CN104560357A - Method for synchronously extracting microalgal oil and microalgal polysaccharide - Google Patents
Method for synchronously extracting microalgal oil and microalgal polysaccharide Download PDFInfo
- Publication number
- CN104560357A CN104560357A CN201410754045.8A CN201410754045A CN104560357A CN 104560357 A CN104560357 A CN 104560357A CN 201410754045 A CN201410754045 A CN 201410754045A CN 104560357 A CN104560357 A CN 104560357A
- Authority
- CN
- China
- Prior art keywords
- microalgae
- polysaccharide
- algae
- micro
- microalgal polysaccharide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000004676 glycans Chemical class 0.000 title claims abstract description 118
- 239000005017 polysaccharide Substances 0.000 title claims abstract description 118
- 229920001282 polysaccharide Polymers 0.000 title claims abstract description 118
- 238000000034 method Methods 0.000 title claims abstract description 69
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- 108090000790 Enzymes Proteins 0.000 claims abstract description 14
- 102000004190 Enzymes Human genes 0.000 claims abstract description 14
- 210000002421 cell wall Anatomy 0.000 claims abstract description 14
- 239000000284 extract Substances 0.000 claims abstract description 14
- 230000000593 degrading effect Effects 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims description 30
- 241000195633 Dunaliella salina Species 0.000 claims description 28
- 238000000605 extraction Methods 0.000 claims description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 20
- 210000004027 cell Anatomy 0.000 claims description 20
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical group ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 16
- 241000195493 Cryptophyta Species 0.000 claims description 16
- 241000195649 Chlorella <Chlorellales> Species 0.000 claims description 15
- 239000006228 supernatant Substances 0.000 claims description 15
- 235000007122 Scenedesmus obliquus Nutrition 0.000 claims description 14
- 239000000047 product Substances 0.000 claims description 14
- 229940088598 enzyme Drugs 0.000 claims description 13
- 108010059892 Cellulase Proteins 0.000 claims description 9
- 229940106157 cellulase Drugs 0.000 claims description 9
- 238000001556 precipitation Methods 0.000 claims description 9
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 102000039446 nucleic acids Human genes 0.000 claims description 7
- 108020004707 nucleic acids Proteins 0.000 claims description 7
- 150000007523 nucleic acids Chemical class 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 239000004519 grease Substances 0.000 claims 12
- 238000002203 pretreatment Methods 0.000 claims 7
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 238000003786 synthesis reaction Methods 0.000 claims 2
- 241000195662 Tetradesmus obliquus Species 0.000 claims 1
- 238000003916 acid precipitation Methods 0.000 claims 1
- 238000011284 combination treatment Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 64
- 102000004169 proteins and genes Human genes 0.000 description 15
- 108090000623 proteins and genes Proteins 0.000 description 15
- 241000224474 Nannochloropsis Species 0.000 description 13
- 244000249201 Scenedesmus obliquus Species 0.000 description 13
- 238000005265 energy consumption Methods 0.000 description 10
- 238000004880 explosion Methods 0.000 description 9
- 239000002028 Biomass Substances 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000003834 intracellular effect Effects 0.000 description 7
- 101000925662 Enterobacteria phage PRD1 Endolysin Proteins 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 238000013341 scale-up Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 108010014251 Muramidase Proteins 0.000 description 3
- 102000016943 Muramidase Human genes 0.000 description 3
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 3
- 229960000274 lysozyme Drugs 0.000 description 3
- 239000004325 lysozyme Substances 0.000 description 3
- 235000010335 lysozyme Nutrition 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 241000223260 Trichoderma harzianum Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 235000016425 Arthrospira platensis Nutrition 0.000 description 1
- 240000002900 Arthrospira platensis Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 241000168517 Haematococcus lacustris Species 0.000 description 1
- 241000195663 Scenedesmus Species 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B1/00—Production of fats or fatty oils from raw materials
- C11B1/02—Pretreatment
- C11B1/025—Pretreatment by enzymes or microorganisms, living or dead
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0003—General processes for their isolation or fractionation, e.g. purification or extraction from biomass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/12—Agar-agar; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B1/00—Production of fats or fatty oils from raw materials
- C11B1/02—Pretreatment
- C11B1/04—Pretreatment of vegetable raw material
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B1/00—Production of fats or fatty oils from raw materials
- C11B1/10—Production of fats or fatty oils from raw materials by extracting
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Molecular Biology (AREA)
- Materials Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
本发明涉及微藻生物炼制技术领域,特别涉及一种同时提取微藻油脂及微藻多糖的方法,包括以下步骤:步骤一、将微藻用植物细胞壁降解酶进行处理获得微藻预处理物;步骤二、将所述微藻预处理物在温度为80-120℃和压强为0.05-0.25MPa的条件下处理10-30min获得微藻二级预处理物,将所述微藻二级预处理物用于提取微藻油脂及微藻多糖。本发明方法改善了提取微藻油脂及微藻多糖的反应条件,最大程度充分利用微藻原料,提取出其中尽量多的微藻多糖以及微藻油脂,降低生产成本,适用于大规模生产。The present invention relates to the technical field of microalgae biorefining, in particular to a method for simultaneously extracting microalgae oil and microalgae polysaccharides, comprising the following steps: step 1, treating microalgae with plant cell wall degrading enzymes to obtain microalgae pretreated products ; Step 2, treating the microalgae pretreatment at a temperature of 80-120°C and a pressure of 0.05-0.25MPa for 10-30min to obtain a microalgae secondary pretreatment, and the microalgae secondary pretreatment The processed product is used to extract microalgae oil and microalgae polysaccharide. The method of the invention improves the reaction conditions for extracting microalgae oil and microalgae polysaccharide, fully utilizes microalgae raw materials to the greatest extent, extracts as much microalgae polysaccharide and microalgae oil as possible, reduces production cost, and is suitable for large-scale production.
Description
技术领域technical field
本发明属于微藻生物炼制技术领域,具体涉及到一种同时提取微藻油脂及微藻多糖的方法,在提取微藻油脂的同时,增加了胞内物质的多组分的提取,偶联了微藻多糖的生产。The invention belongs to the technical field of microalgae biorefining, and specifically relates to a method for simultaneously extracting microalgae oil and microalgae polysaccharides. While extracting microalgae oil, the multi-component extraction of intracellular substances is increased, and the coupling production of microalgal polysaccharides.
