CN103945871B - 用于治疗代谢疾病的融合蛋白 - Google Patents
用于治疗代谢疾病的融合蛋白 Download PDFInfo
- Publication number
- CN103945871B CN103945871B CN201280057789.3A CN201280057789A CN103945871B CN 103945871 B CN103945871 B CN 103945871B CN 201280057789 A CN201280057789 A CN 201280057789A CN 103945871 B CN103945871 B CN 103945871B
- Authority
- CN
- China
- Prior art keywords
- fgf21
- protein
- amino acid
- proteins
- polypeptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1825—Fibroblast growth factor [FGF]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/50—Fibroblast growth factor [FGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Diabetes (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Epidemiology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Emergency Medicine (AREA)
- Endocrinology (AREA)
- Child & Adolescent Psychology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicinal Preparation (AREA)
Abstract
本发明涉及鉴定具有改善的药学性质的包含成纤维细胞生长因子(FGF1)的多肽和蛋白质变体的融合蛋白。还公开了用于治疗FGF21相关病症,包括代谢病况的方法。
Description
发明领域
本发明涉及包含已知改善施用对象的代谢谱的成纤维细胞生长因子21(FGF21)的新型融合蛋白。
发明背景
成纤维细胞生长因子(FGF)家族的特征是22种遗传上有区别的同源配体,被分为7个亚家族。FGF-21与FGF-19和FGF-23最密切相关,并形成亚家族。该FGF亚家族调控多种对经典FGF而言不常见的生理学过程,即,能量和胆酸的内稳态、葡萄糖和脂类代谢,以及磷酸盐和维生素D的内稳态。此外,与其他FGF不同,该亚家族以内分泌的方式发挥作用(Moore,D.D.(2007)Science 316,1436-8)(Beenken等人(2009)Nature Reviews Drug Discovery8,235)。
FGF21是209个氨基酸的多肽,含有28个氨基酸的前导序列(SEQ ID NO:5)。人FGF21与小鼠FGF21具有约79%氨基酸同一性,与大鼠FGF21具有约80%氨基酸同一性。成纤维细胞生长因子21(FGF21)被描述为用于治疗缺血性血管病、创伤愈合、和与肺、支气管或肺泡细胞功能丧失相关的疾病(Nishimura等人(2000)Biochimica et Biophysica Acta,1492:203-206;专利公开WO01/36640;和专利公开WO01/18172)。虽然FGF-21激活FGF受体和下游信号传递分子,包括FRS2a和ERK,但尚未检测到FGFR与FGF-21的直接相互作用。研究已鉴别了在肝脏、脂肪细胞和胰腺中高表达的β-klotho是FGF-21细胞应答的决定子,也是通过FGFR介导FGF-21信号传递的辅助因子(Kurosu,H.等人(2007)J Biol Chem 282,26687-95)。FGF21是FGFR1(IIIc)、FGFR2(IIIc)和FGFR3(IIIc)β-klotho信号传递复合物的强力激动剂。
FGF-21已表现出诱导不依赖胰岛素的葡萄糖摄入。FGF-21还表现出减轻多种糖尿病啮齿类模型中的高血糖。此外,发现过表达FGF-21的转基因小鼠耐受膳食诱导的代谢异常,并且表现出减少的体重和脂肪质量,和胰岛素敏感性的增强(Badman,M.K.等人(2007)Cell Metab 5,426-37)。向糖尿病的非人灵长类施用FGF-21导致空腹血浆葡萄糖、甘油三酯、胰岛素和胰高血糖素水平减少,并导致脂蛋白谱的显著改善,包括HDL胆固醇增加几乎80%(Kharitonenkov,A.等人(2007)Endocrinology 148,774-81)。目前的研究探讨了FGF21作用的分子机制,已经鉴别FGF21是帮助控制适应空腹状态的重要内分泌激素。(Badman等人(2009)Endocrinology 150,4931)(Inagaki等人(2007)Cell Metabolism 5,415)这提供了之前缺乏的PPARα下游的关联,肝脏藉此与身体的其余部分在调控能量内稳态生物学中沟通(Galman等人(2008)Cell Metabolism 8,169)(Lundasen等人(2007)Biochemical and Biophysical Research Communications 360,437)。
FGF21通过激活AMPK/SIRT1/PGC1α通路,抑制PPARγ表达和增加线粒体功能,来调控脂肪细胞内稳态(Chau等人(2010)PNAS 107,12553)。如培养的人肌管和分离的小鼠组织中测量的,FGF21还增加骨骼肌的葡萄糖摄入。啮齿类胰岛细胞的FGF21治疗导致通过激活ERK1/2和Akt通路的改善的功能和存活。(Wente等人(2006)Diabetes 55,2470)FGF21治疗还导致啮齿类肝脏中关于脂肪发生和脂肪酸氧化酶的基因表达改变,可能是通过HNF4α和Foxa2信号传递。
与使用FGF-21直接作为生物治疗剂相关的困难是其半寿期非常短。(Kharitonenkov,A.等人(2005)Journal of Clinical Investigation 115:1627-1635)在小鼠中,人FGF21的半寿期是0.5至1小时,而在食蟹猴中,半寿期是2至3小时。FGF21可以作为多用途的、无菌药物制剂使用。然而,已确定防腐剂,即,间甲酚,在上述条件下对其稳定性具有不利影响。
在研发用作治疗1型和2型糖尿病和其他代谢病况的治疗剂的FGF21蛋白中,半寿期和稳定性的增加是理想的。具有增强的半寿期和稳定性的FGF21蛋白将允许对要施用所述蛋白质的患者频率较低的给药。明显的,需要研发用于治疗性蛋白质FGF21的稳定的水性蛋白质制剂。
此外,在研发FGFG21作为蛋白质药剂中的重大挑战是解决其物理和化学的不稳定性。蛋白质的组成变化和特征定义了特殊的行为,如折叠、构象稳定性和解折叠/变性。当目标是利用水性的蛋白质溶液使研发药物制剂条件过程中的蛋白质稳定时,应该解决这类特征(Wang,W.,Int.J.of Pharmaceutics,18,(1999))。稳定目标治疗蛋白(例如本发明的蛋白质)的理想效果是增加对蛋白水解和酶促降解的耐受性,从而改善蛋白质稳定性和降低蛋白质聚集。
发明概述
本发明涉及鉴别新型融合蛋白,所述融合蛋白包含成纤维细胞生长因子21(FGF21),并且在药剂制剂条件下,具有相比野生型FGF21和其变体改良的药剂特性,例如更稳定、具有改善施用对象的代谢参数的能力、对蛋白水解和酶促降解更不易受、更不可能聚集和形成复合物。本发明的融合蛋白包含FGF21的截短形式、突变和变体。
还公开了这样的方法,所述方法用于治疗FGF21相关疾病,以及其他代谢的、内分泌的和心血管的病症,如肥胖、1型和2型糖尿病、胰腺炎、血脂异常、非醇型脂肪肝病(NAFLD)、非醇型脂肪性肝炎(NASH)、胰岛素耐受、高胰岛素血症、葡萄糖不耐受、高血糖、代谢综合征、急性心肌梗塞、高血压、心血管病、动脉粥样硬化、外周动脉病、中风、心脏衰竭、冠心病、肾病、糖尿病并发症、神经病、胃轻瘫、与胰岛素受体的严重失活突变相关的病症、和其他的代谢病症,和降低垂危患者的死亡率和发病率。
