stimulation |
US9446241B2 (en) | 2013-03-15 | 2016-09-20 | Alfred E. Mann Foundation For Scientific Research | Current sensing multiple output current stimulators |
US9517338B1 (en) | 2016-01-19 | 2016-12-13 | Axonics Modulation Technologies, Inc. | Multichannel clip device and methods of use |
US9533155B2 (en) | 2014-08-15 | 2017-01-03 | Axonics Modulation Technologies, Inc. | Methods for determining neurostimulation electrode configurations based on neural localization |
US9539433B1 (en) | 2009-03-18 | 2017-01-10 | Astora Women's Health, Llc | Electrode implantation in a pelvic floor muscular structure |
US9555246B2 (en) | 2014-08-15 | 2017-01-31 | Axonics Modulation Technologies, Inc. | Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder |
US9668690B1 (en) | 2001-05-01 | 2017-06-06 | Intrapace, Inc. | Submucosal gastric implant device and method |
US9675807B2 (en) | 2013-05-03 | 2017-06-13 | Alfred E. Mann Foundation For Scientific Research | High reliability wire welding for implantable devices |
US9682237B2 (en) | 2013-03-15 | 2017-06-20 | Alfred E. Mann Foundation For Scientific Research | High voltage monitoring successive approximation analog to digital converter |
US9700731B2 (en) | 2014-08-15 | 2017-07-11 | Axonics Modulation Technologies, Inc. | Antenna and methods of use for an implantable nerve stimulator |
US9728981B2 (en) | 2012-08-31 | 2017-08-08 | Alfred E. Mann Foundation For Scientific Research | Feedback controlled coil driver for inductive power transfer |
US9731112B2 (en) | 2011-09-08 | 2017-08-15 | Paul J. Gindele | Implantable electrode assembly |
US9780596B2 (en) | 2013-07-29 | 2017-10-03 | Alfred E. Mann Foundation For Scientific Research | Microprocessor controlled class E driver |
US9802051B2 (en) | 2014-08-15 | 2017-10-31 | Axonics Modulation Technologies, Inc. | External pulse generator device and associated methods for trial nerve stimulation |
US9855436B2 (en) | 2013-07-29 | 2018-01-02 | Alfred E. Mann Foundation For Scientific Research | High efficiency magnetic link for implantable devices |
US9867981B2 (en) | 2013-12-04 | 2018-01-16 | Boston Scientific Neuromodulation Corporation | Insertion tool for implanting a paddle lead and methods and systems utilizing the tool |
US9895546B2 (en) | 2015-01-09 | 2018-02-20 | Axonics Modulation Technologies, Inc. | Patient remote and associated methods of use with a nerve stimulation system |
US9925381B2 (en) | 2015-07-10 | 2018-03-27 | Axonics Modulation Technologies, Inc. | Implantable nerve stimulator having internal electronics without ASIC and methods of use |
US9956000B2 (en) | 2015-01-13 | 2018-05-01 | Boston Scientific Neuromodulation Corporation | Insertion tool for implanting a paddle lead and methods and systems utilizing the tool |
US10092762B2 (en) | 2014-08-15 | 2018-10-09 | Axonics Modulation Technologies, Inc. | Integrated electromyographic clinician programmer for use with an implantable neurostimulator |
US10195423B2 (en) | 2016-01-19 | 2019-02-05 | Axonics Modulation Technologies, Inc. | Multichannel clip device and methods of use |
US10376704B2 (en) | 2016-02-12 | 2019-08-13 | Axonics Modulation Technologies, Inc. | External pulse generator device and associated methods for trial nerve stimulation |
US10561835B2 (en) | 2006-10-31 | 2020-02-18 | Medtronic, Inc. | Implantable medical lead with threaded fixation |
US10603500B2 (en) | 2016-01-29 | 2020-03-31 | Axonics Modulation Technologies, Inc. | Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator |
US10682521B2 (en) | 2014-08-15 | 2020-06-16 | Axonics Modulation Technologies, Inc. | Attachment devices and associated methods of use with a nerve stimulation charging device |
US20210228885A1 (en) * | 2015-08-19 | 2021-07-29 | University Of Louisville Research Foundation, Inc. | Methods for providing optimized neurostimulation |
US11110283B2 (en) | 2018-02-22 | 2021-09-07 | Axonics, Inc. | Neurostimulation leads for trial nerve stimulation and methods of use |
US11318310B1 (en) | 2015-10-26 | 2022-05-03 | Nevro Corp. | Neuromodulation for altering autonomic functions, and associated systems and methods |
US11439829B2 (en) | 2019-05-24 | 2022-09-13 | Axonics, Inc. | Clinician programmer methods and systems for maintaining target operating temperatures |
US11484723B2 (en) | 2015-01-09 | 2022-11-01 | Axonics, Inc. | Attachment devices and associated methods of use with a nerve stimulation charging device |
US11590352B2 (en) | 2019-01-29 | 2023-02-28 | Nevro Corp. | Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods |
US11642537B2 (en) | 2019-03-11 | 2023-05-09 | Axonics, Inc. | Charging device with off-center coil |
US11848090B2 (en) | 2019-05-24 | 2023-12-19 | Axonics, Inc. | Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1597061A (en) * | 1924-10-20 | 1926-08-24 | James A Cultra | Electrotherapeutic appliance |
US2065295A (en) * | 1935-05-16 | 1936-12-22 | Arthur G Sullivan | Therapeutic appliance |
US2838672A (en) * | 1954-06-29 | 1958-06-10 | Physical Medicine Products Co | Electro-therapy generator |
US3195540A (en) * | 1963-03-29 | 1965-07-20 | Louis C Waller | Power supply for body implanted instruments |
US3236240A (en) * | 1962-09-06 | 1966-02-22 | Univ Minnesota | Implantable bladder stimulator |
US3279468A (en) * | 1963-05-14 | 1966-10-18 | Vine Sidney Le | Electrotherapeutic facial mask apparatus |
US3405715A (en) * | 1966-10-20 | 1968-10-15 | Medtronic Inc | Implantable electrode |
-
1969
- 1969-07-15 US US841756A patent/US3646940A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1597061A (en) * | 1924-10-20 | 1926-08-24 | James A Cultra | Electrotherapeutic appliance |
US2065295A (en) * | 1935-05-16 | 1936-12-22 | Arthur G Sullivan | Therapeutic appliance |
US2838672A (en) * | 1954-06-29 | 1958-06-10 | Physical Medicine Products Co | Electro-therapy generator |
US3236240A (en) * | 1962-09-06 | 1966-02-22 | Univ Minnesota | Implantable bladder stimulator |
US3195540A (en) * | 1963-03-29 | 1965-07-20 | Louis C Waller | Power supply for body implanted instruments |
US3279468A (en) * | 1963-05-14 | 1966-10-18 | Vine Sidney Le | Electrotherapeutic facial mask apparatus |
US3405715A (en) * | 1966-10-20 | 1968-10-15 | Medtronic Inc | Implantable electrode |
Cited By (449)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3727616A (en) * | 1971-06-15 | 1973-04-17 | Gen Dynamics Corp | Electronic system for the stimulation of biological systems |
FR2196783A1 (en) * | 1972-08-28 | 1974-03-22 | Areca | |
US3851651A (en) * | 1972-12-22 | 1974-12-03 | P Icenbice | Facial stimulating apparatus having sequentially energized electrodes |
US3888261A (en) * | 1973-12-07 | 1975-06-10 | Medtronic Inc | Time shared stimulator |
DE2457850A1 (en) * | 1973-12-07 | 1975-06-12 | Medtronic Inc | CIRCUIT ARRANGEMENT FOR STIMULATING A BIOLOGICAL SYSTEM |
US3893463A (en) * | 1973-12-07 | 1975-07-08 | Medtronic Inc | Dual channel stimulator |
US3955560A (en) * | 1974-06-10 | 1976-05-11 | Stein Richard B | Implantable neural electrode |
US3945387A (en) * | 1974-09-09 | 1976-03-23 | General Electric Company | Implantable cardiac pacer with characteristic controllable circuit and control device therefor |
FR2320762A1 (en) * | 1975-08-11 | 1977-03-11 | Medtronic Inc | ELECTRICAL STIMULATION AND STIMULATOR DEVICE IMPLANTABLE IN A BODY |
US4019518A (en) * | 1975-08-11 | 1977-04-26 | Medtronic, Inc. | Electrical stimulation system |
US4120306A (en) * | 1976-01-22 | 1978-10-17 | Vitatron Medical B.V. | Cardiac pacer with pre-programmed power source interface means |
DE2742956A1 (en) * | 1976-09-27 | 1978-03-30 | Harry Henry Dr Leveen | DEVICE FOR TREATMENT OF DISEASES IN ANIMALS WITH HIGH FREQUENCY RADIANT ENERGY |
US4095602A (en) * | 1976-09-27 | 1978-06-20 | Leveen Harry H | Multi-portal radiofrequency generator |
US4157087A (en) * | 1978-03-06 | 1979-06-05 | Med General, Inc. | Peripheral nerve stimulator |
DE2811463A1 (en) * | 1978-03-18 | 1979-09-20 | Inst Kib Akademii Nauk Uk Ssr | ELECTRIC STIMULATOR FOR HUMAN MUSCLES WITH BIOELECTRIC CONTROL |
DE2926861A1 (en) * | 1978-07-03 | 1980-01-24 | Technion Res & Dev Foundation | THROUGH THE SKIN-WORKING ARRANGEMENT TO REDUCE PAIN |
US4256116A (en) * | 1978-07-03 | 1981-03-17 | Technion Research And Development Foundation, Limited | Transcutaneous pain reliever |
DK152609B (en) * | 1979-07-04 | 1988-03-28 | Sp Ni Ok | Apparatus for electrical stimulation |
DE2929293A1 (en) * | 1979-07-11 | 1981-02-05 | Sp Ni Ok Bjuro Marijskogo Resp | DEVICE FOR ELECTRICALLY INFLUENCING MILK Glands |
US4340063A (en) * | 1980-01-02 | 1982-07-20 | Empi, Inc. | Stimulation device |
US4442839A (en) * | 1981-04-27 | 1984-04-17 | Empi, Inc. | Method of modulating energy in train of electrical pulses |
US4431002A (en) * | 1981-06-08 | 1984-02-14 | Empi Inc. | Modulated deep afferent stimulator |
US4456012A (en) * | 1982-02-22 | 1984-06-26 | Medtronic, Inc. | Iontophoretic and electrical tissue stimulation device |