背景技术Background technique
微藻是一种水生的光合自养微生物,它能利用光能,吸收CO2进行细胞生长,并合成大量的碳水化合物,包括:油脂、蛋白、多糖、色素等。微藻油脂可被加工成生物柴油而被视为清洁能源原料。特别是在石油、天然气等化石燃料日益短缺的情况下,以微藻作为生产生物燃料的课题受到各国的广泛关注。同时,微藻蛋白和多糖,在食品、医药等领域均具有重要的应用价值。因此各国已经竞相展开了对微藻综合利用的研究。然而,绝大多数的微藻油脂、蛋白、多糖等物质均存在于胞内,如何有效的对藻细胞进行破壁提取胞内物质,是微藻产业应用的重要关键。Microalgae is a kind of aquatic photoautotrophic microorganism, which can use light energy, absorb CO 2 for cell growth, and synthesize a large amount of carbohydrates, including: oil, protein, polysaccharide, pigment, etc. Microalgae oil can be processed into biodiesel, which is regarded as a clean energy source. Especially in the case of increasing shortage of fossil fuels such as oil and natural gas, the issue of using microalgae as a biofuel has attracted widespread attention from various countries. At the same time, microalgal proteins and polysaccharides have important application value in food, medicine and other fields. Therefore, various countries have launched research on the comprehensive utilization of microalgae. However, the vast majority of microalgae oils, proteins, polysaccharides and other substances exist in the cells. How to effectively break the wall of algae cells to extract intracellular substances is an important key to the application of microalgae industry.
目前微藻破壁提取胞内物质一般采取机械破壁和溶剂萃取两种方式。机械破壁方式包括研磨、超声波等,这些破壁方法均存在一个巨大的问题即能耗大,限制了在工业化生产中的进一步使用;而溶剂萃取法则容易污染环境。此外,上述提取方法均需要对微藻进行干燥或者浓缩,而微藻生物质浓缩及干燥能耗巨大。单一的进行胞内油脂或者蛋白提取也阻碍了微藻产业的发展。因此低成本提取微藻胞内多组分物质是实现微藻综合利用的瓶颈。At present, there are generally two ways to extract intracellular substances by breaking the wall of microalgae: mechanical breaking and solvent extraction. Mechanical wall-breaking methods include grinding, ultrasonic waves, etc. All of these wall-breaking methods have a huge problem, that is, high energy consumption, which limits further use in industrial production; while solvent extraction is easy to pollute the environment. In addition, the above-mentioned extraction methods all need to dry or concentrate the microalgae, and the concentration and drying of the microalgae biomass consume a lot of energy. A single extraction of intracellular oil or protein also hinders the development of the microalgae industry. Therefore, the low-cost extraction of multi-component substances in microalgae cells is the bottleneck for the comprehensive utilization of microalgae.
水提法被试为能直接从湿藻细胞中提取微藻油脂、蛋白或者其他成分的方法。如Carl Safi等对钝顶螺旋藻、小球藻、雨生红球藻及紫球藻采用了高压匀浆、超声波、研磨等方法进行了细胞破壁提取蛋白(Carl Safi,Alina VioletaUrsu,Celine Laroche,et al.Aqueous extraction of proteins from microalgae:effect of different cell disruption methods.Algal Research.2014;3:61-65)。结果表明高压匀浆蛋白提取率最高,化学溶剂萃取次之,但是仅仅是单一的提取了蛋白而放弃了微藻胞内其他组分。中国专利200810240949.3提出了一种同时提取微藻油脂和蛋白的技术,其原理是利用高压蒸汽破壁。该方法是将藻液置于反应罐中,与热饱和蒸汽接触,并持续加热维持110-140℃反应3-30min,实现细胞壁破裂。但在实际使用过程中,该方法使用的温度高(最高140℃)和时间长(最长30min),能耗大,且在高温条件下容易造成胞内物质发生化学反应变质。中国专利CN02153296.6提取一种蒸汽爆破进行海藻细胞破壁的方法,其要保持汽爆罐中压力达到0.8-1.5MPa,并要求瞬间释放。在使用过程中压强高能耗大,同样容易造成胞内物质变质;同时瞬间减压容易造成液体飞溅,造成样品损失及安全问题。Water extraction was tested as a method that can directly extract oil, protein or other components of microalgae from wet algae cells. For example, Carl Safi et al. used methods such as high-pressure homogenization, ultrasonication, and grinding to extract proteins from cell walls of Spirulina platensis, Chlorella, Haematococcus pluvialis, and Porphyridum (Carl Safi, Alina VioletaUrsu, Celine Laroche , et al. Aqueous extraction of proteins from microalgae: effect of different cell disruption methods. Algal Research. 2014; 3: 61-65). The results showed that the protein extraction rate of high-pressure homogenization was the highest, followed by chemical solvent extraction, but only a single protein was extracted and other components in the microalgae were discarded. Chinese patent 200810240949.3 proposes a technology for simultaneously extracting oil and protein from microalgae, the principle of which is to use high-pressure steam to break the wall. The method is to place the algae liquid in a reaction tank, contact with hot saturated steam, continue heating and maintain 110-140° C. for 3-30 minutes, and realize cell wall rupture. However, in actual use, the method uses high temperature (up to 140° C.) and long time (up to 30 minutes), consumes a lot of energy, and is likely to cause chemical reactions and deterioration of intracellular substances under high temperature conditions. Chinese patent CN02153296.6 extracts a method for breaking seaweed cells by steam explosion, which requires maintaining the pressure in the steam explosion tank to 0.8-1.5 MPa and requiring instant release. In the process of use, the high pressure and high energy consumption are also easy to cause the deterioration of intracellular substances; at the same time, the instantaneous decompression is easy to cause liquid splashing, resulting in sample loss and safety problems.
发明内容Contents of the invention
本发明目的之一在于提供一种同时提取微藻油脂及微藻多糖的方法,在相同纤维素酶等植物细胞破壁酶的作用下降低了高温高压的反应条件,于此同时还提高了微藻多糖以及微藻油脂的提取率,改善了反应条件,最大程度充分利用微藻原料,提取出其中尽量多的微藻多糖以及微藻油脂,降低生产成本。One of the objectives of the present invention is to provide a method for simultaneously extracting microalgae oil and microalgae polysaccharides, which reduces the reaction conditions of high temperature and high pressure under the action of plant cell wall-breaking enzymes such as the same cellulase, and at the same time improves microalgae. The extraction rate of algae polysaccharides and microalgae oils improves the reaction conditions, maximizes the use of microalgae raw materials, extracts as much as possible of microalgae polysaccharides and microalgae oils, and reduces production costs.
