CN104166161A - Method and device for predicating fractures based on elliptical velocity inversion of anisotropism - Google Patents
Method and device for predicating fractures based on elliptical velocity inversion of anisotropism Download PDFInfo
- Publication number
- CN104166161A CN104166161A CN201410409075.5A CN201410409075A CN104166161A CN 104166161 A CN104166161 A CN 104166161A CN 201410409075 A CN201410409075 A CN 201410409075A CN 104166161 A CN104166161 A CN 104166161A
- Authority
- CN
- China
- Prior art keywords
- velocity
- azimuth
- module
- analysis
- spectrum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明提供了一种基于各向异性的椭圆速度反演的裂缝预测方法及装置,通过将宽方位或多方位地震数据按照方位角重新排列成方位道集;对每一个方位道集用非双曲速度分析得到速度谱;运用速度谱自动拾取算法得到动校正速度曲线,筛选出目标层方位动校正速度;又动校正速度分布进行椭圆拟合,并通过最小二乘法反演得到裂缝发育方向和裂缝发育强度。本发明对速度谱和η进行高精度的自动拾取,极大的提高非双曲速度分析效率,利于揭示裂缝发育的空间展布规律,从而能更有效的对裂缝性油气进行检测,大幅度提高裂缝储层预测的成功率。
The present invention provides a fracture prediction method and device based on anisotropic ellipse velocity inversion, by rearranging wide-azimuth or multi-azimuth seismic data into azimuth gathers according to azimuth; Velocity spectrum is obtained by warp velocity analysis; the dynamic correction velocity curve is obtained by using the velocity spectrum automatic picking algorithm, and the target layer azimuth dynamic correction velocity is screened out; the dynamic correction velocity distribution is ellipse fitted, and the fracture development direction and Crack development strength. The present invention automatically picks up the velocity spectrum and η with high precision, greatly improves the efficiency of non-hyperbolic velocity analysis, and helps to reveal the spatial distribution law of fracture development, thereby enabling more effective detection of fractured oil and gas, greatly improving Success Rate of Fractured Reservoir Prediction.
Description
技术领域technical field
本发明属于油气勘探领域,尤其涉及一种基于各向异性的椭圆速度反演的裂缝预测方法及装置。The invention belongs to the field of oil and gas exploration, in particular to a fracture prediction method and device based on anisotropic ellipse velocity inversion.
背景技术Background technique
有效裂缝是致密砂岩气藏获得工业产能的关键。而为了有效识别裂缝,裂缝预测技术是至关重要的,特别是裂缝型储层勘探中情况更是如此。以宽方位甚至多方位三维地震资料为基础,通过叠前反演、分方位提取各向异性速度,应用椭圆拟合技术,可对断层、裂缝的分布进行预测。研究表明:裂缝是否发育以及如何识别页岩储层裂缝发育带,进而预测油气的高产富集带分布是裂缝油气藏勘探成功的关键和难点。因此,开发识别储层裂缝空间发育与展布规律的技术,是勘探生产上的一项重要需求。Effective fractures are the key to obtaining industrial productivity in tight sandstone gas reservoirs. In order to effectively identify fractures, fracture prediction technology is crucial, especially in the exploration of fractured reservoirs. Based on wide-azimuth or even multi-azimuth 3D seismic data, the distribution of faults and fractures can be predicted by pre-stack inversion, extracting anisotropic velocity by azimuth, and applying ellipse fitting technology. Studies have shown that: whether fractures are developed and how to identify fracture development zones in shale reservoirs, and then predict the distribution of high-yield and enriched zones of oil and gas are the key and difficult points for successful exploration of fractured reservoirs. Therefore, it is an important requirement in exploration and production to develop technologies to identify the spatial development and distribution of reservoir fractures.
发明内容Contents of the invention
本发明的目的在于提供一种基于各向异性的椭圆速度反演的裂缝预测方法及装置,旨在提高油气勘探的准确性和可靠性,为解释人员的裂缝预测工作提供可靠的依据,从而有效的判断油气的高富集带的分布情况。The object of the present invention is to provide a fracture prediction method and device based on anisotropic ellipse velocity inversion, aiming at improving the accuracy and reliability of oil and gas exploration, providing a reliable basis for the fracture prediction work of interpreters, thus effectively Judging the distribution of high oil and gas enrichment zones.
本发明是这样实现的,一种基于各向异性的椭圆速度反演的裂缝预测方法,包括以下步骤:The present invention is achieved in this way, a fracture prediction method based on anisotropic ellipse velocity inversion, comprising the following steps:
S1、将宽方位或多方位地震数据按照方位角重新排列成方位道集;S1. Rearrange the wide-azimuth or multi-azimuth seismic data into an azimuth gather according to the azimuth;
S2、对每一个方位道集用非双曲速度分析得到速度谱;S2. Obtain the velocity spectrum by non-hyperbolic velocity analysis for each azimuth gather;
S3、运用速度谱自动拾取算法得到动校正速度曲线,筛选出目标层方位动校正速度;S3. Use the velocity spectrum automatic picking algorithm to obtain the dynamic correction velocity curve, and screen out the target layer azimuth dynamic correction velocity;
S4、由动校正速度分布进行椭圆拟合,并通过最小二乘法反演得到裂缝发育方向和裂缝发育强度。S4. Ellipse fitting is carried out from the velocity distribution of dynamic correction, and the fracture development direction and fracture development intensity are obtained by least square method inversion.
优选地,所述步骤S2包括以下具体步骤:Preferably, the step S2 includes the following specific steps:
(1)对短排列的地震资料进行常规速度分析得到初始的动校正值;(1) Perform conventional velocity analysis on the seismic data of the short array to obtain the initial dynamic correction value;
(2)利用Akhalifa非双曲速度分析公式将初始动校正速度值代入对原道地震资料进行扫描确定η值;(2) Use the Akhalifa non-hyperbolic velocity analysis formula to substitute the initial dynamic correction velocity value into the original trace seismic data to scan to determine the value of η;
(3)再将η代入非双速度分析公式重新确定动校正速度值反复迭代;(3) Substituting η into the non-double speed analysis formula to redetermine the dynamic correction speed value to iterate repeatedly;
(4)重复步骤(2)、(3)至η值和动校正速度值稳定后,输出速度谱和η谱。(4) Repeat steps (2), (3) until the η value and the dynamic correction velocity value are stable, then output the velocity spectrum and η spectrum.
本发明进一步提供了一种基于各向异性的椭圆速度反演的裂缝预测装置,包括:The present invention further provides a fracture prediction device based on anisotropic ellipse velocity inversion, including:
方位角道集选排模块,用于将宽方位或多方位地震数据按照方位角重新排列成方位道集;The azimuth gather selection module is used to rearrange the wide-azimuth or multi-azimuth seismic data into azimuth gathers according to the azimuth;
非双曲速度分析模块,用于对方位角道集选排模块中每一个方位道集用非双曲速度分析得到速度谱;The non-hyperbolic velocity analysis module is used to obtain the velocity spectrum by non-hyperbolic velocity analysis for each azimuth gather in the azimuth gather selection module;
自动拾取模块,用于对非双曲速度分析模块得到的速度谱运用速度谱自动拾取算法得到动校正速度曲线,筛选出目标层方位动校正速度;The automatic picking module is used to obtain the dynamic correction velocity curve by using the velocity spectrum automatic picking algorithm on the velocity spectrum obtained by the non-hyperbolic velocity analysis module, and screen out the target layer azimuth dynamic correction velocity;
椭圆拟合模块,用于对自动拾取模块中动校正速度分布的进行椭圆拟合,通过最小二乘法反演得到裂缝发育方向和裂缝发育强度。The ellipse fitting module is used for ellipse fitting of the dynamic correction velocity distribution in the automatic picking module, and the fracture development direction and fracture development intensity are obtained by least square method inversion.