本发明的融合蛋白可以用作每周一次可注射剂、单独或与口服抗糖尿病剂组合,这将改善1型和2型糖尿病患者的血糖控制、体重和脂类谱。蛋白质还可用于治疗肥胖或其他FGF21相关性病况。
本发明的融合蛋白通过呈递蛋白质克服了与蛋白质治疗剂相关的,包括例如与施用野生型FGF21相关的生理学不稳定性的显著障碍,所述呈递的蛋白质在药物制剂条件下,比野生型FGF21更稳定、对蛋白水解和酶促降解更不易受、并且更不可能聚集和形成复合物。
在第一个方面,本发明提供了成纤维细胞生长因子21(FGF21)融合蛋白,所述融合蛋白包含表1列举的,和本文进一步描述的一条或多条序列。表1列举的FGF21序列可以是野生型FGF21序列的变体,例如,具有NCBI参考号NP_061986.1的野生型FGF21序列,并可见于专利公开中,例如属于Chiron Corporation的US 6,716,626B1。
所述融合物可以是在例如变体FGF21序列(例如表1的序列),和其他分子(非FGF21部分)之间,所述其他分子例如IgG恒定结构域或其片段(例如Fc区)、人血清白蛋白(HAS)或白蛋白结合多肽。在优选的实施方案中,分子的非FGF21部分是Fc区。
其他实施方案涉及编码本发明的融合蛋白的多核苷酸,含有所述多核苷酸的载体和携带所述载体的宿主细胞。
本文提供了用于生成本发明的融合蛋白的方法,其中所述方法涉及通过例如在野生型FGF21蛋白的目标位置上位点特异性地掺入氨基酸来修饰野生型FGF21蛋白,以及在分子的FGF21部分与其他分子之间的融合,所述其他分子例如IgG恒定结构域或其片段(例如Fc区)、人血清白蛋白(HSA)或白蛋白-结合多肽。所述修饰和融合增强了本发明的融合蛋白相对于蛋白质的野生型形态的生物学特性,以及在一些情况下,作为例如标签和蛋白质半寿期延长活性剂的连接点,并用于将所述变体固定在固体支持物的表面的目的。本发明的相关实施方案是生产能够生产本发明的所述蛋白质的细胞的方法,和生产能够生产含有编码所述变体和融合物的DNA的载体的细胞的方法。
在多个实施方案中,本文公开的本发明的融合蛋白可包含FGF21野生型序列的一个或多个片段,包括长度小至8-12个氨基酸残基的片段,并且其中多肽能够降低哺乳动物中的血糖。在多个实施方案中,本文公开的本发明的融合蛋白可包括FGF21野生型序列的一个或多个变体,例如,相对于其野生型序列具有一个或多个氨基酸缺失、插入、添加或取代。
在一些实施方案中,本文公开的本发明的融合蛋白可以与一种或多种聚合物共价连接,例如聚乙二醇(PEG)或多聚唾液酸,不论是在相对于野生型FGF21进行位点特异性氨基酸修饰的位置上,还是在与这些蛋白质的野生型形态通常共享的氨基酸位置上。PEG基团是以这样的方式连接的,所述方式增强,和/或不干扰本发明的融合蛋白的构件部分(例如,FGF21蛋白变体)的生物学功能。在其他实施方案中,本发明的多肽可以与异源氨基酸序列融合,任选通过接头,如GS、GGGGSGGGGSGGGGS(SEQ ID NO:6)。异源氨基酸序列可以是IgG恒定结构域或其片段(例如Fc区)、人血清白蛋白(HSA)或白蛋白结合多肽。本文公开的这类融合蛋白也可以形成多聚物。
在一些实施方案中,异源氨基酸序列(例如,HSA、Fc等)与本发明的融合蛋白的氨基端融合。在其他实施方案中,融合异源氨基酸序列(例如,HSA、Fc等)与本发明的蛋白质的羧基端融合。
另一个实施方案涉及治疗患者的方法,所述患者表现出一种或多种FGF21相关疾病,如肥胖、2型糖尿病、1型糖尿病、胰腺炎、血脂异常、非醇型脂肪肝病(NAFLD)、非醇型脂肪性肝炎(NASH)、胰岛素耐受、高胰岛素血症、葡萄糖不耐受、高血糖、代谢综合征、急性心肌梗塞、高血压、心血管病、动脉粥样硬化、外周动脉病、中风、心脏衰竭、冠心病、肾病、糖尿病并发症、神经病、胃轻瘫、与胰岛素受体的严重失活突变相关的病症、和其他的代谢病症,所述方法包括向所述需要这类治疗的患者施用治疗有效量的一种或多种本发明的蛋白质或其药物组合物。
本发明还提供了包含本文公开的本发明的融合蛋白和可药用的配制剂的药物组合物。这类药物组合物可用于治疗代谢病症的方法中,并且方法包括向所述有需要的人类患者施用本发明的药物组合物。可以治疗的代谢病症的非限制性例子包括1型和2型糖尿病,以及肥胖。
在本发明的下列详细说明中,阐明了在本发明的这些和其他方面。
附图简介
图1A-1D显示了V188在ob/ob糖尿病小鼠模型中具有相比V76改善的效果。当施用1毫克/千克(mpk)时,V188表现出比施用5毫克/千克V76更好的结果。图1A显示了餐后血浆葡萄糖的读数(圆圈代表载体(PBS-磷酸缓冲盐溶液)、方块代表5mpk的V76,三角代表1mpk的V188)。图1B显示了餐后血浆胰岛素的读数(从左至右:载体、5mpk的V76,和1mpk的V188)。图1C显示了体重的读数(从左至右:载体、5mpk的V76,和1mpk的V188)。图1D显示了肝脏脂含量的读数(从左至右:载体、5mpk的V76,和1mpk的V188)。
图2A-2D显示了V101在ob/ob糖尿病小鼠模型中具有相比V76改善的效果。当施用1毫克/千克(mpk)时,V101表现出比施用5毫克/千克V76更好的结果。图2A显示了餐后血浆葡萄糖的读数(圆圈代表载体(PBS-磷酸缓冲盐溶液)、方块代表5mpk的V76,三角代表1mpk的V101)。图2B显示了餐后血浆胰岛素的读数(从左至右:载体、5mpk的V76,和1mpk的V101)。图2C显示了体重的读数(从左至右:载体、5mpk的V76,和1mpk的V101)。图2D显示了肝脏脂含量的读数(从左至右:载体、5mpk的V76,和1mpk的V101)。
图3A-3D显示了V103在ob/ob糖尿病小鼠模型中具有相比V76改善的效果。当施用1毫克/千克(mpk)时,V103表现出比施用5毫克/千克的V76更好的结果。图3A显示了餐后血浆葡萄糖的读数(圆圈代表载体(PBS-磷酸缓冲盐溶液)、方块代表5mpk的V76,三角代表1mpk的V103)。图3B显示了餐后血浆胰岛素的读数(从左至右:载体、5mpk的V76,和1mpk的V103)。图3C显示了体重读数(从左至右:载体、5mpk的V76,和1mpk的V103)。图3D显示了肝脏脂含量的读数(从左至右:载体、5mpk的V76,和1mpk的V103)。
图4A-4D证实了本发明的融合蛋白具有的相比现有技术中的FGF21融合蛋白更优秀的药代动力学和热动力学的特性。图4A显示了在小鼠中IV注射描述为Fc-L(15)-FGF21(L98R、P171G)和Fc-L(15)-FGF21(L98R、P171G、A180E)的PCT公开WO10/129600中的发明的融合蛋白后,所述融合物的血浆浓度。图4B显示了如抗Fc-ELISA所测定的小鼠单次IV给药后本发明的融合蛋白(V101、V103&V188)的药代动力学特性,与之前使用抗FGF21抗体ELISA的研究中在小鼠中生成的V76药代动力学数据相比。图4C显示了本发明的融合蛋白在抗FGF21Western印迹中的抽样调查,与120小时和15天时的抗Fc-ELISA数据一致。印迹中的样品如下:A代表V101,B代表V103,C代表V188。对照是V101和血清。图4D证实了本发明的融合蛋白相比V76显著增加的热动力学稳定性。从上至下的图代表了V101、V103和V188,都具有相比V76(Tm<50℃(未显示))和野生型FGF21(Tm=46.5℃±0.3(未显示))改善的溶解温度(Tm)。
发明详述
本发明的蛋融合白质代表了如本领域已知的全长野生型FGF21多肽的修饰的形态。以FGF21野生型序列作为参考序列(SEQ ID NO:1),例如当需要比较FGF21野生型序列和蛋白质变体时。FGF21野生型序列具有NCBI参考序列号NP_061986.1,并且可见于这类公开的专利中,例如属于Chiron Corporation的US 6,716,626B1(SEQ ID NO:1)
下面显示了编码全长FGF21多肽的相应mRNA序列(NCBI参考序列号NM_019113.2)(SEQ ID NO:2):
成熟的FGF21序列缺少前导序列,并且还可以包括多肽的其他修饰,如氨基末端(有或无前导序列)和/或羧基末端的蛋白水解加工、从较大的前体切割较小的多肽、N-连接和/或O-连接的糖基化,和本领域技术人员已知的其他翻译后修饰。成熟的FGF21序列的代表性例子具有下列序列(SEQ ID NO:3,其代表全长FGF21蛋白序列(NCBI参考序列号NP_061986.1)的第29-209位氨基酸):