为了达到上述目的和一些其他目的,本发明提供的技术方案为:In order to achieve the above object and some other objects, the technical solutions provided by the present invention are:
一种同时提取微藻油脂及微藻多糖的方法,其特征在于,包括以下步骤:A method for extracting microalgae oil and microalgae polysaccharide simultaneously, is characterized in that, comprises the following steps:
步骤一、将微藻用植物细胞壁降解酶进行处理获得微藻预处理物;Step 1, treating the microalgae with a plant cell wall degrading enzyme to obtain a microalgae pretreatment;
步骤二、将所述微藻预处理物在温度为80-120℃和压强为0.05-0.25MPa的条件下处理10-30min获得微藻二级预处理物,将所述微藻二级预处理物用于提取微藻油脂及微藻多糖。Step 2: Treat the microalgae pretreatment at a temperature of 80-120° C. and a pressure of 0.05-0.25 MPa for 10-30 minutes to obtain a microalgae secondary pretreatment, and the microalgae secondary pretreatment It is used to extract microalgae oil and microalgae polysaccharide.
在上述方案中,微藻可直接使用微藻液或者湿藻泥进行微藻胞内多糖和油脂的提取,减少了微藻生物质干燥环节,降低了提取成本;步骤二可以在高温高压反应釜中进行,并且其中反应条件相较蒸汽爆破的方法降低了高温高压反应釜的温度及压强,有助于降低能耗;并且增加了微藻多糖的产率,过程方法容易,利于实现微藻油脂和多糖多联产过程的放大应用。In the above scheme, the microalgae can directly use the microalgae liquid or wet algae mud to extract the polysaccharides and oils in the microalgae cells, which reduces the drying process of the microalgae biomass and reduces the extraction cost; Compared with the method of steam explosion, the reaction conditions reduce the temperature and pressure of the high-temperature and high-pressure reactor, which helps to reduce energy consumption; and increases the yield of microalgae polysaccharides, and the process method is easy, which is conducive to the realization of microalgae oil and the scale-up application of the polysaccharide polygeneration process.
优选的是,其中,所述步骤二中将所述微藻预处理物在温度为110-120℃和压强为0.13-0.15MPa的条件下处理10-30min获得微藻预处理产物。Preferably, in the second step, the microalgae pretreatment product is obtained by treating the microalgae pretreatment product at a temperature of 110-120° C. and a pressure of 0.13-0.15 MPa for 10-30 min.
优选的是,其中,所述步骤二中将所述微藻预处理物在温度为120℃和压强为0.15MPa的条件下处理10-30min获得微藻预处理产物。Preferably, wherein, in the second step, the microalgae pretreatment product is obtained by treating the microalgae pretreatment product at a temperature of 120° C. and a pressure of 0.15 MPa for 10-30 min.
优选的是,其中,所述步骤一种所述植物细胞壁降解酶的添加量占所述微藻的质量百分比为0.2-1%。Preferably, the addition amount of the plant cell wall degrading enzyme in the step is 0.2-1% of the mass percentage of the microalgae.
优选的是,其中,所述步骤一中将微藻用植物细胞壁降解酶进行混合处理的pH值为5.2-6.0,反应温度为20-35℃,反应2-5h。Preferably, wherein, in the step 1, the pH value of the mixed treatment of the microalgae with the plant cell wall degrading enzyme is 5.2-6.0, the reaction temperature is 20-35°C, and the reaction is 2-5h.
优选的是,其中,所述植物细胞壁降解酶包括纤维素酶和溶壁酶。Preferably, wherein the plant cell wall degrading enzymes include cellulase and lysozyme.
优选的是,其中,包括以下步骤:Preferably, wherein, comprising the following steps:
步骤三、向所述微藻二级预处理物中添加入有机萃取剂进行萃取微藻油脂,分离出富含有微藻多糖的微藻多糖液;Step 3, adding an organic extractant to the microalgae secondary pretreatment product to extract microalgae oil, and separating a microalgae polysaccharide liquid rich in microalgae polysaccharide;
步骤四、将所述微藻多糖液过滤去除微藻细胞残渣;Step 4, filtering the microalgae polysaccharide solution to remove microalgae cell residues;
步骤五、向所述微藻多糖液中添加三氯乙酸沉淀去除蛋白及核酸杂质获得二级微藻多糖液;Step 5, adding trichloroacetic acid to the microalgae polysaccharide solution to precipitate and remove protein and nucleic acid impurities to obtain a secondary microalgae polysaccharide solution;
步骤六、将所述二级微藻多糖液离心、收集上清,之后向其中加入体积分数为80%的乙醇反应至沉淀不再增加为止,获得微藻粗多糖。Step 6: centrifuge the secondary microalgae polysaccharide liquid, collect the supernatant, and then add ethanol with a volume fraction of 80% therein to react until the precipitation no longer increases, and obtain the microalgae crude polysaccharide.
优选的是,其中,所述有机萃取剂为氯仿或者乙醚。Preferably, wherein, the organic extractant is chloroform or ether.
优选的是,其中,所述微藻包括杜氏盐藻、微拟球藻、小球藻或斜生栅藻中的一种或几种。Preferably, the microalgae include one or more of Dunaliella salina, Nannochloropsis, Chlorella or Scenedesmus obliquus.
优选的是,其中,所述步骤六、将所述二级微藻多糖液离心、收集上清,之后向其中加入体积分数为100%的乙醇反应至沉淀不再增加为止,获得微藻粗多糖。Preferably, in the step 6, centrifuge the secondary microalgae polysaccharide liquid, collect the supernatant, and then add ethanol with a volume fraction of 100% to it to react until the precipitation no longer increases, so as to obtain the microalgae crude polysaccharide .
本发明的有益效果是:The beneficial effects of the present invention are:
本发明所述方法中,所用微藻为直接使用微藻液或者湿藻泥进行微藻胞内多糖和油脂的提取,减少了微藻生物质干燥环节,降低了提取成本;In the method of the present invention, the microalgae used directly uses the microalgae liquid or wet algae mud to extract the intracellular polysaccharides and oils of the microalgae, which reduces the drying process of the microalgae biomass and reduces the extraction cost;
本发明所述方法中,在对微藻预处理物进行进一步处理的过程中,其反应条件相较蒸汽爆破的方法降低了高温高压反应釜的温度及压强,有助于降低能耗;In the method of the present invention, in the process of further processing the microalgae pretreatment, its reaction conditions reduce the temperature and pressure of the high-temperature and high-pressure reactor compared with the method of steam explosion, which helps to reduce energy consumption;
本发明所述方法中,不仅增加了微藻多糖的产率,过程方法容易,而且有利于实现微藻油脂和多糖多联产过程的放大应用;In the method of the present invention, not only the yield of microalgae polysaccharide is increased, the process method is easy, but also it is beneficial to realize the enlarged application of microalgae oil and polysaccharide polygeneration process;
综上所述,本发明方法改善了提取微藻油脂及微藻多糖的反应条件,最大程度充分利用微藻原料,提取出其中尽量多的微藻多糖以及微藻油脂,降低生产成本,适用于大规模生产。In summary, the method of the present invention improves the reaction conditions for extracting microalgae oils and microalgae polysaccharides, makes full use of microalgae raw materials to the greatest extent, extracts as much microalgae polysaccharides and microalgae oils as possible, reduces production costs, and is suitable for Mass production.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。The present invention will be further described in detail below in conjunction with the embodiments, so that those skilled in the art can implement it with reference to the description.