优选地,所述非双曲速度分析模块包括:Preferably, the non-hyperbolic velocity analysis module includes:
常规速度分析模块,用于对短排列的地震资料进行常规速度分析得到初始的动校正值;The conventional velocity analysis module is used to conduct conventional velocity analysis on the seismic data of the short array to obtain the initial dynamic correction value;
扫描模块,用于利用Akhalifa非双曲速度分析公式将初始动校正速度值代入对原道地震资料进行扫描确定η值;The scanning module is used to use the Akhalifa non-hyperbolic velocity analysis formula to substitute the initial dynamic correction velocity value into the original channel seismic data to scan and determine the η value;
迭代模块,用于将η代入非双速度分析公式重新确定动校正速度值反复迭代;The iterative module is used for substituting η into the non-double speed analysis formula to re-determine the dynamic correction speed value and iterate repeatedly;
输出模块,用于在重复扫描模块和迭代模块处理至η值和动校正速度值稳定后,输出速度谱和η谱。The output module is used to output the velocity spectrum and the η spectrum after the repeated scanning module and the iterative module process until the η value and the dynamic correction velocity value are stable.
本发明克服现有技术的不足,提供一种基于各向异性的椭圆速度反演的裂缝预测方法及装置,主要运用叠前的宽方位或多方位地震资料进行处理。通过运用非双曲速度分析的方法,对目的层的全方位或宽方位动校正速度信息和各向异性参数η进行提取,从而按照动校正速度和方位角的关系反演出裂缝发育强度和发育方向。本方法为裂缝预测提供了一种可靠的预测算法,为解释人员的裂缝预测工作提供了一种可靠的依据。The present invention overcomes the deficiencies of the prior art, and provides a fracture prediction method and device based on anisotropic ellipse velocity inversion, which mainly uses pre-stack wide-azimuth or multi-azimuth seismic data for processing. By using the non-hyperbolic velocity analysis method, the omnidirectional or wide azimuth dynamic correction velocity information and anisotropy parameter η of the target layer are extracted, so as to invert the fracture development intensity and development direction according to the relationship between the dynamic correction velocity and azimuth angle . This method provides a reliable prediction algorithm for crack prediction, and provides a reliable basis for the crack prediction work of interpreters.
在本发明中,椭圆速度反演各向异性裂缝预测技术是目前国内外正在大力发展和不断完善的技术。它利用地震波在各向异性介质中转播时发生的速度随方位角的变化来检测裂缝发育的方位和发育密度,预测结果与裂缝发育带的微观特征有更加密切的关系。因此更有利于揭示裂缝发育的空间展布规律,从而能更有效的对裂缝性油气进行检测,大幅度提高裂缝储层预测的成功率。In the present invention, the ellipse velocity inversion anisotropic fracture prediction technology is a technology that is being vigorously developed and continuously improved at home and abroad. It detects the azimuth and density of fracture development by using the variation of seismic wave velocity with azimuth when it is relayed in anisotropic media, and the prediction results are more closely related to the microscopic characteristics of the fracture development zone. Therefore, it is more conducive to revealing the spatial distribution of fracture development, so that the fractured oil and gas can be detected more effectively, and the success rate of fractured reservoir prediction can be greatly improved.
与本发明相关的现有技术包括:The prior art relevant to the present invention includes:
1、常规速度分析:1. Conventional speed analysis:
常规速度分析是以地下介质的层状各向同性地球物理假设的Dix公式为主要理论基础,通过叠前地震资料来估计地下介质的速度分布情况的方法。而速度分析是地震勘探的重要关键环节,速度分析的精度直接影响后续的地震资料时域处理和解释流程。Conventional velocity analysis is a method to estimate the velocity distribution of the underground medium based on the Dix formula assumed by the layered isotropic geophysics of the subsurface medium through pre-stack seismic data. Velocity analysis is an important key link in seismic exploration, and the accuracy of velocity analysis directly affects the follow-up seismic data time-domain processing and interpretation process.
常规速度分析方法包括如下几种方法:Conventional velocity analysis methods include the following methods:
(1)t2-x2法(1) t 2 -x 2 method
根据Dix公式可知,在t2-x2平面中的反射波的时距方程是线性的。所以可以拟合出反射波偏移距和反射波旅行时的线性方程,而得出该方程的斜率倒数的方根就是本发明所求的动校正速度。According to the Dix formula, the time-distance equation of the reflected wave in the t 2 -x 2 plane is linear. Therefore, the linear equation of reflected wave offset and reflected wave travel time can be fitted, and the square root of the reciprocal slope of the equation obtained is the dynamic correction speed sought in the present invention.
(2)速度扫描法(2) Speed scanning method
就是利用一系列动校正速度对CMP道集进行动校正,每动校正一次得到一张校正后的图像,并对拉平程度进行评估,能使反射波的同相轴拉平程度最大的扫描速度就是本发明所求的动校正速度。It is to use a series of dynamic correction speeds to perform dynamic correction on the CMP gathers, and obtain a corrected image every time the dynamic correction is performed, and evaluate the leveling degree. The scanning speed that can make the event of the reflected wave the largest leveling degree is the present invention. The desired dynamic correction speed.
(3)速度谱扫描法(3) Velocity Spectrum Scanning Method
通过设置一系列扫描动校正速度和一系列零偏移距双程旅行时,用这些扫描动校正速度和零偏移距双程旅行时,对CMP(CDP)道集进行动校正和叠加,计算评估参数(平均能量,相似系数,相关系数等),并将计算评估参数放在扫描动校正速度和扫描零偏移距双程旅行时的二维平面中,得到扫描结果称为速度谱。速度谱的极大值处所对应的动校正速度和零偏移距双程旅行时是本发明所求的动校正速度和零偏移距双程旅行时。By setting a series of scanning dynamic correction velocities and a series of zero-offset two-way travel times, using these scanning dynamic correction velocities and zero-offset two-way travel times, the CMP (CDP) gathers are dynamically corrected and superimposed, and the calculation Evaluate parameters (average energy, similarity coefficient, correlation coefficient, etc.), and place the calculated evaluation parameters in the two-dimensional plane of scanning motion correction velocity and scanning zero offset two-way travel time, and the scanning result is called velocity spectrum. The dynamic correction speed and zero-offset round-trip travel time corresponding to the maximum value of the speed spectrum are the dynamic correction speed and zero-offset round-trip travel time calculated in the present invention.
(4)CVS法(4) CVS method
该方法是取测线的一小段,用一系列动校正速度对该段进行动校正叠加,不同的叠加速度,叠加得到图像称为CVS图像,从一系列CVS图像中获取最佳的动校正速度为本发明所求的结果。This method is to take a small section of the survey line, use a series of dynamic correction speeds to carry out dynamic correction superposition on this section, different superimposition speeds, the superimposed image is called a CVS image, and the best dynamic correction speed is obtained from a series of CVS images For the desired result of the present invention.