下面显示了编码成熟的FGF21多肽(SEQ ID NO:3)的相应cDNA序列(SEQ ID NO:4):
本发明的融合蛋白可包含本文列举的野生型蛋白质的蛋白质变体或突变体,例如,FGF21变体。如本文使用的,术语“蛋白质变体”、“人变体”、“多肽或蛋白质变体”、“变体”、“突变体”及其任何类似的术语或其特定形态(例如,“FGF21蛋白变体”、“变体”、“FGF21突变体”等)定义了包含天然存在的(即,野生型)蛋白质或多肽对应物或相应的天然序列的修饰、截短、其他变体的蛋白质或多肽序列。例如,相对于本文所述的野生型(即,天然存在的)FGF21蛋白,描述了“变体FGF21”或“FGF21突变体”。
表1列举了本发明的代表性的融合蛋白序列。所述融合物的描述包括FGF21变体,以及适用时,接头。FGF21变体应用的改变或取代是相对于野生型FGF21编号和描述的。作为示例,“变体101(V101)”(SEQ IDNO:10)是具有2个氨基酸接头和下列相对于野生型FGF21的取代的Fc-FGF21融合蛋白,所述取代是:Q55C、A109T、G148C、K150R、P158S、P174L、S195A、P199G、G202A。
表1:FGF21变体Fc融合蛋白
*_表示除非另外说明,否则该表中的FGF21野生型序列指NCBI参考序列号NP_061986.1(SEQ ID NO:1)。FGF21部分中的所有突变和所述突变的相应氨基酸编号回指SEQID NO:1,而不指也可包括Fc和接头区的该表中的全长序列。
用于本发明的融合蛋白中的变体或突变体,例如,野生型FGF21的变体的特征是相对于野生型蛋白质至少一个取代的、添加的和/或去除的氨基酸。此外,变体可包括相对于野生型蛋白质的N-和/或C-末端截短。一般而言,变体具有野生型蛋白质的一些改性的结构或功能的特性。例如,变体可具有在浓缩溶液中增强的或改善的物理稳定性(例如,较少的疏水性介导的聚集作用),当与血浆孵育时增强的或改善的血浆稳定性,或增强的或改善的生物活性,同时保留有利的生物活性谱。
构成本发明的融合蛋白的部分及其野生型比较蛋白质之间的差异的可接受的氨基酸取代和修饰包括,但不限于,一个或多个氨基酸取代,包括用非天然存在的氨基酸类似物取代,和截短。因此,本发明的融合蛋白(例如,本发明的融合蛋白)包括但不限于,定点突变体、截短的多肽、抗蛋白水解的突变体、聚集作用降低的突变体、组合突变体,和本文所述的融合蛋白。
蛋白质表达领域的技术人员将认识到,可以在任何本发明的融合蛋白的N-末端导入甲硫氨酸或甲硫氨酸-精氨酸序列,用于在大肠杆菌中表达,并且被考虑落入本发明的范围内。
本发明的融合蛋白可具有与药物防腐剂(例如,间甲酚、苯酚、苯甲醇)增加的相容性,因此使得能够制备保藏的药物制剂,该制剂在储藏过程中维持蛋白质的物理化学特性和生物学活性。因此,在生理学和保藏的药物制剂条件下,相对于野生型具有增强的药物稳定性的变体在浓缩溶液中都具有改善的物理稳定性,同时维持了生物学效价。作为非限制性的例子,相比其对应的野生型对应物或相应的天然序列,本发明的融合蛋白可以更耐受蛋白水解和酶促降解;可以具有改善的稳定性;可以较不易聚集。如本文使用的,这些术语不是互斥的或限制的,给定的变体完全可能具有野生型蛋白质的一种或多种改性的特性。
本发明还涵盖了编码本发明的融合蛋白的核酸分子,所述融合蛋白包含例如,与SEQ ID NO:3的氨基酸序列具有至少约95%同一性的FGF21氨基酸序列,但其中赋予FGF21蛋白变体理想特性(例如,改善的FGF21-受体效价、蛋白水解抗性、增加的半寿期或降低的聚集特性,及其组合)的特定残基没有被另外修饰。换言之,除了FGF21突变体序列中为了赋予蛋白水解抗性、降低的聚集作用或其他特性而已经被修饰的残基外,约5%(可选的4%,可选的3%,可选的2%,可选的1%)的FGF21突变体序列中的所有其他氨基酸残基可被修饰。这样的FGF21突变体具有野生型FGF21多肽的至少一种活性。
本发明还涵盖了包含这样的核苷酸序列的核酸分子,所述核苷酸序列与SEQ IDNO:2或SEQ ID NO:4的核苷酸序列具有至少约85%同一性,更优选至少约90至95%同一性,但其中编码赋予被编码的蛋白质的蛋白水解抗性、降低的聚集特性或其他特性的氨基酸残基的核苷酸没有被另外修饰。换言之,除了编码FGF21突变体序列中为了赋予蛋白水解抗性、降低的聚集特性或其他特性而已经被修饰的残基的核苷酸外,突变体序列中约15%,更优选约10至5%的所有其他核苷酸可被修饰。这样的核酸分子编码具有其野生型对应物的至少一种活性的蛋白质。
本文提供了用于生成本发明的融合蛋白的方法,其中这类方法涉及对蛋白质的野生型形态(例如,本文所述的FGF21野生型蛋白质)的位点特异性修饰和非位点特异性修饰,例如,野生型蛋白质的截短,和在野生型蛋白质内的目标位置位点特异性掺入氨基酸。所述修饰增强了本发明的融合蛋白相对于野生型蛋白质的生物学特性,并且,在一些情况下,充当例如标记和蛋白质半寿期延长活性剂的连接点,并用于将所述变体固定在固体支持物表面上的目的。本发明相关的实施方案是生产能够生产本发明所述的融合蛋白的细胞,和生产能够生产含有编码所述变体的DNA的载体的细胞的方法。
在某些实施方案中,使用这样的修饰,例如位点特异性修饰,来连接缀合物(例如,连接PEG基团与本发明的蛋白质、多肽和/或肽),用于例如延长所述蛋白质、多肽和/或肽的半寿期或改善所述蛋白质、多肽和/或肽的生物学特性的目的。本文其他地方描述了所述技术。
在其他实施方案中,使用这样的修饰,例如位点特异性修饰,来连接延长本发明的蛋白质的半寿期的其他聚合物、小分子和重组蛋白质序列。一个这样的实施方案包括连接脂肪酸或特定的白蛋白结合化合物与蛋白质、多肽和/或肽。在其他实施方案中,修饰对特定的氨基酸类型进行,并且可以连接蛋白质上的一个或多个位点。
在其他实施方案中,使用这样的修饰,例如位点特异性修饰,作为连接工具,用于生产野生型和/或变体多聚体,例如二聚体(同源二聚体或异源二聚体)或三聚体或四聚体。这些多聚的蛋白质分子可以额外具有这样的基团(如PEG、糖和/或PEG-胆固醇缀合物),所述基团与其他蛋白质(如Fc、人血清白蛋白(HAS)等)氨基末端或羧基末端连接或融合。
在其他实施方案中,使用这样的位点特异性修饰来生产蛋白质、多肽和/或肽,其中位点特异性掺入的吡咯赖氨酸或吡咯赖氨酸类似物或非天然存在的氨基酸(对-乙酰-Phe、对-叠氮-Phe)的位置允许这类蛋白质、多肽和/或肽在固体支持物的表面上受控的方向和连接,或者具有连接的基团例如PEG、糖和/或PEG-胆固醇缀合物。
在其他实施方案中,使用这样的位点特异性修饰来位点特异性地交联蛋白质、多肽和/或肽,从而形成异源寡聚物,包括但不限于异源二聚体和异源三聚体。在其他实施方案中,使用这样的位点特异性修饰来位点特异性地交联蛋白质、多肽和/或肽,从而形成蛋白质-蛋白质缀合物、蛋白质-多肽缀合物、蛋白质-肽缀合物、多肽-多肽缀合物、多肽-肽缀合物或肽-肽缀合物。在其他实施方案中,位点特异性修饰可包括允许在蛋白质、多肽或肽的单个位点上连接多于一种类型的分子的分枝点。
在其他实施方案中,可以以非位点特异性方式进行本文列举的修饰,并获得本发明的蛋白质-蛋白质缀合物、蛋白质-多肽缀合物、蛋白质-肽缀合物、多肽-多肽缀合物、多肽-肽缀合物或肽-肽缀合物。
定义
本文全文使用了多种定义。大部分词汇都具有属于本领域技术人员词汇的含义。在本文的下文或其他地方具体定义的词汇具有本发明上下文作为整体所提供的含义,并且通常是本领域技术人员理解的意思。
如本文使用的,术语“FGF21”指成纤维细胞生长因子(FGF)蛋白质家族的成员。FGF21的氨基酸序列(GenBank登录号NP_061986.1)如SEQ ID NO:1所述,其相应的多核苷酸序列如SEQ ID NO:2所述(NCBI参考序列号NM_019113.2)。“FGF21变体”、“FGF21突变体”和相似术语描述了FGF21蛋白的修饰的形态,例如,构件氨基酸残基被缺失、添加、修饰或取代。
如本文使用的,术语“FGF21受体”指FGF21的受体(Kharitonenkov,A,等人(2008)Journal of Cellular Physiology 215:1-7;Kurosu,H等人(2007)JBC 282:26687-26695;Ogawa,Y等人(2007)PNAS 104:7432-7437)。
术语“FGF21多肽”指在人中表达的天然存在的多肽。出于本公开内容的目的,术语“FGF21多肽”可互换的使用,指任何全长FGF21多肽,例如,由209个氨基酸残基组成且由SEQID NO:2的核苷酸序列编码的SEQ ID NO:1;多肽的任何成熟形式,其由181个氨基酸残基组成,并且其中去除了全长FGF21多肽的氨基末端的28个氨基酸残基(即,构成信号肽)。