实施例1Example 1
一种同时提取微藻油脂及微藻多糖的方法,其特征在于,包括以下步骤:A method for extracting microalgae oil and microalgae polysaccharide simultaneously, is characterized in that, comprises the following steps:
步骤一、将杜氏盐藻用纤维素酶进行处理获得杜氏盐藻预处理物;其中,所述纤维素酶的添加量占所述微藻的质量百分比为0.2%;将微藻用纤维素酶进行混合处理的pH值为5.2,反应温度为20℃,反应2h;Step 1, treating Dunaliella salina with cellulase to obtain Dunaliella salina pretreatment; wherein, the added amount of the cellulase accounts for 0.2% of the mass percentage of the microalgae; the microalgae is treated with cellulase The pH value of the mixed treatment is 5.2, the reaction temperature is 20°C, and the reaction is 2h;
步骤二、将所述杜氏盐藻预处理物在温度为80℃和压强为0.05MPa的条件下处理10min获得杜氏盐藻二级预处理物,将所述杜氏盐藻二级预处理物用于提取微藻油脂及微藻多糖;Step 2, treating the Dunaliella salina pretreatment at a temperature of 80° C. and a pressure of 0.05 MPa for 10 minutes to obtain a Dunaliella salina secondary pretreatment, and using the Dunaliella salina secondary pretreatment for Extract microalgae oil and microalgae polysaccharide;
步骤三、向所述杜氏盐藻二级预处理物中添加入氯仿进行萃取微藻油脂,分离出富含有微藻多糖的杜氏盐藻多糖液;Step 3, adding chloroform to the secondary pretreatment of Dunaliella salina to extract microalgae oil, and separating the Dunaliella salina polysaccharide liquid rich in microalgae polysaccharide;
步骤四、将所述杜氏盐藻多糖液过滤去除杜氏盐藻细胞残渣;Step 4, filtering the Dunaliella salina polysaccharide solution to remove Dunaliella salina cell residues;
步骤五、向所述杜氏盐藻多糖液中添加三氯乙酸沉淀去除蛋白及核酸杂质获得二级杜氏盐藻多糖液;Step 5, adding trichloroacetic acid to the Dunaliella salina polysaccharide solution to precipitate and remove protein and nucleic acid impurities to obtain a secondary Dunaliella salina polysaccharide solution;
步骤六、将所述二级杜氏盐藻多糖液离心、收集上清,之后向其中加入体积分数为80%的乙醇反应至沉淀不再增加为止,获得微藻粗多糖。Step 6: Centrifuge the secondary Dunaliella salina polysaccharide liquid, collect the supernatant, and then add ethanol with a volume fraction of 80% to it to react until the precipitation no longer increases, and obtain the microalgae crude polysaccharide.
在上述方案中,微藻可直接使用微藻液或者湿藻泥进行微藻胞内多糖和油脂的提取,减少了微藻生物质干燥环节,降低了提取成本;步骤二可以在高温高压反应釜中进行,并且其中反应条件相较蒸汽爆破的方法降低了高温高压反应釜的温度及压强,有助于降低能耗;并且增加了微藻多糖的产率,过程方法容易,利于实现微藻油脂和多糖多联产过程的放大应用。In the above scheme, the microalgae can directly use the microalgae liquid or wet algae mud to extract the polysaccharides and oils in the microalgae cells, which reduces the drying process of the microalgae biomass and reduces the extraction cost; Compared with the method of steam explosion, the reaction conditions reduce the temperature and pressure of the high-temperature and high-pressure reactor, which helps to reduce energy consumption; and increases the yield of microalgae polysaccharides, and the process method is easy, which is conducive to the realization of microalgae oil and the scale-up application of the polysaccharide polygeneration process.
实施例2Example 2
一种同时提取微藻油脂及微藻多糖的方法,其特征在于,包括以下步骤:A method for extracting microalgae oil and microalgae polysaccharide simultaneously, is characterized in that, comprises the following steps:
步骤一、将微拟球藻用溶壁酶进行处理获得微拟球藻预处理物;其中,所述溶壁酶的添加量占所述微藻的质量百分比为0.4%;将微藻用溶壁酶进行混合处理的pH值为5.4,反应温度为25℃,反应2.5h;Step 1, treating Nannochloropsis algae with a lytic enzyme to obtain a Nannochloropsis pretreated product; wherein, the added amount of the lytic enzyme accounts for 0.4% of the mass percentage of the microalgae; the microalgae is treated with a lytic enzyme The pH value of the wall enzyme mixed treatment is 5.4, the reaction temperature is 25°C, and the reaction is 2.5h;
步骤二、将所述微拟球藻预处理物在温度为90℃和压强为0.05MPa的条件下处理15min获得微拟球藻二级预处理物,将所述微拟球藻二级预处理物用于提取微藻油脂及微藻多糖;Step 2. Treat the Nannochloropsis pretreated product at a temperature of 90° C. and a pressure of 0.05 MPa for 15 minutes to obtain a secondary pretreated product of Nannochloropsis, and treat the Nannochloropsis secondary pretreated product The product is used to extract microalgae oil and microalgae polysaccharide;
步骤三、向所述微拟球藻二级预处理物中添加入乙醚进行萃取微藻油脂,分离出富含有微藻多糖的微拟球藻多糖液;Step 3, adding ether to the Nannochloropsis secondary pretreatment product to extract the microalgae oil, and separating the Nannochloropsis polysaccharide liquid rich in microalgae polysaccharide;
步骤四、将所述微拟球藻多糖液过滤去除微拟球藻细胞残渣;Step 4, filtering the Nannochloropsis polysaccharide liquid to remove the Nannochloropsis cell residue;
步骤五、向所述微拟球藻多糖液中添加三氯乙酸沉淀去除蛋白及核酸杂质获得二级微拟球藻多糖液;Step 5, adding trichloroacetic acid to the Nannochloropsis polysaccharide liquid to precipitate and remove protein and nucleic acid impurities to obtain a secondary Nannochloropsis polysaccharide liquid;
步骤六、将所述二级微拟球藻多糖液离心、收集上清,之后向其中加入体积分数为100%的乙醇反应至沉淀不再增加为止,获得微藻粗多糖。Step 6: Centrifuge the secondary Nannochloropsis polysaccharide liquid, collect the supernatant, and then add ethanol with a volume fraction of 100% therein to react until the precipitation no longer increases, and obtain the microalgae crude polysaccharide.