2、非双曲速度分析:2. Non-hyperbolic velocity analysis:
非双曲线速度分析是建立在各向异性地质模型上的一种地震波速度反演方法,在常规速度分析的基础上采用了非双曲时差公式。在传统的速度分析技术中是将地层假设为各向同性的,地震波在水平层状介质中传播时,其反射波的走时曲线是成双曲线方程的。实际地层大多是各向异性的,如果运用常规速度分析对地震资料处理,所获得的速度信息会产生极大的误差,使得动校正无法将远道拉平,从而得不到可靠与满意的效果。根据各向异性介质模型,建立非双曲线速度分析方法,不仅更符合实际地质情况,而且也能得到更精确的速度,从而得到更高精度的地震资料。Non-hyperbolic velocity analysis is a seismic wave velocity inversion method based on an anisotropic geological model, and a non-hyperbolic moveout formula is used on the basis of conventional velocity analysis. In the traditional velocity analysis technique, the formation is assumed to be isotropic, and when the seismic wave propagates in the horizontal layered medium, the travel time curve of the reflected wave is a hyperbolic equation. The actual strata are mostly anisotropic. If the conventional velocity analysis is used to process the seismic data, the velocity information obtained will have a huge error, so that the dynamic correction cannot level the far distance, so that reliable and satisfactory results cannot be obtained. Based on the anisotropic medium model, the non-hyperbolic velocity analysis method is established, which is not only more in line with the actual geological conditions, but also can obtain more accurate velocities, thereby obtaining higher-precision seismic data.
3、VVAZ裂缝预测技术:3. VVAZ crack prediction technology:
VVAZ(Velocity Variation with AZimuth)技术是一种以基于HTI介质(高角度裂缝介质模型)动速度随方位角变化关系来评估裂缝发育方向和发育强度的裂缝预测技术。裂缝空间分布信息和发育情况对于油气勘探是非常重要的,利用VVAZ可以很好的对裂缝发育方向和强度进行预测,从而得到更加精细的裂缝空间分布信息和发育情况,帮助确定井位。VVAZ (Velocity Variation with AZimuth) technology is a fracture prediction technology based on the relationship between the dynamic velocity of the HTI medium (high-angle fracture medium model) and the azimuth angle to evaluate the fracture development direction and development intensity. Fracture spatial distribution information and development are very important for oil and gas exploration. VVAZ can be used to predict the direction and strength of fracture development, so as to obtain more detailed fracture spatial distribution information and development conditions, and help determine well locations.
附图说明Description of drawings
图1是本发明的基于各向异性的椭圆速度反演的裂缝预测方法的步骤流程图;Fig. 1 is the flow chart of the steps of the fracture prediction method based on anisotropic elliptic velocity inversion of the present invention;
图2是本发明实施例中双谱法非双曲速度分析的步骤流程图;Fig. 2 is the flow chart of the steps of bispectral method non-hyperbolic velocity analysis in the embodiment of the present invention;
图3是本发明实施例中速度谱自动拾取算法的步骤流程图;Fig. 3 is a flow chart of the steps of the velocity spectrum automatic picking algorithm in the embodiment of the present invention;
图4是本发明实施例中速度随方位角的变化图;Fig. 4 is the change figure of speed with azimuth angle in the embodiment of the present invention;
图5是本发明的基于各向异性的椭圆速度反演的裂缝预测装置的结构示意图;Fig. 5 is a structural schematic diagram of a fracture prediction device based on anisotropic ellipse velocity inversion of the present invention;
图6是本发明基于各向异性的椭圆速度反演的裂缝预测装置中非双曲速度分析模块的结构示意图。Fig. 6 is a schematic structural diagram of a non-hyperbolic velocity analysis module in the fracture prediction device based on anisotropic elliptic velocity inversion of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
一种基于各向异性的椭圆速度反演的裂缝预测方法,如图1所示,包括以下步骤:A fracture prediction method based on anisotropic ellipse velocity inversion, as shown in Fig. 1, includes the following steps:
S1、将宽方位或多方位地震数据按照方位角重新排列成方位道集S1. Rearrange wide-azimuth or multi-azimuth seismic data into azimuth gathers according to azimuth
在步骤S1中,方位角道集是分方位非双曲速度分析的基础,直接影响后续处理,所以需要对超CMP道集进行方位道集的选排。其中包括三种选排的方法:In step S1, the azimuth gather is the basis of the azimuth non-hyperbolic velocity analysis, which directly affects the subsequent processing, so it is necessary to select and arrange the azimuth gathers for the super CMP gather. There are three selection methods:
(1)优选炮间距法(1) Optimized gun spacing method
根据跑检距的分布范围,使测线纵横向最大炮检距一致,同时切除“内切圆”以外的区域,使宽道集变为全方位,更有利于研究方位角对速度分析的影响。According to the distribution range of running distances, the maximum vertical and horizontal offsets of the survey line are consistent, and at the same time, the area outside the "inscribed circle" is cut off, so that the wide gathers become omni-directional, which is more conducive to studying the influence of azimuth on velocity analysis .
(2)借道法(2) borrowing the law
通过借道使面元内的覆盖次数和炮检对的分布更加合理,如面元均匀化,数据规则处理等。The coverage times in the panel and the distribution of the shot detection pairs are more reasonable by means of the method, such as the uniformization of the panel and the processing of data rules.
(3)变角度法(3) Variable angle method
根据地震资料的覆盖次数和炮检距的分布情况,力求以各扇区的覆盖次数基本相当为原则,合理调整扇区的大小。According to the coverage times of seismic data and the distribution of offset distances, the size of the sectors should be adjusted reasonably based on the principle that the coverage times of each sector are basically equal.
不同的资料对同一种方法效果各异,所以在对超CMP道集进行方位角道集选排时,需要根据资料实际情况选择方法。Different data have different effects on the same method, so when selecting azimuth angle gathers for super CMP gathers, the method needs to be selected according to the actual situation of the data.
S2、对每一个方位道集用非双曲速度分析得到速度谱S2. Obtain the velocity spectrum by non-hyperbolic velocity analysis for each azimuth gather
在步骤S2中,利用Akhalifah非双曲时差分析公式作为各向异性非双曲速度的基础,如式(1):In step S2, the Akhalifah non-hyperbolic time difference analysis formula is used as the basis of anisotropic non-hyperbolic velocity, such as formula (1):
该双曲时差分析公式由两部分组成:第一部分是由前两项组成的双曲时差,第二部分是由第三项构成的各向异性的非双曲时差。通过理论分析可知,该式对大偏移距(大排列)的地震数据具有良好处理效果。The hyperbolic time difference analysis formula consists of two parts: the first part is the hyperbolic time difference composed of the first two terms, and the second part is the anisotropic non-hyperbolic time difference composed of the third term. Through theoretical analysis, it can be seen that this formula has a good processing effect on seismic data with large offsets (large arrays).