如本文使用的,“变体76”是FGF21蛋白变体,特征是通过Cys154连接的40kDa分枝的PEG,和相对于177个氨基酸的野生型蛋白质的8个点突变。本文详细的描述了变体的合成,且蛋白质序列显示在表1和SEQ ID NO:9中。
术语“分离的核酸分子”指这样的本发明的核酸分子,所述核酸分子(1)已经与从源细胞中分离总核酸时至少约50%的天然发现的蛋白质、脂类、碳水化合物或其他材料分离,(2)不与“分离的核酸分子”天然连接的全部或部分多核苷酸连接,(3)与不天然连接的多核苷酸有效连接,或(4)不作为较大的多核苷酸序列的一部分天然存在。优选的,本发明的分离的核酸分子基本上不含在其自然环境中可见的任何其他污染的核酸分子或其他污染物,所述污染的核酸分子或污染物将干扰其在多肽生产或其治疗、诊断、预后或研究用途中的应用。
术语“载体”用于指任何用于将编码信息转移到宿主细胞的分子(例如,核酸、质粒或病毒)。
术语“表达载体”指适合转化宿主细胞和含有核酸序列的载体,所述核酸序列指导和/或控制插入的异源核酸序列的表达。表达包括但不限于这样的过程,如转录、翻译和RNA剪切(如果存在内含子)。
术语“有效连接的”在本文中用于指侧翼序列的排列,其中配制或装配所述侧翼序列以实施其正常的功能。融合蛋白的元件可以是彼此有效连接的,使得允许融合蛋白如同其为天然存在的、内源性蛋白质那样发挥功能,和/或以协同的方式组合所述融合蛋白的不同元件。
在核苷酸水平,与编码序列有效连接的侧翼序列能够影响编码序列的复制、转录和/或翻译。例如,当启动子能够指导编码序列的转录时,编码序列与启动子是有效连接的。只要能够正确的发挥功能,侧翼序列不必与编码序列连续。因此,例如,启动子序列和编码序列之间可以存在间插的非翻译但转录的序列,并且启动子序列仍然可以被认为是与编码序列“有效连接的”。
术语“宿主细胞”用于指已被转化的,或能够用核酸序列转化,并然后能够表达选择的目标基因的细胞。术语包括亲代细胞的后代,不论后代的形态学或遗传学组成是否与原始亲本相同,只要仍存在选择的基因。
如本文使用的,术语“氨基酸”指天然存在的氨基酸、以与天然存在的氨基酸相似的方式发挥功能的非天然氨基酸、氨基酸类似物和氨基酸模拟物,都处于其D型和L型立体异构体如果其结构允许这类立体异构体形式。在本文中,用名称、常规已知的三字母符号或IUPAC-IUB生物化学命名委员会推荐的一字母符号称呼氨基酸。
当与生物学材料(如核酸分子、多肽、宿主细胞等)结合使用时,术语“天然存在的”指在自然界发现的材料并且不是人为操作的。类似的,“非天然存在的”在本文中用于指在自然界中没有发现的,或经过结构修饰或人为合成的材料。当与核苷酸结合使用时,术语“天然存在的”指碱基腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)、胸腺嘧啶(T)和尿嘧啶(U)。当与氨基酸结合使用时,术语“天然存在的”指20种常规氨基酸(即,丙氨酸(A)、半胱氨酸(C)、天冬氨酸(D)、谷氨酸(E)、苯丙氨酸(F)、甘氨酸(G)、组氨酸(H)、异亮氨酸(I)、赖氨酸(K)、亮氨酸(L)、甲硫氨酸(M)、天冬酰胺(N)、脯氨酸(P)、谷氨酰胺(Q)、精氨酸(R)、丝氨酸(S)、苏氨酸(T)、缬氨酸(V)、色氨酸(W)和酪氨酸(Y)),以及硒代半胱氨酸、吡咯赖氨酸(Pyl或O)和吡咯啉-羧基-赖氨酸(Pcl或Z)。
吡咯赖氨酸(Pyl)是在甲烷八叠球菌(Methanosarcina)科的产甲烷古菌(methanogenic archaea)的甲胺甲基转移酶中天然发现的氨基酸。吡咯赖氨酸是在相应mRNA中符合读框的UAG密码子处共翻译掺入的赖氨酸类似物,被认为是第22种天然氨基酸。
至少如PCT专利公开WO2010/48582(申请人IRM,LLC)所述,在大肠杆菌中尝试生物合成吡咯赖氨酸(Pyl)导致形成“去甲基化的吡咯赖氨酸”,在本文中被称为吡咯啉-羧基-赖氨酸或Pcl。如本文使用的,“Pcl”指Pcl-A或Pcl-B。
如本文使用的,术语“非天然氨基酸”和“不天然氨基酸”是可互换的,意在代表不能在任何生物体中使用来自任何生物体的未修饰或修饰的基因,而生物合成生成的氨基酸结构,不论是相同或不同的。术语指在天然存在的(野生型)FGF21蛋白序列或本发明的序列中不存在的氨基酸残基。这包括但不限于,不是20种天然存在的氨基酸,硒代半胱氨酸,吡咯赖氨酸(Pyl)或吡咯啉-羧基-赖氨酸(Pcl,例如PCT专利公开WO2010/48582所述)中的一种的修饰的氨基酸和/或氨基酸类似物。可以通过取代天然存在的氨基酸,和/或向天然存在的(野生型)FGF21蛋白序列或本发明的序列中插入非自然氨基酸,导入这类非自然氨基酸残基。还可以掺入非天然氨基酸残基,使得给予FGF21分子理想的功能性,例如连接官能团(例如,PEG)的能力。如本文使用的,当与氨基酸结合使用时,符号“U”应该意指“非天然氨基酸”和“不天然氨基酸”。
此外,应理解这类“不天然氨基酸”需要修饰的tRNA和修饰的tRNA合成酶(RS)用于掺入到蛋白质中。这些“选择的”正交tRNA/RS对是通过Schultz等人研发的选择过程,或通过随机或靶向突变产生的。作为示例,吡咯啉-羧基-赖氨酸是“天然的氨基酸”,因为它是通过从一种生物体转移到宿主细胞中的基因生物合成产生的,且因为它是通过使用天然的tRNA和tRNA合成酶基因掺入到蛋白质中的,但是p-氨基苯丙氨(参见Generation of abacterium with a 21amino acid genetic code,Mehl RA,Anderson JC,Santoro SW,Wang L,Martin AB,King DS,Horn DM,Schultz PG.J Am Chem Soc.2003Jan 29;125(4):935-9)则是“不天然氨基酸”,因为它虽然是生物合成产生,但它是通过“选择的”正交tRNA/tRNA合成酶对掺入到蛋白质中的。
修饰的编码的氨基酸包括但不限于羟脯氨酸、γ-羧基谷氨酸、O-磷酸丝氨酸、吖丁啶羧酸、2-氨基已二酸、3-氨基已二酸、β-丙氨酸、氨基丙酸、2-氨基丁酸、4-氨基丁酸、6-氨基己酸、2-氨基庚酸、2-氨基异丁酸、3-氨基异丁酸、2-氨基庚二酸、叔丁基甘氨酸、2,4-二氨基异丁酸、锁链素、2,2’-二氨基庚二酸、2,3-二氨基丙酸、N-乙基甘氨酸、N-甲基甘氨酸、N-乙基天冬酰胺、高脯氨酸、羟赖氨酸、别-羟赖氨酸、3-羟脯氨酸、4-羟脯氨酸、异锁链素、别-异亮氨酸,N-甲基丙氨酸、N-甲基甘氨酸、N-甲基异亮氨酸、N-甲基戊基甘氨酸、N-甲基缬氨酸、naphthalanine、正缬氨酸、正亮氨酸、鸟氨酸、戊基甘氨酸、2-哌啶酸和硫代脯氨酸。术语“氨基酸”还包括这样的天然存在的氨基酸,其在某些生物体中是代谢物但不由遗传密码编码用于掺入到蛋白质中。这类氨基酸包括但不限于鸟氨酸、D-鸟氨酸或D-精氨酸。
如本文使用的,术语“氨基酸类似物”指具有与天然存在的氨基酸相同基础化学结构的化合物,仅作为示例,结合氢原子、羧基、氨基和R基的α-碳。氨基酸类似物包括天然的和不天然的氨基酸,所述氨基酸是可逆或不可逆地化学封闭的,或者其C-末端的羧基、其N-末端的氨基和/或其侧链官能团是化学修饰的。这类类似物包括但不限于甲硫氨酸亚砜、甲硫氨酸砜、S-(羧基甲基)-半胱氨酸,S-(羧基甲基)-半胱氨酸亚砜、S-(羧基甲基)-半胱氨酸砜、天冬氨酸-(β-甲酯)、N-乙基甘氨酸、丙氨酸甲酰胺、高丝氨酸、正亮氨酸和甲硫氨酸甲基锍。
如本文使用的,术语“氨基酸模拟物”指具有与氨基酸的一般化学结构不同,但其以与天然存在的氨基酸相似的方式发挥功能的结构的化学化合物。
术语“生物学活性变体”指任何用于本发明的融合蛋白中的多肽变体,例如,作为融合物的构件蛋白,具有其野生型(例如,天然存在的)蛋白质或多肽对应物的活性,如调节血糖、HbA1c、胰岛素、甘油三酯或胆固醇水平;增加胰腺功能;降低肝脏的脂类水平;减少体重;改善糖耐受、能量消耗或胰岛素敏感性的能力,而不论导入到多肽变体中的修饰的类型或数量。具有相对于其野生型形态一定程度减少的活性水平的多肽变体仍然可以被认为是生物学活性的多肽变体。本发明的生物学活性的多肽变体的非限制性的代表例子是这样的FGF21变体,其是修饰的,且具有与野生型FGF21相似或增强的生物学特性。