在上述方案中,微藻可直接使用微藻液或者湿藻泥进行微藻胞内多糖和油脂的提取,减少了微藻生物质干燥环节,降低了提取成本;步骤二可以在高温高压反应釜中进行,并且其中反应条件相较蒸汽爆破的方法降低了高温高压反应釜的温度及压强,有助于降低能耗;并且增加了微藻多糖的产率,过程方法容易,利于实现微藻油脂和多糖多联产过程的放大应用。In the above scheme, the microalgae can directly use the microalgae liquid or wet algae mud to extract the polysaccharides and oils in the microalgae cells, which reduces the drying process of the microalgae biomass and reduces the extraction cost; Compared with the method of steam explosion, the reaction conditions reduce the temperature and pressure of the high-temperature and high-pressure reactor, which helps to reduce energy consumption; and increases the yield of microalgae polysaccharides, and the process method is easy, which is conducive to the realization of microalgae oil and the scale-up application of the polysaccharide polygeneration process.
实施例3Example 3
一种同时提取微藻油脂及微藻多糖的方法,其特征在于,包括以下步骤:A method for extracting microalgae oil and microalgae polysaccharide simultaneously, is characterized in that, comprises the following steps:
步骤一、将小球藻用纤维素酶进行处理获得小球藻预处理物;其中,所述纤维素酶的添加量占所述微藻的质量百分比为0.6%;将微藻用纤维素酶进行混合处理的pH值为5.6,反应温度为30℃,反应3.5h;Step 1, the chlorella is treated with cellulase to obtain the chlorella pretreatment; wherein, the added amount of the cellulase accounts for 0.6% of the mass percentage of the microalgae; the microalgae is treated with the cellulase The pH value of the mixed treatment is 5.6, the reaction temperature is 30°C, and the reaction is 3.5h;
步骤二、将所述小球藻预处理物在温度为100℃和压强为0.15MPa的条件下处理30min获得小球藻二级预处理物,将所述小球藻二级预处理物用于提取微藻油脂及微藻多糖;Step 2. Treat the chlorella pretreatment for 30 minutes at a temperature of 100° C. and a pressure of 0.15 MPa to obtain a secondary chlorella pretreatment, and use the chlorella secondary pretreatment for Extract microalgae oil and microalgae polysaccharide;
步骤三、向所述小球藻二级预处理物中添加入氯仿进行萃取微藻油脂,分Step 3, adding chloroform to the secondary pretreatment of chlorella to extract microalgae oil, and separating
离出富含有微藻多糖的小球藻多糖液;Isolate the chlorella polysaccharide liquid rich in microalgae polysaccharide;
步骤四、将所述小球藻多糖液过滤去除小球藻细胞残渣;Step 4, filtering the chlorella polysaccharide solution to remove the chlorella cell residue;
步骤五、向所述小球藻多糖液中添加三氯乙酸沉淀去除蛋白及核酸杂质获得二级小球藻多糖液;Step 5, adding trichloroacetic acid to the chlorella polysaccharide solution to precipitate and remove protein and nucleic acid impurities to obtain a secondary chlorella polysaccharide solution;
步骤六、将所述二级小球藻多糖液离心、收集上清,之后向其中加入体积分数为80%的乙醇反应至沉淀不再增加为止,获得微藻粗多糖。Step 6: centrifuge the secondary chlorella polysaccharide liquid, collect the supernatant, and then add ethanol with a volume fraction of 80% therein to react until the precipitation no longer increases, and obtain the microalgae crude polysaccharide.
在上述方案中,微藻可直接使用微藻液或者湿藻泥进行微藻胞内多糖和油脂的提取,减少了微藻生物质干燥环节,降低了提取成本;步骤二可以在高温高压反应釜中进行,并且其中反应条件相较蒸汽爆破的方法降低了高温高压反应釜的温度及压强,有助于降低能耗;并且增加了微藻多糖的产率,过程方法容易,利于实现微藻油脂和多糖多联产过程的放大应用。In the above scheme, the microalgae can directly use the microalgae liquid or wet algae mud to extract the polysaccharides and oils in the microalgae cells, which reduces the drying process of the microalgae biomass and reduces the extraction cost; Compared with the method of steam explosion, the reaction conditions reduce the temperature and pressure of the high-temperature and high-pressure reactor, which helps to reduce energy consumption; and increases the yield of microalgae polysaccharides, and the process method is easy, which is conducive to the realization of microalgae oil and the scale-up application of the polysaccharide polygeneration process.
实施例4Example 4
一种同时提取微藻油脂及微藻多糖的方法,其特征在于,包括以下步骤:A method for extracting microalgae oil and microalgae polysaccharide simultaneously, is characterized in that, comprises the following steps:
步骤一、将斜生栅藻用植物细胞壁降解酶进行处理获得斜生栅藻预处理物;其中,所述植物细胞壁降解酶的添加量占所述微藻的质量百分比为0.8%;将微藻用植物细胞壁降解酶进行混合处理的pH值为5.8,反应温度为35℃,反应4h;Step 1, treating Scenedesmus obliquus with plant cell wall degrading enzyme to obtain Scenedesmus obliquus pretreatment; wherein, the added amount of the plant cell wall degrading enzyme accounts for 0.8% of the mass percentage of the microalgae; the microalgae The pH value of the mixed treatment with plant cell wall degrading enzyme is 5.8, the reaction temperature is 35°C, and the reaction is 4h;
步骤二、将所述斜生栅藻预处理物在温度为110℃和压强为0.20MPa的条件下处理30min获得斜生栅藻二级预处理物,将所述斜生栅藻二级预处理物用于提取微藻油脂及微藻多糖;Step 2, treating the pretreated Scenedesmus obliquus at a temperature of 110° C. and a pressure of 0.20 MPa for 30 minutes to obtain a secondary pretreated Scenedesmus obliquus, and treating the Scenedesmus obliques secondary pretreatment The product is used to extract microalgae oil and microalgae polysaccharide;
步骤三、向所述斜生栅藻二级预处理物中添加入有机萃取剂进行萃取微藻油脂,分离出富含有微藻多糖的斜生栅藻多糖液;Step 3, adding an organic extractant to the secondary pretreatment of Scenedesmus obliquus to extract microalgae oil, and separating Scenedesmus obliquus polysaccharide liquid rich in microalgae polysaccharide;
步骤四、将所述斜生栅藻多糖液过滤去除斜生栅藻细胞残渣;Step 4, filtering the Scenedesmus obliquus polysaccharide solution to remove Scenedesmus obliquus cell residues;
步骤五、向所述斜生栅藻多糖液中添加三氯乙酸沉淀去除蛋白及核酸杂质获得二级斜生栅藻多糖液;Step 5, adding trichloroacetic acid to the polysaccharide solution of Scenedesmus obliquus to precipitate and remove protein and nucleic acid impurities to obtain a secondary polysaccharide solution of Scenedesmus obliquus;
步骤六、将所述二级斜生栅藻多糖液离心、收集上清,之后向其中加入体积分数为100%的乙醇反应至沉淀不再增加为止,获得微藻粗多糖。Step 6: centrifuge the secondary Scenedesmus obliquus polysaccharide solution, collect the supernatant, and then add ethanol with a volume fraction of 100% therein to react until the precipitation no longer increases, so as to obtain the microalgae crude polysaccharide.