非双曲时差公式主要有两个参数:一个是Vnmo(动校正速度),另一个是ηeff(等效各向异性参数η)。这两个参数对于非双曲旅行时的影响在偏移距上的分布是不一样的,动校正速度Vnmo对于非双曲旅行时的影响是全局性的,对于整个排列起决定性的作用,而等效各向异性参数ηeff只在大偏移距的情况下才会对非双曲旅行时有较明显的影响,所以只有在对远道数据进行分析的情况下才能得到比较精确的ηeff值。再结合常规速度分析相似系数的判断准则,就形成了基于各向异性非双曲速度分析。The non-hyperbolic time difference formula mainly has two parameters: one is V nmo (dynamic correction speed), and the other is η eff (equivalent anisotropy parameter η). The influence of these two parameters on the non-hyperbolic travel time is different in the offset distribution, and the influence of the dynamic correction velocity V nmo on the non-hyperbolic travel time is global and plays a decisive role in the entire arrangement. The equivalent anisotropy parameter η eff will have a more obvious impact on the non-hyperbolic travel time only in the case of large offsets, so a more accurate η eff can only be obtained by analyzing the long-distance data value. Combined with the judgment criterion of the similarity coefficient of conventional velocity analysis, an anisotropic non-hyperbolic velocity analysis is formed.
在Akhalifa(1997)的基础上,本发明设计了如下非双曲速度分析的双谱算法,实现基于各向异性非双曲速度分析,双谱法非双曲速度分析,如图2所示,更具体实现步骤如下所示:On the basis of Akhalifa (1997), the present invention has designed the bispectrum algorithm of following non-hyperbolic velocity analysis, realizes based on anisotropic non-hyperbolic velocity analysis, bispectral method non-hyperbolic velocity analysis, as shown in Figure 2, The more specific implementation steps are as follows:
(1)对短排列的地震资料进行常规速度分析得到初始的动校正值(1) Perform conventional velocity analysis on the seismic data of the short array to obtain the initial dynamic correction value
在步骤(1)中,在一个确定的t0下,采用短排列CMP道集,进行常规速度分析,得到一个初始的动校正速度Vnmo。In step (1), at a certain t 0 , the short array CMP gathers are used to perform conventional velocity analysis to obtain an initial dynamic correction velocity V nmo .
(2)利用Akhalifa非双曲速度分析公式将初始动校正速度值代入对原道地震资料进行扫描确定η值(2) Use the Akhalifa non-hyperbolic velocity analysis formula to substitute the initial dynamic correction velocity value into the original trace seismic data to determine the η value
在步骤(2)中,将步骤(1)中得到初始动校正速度和t0代入Alkhalifah非双曲时差公式,对大排列地震数据进行扫描,得到一个初始的η值。In step (2), the initial dynamic correction velocity and t 0 obtained in step (1) are substituted into the non-hyperbolic moveout formula of Alkhalifah, and the large array seismic data is scanned to obtain an initial value of η.
(3)再将η代入非双速度分析公式重新确定动校正速度值反复迭代(3) Substituting η into the non-double-velocity analysis formula to re-determine the dynamic correction velocity value and iterate repeatedly
在步骤(3)中,将初始η值在代入非双曲时差公式,对大排列地震数据进行扫描,重新确定动校正速度Vnmo。In step (3), the initial η value is substituted into the non-hyperbolic moveout formula, and the large-array seismic data is scanned to re-determine the dynamic correction velocity V nmo .
(4)重复步骤(2)、(3)至η值和动校正速度值稳定后,输出速度谱和η谱(4) Repeat steps (2), (3) until the η value and dynamic correction velocity value are stable, output the velocity spectrum and η spectrum
在步骤(4)中,重复执行步骤(2)和步骤(3)反复迭代Vnmo和η两到三次,将获得稳定的Vnmo和η;对下一个t0进行扫描,执行前面三步,直到全部的t0被扫描完成,输出速度谱和η谱。In step (4), step (2) and step (3) are repeated to iterate Vnmo and η two to three times, and stable Vnmo and η will be obtained; next t0 is scanned, and the preceding three steps are performed, Until all t 0 are scanned, the velocity spectrum and η spectrum are output.
双谱非双曲速度分析的核心就是先利用短排列的地震资料进行常规速度分析,确定一个初始的动校正速度值,再利用远道的地震资料,通过Akhaliafa的非双曲速度分析时差公式和通过初始的动校正速度值,确定出初始η值,然后反复迭代得到稳定的动校正速度谱和η谱。The core of bispectral non-hyperbolic velocity analysis is to use short-arranged seismic data for conventional velocity analysis to determine an initial dynamic correction velocity value, and then use long-distance seismic data to analyze the time difference formula of non-hyperbolic velocity of Akhaliafa and pass The initial dynamic correction velocity value, determine the initial η value, and then iterate repeatedly to obtain a stable dynamic correction velocity spectrum and η spectrum.
S3、运用速度谱自动拾取算法得到动校正速度曲线,筛选出目标层方位动校正速度S3. Use the velocity spectrum automatic picking algorithm to obtain the dynamic correction velocity curve, and screen out the target layer azimuth dynamic correction velocity
在步骤S3中,速度拾谱自动拾取通常指的是提取最有效的速度谱能量团的过程,是速度分析中很重要的一项内容,这个过程可由人工手动拾取或者通过计算机自动拾取来完成。人工拾取具有较强的灵活性,但在估算速度谱能量团参数上具有一定的不足,不仅精确度不高,而且效率低,费用高。当地震剖面长,速度谱能量团的信息很丰富时,应当将自动技术融合到拾取过程中,不仅能解决上述因只做部分拾取致使丢失有效的地质信息所带来的经济损失,还能极大的提高工作效率。In step S3, the automatic picking of velocity spectrum generally refers to the process of extracting the most effective velocity spectrum energy group, which is a very important content in velocity analysis. This process can be done manually or automatically by computer. Manual picking has strong flexibility, but it has some shortcomings in estimating the parameters of the velocity spectrum energy group, not only the accuracy is not high, but also the efficiency is low and the cost is high. When the seismic section is long and the information of the velocity spectrum energy group is very rich, automatic technology should be integrated into the picking process, which can not only solve the above economic losses caused by the loss of effective geological information due to only partial picking, but also greatly Greatly improve work efficiency.
速度谱自动拾取算法(Viterbi算法)流程如图3所示,包括:The process flow of velocity spectrum automatic picking algorithm (Viterbi algorithm) is shown in Figure 3, including:
(1)对速度谱进行均值滤波处理;(1) Carry out mean filtering process to velocity spectrum;
(2)对速度谱进行优化积分计算;(2) Optimizing the integral calculation of the velocity spectrum;
(3)进行速度谱自动拾取。(3) Automatically pick up the velocity spectrum.
Viterbi算法作为寻找最短路径的一种最优化搜寻算法,它在电讯中曾被用于译解卷积码问题。该算法的主要原理是源自这样的观察:如果点和间的最短路径通过中间点,那么,点和间的这个路径段也是该路径段间的最短路径。这个算法包括两个步骤:向前最短路径累积(积分)计算和向后递减跟踪。在速度自动拾取的应用中,本发明称为“向前最大速度谱能量团累积计算和向后递减跟踪”。As an optimal search algorithm for finding the shortest path, the Viterbi algorithm has been used in telecommunications to decipher convolutional codes. The main principle of the algorithm is derived from the observation that if the shortest path between a point and a path passes through an intermediate point, then this path segment between a point and a sum is also the shortest path between that path segment. This algorithm consists of two steps: forward shortest path accumulation (integration) calculation and backward descending tracing. In the application of automatic velocity picking, the present invention is called "forward maximum velocity spectrum energy group accumulation calculation and backward descending tracking".