US4708145A (en) * | 1982-06-01 | 1987-11-24 | Medtronic, Inc. | Sequential-pulse, multiple pathway defibrillation method |
US5105811A (en) * | 1982-07-27 | 1992-04-21 | Commonwealth Of Australia | Cochlear prosthetic package |
US4585005A (en) * | 1984-04-06 | 1986-04-29 | Regents Of University Of California | Method and pacemaker for stimulating penile erection |
US4567900A (en) * | 1984-06-04 | 1986-02-04 | Moore J Paul | Internal deployable defibrillator electrode |
US4569351A (en) * | 1984-12-20 | 1986-02-11 | University Of Health Sciences/The Chicago Medical School | Apparatus and method for stimulating micturition and certain muscles in paraplegic mammals |
US4592359A (en) * | 1985-04-02 | 1986-06-03 | The Board Of Trustees Of The Leland Stanford Junior University | Multi-channel implantable neural stimulator |
US4763656A (en) * | 1985-06-13 | 1988-08-16 | Beatrice T. Kester | Transcutaneous electrical nerve stimulation device and method |
US4690146A (en) * | 1985-06-17 | 1987-09-01 | Chattanooga Corporation | Neuromuscular stimulating apparatus |
EP0234457A2 (en) * | 1986-02-24 | 1987-09-02 | Medtronic, Inc. | Intramuscular lead |
EP0234457A3 (en) * | 1986-02-24 | 1988-05-25 | Medtronic, Inc. | Intramuscular lead |
US4841973A (en) * | 1987-09-21 | 1989-06-27 | Stecker Harold D | Electrical stimulators |
US5121754A (en) * | 1990-08-21 | 1992-06-16 | Medtronic, Inc. | Lateral displacement percutaneously inserted epidural lead |
US5281219A (en) * | 1990-11-23 | 1994-01-25 | Medtronic, Inc. | Multiple stimulation electrodes |
US5425752A (en) * | 1991-11-25 | 1995-06-20 | Vu'nguyen; Dung D. | Method of direct electrical myostimulation using acupuncture needles |
US5358514A (en) * | 1991-12-18 | 1994-10-25 | Alfred E. Mann Foundation For Scientific Research | Implantable microdevice with self-attaching electrodes |
US5324316A (en) * | 1991-12-18 | 1994-06-28 | Alfred E. Mann Foundation For Scientific Research | Implantable microstimulator |
US5193539A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Implantable microstimulator |
US5405367A (en) * | 1991-12-18 | 1995-04-11 | Alfred E. Mann Foundation For Scientific Research | Structure and method of manufacture of an implantable microstimulator |
US5193540A (en) * | 1991-12-18 | 1993-03-16 | Alfred E. Mann Foundation For Scientific Research | Structure and method of manufacture of an implantable microstimulator |
US5447526A (en) * | 1992-12-24 | 1995-09-05 | Karsdon; Jeffrey | Transcutaneous electric muscle/nerve controller/feedback unit |
US5713940A (en) * | 1992-12-24 | 1998-02-03 | Jeffrey Karsdon | Transcutaneous electric muscle/nerve controller/feedback unit |
US5291902A (en) * | 1993-01-11 | 1994-03-08 | Brent Carman | Incontinence treatment |
US5643330A (en) * | 1994-01-24 | 1997-07-01 | Medtronic, Inc. | Multichannel apparatus for epidural spinal cord stimulation |
US5501703A (en) * | 1994-01-24 | 1996-03-26 | Medtronic, Inc. | Multichannel apparatus for epidural spinal cord stimulator |
US5524624A (en) * | 1994-05-05 | 1996-06-11 | Amei Technologies Inc. | Apparatus and method for stimulating tissue growth with ultrasound |
US5833714A (en) * | 1996-01-18 | 1998-11-10 | Loeb; Gerald E. | Cochlear electrode array employing tantalum metal |
US7127297B2 (en) | 1996-06-07 | 2006-10-24 | Advanced Neuromodulation Systems, Inc. | Multiprogrammable tissue stimulator and method |
US20050090876A1 (en) * | 1996-06-07 | 2005-04-28 | Jay Law | Multiprogrammable tissue stimulator and method |
US7254445B2 (en) | 1996-06-07 | 2007-08-07 | Advanced Neuromodulation Systems, Inc. | Multiprogrammable tissue stimulator and method |
US20030195591A1 (en) * | 1996-06-07 | 2003-10-16 | Jay Law | Multiprogrammable tissue stimulator and method |
WO1998009679A1 (en) * | 1996-09-05 | 1998-03-12 | The Governors Of The University Of Alberta | Gastro-intestinal electrical pacemaker |
US6449511B1 (en) | 1996-09-05 | 2002-09-10 | University Technologies International Inc. | Gastrointestinal electrical stimulator having a variable electrical stimulus |
US6243607B1 (en) | 1996-09-05 | 2001-06-05 | University Technologies International Inc. | Gastro-intestinal electrical pacemaker |
US6026326A (en) * | 1997-01-13 | 2000-02-15 | Medtronic, Inc. | Apparatus and method for treating chronic constipation |
WO1998030280A1 (en) * | 1997-01-13 | 1998-07-16 | Medtronic, Inc. | Apparatus and method for treating chronic constipation |
US5957958A (en) * | 1997-01-15 | 1999-09-28 | Advanced Bionics Corporation | Implantable electrode arrays |
US6735474B1 (en) | 1998-07-06 | 2004-05-11 | Advanced Bionics Corporation | Implantable stimulator system and method for treatment of incontinence and pain |
US6941171B2 (en) | 1998-07-06 | 2005-09-06 | Advanced Bionics Corporation | Implantable stimulator methods for treatment of incontinence and pain |
US8805524B2 (en) | 1999-01-07 | 2014-08-12 | Boston Scientific Neuromodulation Corporation | System and method for displaying stimulation field generated by electrode array |
US9050473B2 (en) | 1999-01-07 | 2015-06-09 | Boston Sceintific Neuromodulation Corporation | System for normalizing amplitude programming of a tissue stimulator |
US20080221637A1 (en) * | 1999-01-07 | 2008-09-11 | Boston Scientific Neuromodulation Corporation | Implantable pulse generator having current steering means |
US20080215119A1 (en) * | 1999-01-07 | 2008-09-04 | Boston Scientific Neuromodulation Corporation | System and method for displaying stimulation field generated by electrode array |
US8401658B2 (en) | 1999-01-07 | 2013-03-19 | Boston Scientific Neuromodulation Corporation | System and method for displaying stimulation field generated by electrode array |
US7555346B1 (en) | 1999-01-07 | 2009-06-30 | Boston Scientific Neuromodulation Corporation | Implantable pulse generator having current steering means |
US8265762B2 (en) | 1999-01-07 | 2012-09-11 | Boston Scientific Neuromodulation Corporation | Implantable pulse generator having current steering means |
US7930030B2 (en) | 1999-01-07 | 2011-04-19 | Boston Scientific Neuromodulation Corporation | Implantable pulse generator having current steering means |
US20110060386A1 (en) * | 1999-01-07 | 2011-03-10 | Boston Scientific Neuromodulation Corporation | System and method for displaying stimulation field generated by electrode array |
US8121701B2 (en) | 1999-01-07 | 2012-02-21 | Boston Scientific Neuromodulation Corporation | System and method for displaying stimulation field generated by electrode array |
US6542776B1 (en) * | 1999-04-14 | 2003-04-01 | Transneuronix Inc. | Gastric stimulator apparatus and method for installing |
US20040147976A1 (en) * | 1999-04-14 | 2004-07-29 | Transneuronix, Inc. | Gastric stimulator apparatus and method for installing |
US6684104B2 (en) | 1999-04-14 | 2004-01-27 | Transneuronix, Inc. | Gastric stimulator apparatus and method for installing |
US6606523B1 (en) * | 1999-04-14 | 2003-08-12 | Transneuronix Inc. | Gastric stimulator apparatus and method for installing |
US8918174B2 (en) | 1999-07-27 | 2014-12-23 | Boston Scientific Neuromodulation Corporation | Patient programmer for implantable devices |
US9907957B2 (en) | 1999-07-27 | 2018-03-06 | Boston Scientific Neuromodulation Corporation | Patient programmer for implantable devices |
US20070276450A1 (en) * | 1999-07-27 | 2007-11-29 | Advanced Bionics Corporation | Rechargeable spinal cord stimulation system |
US20070293914A1 (en) * | 1999-07-27 | 2007-12-20 | Advanced Bionics Corporation | Patient programmer for implantable devices |
US7769462B2 (en) | 1999-07-27 | 2010-08-03 | Boston Scientific Neuromodulation Corporation | Rechargeable spinal cord stimulation system |
US7801615B2 (en) | 1999-07-27 | 2010-09-21 | Boston Scientific Neuromodulation Corporation | Rechargeable spinal cord stimulator system |
US7496404B2 (en) | 1999-07-27 | 2009-02-24 | Boston Scientific Neuromodulation Corporation | Rechargeable spinal cord stimulator system |
US6516227B1 (en) | 1999-07-27 | 2003-02-04 | Advanced Bionics Corporation | Rechargeable spinal cord stimulator system |
US6895280B2 (en) | 1999-07-27 | 2005-05-17 | Advanced Bionics Corporation | Rechargeable spinal cord stimulator system |
US20030191504A1 (en) * | 1999-07-30 | 2003-10-09 | Meadows Paul M. | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
US7818068B2 (en) | 1999-07-30 | 2010-10-19 | Boston Scientific Neuromodulation Corporation | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
US7177691B2 (en) | 1999-07-30 | 2007-02-13 | Advanced Bionics Corporation | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
US7184836B1 (en) | 1999-07-30 | 2007-02-27 | Advanced Bionics Corporation | Implantable devices using rechargeable zero-volt technology lithium-ion batteries |
US20070185551A1 (en) * | 1999-07-30 | 2007-08-09 | Advanced Bionics Corporation | Implantable Pulse Generators Using Rechargeable Zero-Volt Technology Lithium-Ion Batteries |