术语“有效量”和“治疗有效量”都指用于支持野生型多肽或蛋白质对应物的一种或多种生物学活性的可观察水平的本发明的融合蛋白的量,如降低血糖、胰岛素、甘油三酯或胆固醇水平;降低肝脏的甘油三酯或胆固醇水平;降低肝脏的甘油三酯或脂类水平;减少体重;或改善糖耐受、能量消耗或胰岛素敏感性的能力。例如,向表现出、患有或倾向患有FGF21-相关疾病(如1型或2型糖尿病、肥胖或代谢综合征)的患者施用的“治疗有效量”是这样的量,所述量导致、减轻或者引起与上述病症相关的病理学症状、疾病进程、生理病况的改善或抵抗死于上述病症。出于本发明的目的,“对象”或“患者”优选是人,但也可以是动物,更具体的是伴侣动物(例如,狗、猫等)、农场动物(例如,牛、绵羊、猪、马等)和实验室动物(例如,大鼠、小鼠、豚鼠等)。
术语“可药用的运载体”或“生理学可接受的运载体”在本文中指适合实现或增强本发明的融合蛋白递送的一种或多种制剂材料。
术语“抗原”指分子或分子的一部分,其能够被抗体结合,并且还能够用于在动物中生产能够结合该抗原的表位的抗体。抗原可具有一个或多个表位。
术语“天然Fc”指包含获得自完整抗体的消化,或者通过其他手段生产的非抗原结合片段的序列的分子或序列,不论其是单体或多聚体的形式,且可以含有铰链区。天然Fc的原始免疫球蛋白来源优选是人起源的,并可以是任何免疫球蛋白,但IgG1和IgG2是优选的。天然Fc分子由可以通过共价(即,二硫键)和非共价缔合连接成二聚体或多聚体形式的单体多肽组成。在天然Fc分子的单体亚基之间的分子间二硫键的数量范围是从1至4个,取决于类型(例如,IgG、IgA和IgE)或亚类(例如,IgG1、IgG2、IgG3、IgA1和IgGA2)。天然Fc的一个例子是以二硫键连接的二聚体,其获得自IgG的木瓜蛋白酶消化(参见Ellison等人,1982,Nucleic Acids Res.10:4071-9)。用于本文中的术语“天然Fc”一般是单体、二聚体和多聚体形式。
术语“Fc变体”指由天然Fc修饰而来,但仍然包含补救受体FcRn(新生儿Fc受体)的结合位点的分子或序列。国际公开号WO 97/34631和WO 96/32478描述了示例性的Fc变体,以及与补救受体的相互作用,并通过引用整合到本文中。因此,术语“Fc变体”可包含从非人的天然Fc人源化的分子或序列。此外,天然Fc包含可以去除的区域,因为这些区域提供了本发明的融合蛋白的融合分子不需要的结构特征或生物学活性。因此,术语“Fc变体”包含这样的分子或序列,所述分子或序列缺少一个或多个天然Fc位点或残基,或者其中的一个或多个天然Fc位点或残基已被修饰,所述位点或残基影响或参与:(1)二硫键形成,(2)与选择的宿主细胞的不相容性,(3)在选择的宿主细胞表达时N-末端异质性,(4)糖基化作用,(5)与补体的相互作用,(6)与补救受体以外的Fc受体结合,或(7)抗体依赖性的细胞毒性(ADCC)。下文进一步详细描述了Fc变体。
术语“Fc结构域”涵盖了天然Fc和Fc变体和上述序列。对于Fc变体和天然Fc分子,术语“Fc结构域”包括单体或多聚体形式的分子,不论是从完整抗体消化获得的,或者通过其他手段生产的。在本发明的一些实施方案中,Fc结构域可以通过例如,Fc结构域和FGF21序列之间的共价键,与FGF21或FGF21突变体(包括FGF21或FGF21突变体的截短的形式)融合。这类融合蛋白可以通过Fc结构域的缔合形成多聚体,并且这些融合蛋白及其多聚体也是本发明的一个方面。
本文使用的术语“修饰的Fc片段”应该意指包含修饰的序列的抗体的Fc片段。Fc片段是包含CH2、CH3和铰链区部分的抗体部分。修饰的Fc片段可源自例如IgG1、IgG2、IgG3或IgG4。FcLALA是具有LALA突变(L234A、L235A)的修饰的Fc片段,其以降低的效率触发ADCC,并且弱地结合和激活人补体。Hessell等,2007Nature 449:101-104。Fc片段的其他修饰描述在例如美国专利号7,217,798中。
术语“异源”意指这些结构域不是天然发现与抗体恒定区缔合的。特别的是,这类异源的结合结构域不具有由4个框架区FR1、FR2、FR3和FR4,和之间的3个互补决定区(CDR)组成的抗体可变结构域的典型结构。因此,fusobody的每个臂包含第一单链多肽和第二单链多肽,所述第一单链多肽包含共价连接在抗体的恒定CH1重链区的N-末端部分上的第一结合结构域,而所述第二单链多肽包含共价连接在抗体的恒定CL轻链区的N-末端部分上的第二结合结构域。共价连接可以是直接的,例如通过肽键,或者可以是间接的,通过接头,例如肽接头。fusobody的2个异源二聚体是共价连接的,例如通过其铰链区处的至少一个二硫键,类似抗体结构。本领域已经描述了具有fusobody结构的分子实例,特别是包含异源二聚体受体的配体结合区的fusobody(参见例如,国际专利公开号WO01/46261和WO11/076781)。
术语“聚乙二醇”或“PEG”指聚烷撑二醇化合物或其衍生物,有或无偶联剂或者由偶联或激活部分衍生。
术语“FGF21-相关病症”和本文类似使用的术语包括了肥胖、1型和2型糖尿病、胰腺炎、血脂异常、非醇型脂肪肝病(NAFLD)、非醇型脂肪性肝炎(NASH)、胰岛素耐受、高胰岛素血症、葡萄糖不耐受、高血糖、代谢综合征、急性心肌梗塞、高血压、心血管病、动脉粥样硬化、外周动脉病、中风、心脏衰竭、冠心病、肾病、糖尿病并发症、神经病、胃轻瘫、与胰岛素受体的严重失活突变相关的病症、和其他的代谢病症。
术语“与胰岛素受体中的严重失活性突变相关的病症”和本文类似使用的术语描述了患有胰岛素受体(或其直接下游的可能的蛋白质)突变的对象中的病况,所述突变导致了严重的胰岛素耐受,但通常(并非一直)没有2型糖尿病中常见的肥胖。在许多方面,患有这些病况的对象表现出1型糖尿病和2型糖尿病的杂合症状。因而受累对象按基本递增的严重程度分为若干类别,包括:A型糖尿病抗性、C型胰岛素抗性(AKA HAIR-AN综合征)、Rabson-Mendenhall综合征,最后是Donohue氏综合征或矮怪病(Leprechaunism)。这些病症与非常高的内源性胰岛素水平相关,和非常常见的与高血糖相关。因而受累对象还存在多种与“胰岛素毒性”相关的临床特征,包括雄激素过多、多囊卵巢综合征(PCOS)、多毛症和在皮肤褶皱中的黑棘皮病(过度的生长和色素沉积)。
“2型糖尿病”是这样的病况,其特征是无视胰岛素的可利用度的葡萄糖过度生产,并且由于不充分的葡萄糖清除导致循环葡萄糖水平仍然非常高。
“1型糖尿病”是这样的病况,其特征是由总体缺少的胰岛素导致的高血糖水平。是当身体的免疫系统攻击胰腺中的胰岛素生产β细胞并破坏这些细胞时发生的。于是胰腺生产很少或不生产胰岛素。
“葡萄糖不耐受”或受损的糖耐受(IGT)是血糖代谢障碍的前糖尿病状态,与增加的心血管病理风险相关。前糖尿病病况阻止对象将葡萄糖有效率地移入细胞并利用葡萄糖作为有效率的燃料来源,导致血液中升高的葡萄糖水平和一定程度的胰岛素耐受。
“高血糖”定义为血液中过多的糖(葡萄糖)。
“低血糖”也被称为低血糖,当血糖水平降至太低而不能提供身体活动足够的能源时发生。
“高胰岛素血症”定义为血液中高于正常水平的胰岛素。
“胰岛素耐受”定义为这样的状态,其中,正常量的胰岛素产生了低于正常的生物学应答。
“肥胖”就人类对象而言,可定义为体重比给定群体的理想体重高出20%(R.H.Williams,Textbook of Endocrinology,1974,904-916页)。
“糖尿病并发症”是由高血糖水平和其他的身体功能(如肾、神经(神经病)、足(足部溃疡和循环低下)和眼(例如,视网膜病))导致的问题。糖尿病还增加心脏病和骨和关节病症的风险。糖尿病的其他长期并发症包括皮肤问题、消化问题、性功能障碍和牙齿与牙龈的问题。
“代谢综合征”可定义为下列信号中的至少3个的群:腹部肥胖--大部分男性中,40英寸腰或更粗;高血糖--空腹后至少110毫克/分升(mg/dl);高甘油三酯--血流中至少150mg/dL;低HDL--少于40mg/dl;130/85mmHg或更高的血压。
“胰腺炎”是胰腺的炎症。
“血脂异常”是脂蛋白代谢的病症,包括脂蛋白过度生产或缺陷。血脂异常可以表现为血液中的总胆固醇、低密度脂蛋白(LDL)胆固醇和甘油三酯浓度的升高,和高密度脂蛋白(HDL)胆固醇浓度的减少。
“非醇型脂肪肝病(NAFLD)”是与醇消耗无关的肝病,其特征是肝细胞的脂肪改变。
“非醇型脂肪性肝炎(NASH)”是与醇消耗无关的肝病,其特征是肝细胞的脂肪改变,伴随小叶内炎症和纤维化。