具体原理为:The specific principle is:
假设所观测到的序列为:Suppose the observed sequence is:
则其联合概率分布总可表示为Then its joint probability distribution can always be expressed as
公式表明观测序列变量zt在t时刻的条件分布概率依赖于zt-1前所有的值。式中P(zt|zt-11)为后验概率,其先验概率为P(zt-1)。为了能有效地记录先前具有最大先验概率的序列,本发明引入一个非观测序列的变量状态序列变量,也称传递序列变量,它携带了zt-1之前所有信息,这些信息有助于描述下一个观测序列zt的分布。The formula shows that the conditional distribution probability of the observed sequence variable zt at time t depends on all values before zt-1. In the formula, P(zt|zt-11) is the posterior probability, and its prior probability is P(zt-1). In order to effectively record the previous sequence with the largest prior probability, the present invention introduces a variable state sequence variable of a non-observation sequence, also known as a transfer sequence variable, which carries all the information before zt-1, and this information helps to describe the following The distribution of an observation sequence zt.
如果t时刻的状态qt为{1,……,M}范围内的一个有限数,并且假设处理过程只是从0到T时间,而且初始状态和最终状态为已知,那么状态序列就可以用一个有限的矢量来表示,即:If the state qt at time t is a finite number in the range of {1,...,M}, and assuming that the processing process is only from 0 to time T, and the initial state and final state are known, then the state sequence can be represented by a finite vector representation, namely:
用于表示以从零时刻一直到t=k-1时刻的所有状态为条件的t=k时刻的状态qt=k的概率,那么这种处理过程就称为一阶的Markov过程。也就是说在t=k时刻的状态qt=k给定了直到t=k-1时刻的所有状态,这些状态唯一地依赖于前一时刻的状态,如t=k-1时刻的状态qt=k-1,即:It is used to represent the probability of the state qt=k at the time t=k based on all the states from time zero to time t=k-1 as conditions, then this processing process is called a first-order Markov process. That is to say, the state qt=k at the moment t=k gives all the states up to the moment t=k-1, and these states are uniquely dependent on the state at the previous moment, such as the state qt= at the moment t=k-1 k-1, that is:
P(qk|q1,q2,…qk-1)=P(qk|qk-1) (5)P(q k |q 1 ,q 2 ,…q k-1 )=P(q k |q k-1 ) (5)
那么,T阶Markov过程便为:Then, the T-order Markov process is:
根据贝叶斯(Bayes)规则,前述的观察序列:According to Bayes' rule, the aforementioned observation sequence:
简而言之,当要预测观察序列或下一个状态时,状态变量qt=k包含了过去所有相关的观察序列和状态变量的值,即它们过去值的和。根据条件独立概率分布的假设,状态变量联合概率分布和观察序列间的关系还可进一步简化为:In short, when it is necessary to predict the observation sequence or the next state, the state variable qt=k contains the values of all related observation sequences and state variables in the past, that is, the sum of their past values. According to the assumption of conditional independent probability distribution, the relationship between the joint probability distribution of state variables and the observation sequence can be further simplified as:
那么,要用给定的一个观察序列zT 1去推断与之对应的最大可能的状态序列qT 1,可通过下面的最大化算法得到。Then, to use a given observation sequence z T 1 to deduce the corresponding maximum possible state sequence q T 1 , it can be obtained by the following maximization algorithm.
Viterbi算法找到了一个相关的且有效的递归解法求上述的最大值,首先定义:The Viterbi algorithm finds a relevant and effective recursive solution to find the above maximum value, first define:
V(i,t)=P(zt|qt=i)max{P(qt=i|qt-1=j)×V(j,t-1)} (9)V(i,t)=P(z t |q t =i)max{P(q t =i|q t-1 =j)×V(j,t-1)} (9)
其初始化值为:Its initialization value is:
V(i,1)=P(z1|qt=i)P(q1=i) (10)V(i,1)=P(z 1 |q t =i)P(q 1 =i) (10)
因此获得最后的序列:Thus obtaining the final sequence:
如果上述递归式的最大增量j*(i,t)得以确定,那么最佳的q*T1就可以通过一个向后递归计算得到,即利用:If the maximum increment j*(i, t) of the above recursive formula is determined, then the optimal q*T1 can be obtained through a backward recursive calculation, that is, using:
向后递归计算构相似:其和很简单地被最大值取代了。Computing backward recursively is similar: the sum is simply replaced by the maximum.
S4、由动校正速度分布进行椭圆拟合,并通过最小二乘法反演得到裂缝发育方向和裂缝发育强度S4. Carry out ellipse fitting based on dynamic correction velocity distribution, and obtain fracture development direction and fracture development intensity through least square method inversion
在步骤S4中,将宽方位或多方位地震数据按照方位角重新排列成方位道集,对每一个方位道集用非双曲速度分析得到速度谱,然后运用速度谱自动拾取算法得到动校正速度曲线,筛选出目标层方位动校正速度,按照动校正速度分布进行椭圆拟合,最后通过最小二乘法反演得到裂缝发育方向和裂缝发育强度。In step S4, the wide-azimuth or multi-azimuth seismic data are rearranged into azimuth gathers according to the azimuth angles, and the velocity spectrum is obtained by non-hyperbolic velocity analysis for each azimuth gather, and then the dynamic correction velocity is obtained by using the velocity spectrum automatic picking algorithm The dynamic correction velocity of the azimuth of the target layer is screened out, and the ellipse fitting is carried out according to the distribution of the dynamic correction velocity. Finally, the fracture development direction and fracture development intensity are obtained by least square method inversion.
如果岩石中的各向异性是由一组定向垂直裂缝引起的,那么根据地震波传播理论,纵波平行或者垂直于裂缝传播时,具有不同的旅行速度。平行裂缝传播时,以快波速度传播;垂直裂缝传播时,以慢波速度传播。与AVAZ原理一样,当纵波通过裂缝介质时,对于固定的偏移距,其方位速度与裂缝方位满足如下关系:If the anisotropy in the rock is caused by a set of oriented vertical fractures, then according to the theory of seismic wave propagation, longitudinal waves have different travel velocities as they propagate parallel or perpendicular to the fractures. When propagating parallel to the fracture, it propagates at a fast wave velocity; when propagating perpendicular to the fracture, it propagates at a slow wave velocity. As with the AVAZ principle, when a P-wave passes through a fractured medium, for a fixed offset, its azimuth velocity and fracture azimuth satisfy the following relationship:
V=V0+α·cos2β (13)V=V 0 +α·cos2β (13)
式中,V——纵波方位速度,m/s;In the formula, V——zimuth velocity of longitudinal wave, m/s;
V0——方位速度平均值,m/s;V 0 —average value of azimuth velocity, m/s;
α——方位速度有关的调制因子;α—modulation factor related to azimuth velocity;
弧度; radian;
φ——激发点到检波点观测方位,弧度;φ——observation azimuth from the excitation point to the receiver point, in radians;
——裂缝走向方位,弧度; ——crack orientation, radian;
从方程(13)可以看出,当观测方位与裂缝走向平行时,速度最大;随着观测方位与裂缝走向之间的夹角的增大,速度逐渐减小,当夹角为90度时速度达到最小;此后,速度随着夹角的增加而逐渐增大,夹角为180度时又达到最大,变化周期为180度。速度随着方位角度的变化关系可以用如图4的椭圆来表示,从图4可以看出,沿着裂缝方向的速度为V0+α,垂直裂缝方向的速为V0-α。It can be seen from equation (13) that when the observation azimuth is parallel to the fracture strike, the velocity is the largest; as the angle between the observation azimuth and the fracture strike increases, the velocity gradually decreases, and when the angle is 90 degrees, the velocity After that, the speed gradually increases with the increase of the included angle, and reaches the maximum when the included angle is 180 degrees, and the change period is 180 degrees. The relationship between velocity and azimuth angle can be represented by an ellipse as shown in Figure 4. It can be seen from Figure 4 that the velocity along the fracture direction is V 0 +α, and the velocity perpendicular to the fracture direction is V 0 -α.