US7295878B1 (en) | 1999-07-30 | 2007-11-13 | Advanced Bionics Corporation | Implantable devices using rechargeable zero-volt technology lithium-ion batteries |
US6381496B1 (en) | 1999-10-01 | 2002-04-30 | Advanced Bionics Corporation | Parameter context switching for an implanted device |
US7319904B2 (en) | 2000-02-08 | 2008-01-15 | Medtronic, Inc. | Percutaneous Surgical lead body |
US20030229387A1 (en) * | 2000-02-08 | 2003-12-11 | Medtronic, Inc. | Surgical lead body |
US6659968B1 (en) | 2000-06-01 | 2003-12-09 | Advanced Bionics Corporation | Activity monitor for pain management efficacy measurement |
EP2277586A2 (en) | 2000-07-26 | 2011-01-26 | Boston Scientific Neuromodulation Corporation | Regarcheable spinal cord stimulator system |
WO2002009808A1 (en) | 2000-07-26 | 2002-02-07 | Advanced Bionics Corporation | Rechargeable spinal cord stimulator system |
EP2002861A2 (en) | 2000-07-26 | 2008-12-17 | Boston Scientific Neuromodulation Corporation | Rechargeable stimulator system |
EP2752221A2 (en) | 2000-07-26 | 2014-07-09 | Boston Scientific Neuromodulation Corporation | Rechargeable spinal cord stimulator system |
US6871099B1 (en) | 2000-08-18 | 2005-03-22 | Advanced Bionics Corporation | Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain |
US8214048B1 (en) | 2000-08-18 | 2012-07-03 | Boston Scientific Neuromodulation Corporation | Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction |
US20050119713A1 (en) * | 2000-08-18 | 2005-06-02 | Whitehurst Todd K. | Methods for implanting a spinal cord stimulator |
US7054689B1 (en) | 2000-08-18 | 2006-05-30 | Advanced Bionics Corporation | Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction |
US8588917B2 (en) | 2000-08-18 | 2013-11-19 | Boston Scientific Neuromodulation Corporation | Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction |
WO2002038217A3 (en) * | 2000-11-09 | 2002-10-31 | Neuropace Inc | Implantable neuromuscular stimulator for the treatment of gastrointestinal disorders |
US7212867B2 (en) | 2000-12-07 | 2007-05-01 | Medtronic, Inc. | Directional brain stimulation and recording leads |
US20020183817A1 (en) * | 2000-12-07 | 2002-12-05 | Paul Van Venrooij | Directional brain stimulation and recording leads |
US7009313B1 (en) | 2001-03-16 | 2006-03-07 | Advanced Bionics Corporation | Multi-compliance voltage generator in a multichannel current stimulator |
US20050143784A1 (en) * | 2001-05-01 | 2005-06-30 | Imran Mir A. | Gastrointestinal anchor with optimal surface area |
US20030164304A1 (en) * | 2001-05-01 | 2003-09-04 | Imran Mir A. | Aendoscopic instrument system@ |
US7483754B2 (en) | 2001-05-01 | 2009-01-27 | Intrapace, Inc. | Endoscopic instrument system for implanting a device in the stomach |
US20020165589A1 (en) * | 2001-05-01 | 2002-11-07 | Imran Mir A. | Gastric treatment and diagnosis device and method |
US7509174B2 (en) | 2001-05-01 | 2009-03-24 | Intrapace, Inc. | Gastric treatment/diagnosis device and attachment device and method |
US20090099415A1 (en) * | 2001-05-01 | 2009-04-16 | Intrapace, Inc. | Endoscopic Instrument System for Implanting a Device in the Stomach |
US7107100B2 (en) | 2001-05-01 | 2006-09-12 | Intrapace, Inc. | Aendoscopic instrument system@ |
US20060116735A1 (en) * | 2001-05-01 | 2006-06-01 | Imran Mir A | Gastric device and endoscopic delivery system |
US7590452B2 (en) | 2001-05-01 | 2009-09-15 | Intrapace, Inc. | Endoscopic system for attaching a device to a stomach |
US7120498B2 (en) | 2001-05-01 | 2006-10-10 | Intrapace, Inc. | Method and device for securing a functional device to a stomach |
US20060111753A1 (en) * | 2001-05-01 | 2006-05-25 | Imran Mir A | Gastric stimulation anchor and method |
US7371215B2 (en) | 2001-05-01 | 2008-05-13 | Intrapace, Inc. | Endoscopic instrument for engaging a device |
US20060089699A1 (en) * | 2001-05-01 | 2006-04-27 | Imran Mir A | Abdominally implanted stimulator and method |
US8364269B2 (en) | 2001-05-01 | 2013-01-29 | Intrapace, Inc. | Responsive gastric stimulator |
US20090299434A1 (en) * | 2001-05-01 | 2009-12-03 | Intrapace, Inc. | Endoscopic System For Attaching a Device to a Stomach |
US20060074458A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Digestive organ retention device |
US7643887B2 (en) | 2001-05-01 | 2010-01-05 | Intrapace, Inc. | Abdominally implanted stimulator and method |
US20080065169A1 (en) * | 2001-05-01 | 2008-03-13 | Intrapace, Inc. | Endoscopic Instrument for Engaging a Device |
US20060074457A1 (en) * | 2001-05-01 | 2006-04-06 | Imran Mir A | Pseudounipolar lead for stimulating a digestive organ |
US8190261B2 (en) | 2001-05-01 | 2012-05-29 | Intrapace, Inc. | Gastrointestinal anchor in optimal surface area |
US20060069414A1 (en) * | 2001-05-01 | 2006-03-30 | Imran Mir A | Endoscopic instrument system for implanting a device in the stomach |
US7689284B2 (en) | 2001-05-01 | 2010-03-30 | Intrapace, Inc. | Pseudounipolar lead for stimulating a digestive organ |
US7020531B1 (en) | 2001-05-01 | 2006-03-28 | Intrapace, Inc. | Gastric device and suction assisted method for implanting a device on a stomach wall |
US7076305B2 (en) | 2001-05-01 | 2006-07-11 | Intrapace, Inc. | Gastric device and instrument system and method |
US7016735B2 (en) | 2001-05-01 | 2006-03-21 | Intrapace, Inc. | Gastric anchor and method |
US8019422B2 (en) | 2001-05-01 | 2011-09-13 | Intrapace, Inc. | Gastric device and endoscopic delivery system |
US7702394B2 (en) | 2001-05-01 | 2010-04-20 | Intrapace, Inc. | Responsive gastric stimulator |
US7747322B2 (en) | 2001-05-01 | 2010-06-29 | Intrapace, Inc. | Digestive organ retention device |
US7979127B2 (en) | 2001-05-01 | 2011-07-12 | Intrapace, Inc. | Digestive organ retention device |
US20030167025A1 (en) * | 2001-05-01 | 2003-09-04 | Imran Mir A. | Gastric treatment/diagnosis device and attachment device and method |
US7756582B2 (en) | 2001-05-01 | 2010-07-13 | Intrapace, Inc. | Gastric stimulation anchor and method |
US20040243195A1 (en) * | 2001-05-01 | 2004-12-02 | Imran Mir A. | Endoscopic system for attaching a device to a stomach |
US20050236277A9 (en) * | 2001-05-01 | 2005-10-27 | Imran Mir A | Aendoscopic instrument system@ |
US9668690B1 (en) | 2001-05-01 | 2017-06-06 | Intrapace, Inc. | Submucosal gastric implant device and method |
US20100234917A1 (en) * | 2001-05-01 | 2010-09-16 | Intrapace, Inc. | Digestive Organ Retention Device |
US9517152B2 (en) | 2001-05-01 | 2016-12-13 | Intrapace, Inc. | Responsive gastric stimulator |
US20090018605A1 (en) * | 2001-05-01 | 2009-01-15 | Intrapace, Inc. | Gastric Treatment/Diagnosis Device and Attachment Device and Method |
US20100305656A1 (en) * | 2001-05-01 | 2010-12-02 | Intrapace, Inc. | Gastric Simulation Anchor and Method |
US7099718B1 (en) | 2001-05-29 | 2006-08-29 | Advanced Bionics Corporation | Neural stimulation lead fixation |
US7983766B1 (en) | 2001-05-29 | 2011-07-19 | Boston Scientific Neuromodulation Corporation | Method of securing a neural stimulation lead |
US8295945B1 (en) | 2001-05-29 | 2012-10-23 | Boston Scientific Neuromodulation Corporation | Neural stimulation lead fixation |
US8554342B2 (en) | 2001-05-29 | 2013-10-08 | Boston Scientific Neuromodulation Corporation | Neural stimulation lead fixation |
US7856277B1 (en) | 2001-05-29 | 2010-12-21 | Boston Scientific Neuromodulation Corporation | Neural stimulation lead fixation |
US20050055063A1 (en) * | 2001-07-20 | 2005-03-10 | Loeb Gerald E. | Method and apparatus for the treatment of urinary tract dysfunction |
US7263402B2 (en) | 2001-08-13 | 2007-08-28 | Advanced Bionics Corporation | System and method of rapid, comfortable parameter switching in spinal cord stimulation |
US7571001B2 (en) | 2001-08-13 | 2009-08-04 | Boston Scientific Neuromodulation Corporation | System and method of rapid, comfortable parameter switching in spinal cord stimulation |
US20030032992A1 (en) * | 2001-08-13 | 2003-02-13 | Thacker James R. | System and method of rapid, Comfortable parameter switching in spinal cord stimulation |
US20090281599A1 (en) * | 2001-08-13 | 2009-11-12 | Boston Scientific Neuromodulation Corporation | System and method of rapid, comfortable parameter switching in spinal cord stimulation |
US8036747B2 (en) | 2001-08-13 | 2011-10-11 | Boston Scientific Neuromodulation Corporation | System and method of rapid, comfortable parameter switching in spinal cord stimulation |
US20030078633A1 (en) * | 2001-09-28 | 2003-04-24 | Firlik Andrew D. | Methods and implantable apparatus for electrical therapy |
US20030093134A1 (en) * | 2001-11-02 | 2003-05-15 | Kerry Bradley | Method for increasing the therapeutic ratio/usage range in a neurostimulator |
US7127296B2 (en) | 2001-11-02 | 2006-10-24 | Advanced Bionics Corporation | Method for increasing the therapeutic ratio/usage range in a neurostimulator |
US20090036946A1 (en) * | 2001-11-29 | 2009-02-05 | American Medical Systems, Inc. | Pelvic disorder treatments |