“高血压”或高血液压力是全身动脉血压暂时或持续升高至可能导致心血管损害或其他不利结果的水平。高血压可人为定义为高于140mmHg的收缩压或高于90mmHg的舒张压。
“心血管疾病”是涉及心脏或血管的疾病。
“急性心肌梗塞”当在对部分心脏的血液供应中断时发生。如果在足够长的时间内没有治疗所导致的缺血和缺氧,可以导致心脏肌肉组织(心肌)的损害或死亡(梗塞)。
“外周动脉病”当在将血液携带给头部、内脏或四肢的动脉中斑块增多时发生。斑块可以随时间变硬,使动脉变窄,这限制富氧血流向器官和身体的其他部分。
“动脉粥样硬化”是血管病,其特征是在大型和中型动脉的内膜上不规则分布的脂类沉积物,导致动脉管腔变窄,并最终发展为纤维化和钙化。病损通常是病灶性的,并缓慢且间歇地发展。血流受限是大部分临床表现的原因,但临床表现随病损的分布和严重程度改变。
“中风”是与持续超过24小时的脑循环损伤相关的任何急性临床事件。中风涉及不可逆的脑损害,症状的类型和严重程度取决于循环已经受损的脑组织的位置和范围。
“心力衰竭”,也被称为阻塞性心力衰竭,是心脏不再泵送充足的血液至身体其余部分的病症。
“冠心病”,也被称为冠状动脉病,是为心脏供应血液和氧气的小血管变窄。
“肾脏病”或肾病是肾脏的任何疾病。糖尿病性肾病是1型或2型糖尿病人的发病率和死亡率的主要原因。
“神经病”是任何涉及脑神经或外周或自主神经系统的疾病。
“胃轻瘫”是胃蠕动减弱,导致延迟的肠排空。
本发明涵盖的危重患者一般经历着不稳定的高代谢状态。该不稳定的代谢状态是由于底物代谢改变造成的,这可导致一些营养物的相对缺乏。一般而言,脂肪和肌肉都存在增加的氧化作用。
此外,危重患者优选是经历全身性炎性应答综合征或呼吸窘迫的患者。发病率降低意指危重患者出现其他疾病、病况或症状的可能性降低,或者其他疾病、病况或症状的严重程度降低。例如,降低的发病率可对应于减少的细菌血症或败血症或与多器官衰竭相关的并发症发生。
如本文使用的,除非上下文中另外明确指出,否则单数形式“a”、“an”和“the”包括了复数的指代。因此,例如,“抗体”的称呼包括了两个或多个这类抗体的混合物。
如本文使用的,术语“约”指数值的+/-20%,更优选+/-10%,或仍然更优选+/-5%。
术语“多肽”和“蛋白质”是可互换使用的,指任何长度的氨基酸的聚合形式,可以包括编码和非编码的氨基酸、天然和非天然存在的氨基酸、化学或生物化学修饰的或衍生的氨基酸,和具有修饰的肽骨架的多肽。术语包括融合蛋白,包括但不限于具有异源氨基酸序列的融合蛋白、具有异源和同源前导序列的融合物、有或无N-末端甲硫氨酸残基;免疫标记的蛋白质等。
术语“个体”、“对象”、“宿主”和“患者”可互换的使用,指任何需要诊断、治疗或疗法的对象,特别是人。其他对象可包括牛、狗、猫、豚鼠、兔、大鼠、小鼠、马等。在一些优选的实施方案中,对象是人。
如本文使用的,术语“样品”指来自患者的生物学材料。本发明测定的样品不限于任何特定的类型。作为非限制性的例子,样品包括单细胞、多细胞、组织、肿瘤、生物体液、生物分子,或任何上述材料的上清液或提取物。例子包括从活组织检查移出的组织、在切除中移出的组织、血液、尿液、淋巴组织、淋巴液、脑脊液、粘液和粪便样品。使用的样品一般根据测定模式、检测方法和待测定的肿瘤、组织、细胞或提取物的性质而改变。用于制备样品的方法是本领域普遍已知的,可以方便地调整从而获得与所用方法相容的样品。
如本文使用的,术语“生物学分子”包括但不限于多肽、核酸和糖类。
如本文使用的,术语“调节”指基因、蛋白质或位于细胞内侧、外侧或表面上的任何分子的质量或数量的改变。改变可以是分子的表达或水平的增加或减少。术语“调节”还包括改变生物学功能/活性的质量或数量,所述生物学功能/活性包括但不限于降低血糖、胰岛素、甘油三酯或胆固醇水平;降低肝脏的脂类或肝脏甘油三酯的水平;减少体重;改善糖耐受、能量消耗或胰岛素敏感性的能力。
如本文使用的,术语“调节剂”指调节一个或多个与FGF21相关性疾病(如1型或2型糖尿病或代谢病况(如肥胖))相关的生理学或生物化学事件的组合物。所述事件包括但不限于降低血糖、胰岛素、甘油三酯或胆固醇水平;降低肝脏的脂类或肝脏甘油三酯的水平;减少体重;改善糖耐受、能量消耗或胰岛素敏感性的能力。
“基因产物”是由基因表达或产生的生物聚合产物。基因产物可以是例如未剪切的RNA、mRNA、mRNA剪切变体、多肽、翻译后修饰的多肽、剪切变体多肽等。该术语还涵盖了使用RNA基因产物作为模板生产的生物聚合产物(即,RNA的cDNA)。基因产物可以酶促的、重组的、化学的生产,或者在对该基因而言是天然的细胞内生产。在一些实施方案中,如果基因产物是蛋白质性质的,则其表现出生物学活性。在一些实施方案中,如果基因产物是核酸,则其可翻译成表现出生物学活性的蛋白质性质的基因产物。
如本文使用的,“调节FGF21活性”指FGF21活性的增加或减少,其可以是例如活性剂与FGF21多核苷酸或多肽相互作用、抑制FGF21、GLP-1或毒蜥外泌肽-4转录和/或翻译(例如,通过与FGF21基因,或与FGF21转录物的反义或siRNA相互作用,通过调节促进FGF21表达的转录因子)等的结果。例如,调节生物学活性指生物学活性的增加或减少。可以通过以下手段评估FGF21活性,包括但不限于测定对象的血糖、胰岛素、甘油三酯或胆固醇水平,评估FGF21多肽水平,或通过评估FGF21转录水平。还可以通过例如测量FGF21下游生物标志物的水平,和测量FGF21信号传递的增加,实现FGF21活性的比较。还可以通过测量:细胞信号传递;激酶活性;脂肪细胞中摄入的葡萄糖;血液胰岛素、甘油三酯或胆固醇水平的波动;肝脏脂类或甘油三酯水平的改变;FGF21与FGF21受体之间的相互作用;或FGF21受体的磷酸化,来评估FGF21活性。在一些实施方案中,FGF21受体的磷酸化可以是酪氨酸磷酸化。在一些实施方案中,调节FGF21活性可以导致调节FGF21相关的表型。
还可以通过例如测量FGF21下游生物标志物的水平,和测量FGF21信号传递的增加,实现FGF21活性的比较。还可以通过测量:细胞信号传递;激酶活性;脂肪细胞中摄入的葡萄糖;血液胰岛素、甘油三酯或胆固醇水平的波动;肝脏脂类或甘油三酯水平的改变;FGF21与受体(FGFR-1c,FGFR-2c,或FGFR-3c)之间的相互作用;或FGF21受体的磷酸化,来评估FGF21活性。在一些实施方案中,FGF21受体的磷酸化可以是酪氨酸磷酸化。在一些实施方案中,调节FGF21活性可以导致调节FGF21相关的表型。
如本文使用的,“FGF21下游生物标志物”是基因或基因产物,或基因或基因产物的可测量标记。在一些实施方案中,是FGF21的下游标志物的基因或活性表现出改变的表达水平,或在血管组织内。在一些实施方案中,在存在FGF21调节剂的条件下,下游标志物的活性是改变的。在一些实施方案中,当用本发明的FGF21调节剂干扰FGF21信号传递时,下游标志物表现出改变的表达水平。FGF21下游标志物包括但不限于葡萄糖或2-脱氧葡萄糖摄取、pERK和其他磷酸化或乙酰化的蛋白质或NAD水平。
如本文使用的,术语“上调”指活性或数量的增加、激活或刺激。例如,在本发明的背景下,FGF21调节剂可以增加FGF21受体的活性。在一个实施方案中,应答于FGF21调节剂,一个或多个FGFR-1c、FGFR-2c,或FGFR-3c可上调。上调还可以指FGF21相关的活性,例如降低血糖、胰岛素、甘油三酯或胆固醇水平;降低肝脏的脂类或甘油三酯水平;减少体重;或改善糖耐受、能量消耗或胰岛素敏感性;或导致FGF21受体磷酸化;或增加FGF21下游标志物的能力。FGFR21受体可以是FGFR-1c、FGFR-2c,或FGFR-3c中的一个或多个。相比对照,可以是至少25%、至少50%、至少75%、至少100%、至少150%、至少200%、至少250%、至少400%或至少500%。
如本文使用的,术语“N-末端”指蛋白质的至少前20个氨基酸。
如本文使用的,术语“N-末端结构域”和“N-末端区”可互换的使用,指从蛋白质的第一个氨基酸处开始并在蛋白质N-末端一半的任一氨基酸处结束的蛋白质片段。例如,FGF21的N-末端结构域是从SEQ ID NO:1的第一位氨基酸至SEQ ID NO:1的第10和105位氨基酸之间的任一氨基酸。
如本文使用的,术语“C-末端”指蛋白质的至少最后20个氨基酸。