理论上,方程只要知道3个方位或者3个以上的方位的速度就可以求解该方程的V0、α以及β三个参数,从而得到方位速度椭圆方程。对于宽方位或者全方位地震数据,假定偏移距和方位角均匀分布,常常在给定的CDP位置,具有多个方位(一般大于3个)的地震观测数据,这时求解方程(13)就变成了一个超定问题。如果定义从正北方向为零度,按照顺时针方向分选各个观测方位φi(i=1,2,…,N)的地震数据,那么对应的方位角的速度为Theoretically, as long as the equation knows the velocities of three or more azimuths, the three parameters V 0 , α, and β of the equation can be solved to obtain the azimuth-velocity ellipse equation. For wide-azimuth or omni-directional seismic data, assuming that offsets and azimuths are evenly distributed, usually at a given CDP position, there are multiple azimuths (generally greater than 3) of seismic observation data, then solving equation (13) is becomes an overdetermined problem. If it is defined that the direction from the true north is zero degrees, and the seismic data of each observation azimuth φ i (i=1,2,…,N) are sorted clockwise, then the velocity of the corresponding azimuth angle is
对于具有N(N>3)个观测方位的地震数据,此时可以用最小二乘拟合法求取方程(14)的参数值,定义变量e为For seismic data with N (N > 3) observation azimuths, the parameter value of equation (14) can be obtained by the least square fitting method at this time, and the variable e is defined as
对方程(15)中的V0,α和求偏导数,并分别令其等于零,得到如下的方程组For V 0 , α and Find the partial derivatives, and make them equal to zero respectively, to get the following equations
求解方程组(16)得到Solving equations (16) gives
根据方程(17)、(18)和(19)可以得到α以及V0参数的准确值,从而得到各向异性椭圆方程。根据椭圆的长短轴情况,便能得到裂缝的发育方向。According to equations (17), (18) and (19), we can get α and the exact value of the V 0 parameter, so as to obtain the anisotropic elliptic equation. According to the major and minor axes of the ellipse, the direction of crack development can be obtained.
在此基础上,可以进一步计算裂缝发育强度,通过以上最小二乘算法,得到了α和V0,通过椭圆拟合公式(13)拟合出椭圆,然后根据椭圆的长轴(快波速度vhigh)和短轴(慢波速度vlow)的比,便可确定裂缝和发育强度e:On this basis, the fracture development strength can be further calculated, and through the above least squares algorithm, the α and V 0 , the ellipse is fitted by the ellipse fitting formula ( 13 ), and then the fractures and development Intensity e:
在本发明中,利用地震波在各向异性介质中传播时速度随方位角来检测裂缝的发育方位和强度。提出应用对超CMP道集进行分方位选排,对每个方位角道集做VTI介质近似处理;以非双曲线速度分析为基础,引入了高斯窗提高速度谱的分辨率和分析精度,同时利用viterbi优化算法,对速度谱和η进行高精度的自动拾取,极大的提高非双曲速度分析效率;此外,通过速度和相应方位角能得到一组超定椭圆方程,本发明利用最小二乘求解,最后拟合出椭圆判断出裂缝的发育方向,同时运用强度发育公式计算出裂缝的发育强度。本发明引入椭圆拟合的模型概念对裂缝发育方向和强度进行预测,形成了一套系统的裂缝预测手段,利于揭示裂缝发育的空间展布规律,从而能更有效的对裂缝性油气进行检测,大幅度提高裂缝储层预测的成功率。In the present invention, the development orientation and strength of fractures are detected by utilizing the velocity and azimuth angle when the seismic wave propagates in the anisotropic medium. It proposes the application of sub-azimuth selection and sorting of super CMP gathers, and VTI medium approximation processing for each azimuth gather; based on the non-hyperbolic velocity analysis, a Gaussian window is introduced to improve the resolution and analysis accuracy of the velocity spectrum. The viterbi optimization algorithm can automatically pick up the velocity spectrum and η with high precision, which greatly improves the efficiency of non-hyperbolic velocity analysis; in addition, a group of overdetermined elliptic equations can be obtained through the velocity and corresponding azimuth angles. The present invention utilizes least squares Finally, the ellipse is fitted to determine the development direction of the fracture, and the strength development formula is used to calculate the development strength of the fracture. The present invention introduces the model concept of ellipse fitting to predict the direction and intensity of fracture development, and forms a set of systematic fracture prediction means, which is beneficial to reveal the spatial distribution law of fracture development, so that the fractured oil and gas can be detected more effectively. The success rate of fracture reservoir prediction is greatly improved.
本发明进一步提供了一种基于各向异性的椭圆速度反演的裂缝预测装置,如图5所示,包括:The present invention further provides a fracture prediction device based on anisotropic ellipse velocity inversion, as shown in Figure 5, comprising:
方位角道集选排模块1,用于将宽方位或多方位地震数据按照方位角重新排列成方位道集;Azimuth gather selection and arrangement module 1, used to rearrange wide-azimuth or multi-azimuth seismic data into azimuth gathers according to azimuth;
非双曲速度分析模块2,用于对方位角道集选排模块1中每一个方位道集用非双曲速度分析得到速度谱;The non-hyperbolic velocity analysis module 2 is used to obtain the velocity spectrum by non-hyperbolic velocity analysis for each azimuth gather in the azimuth gather selection module 1;
自动拾取模块3,用于对非双曲速度分析模块2得到的速度谱运用速度谱自动拾取算法得到动校正速度曲线,筛选出目标层方位动校正速度;The automatic picking module 3 is used to use the velocity spectrum automatic picking algorithm obtained by the non-hyperbolic velocity analysis module 2 to obtain the dynamic correction velocity curve, and screen out the target layer azimuth dynamic correction velocity;
椭圆拟合模块4,用于对自动拾取模块3中动校正速度的分布进行椭圆拟合,并通过最小二乘法反演得到裂缝发育方向和裂缝发育强度。The ellipse fitting module 4 is used to perform ellipse fitting on the distribution of the dynamic correction velocity in the automatic picking module 3, and obtain the fracture development direction and fracture development intensity through least square method inversion.
更具体的,如图6所示,所述非双曲速度分析模块2包括:More specifically, as shown in Figure 6, the non-hyperbolic velocity analysis module 2 includes:
常规速度分析模块21,用于对短排列的地震资料进行常规速度分析得到初始的动校正值;The conventional velocity analysis module 21 is used to perform conventional velocity analysis on the seismic data of the short array to obtain an initial dynamic correction value;
扫描模块22,用于利用Akhalifa非双曲速度分析公式将初始动校正速度值代入对原道地震资料进行扫描确定η值;The scanning module 22 is used for utilizing the Akhalifa non-hyperbolic velocity analysis formula to substitute the initial dynamic correction velocity value into the original track seismic data to scan and determine the η value;
迭代模块23,用于将η代入非双速度分析公式重新确定动校正速度值反复迭代;Iteration module 23, is used for substituting n into the non-double speed analysis formula to re-determine the dynamic correction speed value and iterate repeatedly;
输出模块24,用于在重复扫描模块和迭代模块处理至η值和动校正速度值稳定后,输出速度谱和η谱。The output module 24 is used to output the velocity spectrum and the n-spectrum after the repeated scanning module and the iterative module process until the n value and the dynamic correction speed value are stable.