US7684869B2 (en) | 2001-12-04 | 2010-03-23 | Boston Scientific Neuromodulation Corporation | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
US10022540B2 (en) | 2001-12-04 | 2018-07-17 | Boston Scientific Neuromodulation Corporation | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
US20060122654A1 (en) * | 2001-12-04 | 2006-06-08 | Kerry Bradley | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
US7853330B2 (en) | 2001-12-04 | 2010-12-14 | Boston Scientific Neuromodulation Corporation | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
US20060122653A1 (en) * | 2001-12-04 | 2006-06-08 | Kerry Bradley | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
US20100305631A1 (en) * | 2001-12-04 | 2010-12-02 | Boston Scientific Neuromodulation Corporation | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
US9610439B2 (en) | 2001-12-04 | 2017-04-04 | Boston Scientific Neuromodulation Corporation | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
US9192760B2 (en) | 2001-12-04 | 2015-11-24 | Boston Scientific Neuromodulation Corporation | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
US8682447B2 (en) | 2001-12-04 | 2014-03-25 | Boston Scientific Neuromodulation Corporation | Apparatus and method for determining the relative position and orientation of neurostimulation leads |
US8065013B2 (en) | 2002-02-04 | 2011-11-22 | Boston Scientific Neuromodulation Corporation | Method for optimizing search for spinal cord stimulation parameter setting |
US20050245987A1 (en) * | 2002-02-04 | 2005-11-03 | Woods Carla M | Method for programming implantable device |
US20070265679A1 (en) * | 2002-02-04 | 2007-11-15 | Advanced Bionics Corporation | Method for optimizing search for spinal cord stimulation parameter setting |
US7881805B2 (en) | 2002-02-04 | 2011-02-01 | Boston Scientific Neuromodulation Corporation | Method for optimizing search for spinal cord stimulation parameter settings |
US9687653B2 (en) | 2002-02-04 | 2017-06-27 | Boston Scientific Neuromodulation Corporation | Method for programming implantabale device |
US9227065B2 (en) | 2002-02-04 | 2016-01-05 | Boston Scientific Neuromodulation Corporation | Method for programming implantable device |
US7991482B2 (en) | 2002-02-04 | 2011-08-02 | Boston Scientific Neuromodulation Corporation | Method for optimizing search for spinal cord stimulation parameter setting |
US7146223B1 (en) | 2002-02-04 | 2006-12-05 | Advanced Bionics Corporation | Method for optimizing search for spinal cord stimulation parameter settings |
US20080071325A1 (en) * | 2002-02-04 | 2008-03-20 | Advanced Bionics Corporation | Method for optimizing search for spinal cord stimulation parameter setting |
US8233991B2 (en) | 2002-02-04 | 2012-07-31 | Boston Scientific Neuromodulation Corporation | Method for programming implantable device |
US9089706B2 (en) | 2002-02-12 | 2015-07-28 | Boston Scientific Neuromodulation Corporation | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance |
US20030153959A1 (en) * | 2002-02-12 | 2003-08-14 | Thacker James R. | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed coupling efficiency |
US7317948B1 (en) | 2002-02-12 | 2008-01-08 | Boston Scientific Scimed, Inc. | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance |
US9205263B2 (en) | 2002-02-12 | 2015-12-08 | Boston Scientific Neuromodulation Corporation | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance |
US20100262209A1 (en) * | 2002-02-12 | 2010-10-14 | Boston Scientific Neuromodulation Corporation | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance |
US7801621B1 (en) | 2002-02-12 | 2010-09-21 | Boston Scientific Neuromodulation Corporation | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed pressure changes |
US7742823B2 (en) | 2002-02-12 | 2010-06-22 | Boston Scientific Neuromodulation Corporation | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance |
US20110060387A1 (en) * | 2002-02-12 | 2011-03-10 | Boston Scientific Neuromodulation Corporation | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance |
US8788056B2 (en) | 2002-02-12 | 2014-07-22 | Boston Scientific Neuromodulation Corporation | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance |
US7239920B1 (en) | 2002-02-12 | 2007-07-03 | Advanced Bionics Corporation | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed pressure changes |
US8626312B2 (en) | 2002-02-12 | 2014-01-07 | Boston Scientific Neuromodulation Corporation | Neural stimulation system providing auto adjustment of stimulus output as a function of sensed impedance |
US7953497B1 (en) | 2002-08-06 | 2011-05-31 | Boston Scientific Neuromodulation Corporation | Insertion stylet |
US7363079B1 (en) | 2002-09-26 | 2008-04-22 | Boston Scientific Neuromodulation Corporation | Power qualifier for electrical stimulation configurations |
US7127298B1 (en) | 2002-10-18 | 2006-10-24 | Advanced Bionics Corporation | Switched-matrix output for multi-channel implantable stimulator |
US20040260310A1 (en) * | 2002-10-23 | 2004-12-23 | Medtronic, Inc. | Medical lead and method |
US7499755B2 (en) | 2002-10-23 | 2009-03-03 | Medtronic, Inc. | Paddle-style medical lead and method |
US20050182470A1 (en) * | 2002-10-23 | 2005-08-18 | Medtronic, Inc. | Paddle-style medical lead and method |
US7797057B2 (en) | 2002-10-23 | 2010-09-14 | Medtronic, Inc. | Medical paddle lead and method for spinal cord stimulation |
US20040116978A1 (en) * | 2002-12-06 | 2004-06-17 | Kerry Bradley | Method for determining stimulation parameters |
US7174215B2 (en) | 2002-12-06 | 2007-02-06 | Advanced Bionics Corporation | Method for determining stimulation parameters |
US20040158170A1 (en) * | 2003-02-04 | 2004-08-12 | Overstreet Edward H. | Method of rapid neural response measurement without amplitude attenuation |
US7277759B2 (en) | 2003-02-04 | 2007-10-02 | Advanced Bionics Corporation | Method of rapid neural response measurement without amplitude attenuation |
US20070083240A1 (en) * | 2003-05-08 | 2007-04-12 | Peterson David K L | Methods and systems for applying stimulation and sensing one or more indicators of cardiac activity with an implantable stimulator |
US7162304B1 (en) | 2003-05-08 | 2007-01-09 | Advanced Bionics Corporation | System for measuring cardiac rhythm parameters for assessment of spinal cord stimulation |
US20050004622A1 (en) * | 2003-07-03 | 2005-01-06 | Advanced Neuromodulation Systems | System and method for implantable pulse generator with multiple treatment protocols |
US20060287686A1 (en) * | 2003-07-03 | 2006-12-21 | Advanced Neuromodulation Systems, Inc. | System and method for implantable device with one or more stored treatment protocols and transmission to external device |
US7603179B1 (en) | 2003-09-16 | 2009-10-13 | Boston Scientific Neuromodulation Corporation | System and method for lead fixation |
US8285397B2 (en) | 2003-09-16 | 2012-10-09 | Boston Scientific Neuromodulation Corporation | System and method for lead fixation |
US7437197B2 (en) | 2003-10-23 | 2008-10-14 | Medtronic, Inc. | Medical lead and manufacturing method therefor |
US20050090885A1 (en) * | 2003-10-23 | 2005-04-28 | Medtronic, Inc. | Medical lead and manufacturing method therefor |
US20110009920A1 (en) * | 2003-12-19 | 2011-01-13 | Boston Scientific Neuromodulation Corporation | Skull-mounted electrical stimulation system and method for treating patients |
US20060293723A1 (en) * | 2003-12-19 | 2006-12-28 | Whitehurst Todd K | Skull-mounted electrical stimulation system and method for treating patients |
US7769461B2 (en) | 2003-12-19 | 2010-08-03 | Boston Scientific Neuromodulation Corporation | Skull-mounted electrical stimulation system and method for treating patients |
US8606367B2 (en) | 2004-04-30 | 2013-12-10 | Boston Scientific Neuromodulation Corporation | Insertion tool for paddle-style electrode |
US8706259B2 (en) | 2004-04-30 | 2014-04-22 | Boston Scientific Neuromodulation Corporation | Insertion tool for paddle-style electrode |
US8805544B2 (en) | 2004-04-30 | 2014-08-12 | Boston Scientific Neuromodulation Corporation | Insertion tool for paddle-style electrode |
US8805543B2 (en) | 2004-04-30 | 2014-08-12 | Boston Scientific Neuromodulation Corporation | Insertion tool for paddle-style electrode |
US8224459B1 (en) | 2004-04-30 | 2012-07-17 | Boston Scientific Neuromodulation Corporation | Insertion tool for paddle-style electrode |
US9320899B2 (en) | 2004-05-28 | 2016-04-26 | Boston Scientific Neuromodulation Corporation | Low power loss current digital-to-analog converter used in an implantable pulse generator |
US7539538B2 (en) | 2004-05-28 | 2009-05-26 | Boston Science Neuromodulation Corporation | Low power loss current digital-to-analog converter used in an implantable pulse generator |
US20090204174A1 (en) * | 2004-05-28 | 2009-08-13 | Boston Scientific Neuromodulation Corporation | Low Power Loss Current Digital-to-Analog Converter Used in an Implantable Pulse Generator |