如本文使用的,术语“C-末端结构域”和“C-末端区”可互换的使用,指从蛋白质C-末端一半的任一氨基酸处开始并在蛋白质的最后一个氨基酸处结束的蛋白质片段。例如,FGF21的C-末端结构域在从SEQ ID NO:1的第105和200位氨基酸之间的任一氨基酸处开始并在SEQ ID NO:1的第209位氨基酸处结束。
术语“结构域”在本文中指对生物分子的已知功能或疑似功能有贡献的生物分子的结构部分。结构域可以扩及区域或其部分,还可以并入全部或部分所述区域以外,不同于特定区域的生物分子的部分。
如本文使用的,术语“信号结构域”(也被称为“信号序列”或“信号肽”)指位于前体蛋白质(通常是膜结合的或分泌的蛋白质)的N-末端区的氨基酸序列的连续片段中的肽结构域,并参与翻译后蛋白质运输。在许多情况下,在完成分选过程后,通过专门的信号肽酶,从全长蛋白质中去除信号结构域。每个信号结构域指明了前体蛋白质在细胞中的特定目的地。FGF21的信号结构域是SEQ ID NO:1的第1-28位氨基酸。
如本文使用的,术语“受体结合结构域”指与膜结合型受体蛋白质接触的蛋白质的任何部分或区域,导致细胞应答,如信号传递事件。
如本文使用的,术语“配体结合结构域”指本发明的融合蛋白的任何部分或区域,所述部分或区域保留了相应天然序列的至少一个定性的结合活性。
术语“区域”指生物分子的初级结构的物理上连续的部分。在蛋白质的情况下,区域定义为该蛋白质的氨基酸序列的连续部分。在一些实施方案中,“区域”与生物分子的功能相关。
术语“片段”在本文中指生物分子的初级结构的物理上连续的部分。在蛋白质的情况下,部分定义为该蛋白质的氨基酸序列的连续部分并且指至少3-5个氨基酸,至少8-10个氨基酸,至少11-15个氨基酸,至少17-24个氨基酸,至少25-30个氨基酸,和至少30-45个氨基酸。在寡核苷酸的情况下,部分定义为该寡核苷酸的核酸序列的连续部分并且指至少9-15个核苷酸,至少18-30个核苷酸,至少33-45个核苷酸,至少48-72个核苷酸,至少75-90个核苷酸,和至少90-130个核苷酸。在一些实施方案中,生物分子的部分具有生物学活性。在本发明的上下文中,FGF21多肽片段不包含SEQ ID NO:1中所述的整个FGF21多肽序列。
“天然序列”多肽是具有与自然界来源的多肽相同的氨基酸序列的多肽。这类天然序列多肽可以从自然界分离,或者可以通过重组或合成的手段生产。因此,天然序列多肽可以具有天然存在的人多肽、鼠多肽或来自任何其他哺乳动物物种的多肽的氨基酸序列。
如本文使用的,词组“同源核苷酸序列”或“同源氨基酸序列”或其变化形式,指由至少指明的百分比的核苷酸水平或氨基酸水平的同源性表征的序列,并与“序列同一性”可互换的使用。同源核苷酸序列包括那些编码蛋白质同种型的序列。作为例如RNA的可变剪切的结果,这类同种型可以在同一生物体的不同组织中表达。可选的,同种型可以由不同的基因编码。同源核苷酸序列包括编码人以外的物种(包括,但不限于哺乳动物)的蛋白质的核苷酸序列。同源核苷酸序列还包括但不限于本文所示出的核苷酸序列的天然存在的等位改变和突变。同源氨基酸序列包括含有保守性氨基酸取代并且所述多肽具有相同的结合和/或活性的那些氨基酸序列。在一些实施方案中,如果与对比序列具有至少60%或更大的,最多99%的同一性,则核苷酸或氨基酸序列是同源的。在一些实施方案中,如果与对比序列享有一个或多个,最多60个核苷酸/氨基酸取代、添加或缺失,核苷酸或氨基酸序列是同源的。在一些实施方案中,同源氨基酸序列具有不超过5个或不超过3个保守的氨基酸取代。
可以通过例如Gap程序(Wisconsin序列Analysis Package,Version 8 for UNIX,Genetics Computer Group,University Research Park,Madison WI)和使用默认设置,来确定百分比同源性或同一性,该程序使用Smith和Waterman算法(Adv.Appl.Math.,1981,2,482-489)。在一些实施方案中,探针和靶之间的同源性在约75%至约85%之间。在一些实施方案中,核酸具有与SEQ ID NO:2或其部分至少约95%,约97%,约98%,约99%和约100%同源的核苷酸。
同源性还可以在多肽水平。在一些实施方案中,本发明的融合蛋白的构件多肽可以与其全长野生型对应物或相应的天然序列、或其部分至少95%同源。本发明的融合蛋白或其部分和不同氨基酸序列的同一性程度或百分比计算为两条序列比对中准确匹配的数量除以“本发明序列”或“外源序列”的最短长度。结果表示为百分比同一性。
如本文使用的,术语“混合”指在相同区域中组合一个或多个化合物、细胞、分子等在一起的过程。这可以在例如允许一个或多个化合物、细胞、分子混合的试管、培养皿或任何容器中实施。
如本文使用的,术语“基本纯化的”指从其天然环境中移出且不含至少60%,至少75%,和至少90%的与其天然相关的其他组分的化合物(例如,多核苷酸或多肽或抗体)。
术语“可药用的运载体”指用于施用治疗剂,如抗体或多肽、基因和其他治疗剂的运载体。术语指任何本身不导致产生对接受组合物的个体有害的抗体的药学运载体,且可以施用而没有不过度的毒性。合适的载体可以是大的、代谢缓慢的大分子,如蛋白质、多糖、多聚乳酸、多聚甘油酸、多聚氨基酸、氨基酸共聚物、脂类聚集物和失活的病毒颗粒。这类运载体是本领域普通技术人员普遍已知的。治疗组合物中的可药用的运载体可包括液体,如水、生理盐水、甘油和乙醇。这类运载体中也可以存在辅助物质,如湿润剂或乳化剂、pH缓冲物质等。
增强本发明的融合蛋白的物理稳定性
由半胱氨酸残基提供的天然存在的二硫键一般地增加了蛋白质的热动力学稳定性。按融解温度增加测量的,增加的热动力学稳定性的成功例子是酶T4溶菌酶(Matsumura等人,PNAS 86:6562-6566(1989))和芽孢杆菌RNA酶(barnase)(Johnson等人,J.Mol.Biol.268:198-208(1997))的多个二硫键突变体。本发明的一个方面是在存在防腐剂的条件下FGF21的增强的物理稳定性,这是由变体中存在的二硫键实现的,所述二硫键限制了野生型FGF21的灵活性从而限制了防腐剂接近蛋白质的疏水核心。
因此,本发明的第二个方面提供了具有增强的药学稳定性的人FGF21变体,或其生物学活性肽,所述增加的药学稳定性是由掺入额外的二硫键赋予的,例如通过向本发明的野生型FGF21蛋白质或多肽和蛋白质变体中掺入或取代入半胱氨酸残基。本领域技术人员将认识到,除本文所述的提示的实施方案外,可以利用天然的半胱氨酸,半胱氨酸103和半胱氨酸121作为座位导入给予改善的性质的新的二硫键。
这包括在野生型FGF21中掺入下列中两个或多个的半胱氨酸取代的融合蛋白:谷氨酰胺46、精氨酸47、酪氨酸48、亮氨酸49、酪氨酸50、苏氨酸51、天冬氨酸52、天冬氨酸53、丙氨酸54,谷氨酰胺55,谷氨酰胺56、苏氨酸57、谷氨酸58、丙氨酸59、组氨酸60、亮氨酸61、谷氨酸62、异亮氨酸63、缬氨酸69、甘氨酸70、甘氨酸71、丙氨酸72、丙氨酸73、亮氨酸144、组氨酸145、亮氨酸146、脯氨酸147、甘氨酸148、天冬酰胺149、赖氨酸150、丝氨酸151、脯氨酸152、组氨酸153、精氨酸154、天冬氨酸155、脯氨酸156、丙氨酸157、脯氨酸158、精氨酸159、甘氨酸160、脯氨酸161、丙氨酸162、精氨酸163、苯丙氨酸164,其中氨基酸的编号是基于全长209个氨基酸的hFGF21序列SEQ ID NO:1。