在本发明实施例中的装置与上述实施例中的方法相对应,以上述方法实施例中记载内容同样解释本实施例中的装置,在此不再赘述。The device in the embodiment of the present invention corresponds to the method in the above-mentioned embodiment, and the device in this embodiment is also explained with the content described in the above-mentioned method embodiment, and details are not repeated here.
相比于现有技术的缺点和不足,本发明具有以下有益效果:Compared with the shortcomings and deficiencies of the prior art, the present invention has the following beneficial effects:
(1)本发明利用地震波在各向异性介质中传播时速度随方位角来检测裂缝的发育方位和强度。提出应用对超CMP道集进行分方位选排,对每个方位角道集做VTI介质近似处理。(1) The present invention detects the development orientation and strength of fractures by utilizing the velocity of seismic waves propagating in the anisotropic medium along with the azimuth angle. The application is proposed to sort super CMP gathers by azimuth, and to do VTI medium approximation for each azimuth gather.
(2)以非双曲线速度分析为基础,引入了高斯窗提高速度谱的分辨率和分析精度,同时利用viterbi优化算法,对速度谱和η进行高精度的自动拾取,极大的提高非双曲速度分析效率。(2) Based on the non-hyperbolic velocity analysis, the Gaussian window is introduced to improve the resolution and analysis accuracy of the velocity spectrum. At the same time, the viterbi optimization algorithm is used to automatically pick up the velocity spectrum and η with high precision, which greatly improves the non-hyperbolic Warp velocity analysis efficiency.
(3)通过速度和相应方位角能得到一组超定椭圆方程,本发明利用最小二乘求解,最后拟合出椭圆判断出裂缝的发育方向,同时运用强度发育公式计算出裂缝的发育强度。本发明引入椭圆拟合的模型概念对裂缝发育方向和强度进行预测,形成了一套系统的裂缝预测手段,利于揭示裂缝发育的空间展布规律,从而能更有效的对裂缝性油气进行检测,大幅度提高裂缝储层预测的成功率。(3) A set of overdetermined elliptic equations can be obtained through the velocity and corresponding azimuth angles. The present invention uses least squares to solve, and finally fits the ellipse to determine the development direction of the fracture, and uses the strength development formula to calculate the development intensity of the fracture. The present invention introduces the model concept of ellipse fitting to predict the direction and intensity of fracture development, and forms a set of systematic fracture prediction means, which is beneficial to reveal the spatial distribution law of fracture development, so that the fractured oil and gas can be detected more effectively. The success rate of fracture reservoir prediction is greatly improved.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410409075.5A CN104166161A (en) | 2014-08-19 | 2014-08-19 | Method and device for predicating fractures based on elliptical velocity inversion of anisotropism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410409075.5A CN104166161A (en) | 2014-08-19 | 2014-08-19 | Method and device for predicating fractures based on elliptical velocity inversion of anisotropism |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104166161A true CN104166161A (en) | 2014-11-26 |
Family
ID=51910060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410409075.5A Pending CN104166161A (en) | 2014-08-19 | 2014-08-19 | Method and device for predicating fractures based on elliptical velocity inversion of anisotropism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104166161A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104932016A (en) * | 2015-06-23 | 2015-09-23 | 成都理工大学 | Viterbi-BMC algorithm automatic speed analysis method |
CN105758361A (en) * | 2016-02-01 | 2016-07-13 | 绍兴文理学院 | Quantitative evaluation method of structural surface roughness coefficient anisotropy |
CN105785445A (en) * | 2015-12-28 | 2016-07-20 | 中国石油天然气股份有限公司 | Crack pattern recognition method and device |
CN105988145A (en) * | 2015-03-04 | 2016-10-05 | 中国石油化工股份有限公司 | Inversion method of crack parameter |
CN106680875A (en) * | 2017-01-05 | 2017-05-17 | 中国科学院地质与地球物理研究所 | Analysis method and apparatus of wide-azimuth seismic migration speed |
CN107045143A (en) * | 2017-02-22 | 2017-08-15 | 中国石油天然气股份有限公司 | Method and device for predicting crack development |
CN107957594A (en) * | 2017-11-15 | 2018-04-24 | 中国石油集团东方地球物理勘探有限责任公司 | The oval bearing calibration of seismic data, dynamic bearing calibration and normal-moveout spectrum computational methods |
CN109116428A (en) * | 2018-07-02 | 2019-01-01 | 中国石油天然气股份有限公司 | Fracture-cavity carbonate reservoir uncertainty modeling method and device |
CN109725350A (en) * | 2018-12-05 | 2019-05-07 | 中国石油天然气集团有限公司 | A kind of method, apparatus and system of determining longitudinal wave azimuthal anisotropy parameter |
WO2020140803A1 (en) * | 2019-01-02 | 2020-07-09 | 中国石油天然气股份有限公司 | High-angle crack prediction method, computer device, and computer readable storage medium |
CN111399041A (en) * | 2020-03-11 | 2020-07-10 | 成都理工大学 | A Wavelet Compact Frame Adaptive Sparse 3D Seismic Data Reconstruction Method |
CN112558154A (en) * | 2019-09-25 | 2021-03-26 | 中国石油化工股份有限公司 | Orthogonal anisotropic medium speed modeling method and system |
CN113419280A (en) * | 2021-06-21 | 2021-09-21 | 大庆油田有限责任公司 | Pre-stack crack density estimation method based on improved ellipse fitting |
CN113933898A (en) * | 2021-09-23 | 2022-01-14 | 中国地质大学(武汉) | Method, device and equipment for identifying anisotropic characteristics of fractured reservoir and storage medium |
CN115079268A (en) * | 2022-02-22 | 2022-09-20 | 中海石油(中国)有限公司天津分公司 | Wide-azimuth seismic data reservoir prediction method based on ellipse short axis fitting |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102033242A (en) * | 2010-10-22 | 2011-04-27 | 中国石油化工股份有限公司 | Deep inclined fractured reservoir earthquake amplitude prediction method |
CN102156299A (en) * | 2011-04-08 | 2011-08-17 | 中国石油化工股份有限公司 | Method for building anisotropic velocity model |
CA2858602A1 (en) * | 2011-12-20 | 2013-06-27 | Conocophillips Company | Fracture identification from azimuthal migrated seismic data |
CN103424776A (en) * | 2013-08-16 | 2013-12-04 | 中国石油大学(华东) | Carbonatite oil and gas reservoir crack earthquake detection method |
CN103713315A (en) * | 2012-09-28 | 2014-04-09 | 中国石油化工股份有限公司 | Seismic anisotropy parameter full waveform inversion method and device |
-
2014
- 2014-08-19 CN CN201410409075.5A patent/CN104166161A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102033242A (en) * | 2010-10-22 | 2011-04-27 | 中国石油化工股份有限公司 | Deep inclined fractured reservoir earthquake amplitude prediction method |
CN102156299A (en) * | 2011-04-08 | 2011-08-17 | 中国石油化工股份有限公司 | Method for building anisotropic velocity model |
CA2858602A1 (en) * | 2011-12-20 | 2013-06-27 | Conocophillips Company | Fracture identification from azimuthal migrated seismic data |
CN103713315A (en) * | 2012-09-28 | 2014-04-09 | 中国石油化工股份有限公司 | Seismic anisotropy parameter full waveform inversion method and device |