US8750985B2 (en) | 2004-05-28 | 2014-06-10 | Boston Scientific Neuromodulation Corporation | Low power loss current digital-to-analog converter used in an implantable pulse generator |
US20050267546A1 (en) * | 2004-05-28 | 2005-12-01 | Jordi Parramon | Low power loss current digital-to-analog converter used in an implantable pulse generator |
USRE46582E1 (en) | 2004-06-07 | 2017-10-24 | DePuy Synthes Products, Inc. | Orthopaedic implant with sensors |
US20060052782A1 (en) * | 2004-06-07 | 2006-03-09 | Chad Morgan | Orthopaedic implant with sensors |
US8083741B2 (en) | 2004-06-07 | 2011-12-27 | Synthes Usa, Llc | Orthopaedic implant with sensors |
US20060030918A1 (en) * | 2004-08-04 | 2006-02-09 | Chinn Kenny K | Operating room lead connector |
US7548788B2 (en) | 2004-08-04 | 2009-06-16 | Boston Scientific Neuromodulation Corporation | Operating room lead connector |
US8504172B2 (en) | 2004-08-04 | 2013-08-06 | Boston Scientific Neuromodulation Corporation | Operating room lead connector |
US8239042B2 (en) | 2004-08-04 | 2012-08-07 | Boston Scientific Neuromodulation Corporation | Operating room lead connector |
US20090248096A1 (en) * | 2004-08-04 | 2009-10-01 | Boston Scientific Neuromodulation Corporation | Operating room lead connector |
US8934976B2 (en) | 2004-09-23 | 2015-01-13 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US9259342B2 (en) | 2004-09-23 | 2016-02-16 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US9662240B2 (en) | 2004-09-23 | 2017-05-30 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors |
US20060070334A1 (en) * | 2004-09-27 | 2006-04-06 | Blue Hen, Llc | Sidewall plank for constructing a trailer and associated trailer sidewall construction |
US20060195159A1 (en) * | 2004-12-03 | 2006-08-31 | Kerry Bradley | System and method for choosing electrodes in an implanted stimulator device |
US10537741B2 (en) | 2004-12-03 | 2020-01-21 | Boston Scientific Neuromodulation Corporation | System and method for choosing electrodes in an implanted stimulator device |
US8739403B2 (en) | 2005-01-31 | 2014-06-03 | Medtronic, Inc. | Method of manufacturing a medical lead |
US7761985B2 (en) | 2005-01-31 | 2010-07-27 | Medtronic, Inc. | Method of manufacturing a medical lead |
US20060173262A1 (en) * | 2005-01-31 | 2006-08-03 | Medtronic, Inc. | Medical lead with segmented electrode |
US8000808B2 (en) | 2005-01-31 | 2011-08-16 | Medtronic, Inc. | Medical lead with segmented electrode |
US20060168805A1 (en) * | 2005-01-31 | 2006-08-03 | Michael Hegland | Method of manufacturing a medical lead |
US20060224187A1 (en) * | 2005-04-01 | 2006-10-05 | Kerry Bradley | Apparatus and methods for detecting position and migration of neurostimulation leads |
US9067075B2 (en) | 2005-04-01 | 2015-06-30 | Boston Scientific Neuromodulation Corporation | Apparatus and methods for detecting migration of neurostimulation leads |
US8718757B2 (en) | 2005-04-01 | 2014-05-06 | Boston Scientific Neuromodulation Corporation | Apparatus and methods for detecting migration of neurostimulation leads |
US20060224222A1 (en) * | 2005-04-01 | 2006-10-05 | Kerry Bradley | Apparatus and methods for detecting migration of neurostimulation leads |
US8131357B2 (en) | 2005-04-01 | 2012-03-06 | Boston Scientific Neuromodulation Corporation | Apparatus and methods for detecting migration of neurostimulation leads |
US8401665B2 (en) | 2005-04-01 | 2013-03-19 | Boston Scientific Neuromodulation Corporation | Apparatus and methods for detecting position and migration of neurostimulation leads |
US8972023B2 (en) | 2005-04-01 | 2015-03-03 | Boston Scientific Neuromodulation Corporation | Apparatus and methods for detecting position and migration of neurostimulation leads |
WO2006112852A2 (en) | 2005-04-13 | 2006-10-26 | Advanced Bionics Corporation | Method for programming implantable device |
US20060241721A1 (en) * | 2005-04-26 | 2006-10-26 | Sridhar Kothandaraman | Display graphics for use in stimulation therapies |
US7657317B2 (en) | 2005-04-26 | 2010-02-02 | Boston Scientific Neuromodulation Corporation | Evaluating stimulation therapies and patient satisfaction |
US7979119B2 (en) | 2005-04-26 | 2011-07-12 | Boston Scientific Neuromodulation Corporation | Display graphics for use in stimulation therapies |
US20060241722A1 (en) * | 2005-04-26 | 2006-10-26 | Thacker James R | Evaluating stimulation therapies and patient satisfaction |
US8620436B2 (en) | 2005-07-08 | 2013-12-31 | Boston Scientific Neuromodulation Corporation | Current generation architecture for an implantable stimulator device having coarse and fine current control |
US9308371B2 (en) | 2005-07-08 | 2016-04-12 | Boston Scientific Neuromodulation Corporation | Current generation architecture for an implantable stimulator device having coarse and fine current control |
EP2308554A1 (en) | 2005-07-08 | 2011-04-13 | Boston Scientific Neuromodulation Corporation | Current output architecture for an implantable stimulator device |
US11452873B2 (en) | 2005-07-08 | 2022-09-27 | Boston Scientific Neuromodulation Corporation | Current generation architecture for an implantable stimulator device having coarse and fine current control |
US10744325B2 (en) | 2005-07-08 | 2020-08-18 | Boston Scientific Neuromodulation Corporation | Current generation architecture for an implantable stimulator device having coarse and fine current control |
US9931502B2 (en) | 2005-07-08 | 2018-04-03 | Boston Scientific Neuromodulation Corporation | Current output architecture for an implantable stimulator device |
US10744318B2 (en) | 2005-07-08 | 2020-08-18 | Boston Scientific Neuromodulation Corporation | Current output architecture for an implantable stimulator device |
US9037249B2 (en) | 2005-07-08 | 2015-05-19 | Boston Scientific Neuromodulation Corporation | Current generation architecture for an implantable stimulator device having coarse and fine current control |
EP2077135A2 (en) | 2005-07-08 | 2009-07-08 | Boston Scientific Neuromodulation Corporation | Current output architecture for an implantable stimulator device |
US8606362B2 (en) | 2005-07-08 | 2013-12-10 | Boston Scientific Neuromodulation Corporation | Current output architecture for an implantable stimulator device |
US9314617B2 (en) | 2005-07-08 | 2016-04-19 | Boston Scientific Neuromodulation Corporation | Current output architecture for an implantable stimulator device |
US20070038250A1 (en) * | 2005-07-08 | 2007-02-15 | Yuping He | Current output architecture for an implantable stimulator device |
US8706238B2 (en) | 2005-07-08 | 2014-04-22 | Boston Scientific Neuromodulation Corporation | Current generation architecture for an implantable stimulator device having coarse and fine current control |
US20070100399A1 (en) * | 2005-07-08 | 2007-05-03 | Advanced Bionics Corporation | Current Generation Architecture for an Implantable Stimulator Device Having Coarse and Fine Current Control |
US9956411B2 (en) | 2005-07-08 | 2018-05-01 | Boston Scientific Neuromodulation Corporation | Current generation architecture for an implantable stimulator device having coarse and fine current control |
WO2007008212A1 (en) | 2005-07-08 | 2007-01-18 | Advanced Bionics Corporation | Current output architecture for an implantable stimulator device |
US20100286749A1 (en) * | 2005-07-08 | 2010-11-11 | Boston Scientific Neuromodulation Corporation | Current Generation Architecture for an Implantable Stimulator Device Having Coarse and Fine Current Control |
US8265768B2 (en) | 2005-08-30 | 2012-09-11 | Boston Scientific Neuromodulation Corporation | Telemetry protocol for ultra low error rates useable in implantable medical devices |
US20070049991A1 (en) * | 2005-08-30 | 2007-03-01 | Klostermann Daniel J | Telemetry-based wake up of an implantable medical device |
US20070049990A1 (en) * | 2005-08-30 | 2007-03-01 | Klostermann Daniel J | Telemetry protocol for ultra low error rates useable in implantable medical devices |
US8428745B2 (en) | 2005-08-30 | 2013-04-23 | Boston Scientific Neuromodulation Corporation | Telemetry protocol for ultra low error rates useable in implantable medical devices |
US7725194B2 (en) | 2005-08-30 | 2010-05-25 | Boston Scientific Neuromodulation Corporation | Telemetry-based wake up of an implantable medical device |
US7616996B2 (en) | 2005-09-01 | 2009-11-10 | Intrapace, Inc. | Randomized stimulation of a gastrointestinal organ |
US8032223B2 (en) | 2005-09-01 | 2011-10-04 | Intrapace, Inc. | Randomized stimulation of a gastrointestinal organ |
US20070049986A1 (en) * | 2005-09-01 | 2007-03-01 | Imran Mir A | Randomized stimulation of a gastrointestinal organ |
US20100023087A1 (en) * | 2005-09-01 | 2010-01-28 | Intrapace, Inc. | Randomized stimulation of a gastrointestinal organ |
WO2007030496A1 (en) | 2005-09-06 | 2007-03-15 | Advanced Bionics Corporation | Ultracapacitor powered implantable pulse generator with dedicated power supply |
US20070055308A1 (en) * | 2005-09-06 | 2007-03-08 | Haller Matthew I | Ultracapacitor powered implantable pulse generator with dedicated power supply |