在上述方案中,微藻可直接使用微藻液或者湿藻泥进行微藻胞内多糖和油脂的提取,减少了微藻生物质干燥环节,降低了提取成本;步骤二可以在高温高压反应釜中进行,并且其中反应条件相较蒸汽爆破的方法降低了高温高压反应釜的温度及压强,有助于降低能耗;并且增加了微藻多糖的产率,过程方法容易,利于实现微藻油脂和多糖多联产过程的放大应用。In the above scheme, the microalgae can directly use the microalgae liquid or wet algae mud to extract the polysaccharides and oils in the microalgae cells, which reduces the drying process of the microalgae biomass and reduces the extraction cost; Compared with the method of steam explosion, the reaction conditions reduce the temperature and pressure of the high-temperature and high-pressure reactor, which helps to reduce energy consumption; and increases the yield of microalgae polysaccharides, and the process method is easy, which is conducive to the realization of microalgae oil and the scale-up application of the polysaccharide polygeneration process.
实施例5Example 5
一种同时提取微藻油脂及微藻多糖的方法,其特征在于,包括以下步骤:A method for extracting microalgae oil and microalgae polysaccharide simultaneously, is characterized in that, comprises the following steps:
步骤一、将杜氏盐藻用溶壁酶进行处理获得杜氏盐藻预处理物;其中,所述溶壁酶的添加量占所述微藻的质量百分比为1%;将微藻用溶壁酶进行混合处理的pH值为6.0,反应温度为35℃,反应5h;Step 1, treating Dunaliella salina with a lytic enzyme to obtain a pretreated Dunaliella salina; wherein, the added amount of the lytic enzyme accounts for 1% of the mass percentage of the microalgae; the microalgae is treated with a lytic enzyme The pH value of the mixed treatment is 6.0, the reaction temperature is 35°C, and the reaction is 5h;
步骤二、将所述杜氏盐藻预处理物在温度为80℃和压强为0.25MPa的条件下处理20min获得杜氏盐藻二级预处理物,将所述杜氏盐藻二级预处理物用于提取微藻油脂及微藻多糖;Step 2, treating the Dunaliella salina pretreatment at a temperature of 80° C. and a pressure of 0.25 MPa for 20 minutes to obtain a Dunaliella salina secondary pretreatment, and using the Dunaliella salina secondary pretreatment for Extract microalgae oil and microalgae polysaccharide;
步骤三、向所述杜氏盐藻二级预处理物中添加入有机萃取剂进行萃取微藻油脂,分离出富含有微藻多糖的杜氏盐藻多糖液;Step 3, adding an organic extractant to the secondary pretreatment of Dunaliella salina to extract microalgae oil, and separating the Dunaliella salina polysaccharide liquid rich in microalgae polysaccharide;
步骤四、将所述杜氏盐藻多糖液过滤去除杜氏盐藻细胞残渣;Step 4, filtering the Dunaliella salina polysaccharide solution to remove Dunaliella salina cell residues;
步骤五、向所述杜氏盐藻多糖液中添加三氯乙酸沉淀去除蛋白及核酸杂质获得二级杜氏盐藻多糖液;Step 5, adding trichloroacetic acid to the Dunaliella salina polysaccharide solution to precipitate and remove protein and nucleic acid impurities to obtain a secondary Dunaliella salina polysaccharide solution;
步骤六、将所述二级杜氏盐藻多糖液离心、收集上清,之后向其中加入体积分数为80%的乙醇反应至沉淀不再增加为止,获得微藻粗多糖。Step 6: Centrifuge the secondary Dunaliella salina polysaccharide liquid, collect the supernatant, and then add ethanol with a volume fraction of 80% to it to react until the precipitation no longer increases, and obtain the microalgae crude polysaccharide.
在上述方案中,微藻可直接使用微藻液或者湿藻泥进行微藻胞内多糖和油脂的提取,减少了微藻生物质干燥环节,降低了提取成本;步骤二可以在高温高压反应釜中进行,并且其中反应条件相较蒸汽爆破的方法降低了高温高压反应釜的温度及压强,有助于降低能耗;并且增加了微藻多糖的产率,过程方法容易,利于实现微藻油脂和多糖多联产过程的放大应用。In the above scheme, the microalgae can directly use the microalgae liquid or wet algae mud to extract the polysaccharides and oils in the microalgae cells, which reduces the drying process of the microalgae biomass and reduces the extraction cost; Compared with the method of steam explosion, the reaction conditions reduce the temperature and pressure of the high-temperature and high-pressure reactor, which helps to reduce energy consumption; and increases the yield of microalgae polysaccharides, and the process method is easy, which is conducive to the realization of microalgae oil and the scale-up application of the polysaccharide polygeneration process.