CN103424776A (en) * | 2013-08-16 | 2013-12-04 | 中国石油大学(华东) | Carbonatite oil and gas reservoir crack earthquake detection method |
Non-Patent Citations (3)
Title |
---|
张军华 等: "大偏移距地震资料各向异性动校正方法研究及效果分析", 《物探化探计算技术》 * |
林年添 等: "基于Viterbi算法的复杂地质体速度约束化自动拾取", 《地球物理学进展》 * |
黄跃 等: "基于 HTI 介质理论的纵波速度分析方法", 《成都理工大学学报( 自然科学版)》 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105988145A (en) * | 2015-03-04 | 2016-10-05 | 中国石油化工股份有限公司 | Inversion method of crack parameter |
CN104932016A (en) * | 2015-06-23 | 2015-09-23 | 成都理工大学 | Viterbi-BMC algorithm automatic speed analysis method |
CN105785445A (en) * | 2015-12-28 | 2016-07-20 | 中国石油天然气股份有限公司 | Crack pattern recognition method and device |
CN105785445B (en) * | 2015-12-28 | 2017-12-05 | 中国石油天然气股份有限公司 | Crack pattern recognition method and device |
CN105758361A (en) * | 2016-02-01 | 2016-07-13 | 绍兴文理学院 | Quantitative evaluation method of structural surface roughness coefficient anisotropy |
CN105758361B (en) * | 2016-02-01 | 2018-05-22 | 绍兴文理学院 | A kind of structural plane roughness coefficient anisotropy quantitative evaluation method |
CN106680875A (en) * | 2017-01-05 | 2017-05-17 | 中国科学院地质与地球物理研究所 | Analysis method and apparatus of wide-azimuth seismic migration speed |
CN107045143A (en) * | 2017-02-22 | 2017-08-15 | 中国石油天然气股份有限公司 | Method and device for predicting crack development |
CN107045143B (en) * | 2017-02-22 | 2018-12-28 | 中国石油天然气股份有限公司 | Method and device for predicting crack development |
CN107957594A (en) * | 2017-11-15 | 2018-04-24 | 中国石油集团东方地球物理勘探有限责任公司 | The oval bearing calibration of seismic data, dynamic bearing calibration and normal-moveout spectrum computational methods |
CN109116428A (en) * | 2018-07-02 | 2019-01-01 | 中国石油天然气股份有限公司 | Fracture-cavity carbonate reservoir uncertainty modeling method and device |
CN109116428B (en) * | 2018-07-02 | 2020-06-09 | 中国石油天然气股份有限公司 | Fracture-cavity carbonate reservoir uncertainty modeling method and device |
CN109725350A (en) * | 2018-12-05 | 2019-05-07 | 中国石油天然气集团有限公司 | A kind of method, apparatus and system of determining longitudinal wave azimuthal anisotropy parameter |
CN109725350B (en) * | 2018-12-05 | 2020-09-08 | 中国石油天然气集团有限公司 | Method, device and system for determining longitudinal wave azimuth anisotropy parameters |
WO2020140803A1 (en) * | 2019-01-02 | 2020-07-09 | 中国石油天然气股份有限公司 | High-angle crack prediction method, computer device, and computer readable storage medium |
CN112558154A (en) * | 2019-09-25 | 2021-03-26 | 中国石油化工股份有限公司 | Orthogonal anisotropic medium speed modeling method and system |
CN112558154B (en) * | 2019-09-25 | 2023-10-13 | 中国石油化工股份有限公司 | Orthogonal anisotropic medium speed modeling method and system |
CN111399041A (en) * | 2020-03-11 | 2020-07-10 | 成都理工大学 | A Wavelet Compact Frame Adaptive Sparse 3D Seismic Data Reconstruction Method |
CN113419280A (en) * | 2021-06-21 | 2021-09-21 | 大庆油田有限责任公司 | Pre-stack crack density estimation method based on improved ellipse fitting |
CN113419280B (en) * | 2021-06-21 | 2022-03-22 | 大庆油田有限责任公司 | Pre-stack crack density estimation method based on improved ellipse fitting |
CN113933898A (en) * | 2021-09-23 | 2022-01-14 | 中国地质大学(武汉) | Method, device and equipment for identifying anisotropic characteristics of fractured reservoir and storage medium |
CN115079268A (en) * | 2022-02-22 | 2022-09-20 | 中海石油(中国)有限公司天津分公司 | Wide-azimuth seismic data reservoir prediction method based on ellipse short axis fitting |
CN115079268B (en) * | 2022-02-22 | 2025-04-04 | 中海石油(中国)有限公司天津分公司 | A reservoir prediction method for wide-azimuth seismic data based on ellipse minor axis fitting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104166161A (en) | Method and device for predicating fractures based on elliptical velocity inversion of anisotropism | |
CN102053270B (en) | Sedimentary formation unit-based seismic facies analysis method | |
CN110031896B (en) | Seismic random inversion method and device based on multi-point geostatistics prior information | |
CN105954804B (en) | Shale gas reservoir fragility earthquake prediction method and device | |
CN106094029B (en) | Utilize the method for offset distance vector piece geological data Predicating Reservoir Fractures | |
CN101839999B (en) | Method for determining optimum velocity section for pre-stack time migration | |
CN101551466B (en) | Method for improving prediction precision of oil and gas reservoir by using seismic attribute related to offset distance | |
CN103713323B (en) | Omnibearing aeolotropy amplitude-preservation imaging and gather extracting method | |
CN102841376A (en) | Retrieval method for chromatography speed based on undulating surface | |
CN104749624A (en) | Method for synchronously realizing seismic lithofacies identification and quantitative assessment of uncertainty of seismic lithofacies identification | |
US11397273B2 (en) | Full waveform inversion in the midpoint-offset domain | |
CN103901465A (en) | Design method of holographic three-dimensional seismic prospecting and observing system | |
CN102073067A (en) | Method for increasing automatic pickup efficiency of geological data first-motion waves | |
CN107132578A (en) | A kind of microseism ground monitoring velocity model corrections algorithm | |
CN104570085B (en) | A kind of wave ray parameter field joint inversion method in length and breadth | |
CN104316965A (en) | Prediction method and system for fissure azimuth and intensity | |
CN107817516A (en) | Near surface modeling method and system based on preliminary wave information | |
CN102901984A (en) | Method for constructing true earth surface dip angle trace gathers of seismic data | |
CN103675900A (en) | Method for determining optimum velocity profile of converted-wave pre-stack time migration during seismic data processing process | |
CN105093327B (en) | The vector mean filter method of multi-component earthquake data | |
CN104267434B (en) | Three-dimensional multi-component earthquake observation system geophone offset distribution obtaining method and device | |
CN102466818B (en) | A kind of well earthquake data that utilizes is to the method for anisotropic medium imaging | |
CN110208854B (en) | Method for acquiring equivalent anisotropic parameters in VTI medium | |
CN106226814B (en) | Utilize converted shear wave seismic data inversion reservoir S-wave impedance and the method for density | |
CN109085644A (en) | True earth's surface imaging method when being walked based on dual-beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20141126 |