US8175717B2 (en) | 2005-09-06 | 2012-05-08 | Boston Scientific Neuromodulation Corporation | Ultracapacitor powered implantable pulse generator with dedicated power supply |
US20070053466A1 (en) * | 2005-09-08 | 2007-03-08 | Klostermann Daniel J | Frequency shift keying demodulation technique |
US8798754B2 (en) | 2005-09-26 | 2014-08-05 | Venturi Group, Llc | Neural blocking therapy |
US20070073354A1 (en) * | 2005-09-26 | 2007-03-29 | Knudson Mark B | Neural blocking therapy |
US20080154333A1 (en) * | 2005-09-26 | 2008-06-26 | Venturi Group, Llc | Neural blocking therapy |
US20090018606A1 (en) * | 2005-10-12 | 2009-01-15 | Intrapace, Inc. | Methods and Devices for Stimulation of an Organ with the Use of a Transectionally Placed Guide Wire |
WO2007067825A1 (en) | 2005-12-07 | 2007-06-14 | Advanced Bionics Corporation | Battery protection and zero-volt battery recovery system for an implantable medical device |
EP2072080A2 (en) | 2005-12-07 | 2009-06-24 | Boston Scientific Neuromodulation Corporation | Battery protection and zero-volt battery recovery system for an implantable medical device |
US7444181B2 (en) | 2005-12-14 | 2008-10-28 | Boston Scientific Neuromodulation Corporation | Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device |
US20070135868A1 (en) * | 2005-12-14 | 2007-06-14 | Shi Jess W | Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device |
US8781598B2 (en) | 2005-12-14 | 2014-07-15 | Boston Scientific Neuromodulation Corporation | Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device |
US8175719B2 (en) | 2005-12-14 | 2012-05-08 | Boston Scientific Neuromodulation Corporation | Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device |
US9061152B2 (en) | 2005-12-14 | 2015-06-23 | Boston Scientific Neuromodulation Corporation | Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device |
US20080319514A1 (en) * | 2005-12-14 | 2008-12-25 | Boston Scientific Neuromodulation Corporation | Techniques for Sensing and Adjusting a Compliance Voltage in an Implantable Stimulator Device |
US8538548B2 (en) | 2005-12-14 | 2013-09-17 | Boston Scientific Neuromodulation Corporation | Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device |
US20070156207A1 (en) * | 2006-01-04 | 2007-07-05 | Sridhar Kothandaraman | Expanding single channel stimulator capability on multi-area stimulation programs |
US20070260288A1 (en) * | 2006-03-03 | 2007-11-08 | Yossi Gross | Apparatus for treating stress and urge incontinence |
US20090043356A1 (en) * | 2006-03-03 | 2009-02-12 | Ams Research Corporation | Electrode Sling for Treating Stress and Urge Incontinence |
US9889298B2 (en) | 2006-03-03 | 2018-02-13 | Astora Women's Health, Llc | Electrode sling for treating stress and urge incontinence |
US8195296B2 (en) | 2006-03-03 | 2012-06-05 | Ams Research Corporation | Apparatus for treating stress and urge incontinence |
US20090157091A1 (en) * | 2006-04-04 | 2009-06-18 | Ams Research Corporation | Apparatus for Implanting Neural Stimulation Leads |
US20070239228A1 (en) * | 2006-04-07 | 2007-10-11 | Kerry Bradley | System and method using multiple timing channels for electrode adjustement during set up of an implanted stimulator device |
US7805197B2 (en) | 2006-04-07 | 2010-09-28 | Boston Scientific Neuromodulation Corporation | System and method using multiple timing channels for electrode adjustment during set up of an implanted stimulator device |
US20070265675A1 (en) * | 2006-05-09 | 2007-11-15 | Ams Research Corporation | Testing Efficacy of Therapeutic Mechanical or Electrical Nerve or Muscle Stimulation |
US20100076254A1 (en) * | 2006-06-05 | 2010-03-25 | Ams Research Corporation | Electrical muscle stimulation to treat fecal incontinence and/or pelvic prolapse |
US8160710B2 (en) | 2006-07-10 | 2012-04-17 | Ams Research Corporation | Systems and methods for implanting tissue stimulation electrodes in the pelvic region |
US20090012592A1 (en) * | 2006-07-10 | 2009-01-08 | Ams Research Corporation | Tissue anchor |
US20080009914A1 (en) * | 2006-07-10 | 2008-01-10 | Ams Research Corporation | Systems and Methods for Implanting Tissue Stimulation Electrodes in the Pelvic Region |
US20080027500A1 (en) * | 2006-07-28 | 2008-01-31 | Advanced Bionics Corporation | Charger With Orthogonal PCB For Implantable Medical Device |
US9333367B2 (en) | 2006-07-28 | 2016-05-10 | Boston Scientific Neuromodulation Corporation | Charger with orthogonal PCB for implantable medical device |
US9002445B2 (en) | 2006-07-28 | 2015-04-07 | Boston Scientific Neuromodulation Corporation | Charger with orthogonal PCB for implantable medical device |
US7509175B2 (en) | 2006-08-03 | 2009-03-24 | Intrapace, Inc. | Method and devices for stimulation of an organ with the use of a transectionally placed guide wire |
US20080058876A1 (en) * | 2006-09-06 | 2008-03-06 | Giancarlo Barolat | Implantable reel for coiling an implantable elongated member |
US7769443B2 (en) | 2006-09-06 | 2010-08-03 | Giancarlo Barolat | Implantable reel for coiling an implantable elongated member |
US10456585B2 (en) | 2006-10-26 | 2019-10-29 | Boston Scientific Neuromodulation Corporation | System and method to automatically maintain electrical stimulation intensity |
US11439831B2 (en) | 2006-10-26 | 2022-09-13 | Boston Scientific Neuromodulation Corporation | Automatic adjustment to maintain evoked potential feature |
US20080103559A1 (en) * | 2006-10-26 | 2008-05-01 | Advanced Bionics Corporation | Method of maintaining intensity output while adjusting pulse width or amplitude |
US9943694B2 (en) | 2006-10-26 | 2018-04-17 | Boston Scientific Neuromodulation Corporation | System and method to automatically maintain electrical stimulation intensity |
US9352161B2 (en) | 2006-10-26 | 2016-05-31 | Boston Scientific Neuromodulation Corporation | Method of maintaining intensity output while adjusting pulse width or amplitude |
US10561835B2 (en) | 2006-10-31 | 2020-02-18 | Medtronic, Inc. | Implantable medical lead with threaded fixation |
US20080132970A1 (en) * | 2006-12-05 | 2008-06-05 | Giancarlo Barolat | Method and system for treatment of intractable scrotal and/or testicular pain |
US8554337B2 (en) | 2007-01-25 | 2013-10-08 | Giancarlo Barolat | Electrode paddle for neurostimulation |
US20080183224A1 (en) * | 2007-01-25 | 2008-07-31 | Giancarlo Barolat | Electrode paddle for neurostimulation |
US20080188909A1 (en) * | 2007-02-01 | 2008-08-07 | Boston Scientific Neuromodulation Corporation | Neurostimulation system and method for measuring patient activity |
US8594785B2 (en) | 2007-02-01 | 2013-11-26 | Boston Scientific Neuromodulation Corporation | Neurostimulation system and method for measuring patient activity |
US8549015B2 (en) | 2007-05-01 | 2013-10-01 | Giancarlo Barolat | Method and system for distinguishing nociceptive pain from neuropathic pain |
US20110172742A1 (en) * | 2007-05-14 | 2011-07-14 | Boston Scientific Neuromodulation Corporation | Smart charger alignment indicator |
US8044635B2 (en) | 2007-05-14 | 2011-10-25 | Boston Scientific Neuromodulation Corporation | Charger alignment indicator with adjustable threshold |
US7932696B2 (en) | 2007-05-14 | 2011-04-26 | Boston Scientific Neuromodulation Corporation | Charger alignment indicator with adjustable threshold |
EP2495015A1 (en) | 2007-05-14 | 2012-09-05 | Boston Scientific Neuromodulation Corporation | Smart charger alignment indicator |
US8598841B2 (en) | 2007-05-14 | 2013-12-03 | Boston Scientific Neuromodulation Corporation | Charger alignment indicator with adjustable threshold |
US8612018B2 (en) | 2007-05-22 | 2013-12-17 | Ivor Stephen Gillbe | Array stimulator |
WO2008142402A1 (en) | 2007-05-22 | 2008-11-27 | Ivor Stephen Gillbe | Array stimulator |
US20100049289A1 (en) * | 2007-07-10 | 2010-02-25 | Ams Research Corporation | Tissue anchor |
US8774942B2 (en) | 2007-07-10 | 2014-07-08 | Ams Research Corporation | Tissue anchor |
US9427573B2 (en) | 2007-07-10 | 2016-08-30 | Astora Women's Health, Llc | Deployable electrode lead anchor |
US8214057B2 (en) | 2007-10-16 | 2012-07-03 | Giancarlo Barolat | Surgically implantable electrodes |
US20090099439A1 (en) * | 2007-10-16 | 2009-04-16 | Giancarlo Barolat | Surgically implantable electrodes |
US20090112281A1 (en) * | 2007-10-26 | 2009-04-30 | Medtronic, Inc. | Medical device configuration based on sensed brain signals |
US7983757B2 (en) | 2007-10-26 | 2011-07-19 | Medtronic, Inc. | Medical device configuration based on sensed brain signals |
US8185207B2 (en) | 2007-10-26 | 2012-05-22 | Medtronic, Inc. | Medical device configuration based on sensed brain signals |
US20090287279A1 (en) * | 2008-05-15 | 2009-11-19 | Boston Scientific Neuromodulation Corporation | Current steering for an implantable stimulator device involving fractionalized stimulation pulses |
US7890182B2 (en) | 2008-05-15 | 2011-02-15 | Boston Scientific Neuromodulation Corporation | Current steering for an implantable stimulator device involving fractionalized stimulation pulses |