应用本发明方法在实验室条件下进行微藻多糖及微藻油脂的提取,方法步骤如下:Apply the method of the present invention to carry out the extraction of microalgae polysaccharide and microalgae oil under laboratory conditions, method steps are as follows:
实施例6:Embodiment 6:
1)将75mL杜氏盐藻用NaAc调节pH至6.0;1) Adjust the pH to 6.0 with 75mL Dunaliella salina with NaAc;
2)实验组加入微藻2.0%溶壁酶(T.harzianum L1412),37℃处理2h为实验组①和37℃处理6h为实验组②;对照组不添加;2) The experimental group added 2.0% microalgae lysozyme (T.harzianum L1412), treated at 37°C for 2 hours as the experimental group ① and 37°C for 6 hours as the experimental group ②; the control group did not add;
3)将实验组和对照组分别置于高温高压反应釜中,其中,实验组①反应温度为120℃,实验组②反应温度为95℃,对照组反应温度为160℃,以上三组均处理30min;3) Put the experimental group and the control group in high-temperature and high-pressure reactors respectively. Among them, the reaction temperature of the experimental group ① is 120°C, the reaction temperature of the experimental group ② is 95°C, and the reaction temperature of the control group is 160°C. The above three groups are all treated 30min;
4)将上述实验获得的藻浆加入150mL氯仿,37℃120rpm摇床60min,离心收集油相和水相;4) Add 150 mL of chloroform to the algae slurry obtained in the above experiment, shake it at 120 rpm at 37°C for 60 min, and collect the oil phase and water phase by centrifugation;
5)将油相利用旋转蒸发仪,回收重复利用氯仿,获得微藻粗脂,称重;5) Use a rotary evaporator to recover and reuse the chloroform from the oil phase to obtain crude oil from microalgae, and weigh it;
6)将水相中加入80%TCA三氯乙酸至浓度为10%,4℃静置过夜,离心收集上清液;6) Add 80% TCA trichloroacetic acid to the water phase to a concentration of 10%, let stand overnight at 4°C, and collect the supernatant by centrifugation;
7)上清液添加3倍体积的无水乙醇沉淀上清液,离心,取沉淀物为多糖提取物。7) Add 3 times the volume of absolute ethanol to the supernatant to precipitate the supernatant, centrifuge, and take the precipitate as polysaccharide extract.
结果如下表1所示:The results are shown in Table 1 below:
杜氏盐藻藻株经过传统的氯仿甲醇油脂提取方法其油脂含量为23.22%。可以计算出:The oil content of the Dunaliella salina strain is 23.22% after the traditional chloroform-methanol oil extraction method. It can be calculated that:
对照组微藻油脂提取率为14.51%/23.22%=62.5%;The oil extraction rate of microalgae in the control group was 14.51%/23.22%=62.5%;
实验组①微藻油脂提取率为22.83%/23.22%=98.3%;Experimental group ① The oil extraction rate of microalgae was 22.83%/23.22% = 98.3%;
实验组②微藻油脂提取率为10.26%/23.22%=44.2%。The oil extraction rate of microalgae in experimental group ② was 10.26%/23.22%=44.2%.
实施例7Example 7
1)将1g干藻粉,按照1∶50比列加入水50mL,用乙酸调节pH至5.0;1) Add 1g of dry algae powder to 50mL of water according to the ratio of 1:50, and adjust the pH to 5.0 with acetic acid;
2)实验组加入微藻0.2%溶壁酶(T.harzianum L1412),37℃处理4h,对照组不添加;2) Add 0.2% microalgae lysozyme (T.harzianum L1412) to the experimental group, and treat at 37°C for 4 hours, while the control group does not add;
3)将对照组至于高温高压反应釜调节温度至160℃,处理2h组反应温度为120℃,均处理30min;3) The control group was placed in a high-temperature and high-pressure reactor to adjust the temperature to 160°C, and the reaction temperature of the treatment group was 120°C for 2 hours, and both were treated for 30 minutes;
4)将上述实验获得的藻浆加入150mL氯仿,37℃120rpm摇床60min,离心收集油相和水相;4) Add 150 mL of chloroform to the algae slurry obtained in the above experiment, shake it at 120 rpm at 37°C for 60 min, and collect the oil phase and water phase by centrifugation;
5)将油相利用旋转蒸发仪,回收重复利用氯仿,获得微藻粗脂,称重;5) Use a rotary evaporator to recover and reuse the chloroform from the oil phase to obtain crude oil from microalgae, and weigh it;
6)将水相中加入80%TCA至浓度为10%,4℃静置过夜,离心收集上清液;6) Add 80% TCA to the water phase to a concentration of 10%, let it stand overnight at 4°C, and collect the supernatant by centrifugation;
7)上清液添加3倍体积的无水乙醇沉淀上清液,离心,取沉淀物为多糖提取物。7) Add 3 times the volume of absolute ethanol to the supernatant to precipitate the supernatant, centrifuge, and take the precipitate as polysaccharide extract.
结果如下表2所示:The results are shown in Table 2 below:
斜生栅藻经传统氯仿甲醇油脂提取方其油脂含量为35.6%,可以计算出:The oil content of Scenedesmus obliquus is 35.6% through traditional chloroform-methanol oil extraction, which can be calculated as follows:
对照组微藻油脂提取率为22.82%/35.6%=64.1%;The oil extraction rate of microalgae in the control group was 22.82%/35.6%=64.1%;
实验组微藻油脂提取率为28.64%/35.6%=80.4%。The oil extraction rate of the microalgae in the experimental group was 28.64%/35.6%=80.4%.
由上述试验表1和表2中数据以及油脂提取率数据表明,本发明提供的同时提取微藻油脂及微藻多糖的方法可以同时提取了微藻多糖以及微藻油脂,并且在保证油脂含量的同时,增加了多糖的提取率;采用本发明提供的方法可以有效降低反应釜温度、压强及缩短反应时间,大大降低了提取能耗。Show by the data in above-mentioned test table 1 and table 2 and oil extraction rate data, the method for simultaneously extracting microalgae oil and microalgae polysaccharide provided by the present invention can extract microalgae polysaccharide and microalgae oil simultaneously, and guarantee oil content At the same time, the extraction rate of the polysaccharide is increased; the method provided by the invention can effectively reduce the temperature and pressure of the reaction kettle and shorten the reaction time, greatly reducing the extraction energy consumption.