US10293166B2 (en) | 2008-05-15 | 2019-05-21 | Boston Scientific Neuromodulation Corporation | Fractionalized stimulation pulses in an implantable stimulator device |
US9782593B2 (en) | 2008-05-15 | 2017-10-10 | Boston Scientific Neuromodulation Corporation | Fractionalized stimulation pulses in an implantable stimulator device |
US8812131B2 (en) | 2008-05-15 | 2014-08-19 | Boston Scientific Neuromodulation Corporation | Current steering for an implantable stimulator device involving fractionalized stimulation pulses |
US9289610B2 (en) | 2008-05-15 | 2016-03-22 | Boston Scientific Neuromodulation Corporation | Fractionalized stimulation pulses in an implantable stimulator device |
US20100262210A1 (en) * | 2008-05-15 | 2010-10-14 | Boston Scientific Neuromodulation Corporation | Current Steering for an Implantable Stimulator Device Involving Fractionalized Stimulation Pulses |
US9393423B2 (en) | 2008-05-15 | 2016-07-19 | Boston Scientific Neuromodulation Corporation | Fractionalized stimulation pulses in an implantable stimulator device |
US20100010582A1 (en) * | 2008-07-11 | 2010-01-14 | Boston Scientific Neuromodulation Corporation | Medical system and method for setting programmable heat limits |
US8131358B2 (en) | 2008-07-24 | 2012-03-06 | Boston Scientific Neuromodulation Corporation | System and method for maintaining a distribution of currents in an electrode array using independent voltage sources |
US20100023069A1 (en) * | 2008-07-24 | 2010-01-28 | Boston Scientific Neuromodulation Corporation | System and method for maintaining a distribution of currents in an electrode array using independent voltage sources |
US8055337B2 (en) | 2008-07-24 | 2011-11-08 | Boston Scientific Neuromodulation Corporation | System and method for maintaining a distribution of currents in an electrode array using independent voltage sources |
US20100023070A1 (en) * | 2008-07-24 | 2010-01-28 | Boston Scientific Neuromodulation Corporation | System and method for maintaining a distribution of currents in an electrode array using independent voltage sources |
US20100087706A1 (en) * | 2008-09-30 | 2010-04-08 | Intrapace, Inc. | Lead Access |
US9227075B2 (en) | 2008-12-03 | 2016-01-05 | Boston Scientific Neuromodulation Corporation | External charger with adjustable alignment indicator |
US10010717B2 (en) | 2008-12-03 | 2018-07-03 | Boston Scientific Neuromodulation Corporation | External charger with adjustable alignment indicator |
US10737103B2 (en) | 2008-12-03 | 2020-08-11 | Boston Scientific Neuromodulation Corporation | External charger with adjustable alignment indicator |
US20100137948A1 (en) * | 2008-12-03 | 2010-06-03 | Boston Scientific Neuromodulation Corporation | External charger with adjustable alignment indicator |
US8255057B2 (en) | 2009-01-29 | 2012-08-28 | Nevro Corporation | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
US8509906B2 (en) | 2009-01-29 | 2013-08-13 | Nevro Corporation | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
US11883670B2 (en) | 2009-01-29 | 2024-01-30 | Nevro Corp. | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
US8849410B2 (en) | 2009-01-29 | 2014-09-30 | Nevro Corporation | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
US10918867B2 (en) | 2009-01-29 | 2021-02-16 | Nevro Corp. | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
US10179241B2 (en) | 2009-01-29 | 2019-01-15 | Nevro Corp. | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
US10173065B2 (en) | 2009-01-29 | 2019-01-08 | Nevro Corp. | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
US9403013B2 (en) | 2009-01-29 | 2016-08-02 | Nevro Corporation | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
US20110046660A1 (en) * | 2009-02-13 | 2011-02-24 | Intrapace, Inc. | Endoscopic Forceps With Removable Handle |
US20100217340A1 (en) * | 2009-02-23 | 2010-08-26 | Ams Research Corporation | Implantable Medical Device Connector System |
US9539433B1 (en) | 2009-03-18 | 2017-01-10 | Astora Women's Health, Llc | Electrode implantation in a pelvic floor muscular structure |
US8715181B2 (en) | 2009-04-03 | 2014-05-06 | Intrapace, Inc. | Feedback systems and methods for communicating diagnostic and/or treatment signals to enhance obesity treatments |
US20110034760A1 (en) * | 2009-04-03 | 2011-02-10 | Intrapace, Inc. | Feedback systems and methods to enhance obstructive and other obesity treatments |
US20110087076A1 (en) * | 2009-04-03 | 2011-04-14 | Intrapace, Inc. | Feedback systems and methods for communicating diagnostic and/or treatment signals to enhance obesity treatments |
US8380312B2 (en) | 2009-12-31 | 2013-02-19 | Ams Research Corporation | Multi-zone stimulation implant system and method |
US20110160793A1 (en) * | 2009-12-31 | 2011-06-30 | Ams Research Corporation | Multi-Zone Stimulation Implant System and Method |
US8388384B2 (en) * | 2010-06-07 | 2013-03-05 | Thoratec Corporation | Bi-ventricular percutaneous cable |
US20110298304A1 (en) * | 2010-06-07 | 2011-12-08 | Thoratec Corporation | Bi-ventricular percutaneous cable |
US8668526B2 (en) | 2010-06-07 | 2014-03-11 | Thoratec Corporation | Bi-ventricular percutaneous cable |
US9220887B2 (en) | 2011-06-09 | 2015-12-29 | Astora Women's Health LLC | Electrode lead including a deployable tissue anchor |
US9731112B2 (en) | 2011-09-08 | 2017-08-15 | Paul J. Gindele | Implantable electrode assembly |
US9728981B2 (en) | 2012-08-31 | 2017-08-08 | Alfred E. Mann Foundation For Scientific Research | Feedback controlled coil driver for inductive power transfer |
US9446241B2 (en) | 2013-03-15 | 2016-09-20 | Alfred E. Mann Foundation For Scientific Research | Current sensing multiple output current stimulators |
US9981130B2 (en) | 2013-03-15 | 2018-05-29 | Alfred E. Mann Foundation For Scientific Research | Current sensing multiple output current stimulators |
US9682237B2 (en) | 2013-03-15 | 2017-06-20 | Alfred E. Mann Foundation For Scientific Research | High voltage monitoring successive approximation analog to digital converter |
US10603495B2 (en) | 2013-03-15 | 2020-03-31 | The Alfred E. Mann Foundation For Scientific Research | Current sensing multiple output current stimulators |
US11338144B2 (en) | 2013-03-15 | 2022-05-24 | Alfred E. Mann Foundation For Scientific Research | Current sensing multiple output current stimulators |
US10029090B2 (en) | 2013-05-03 | 2018-07-24 | Alfred E. Mann Foundation For Scientific Research | Multi-branch stimulation electrode for subcutaneous field stimulation |
US9789325B2 (en) | 2013-05-03 | 2017-10-17 | Alfred E. Mann Foundation For Scientific Research | Implant recharger handshaking system and method |
US9433779B2 (en) | 2013-05-03 | 2016-09-06 | Alfred E. Mann Foundation For Scientific Research | Multi-branch stimulation electrode for subcutaneous field stimulation |
US9308378B2 (en) | 2013-05-03 | 2016-04-12 | Alfred E. Mann Foundation For Scientific Research | Implant recharger handshaking system and method |
US9675807B2 (en) | 2013-05-03 | 2017-06-13 | Alfred E. Mann Foundation For Scientific Research | High reliability wire welding for implantable devices |
US10971950B2 (en) | 2013-07-29 | 2021-04-06 | The Alfred E. Mann Foundation For Scientific Research | Microprocessor controlled class E driver |
US11722007B2 (en) | 2013-07-29 | 2023-08-08 | The Alfred E. Mann Foundation For Scientific Rsrch | Microprocessor controlled class E driver |
US9780596B2 (en) | 2013-07-29 | 2017-10-03 | Alfred E. Mann Foundation For Scientific Research | Microprocessor controlled class E driver |
US9855436B2 (en) | 2013-07-29 | 2018-01-02 | Alfred E. Mann Foundation For Scientific Research | High efficiency magnetic link for implantable devices |
US10449377B2 (en) | 2013-07-29 | 2019-10-22 | The Alfred E. Mann Foundation For Scientific Research | High efficiency magnetic link for implantable devices |
US10447083B2 (en) | 2013-07-29 | 2019-10-15 | The Alfred E. Mann Foundation For Scientific Research | Microprocessor controlled class E driver |
US10384055B2 (en) | 2013-12-04 | 2019-08-20 | Boston Scientific Neuromodulation Corporation | Insertion tool for implanting a paddle lead and methods and systems utilizing the tool |
US9867981B2 (en) | 2013-12-04 | 2018-01-16 | Boston Scientific Neuromodulation Corporation | Insertion tool for implanting a paddle lead and methods and systems utilizing the tool |
US10729903B2 (en) | 2014-08-15 | 2020-08-04 | Axonics Modulation Technologies, Inc. | Methods for determining neurostimulation electrode configurations based on neural localization |
US9427574B2 (en) | 2014-08-15 | 2016-08-30 | Axonics Modulation Technologies, Inc. | Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication |
US10406369B2 (en) | 2014-08-15 | 2019-09-10 | Axonics Modulation Technologies, Inc. | Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder |