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的实施例。Although the embodiment of the present invention has been disclosed as above, it is not limited to the use listed in the specification and implementation, it can be applied to various fields suitable for the present invention, and it can be easily understood by those skilled in the art Therefore, the invention is not limited to the specific details and embodiments shown and described herein without departing from the general concept defined by the claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410754045.8A CN104560357A (en) | 2014-12-10 | 2014-12-10 | Method for synchronously extracting microalgal oil and microalgal polysaccharide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410754045.8A CN104560357A (en) | 2014-12-10 | 2014-12-10 | Method for synchronously extracting microalgal oil and microalgal polysaccharide |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104560357A true CN104560357A (en) | 2015-04-29 |
Family
ID=53077444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410754045.8A Pending CN104560357A (en) | 2014-12-10 | 2014-12-10 | Method for synchronously extracting microalgal oil and microalgal polysaccharide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104560357A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104905321A (en) * | 2015-05-27 | 2015-09-16 | 中国科学院天津工业生物技术研究所 | Wall-breaking Haematoccoccus Pluvialis powder microcapsules and preparation process thereof |
CN105001971A (en) * | 2015-06-26 | 2015-10-28 | 新奥科技发展有限公司 | Two-step production method for microalgae bio-oil |
CN105296137A (en) * | 2015-10-15 | 2016-02-03 | 中国科学院水生生物研究所 | Method for extracting microalgae lipid through biological enzyme catalysis wall breaking |
CN106190347A (en) * | 2016-08-18 | 2016-12-07 | 华南理工大学 | A kind of method utilizing high-pressure pulse electric and ultrasonic assistant to extract bio-fuel |
CN113116804A (en) * | 2019-12-31 | 2021-07-16 | 新生活化妆品科技(上海)有限公司 | Cosmetic material composition, method for producing same, and cosmetic |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101352249A (en) * | 2008-09-04 | 2009-01-28 | 蔡志武 | Production method for fully using oil-containing micro-algae |
CN101736045A (en) * | 2009-12-03 | 2010-06-16 | 渤海大学 | Method for continuously extracting functional components of chlorella vulgaris |
CN102051331A (en) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | High-efficiency microalgae cell breaking method |
CN102295983A (en) * | 2011-07-21 | 2011-12-28 | 上海辰浩生物技术有限公司 | Production method for comprehensive utilization of microalgae |
CN102433215A (en) * | 2011-09-22 | 2012-05-02 | 厦门汇盛生物有限公司 | Method for extracting grease from fungi or algae by physical wall breaking |
CN102875658A (en) * | 2012-10-15 | 2013-01-16 | 北京化工大学 | High-value utilization and separation method for oil producing microorganism energy microalgae |
CN103173273A (en) * | 2011-12-21 | 2013-06-26 | 新奥科技发展有限公司 | Microalgae grease extraction method |
CN103555582A (en) * | 2013-10-22 | 2014-02-05 | 渤海大学 | Method for breaking wall of chlorella by using compound enzyme |
-
2014
- 2014-12-10 CN CN201410754045.8A patent/CN104560357A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101352249A (en) * | 2008-09-04 | 2009-01-28 | 蔡志武 | Production method for fully using oil-containing micro-algae |
CN102051331A (en) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | High-efficiency microalgae cell breaking method |
CN101736045A (en) * | 2009-12-03 | 2010-06-16 | 渤海大学 | Method for continuously extracting functional components of chlorella vulgaris |
CN102295983A (en) * | 2011-07-21 | 2011-12-28 | 上海辰浩生物技术有限公司 | Production method for comprehensive utilization of microalgae |
CN102433215A (en) * | 2011-09-22 | 2012-05-02 | 厦门汇盛生物有限公司 | Method for extracting grease from fungi or algae by physical wall breaking |
CN103173273A (en) * | 2011-12-21 | 2013-06-26 | 新奥科技发展有限公司 | Microalgae grease extraction method |
CN102875658A (en) * | 2012-10-15 | 2013-01-16 | 北京化工大学 | High-value utilization and separation method for oil producing microorganism energy microalgae |
CN103555582A (en) * | 2013-10-22 | 2014-02-05 | 渤海大学 | Method for breaking wall of chlorella by using compound enzyme |
Non-Patent Citations (1)
Title |
---|
钟韵山等: "小球藻破壁技术研究进展", 《食品研究与开发》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104905321A (en) * | 2015-05-27 | 2015-09-16 | 中国科学院天津工业生物技术研究所 | Wall-breaking Haematoccoccus Pluvialis powder microcapsules and preparation process thereof |
CN105001971A (en) * | 2015-06-26 | 2015-10-28 | 新奥科技发展有限公司 | Two-step production method for microalgae bio-oil |
CN105296137A (en) * | 2015-10-15 | 2016-02-03 | 中国科学院水生生物研究所 | Method for extracting microalgae lipid through biological enzyme catalysis wall breaking |
CN106190347A (en) * | 2016-08-18 | 2016-12-07 | 华南理工大学 | A kind of method utilizing high-pressure pulse electric and ultrasonic assistant to extract bio-fuel |
CN106190347B (en) * | 2016-08-18 | 2018-04-13 | 华南理工大学 | A kind of method using high-pressure pulse electric and ultrasonic wave assisted extraction bio-fuel |
CN113116804A (en) * | 2019-12-31 | 2021-07-16 | 新生活化妆品科技(上海)有限公司 | Cosmetic material composition, method for producing same, and cosmetic |
CN113116804B (en) * | 2019-12-31 | 2023-03-21 | 新生活化妆品科技(上海)有限公司 | Cosmetic material composition, method for producing same, and cosmetic |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Velazquez-Lucio et al. | Microalgal biomass pretreatment for bioethanol production: a review | |
Miranda et al. | Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production | |
Ghasemi Naghdi et al. | Progress on lipid extraction from wet algal biomass for biodiesel production | |
González-Delgado et al. | Microalgae based biorefinery: Issues to consider | |
Karemore et al. | Downstream processing of microalgal feedstock for lipid and carbohydrate in a biorefinery concept: a holistic approach for biofuel applications | |
Xia et al. | Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis | |
Cheng et al. | Cogeneration of hydrogen and methane from the pretreated biomass of algae bloom in Taihu Lake | |
CN104560357A (en) | Method for synchronously extracting microalgal oil and microalgal polysaccharide | |
JP2009528035A (en) | Production method of liquid fuel with new biomass | |
CN102199482B (en) | Method for extracting grease from oleaginous microorganisms | |
CN102206539A (en) | Method for extracting grease from wet microalgae mud by using subcritical alcohols | |
Chen et al. | A cyclic process for enzymatic hydrolysis and fermentation of lactic acid pretreated reed | |
CN102174606B (en) | A method for joint extraction of blackberry seed oil and anthocyanin in blackberry juice production by-products | |
CN102827303A (en) | Method for producing spirulina polysaccharide by fresh spirulina | |
CN106190347B (en) | A kind of method using high-pressure pulse electric and ultrasonic wave assisted extraction bio-fuel | |
CN104045725B (en) | Method for Refining Inonotus obliquus Crude Polysaccharide Using D301G Anion Resin | |
CN104560633A (en) | Device and method for utilizing clean microalgal oil | |
Zhang et al. | Enhanced VFAs production from microalgal hydrolytic acidification with ultrasonic-alkali pretreatment | |
Zhu et al. | Breaking the barriers of lignocellulosic ethanol production using ionic liquid technology | |
CN107502636B (en) | Method for pretreating hybrid pennisetum alopecuroides at low temperature by using ammonia water | |
CN111448298B (en) | Method for separating microbial oil | |
CN104560227B (en) | Utilize the method that wet algal biomass microwave-assisted ester exchange extracts preparation biodiesel | |
CN115852723A (en) | Method for extracting high-purity xylose liquid and cellulose by using corn straws | |
CN103880971A (en) | Method for extraction of chlorella water-insoluble polysaccharides | |
CN106947796A (en) | A kind of D trehaloses purifying technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150429 |
|
RJ01 | Rejection of invention patent application after publication |