US9855423B2 (en) | 2014-08-15 | 2018-01-02 | Axonics Modulation Technologies, Inc. | Systems and methods for neurostimulation electrode configurations based on neural localization |
US9561372B2 (en) | 2014-08-15 | 2017-02-07 | Axonics Modulation Technologies, Inc. | Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder |
US9555246B2 (en) | 2014-08-15 | 2017-01-31 | Axonics Modulation Technologies, Inc. | Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder |
US10478619B2 (en) | 2014-08-15 | 2019-11-19 | Axonics Modulation Technologies, Inc. | Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication |
US9533155B2 (en) | 2014-08-15 | 2017-01-03 | Axonics Modulation Technologies, Inc. | Methods for determining neurostimulation electrode configurations based on neural localization |
US11730411B2 (en) | 2014-08-15 | 2023-08-22 | Axonics, Inc. | Methods for determining neurostimulation electrode configurations based on neural localization |
US10589103B2 (en) | 2014-08-15 | 2020-03-17 | Axonics Modulation Technologies, Inc. | External pulse generator device and associated methods for trial nerve stimulation |
US9802038B2 (en) | 2014-08-15 | 2017-10-31 | Axonics Modulation Technologies, Inc. | Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication |
US11497916B2 (en) | 2014-08-15 | 2022-11-15 | Axonics, Inc. | Electromyographic lead positioning and stimulation titration in a nerve stimulation system for treatment of overactive bladder |
US10682521B2 (en) | 2014-08-15 | 2020-06-16 | Axonics Modulation Technologies, Inc. | Attachment devices and associated methods of use with a nerve stimulation charging device |
US11389659B2 (en) | 2014-08-15 | 2022-07-19 | Axonics, Inc. | External pulse generator device and associated methods for trial nerve stimulation |
US9802051B2 (en) | 2014-08-15 | 2017-10-31 | Axonics Modulation Technologies, Inc. | External pulse generator device and associated methods for trial nerve stimulation |
US11213675B2 (en) | 2014-08-15 | 2022-01-04 | Axonics, Inc. | Implantable lead affixation structure for nerve stimulation to alleviate bladder dysfunction and other indication |
US10092762B2 (en) | 2014-08-15 | 2018-10-09 | Axonics Modulation Technologies, Inc. | Integrated electromyographic clinician programmer for use with an implantable neurostimulator |
US9700731B2 (en) | 2014-08-15 | 2017-07-11 | Axonics Modulation Technologies, Inc. | Antenna and methods of use for an implantable nerve stimulator |
US11116985B2 (en) | 2014-08-15 | 2021-09-14 | Axonics, Inc. | Clinician programmer for use with an implantable neurostimulation lead |
US11123569B2 (en) | 2015-01-09 | 2021-09-21 | Axonics, Inc. | Patient remote and associated methods of use with a nerve stimulation system |
US11478648B2 (en) | 2015-01-09 | 2022-10-25 | Axonics, Inc. | Antenna and methods of use for an implantable nerve stimulator |
US10105542B2 (en) | 2015-01-09 | 2018-10-23 | Axonics Modulation Technologies, Inc. | Patient remote and associated methods of use with a nerve stimulation system |
US10722721B2 (en) | 2015-01-09 | 2020-07-28 | Axonics Modulation Technologies, Inc. | Antenna and methods of use for an implantable nerve stimulator |
US11484723B2 (en) | 2015-01-09 | 2022-11-01 | Axonics, Inc. | Attachment devices and associated methods of use with a nerve stimulation charging device |
US9770596B2 (en) | 2015-01-09 | 2017-09-26 | Axonics Modulation Technologies, Inc. | Antenna and methods of use for an implantable nerve stimulator |
US10384067B2 (en) | 2015-01-09 | 2019-08-20 | Axonics Modulation Technologies, Inc. | Patient remote and associated methods of use with a nerve stimulation system |
US9895546B2 (en) | 2015-01-09 | 2018-02-20 | Axonics Modulation Technologies, Inc. | Patient remote and associated methods of use with a nerve stimulation system |
US9956000B2 (en) | 2015-01-13 | 2018-05-01 | Boston Scientific Neuromodulation Corporation | Insertion tool for implanting a paddle lead and methods and systems utilizing the tool |
US10850104B2 (en) | 2015-07-10 | 2020-12-01 | Axonics Modulation Technologies, Inc. | Implantable nerve stimulator having internal electronics without ASIC and methods of use |
US11766568B2 (en) | 2015-07-10 | 2023-09-26 | Axonics, Inc. | Implantable nerve stimulator having internal electronics without ASIC and methods of use |
US9925381B2 (en) | 2015-07-10 | 2018-03-27 | Axonics Modulation Technologies, Inc. | Implantable nerve stimulator having internal electronics without ASIC and methods of use |
US20210228885A1 (en) * | 2015-08-19 | 2021-07-29 | University Of Louisville Research Foundation, Inc. | Methods for providing optimized neurostimulation |
US11318310B1 (en) | 2015-10-26 | 2022-05-03 | Nevro Corp. | Neuromodulation for altering autonomic functions, and associated systems and methods |
US10195423B2 (en) | 2016-01-19 | 2019-02-05 | Axonics Modulation Technologies, Inc. | Multichannel clip device and methods of use |
US9517338B1 (en) | 2016-01-19 | 2016-12-13 | Axonics Modulation Technologies, Inc. | Multichannel clip device and methods of use |
US10603500B2 (en) | 2016-01-29 | 2020-03-31 | Axonics Modulation Technologies, Inc. | Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator |
US11602638B2 (en) | 2016-01-29 | 2023-03-14 | Axonics, Inc. | Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator |
US12083349B2 (en) | 2016-01-29 | 2024-09-10 | Axonics, Inc. | Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator |
US11083903B2 (en) | 2016-01-29 | 2021-08-10 | Axonics, Inc. | Methods and systems for frequency adjustment to optimize charging of implantable neurostimulator |
US10376704B2 (en) | 2016-02-12 | 2019-08-13 | Axonics Modulation Technologies, Inc. | External pulse generator device and associated methods for trial nerve stimulation |
US11260236B2 (en) | 2016-02-12 | 2022-03-01 | Axonics, Inc. | External pulse generator device and affixation device for trial nerve stimulation and methods of use |
US12226643B2 (en) | 2016-02-12 | 2025-02-18 | Axonics, Inc. | External pulse generator device and affixation device for trial nerve stimulation and methods of use |
US11110283B2 (en) | 2018-02-22 | 2021-09-07 | Axonics, Inc. | Neurostimulation leads for trial nerve stimulation and methods of use |
US12042662B2 (en) | 2018-02-22 | 2024-07-23 | Axonics, Inc. | Neurostimulation leads for trial nerve stimulation and methods of use |
US11511122B2 (en) | 2018-02-22 | 2022-11-29 | Axonics, Inc. | Neurostimulation leads for trial nerve stimulation and methods of use |
US11590352B2 (en) | 2019-01-29 | 2023-02-28 | Nevro Corp. | Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods |
US11642537B2 (en) | 2019-03-11 | 2023-05-09 | Axonics, Inc. | Charging device with off-center coil |
US11848090B2 (en) | 2019-05-24 | 2023-12-19 | Axonics, Inc. | Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system |
US11439829B2 (en) | 2019-05-24 | 2022-09-13 | Axonics, Inc. | Clinician programmer methods and systems for maintaining target operating temperatures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3646940A (en) | Implantable electronic stimulator electrode and method | |
CA2199958C (en) | Method and apparatus to limit control of parameters of electrical tissue stimulators | |
EP0948373B1 (en) | An implantable nerve stimulator electrode | |
US20090326611A1 (en) | Method of Powering Implanted Devices by Direct Transfer of Electrical Energy | |
US4411268A (en) | Muscle stimulator | |
US4612934A (en) | Non-invasive multiprogrammable tissue stimulator | |
US5964789A (en) | Transcutaneous electric muscle/nerve controller/feedback unit | |
US6731979B2 (en) | Pulse width cardiac pacing apparatus | |
US7571001B2 (en) | System and method of rapid, comfortable parameter switching in spinal cord stimulation | |
US5211175A (en) | Method for implanting electra-acupuncture needle | |
US4640286A (en) | Optimized nerve fiber stimulation | |
US6865423B2 (en) | Stimulation of muscles | |
US5709712A (en) | Implantable cardiac stimulation device with warning system | |
US3773051A (en) | Method and apparatus for stimulation of body tissue | |
IE850517L (en) | Heart pacer. diacylhydrazine derivatives. | |
CN107614057A (en) | Flexible circuit for implantable devices | |
EP1207822A4 (en) | METHOD AND DEVICE FOR TREATING INCONTINENCE | |
IE912227A1 (en) | Method and device for the treatment of epilepsy | |
US20230074017A1 (en) | Electrical stimulation device and electrical stimulation system | |
Palti | Stimulation of internal organs by means of externally applied electrodes. | |
Smith | Miniature stimulator for chronic animals | |
EP4420714A1 (en) | Automatic random tonic and burst stimulation delivery | |
RU2035922C1 (en) | Implantable neurostimulator | |
WO2005002668A1 (en) | Electrode with alternating poles | |
Konsten et al. | Demonstration of the feasibility of implantation of a skeletal muscle pulse generator for fecal incontinence in a patient with an implanted unipolar DDD pacemaker |