此外,本发明的融合蛋白可以掺入野生型人FGF21的变体,或其生物学活性肽,除了在Cys103-Cys121处天然存在的二硫键之外,所述野生型人FGF21的变体,或其生物学活性肽被改造的二硫键增强,如下:Gln46Cys-Ala59Cys,Gln46Cys-His60Cys,Gln46Cys-Leu61Cys,Gln46Cys-Glu62Cys,Gln46Cys-Ile63Cys,Arg47Cys-Ala59Cys,Arg47Cys-His60Cys,Arg47Cys-Leu61Cys,Arg47Cys-Glu62Cys,Arg47Cys-Ile63Cys,Tyr48Cys-Ala59Cys,Tyr48Cys-His60Cys,Tyr48Cys-Leu61Cys,Tyr48Cys-Glu62Cys,Tyr48Cys-Ile63Cys,Leu49Cys-Ala59Cys,Leu49Cys-His60Cys,Leu49Cys-Leu61Cys,Leu49Cys-Glu62Cys,Leu49Cys-Ile63Cys,Tyr50Cys-Ala59Cys,Tyr50Cys-His60Cys,Tyr50Cys-Lue61Cys,Tyr50Cys-Glu62Cys,Tyr50Cys-Ile63Cys,Leu144Cys-Gly160Cys,Leu144Cys-Pro161Cys,Leu144Cys-Ala162Cys,Leu144Cys-Arg163Cys,Leu144Cys-Phe164Cys,His145Cys-Gly160Cys,His145Cys-Pro161Cys,His145Cys-Ala162Cys,His145Cys-Arg163Cys,His145Cys-Phe164Cys,Leu146Cys-Gly160Cys,Leu146Cys-Pro161Cys,Leu146Cys-Ala162Cys,Leu146Cys-Arg163Cys,Leu146Cys-Phe164Cys,Pro147Cys-Gly160Cys,Pro147Cys-Pro161Cys,Pro147Cys-Ala162Cys,Pro147Cys-Arg163Cys,Pro147Cys-Phe164Cys,Gly148Cys-Gly160Cys,Gly148Cys-Pro161Cys,Gly148Cys-Ala162Cys,Gly148Cys-Arg163Cys,Gly148Cys-Phe164Cys,Thr57Cys-Val69Cys,Thr57Cys-Gly70Cys,Thr57Cys-Gly71Cys,Thr57Cys-Ala72Cys,Thr57Cys-Ala73Cys,Glu58Cys-Val69Cys,Glu58Cys-Glu70Cys,Glu58Cys-G71Cys,Glu58Cys-Ala72Cys,Glu58Cys-Ala73Cys,Ala59Cys-Val69Cys,Ala59Cys-Gly70Cys,Ala59Cys-Gly71Cys,Ala59Cys-Ala72Cys,Ala59Cys-Ala73Cys,His60Cys-Val69Cys,His60Cys-Gly70Cys,His60Cys-Gly71Cys,His60Cys-Ala72Cys,His60Cys-Ala73Cys,Leu61Cys-Val69Cys,Leu61Cys-Gly70Cys,Leu61Cys-Gly71Cys,Leu61Cys-Ala72Cys,Leu61Cys-Ala73Cys,Arg47Cys-Gly148Cys,Tyr48Cys-Gly148Cys,Leu49Cys-Gly148Cys,Tyr50Cys-Gly148Cys,Thr51Cys-Gly148Cys,Asp52Cys-Gly148Cys,Asp53Cys-Gly148Cys,Ala54Cys-Gly148Cys,Gln55Cys-Gly148Cys,Gln56Cys-Gly148Cys,Thr57Cys-Gly148Cys,Glu58Cys-Gly148Cys,Arg47Cys-Asn149Cys,Tyr48Cys-Asn149Cys,Leu49Cys-Asn149Cys,Tyr50Cys-Asn149Cys,Thr51Cys-Asn149Cys,Asp52Cys-Asn149Cys,Asp53Cys-Asn149Cys,Ala54Cys-Asn149Cys,Gln55Cys-Asn149Cys,Gln56Cys-Asn149Cys,Thr57Cys-Asn149Cys,Glu58Cys-Asn149Cys,Arg47Cys-Lys150Cys,Tyr48Cys-Lys150Cys,Leu49Cys-Lys150Cys,Tyr50Cys-Lys150Cys,Thr51Cys-Lys150Cys,Asp52Cys-Lys150Cys,Asp53Cys-Lys150Cys,Ala54Cys-Lys150Cys,Gln55Cys-Lys150Cys,Gln56Cys-Lys150Cys,Thr57Cys-Lys150Cys,Glu58Cys-Lys150Cys,Arg47Cys-Ser151Cys,Tyr48Cys-Ser151Cys,Leu49Cys-Ser151Cys,Tyr50Cys-Ser151Cys,Thr51Cys-Ser151Cys,Asp52Cys-Ser151Cys,Asp53Cys-Ser151Cys,Ala54Cys-Ser151Cys,Gln55Cys-Ser151Cys,Gln56Cys-Ser151Cys,Thr57Cys-Ser151Cys,Glu58Cys-Ser151Cys,Arg47Cys-Pro152Cys,Tyr48Cys-Pro152Cys,Leu49Cys-Pro152Cys,Tyr50Cys-Pro152Cys,Thr51Cys-Pro152Cys,Asp52Cys-Pro152Cys,Asp53Cys-Pro152Cys,Ala54Cys-Pro152Cys,Gln55Cys-Pro152Cys,Gln56Cys-Pro152Cys,Thr57Cys-Pro152Cys,Glu58Cys-Pro152Cys,Arg47Cys-His153Cys,Tyr48Cys-His153Cys,Leu49Cys-His153Cys,Tyr50Cys-His153Cys,Thr51Cys-His153Cys,Asp52Cys-His153Cys,Asp53Cys-His153Cys,Ala54Cys-His153Cys,Gln55Cys-His153Cys,Gln56Cys-His153Cys,Thr57Cys-His153Cys,Glu58Cys-His153Cys,Arg47Cys-Arg154Cys,Tyr48Cys-Arg154Cys,Leu49Cys-Arg154Cys,Tyr50Cys-Arg154Cys,Thr51Cys-Arg154Cys,Asp52Cys-Arg154Cys,Asp53Cys-Arg154Cys,Ala54Cys-Arg154Cys,Gln55Cys-Arg154Cys,Gln56Cys-Arg154Cys,Thr57Cys-Arg154Cys,Glu58Cys-Arg154Cys,Arg47Cys-Asp155Cys,Tyr48Cys-Asp155Cys,Leu49Cys-Asp155Cys,Tyr50Cys-Asp155Cys,Thr51Cys-Asp155Cys,Asp52Cys-Asp155Cys,Asp53Cys-Asp155Cys,Ala54Cys-Asp155Cys,Gln55Cys-Asp155Cys,Gln56Cys-Asp155Cys,Thr57Cys-Asp155Cys,Glu58Cys-Asp155Cys,Arg47Cys-Pro156Cys,Tyr48Cys-Pro156Cys,Leu49Cys-Pro156Cys,Tyr50Cys-Pro156Cys,Thr51Cys-Pro156Cys,Asp52Cys-Pro156Cys,Asp53Cys-Pro156Cys,Ala54Cys-Pro156Cys,Gln55Cys-Pro156Cys,Gln56Cys-Pro156Cys,Thr57Cys-Pro156Cys,Glu58Cys-Pro156Cys,Arg47Cys-Ala157Cys,Tyr48Cys-Ala157Cys,Leu49Cys-Ala157Cys,Tyr50Cys-Ala157Cys,Thr51Cys-Ala157Cys,Asp52Cys-Ala157Cys,Asp53Cys-Ala157Cys,Ala54Cys-Ala157Cys,Gln55Cys-Ala157Cys,Gln56Cys-Ala157Cys,Thr57Cys-Ala157Cys,Glu58Cys-Ala157Cys,Arg47Cys-Pro158Cys,Tyr48Cys-Pro158Cys,Leu49Cys-Pro158Cys,Tyr50Cys-Pro158Cys,Thr51Cys-Pro158Cys,Asp52Cys-Pro158Cys,Asp53Cys-Pro158Cys,Ala54Cys-Pro158Cys,Gln55Cys-Pro158Cys,Gln56Cys-Pro158Cys,Thr57Cys-Pro158Cys,Glu58Cys-Pro158Cys,Arg47Cys-Arg159Cys,Tyr48Cys-Arg159Cys,Leu49Cys-Arg159Cys,Tyr50Cys-Arg159Cys,Thr51Cys-Arg159Cys,Asp52Cys-Arg159Cys,Asp53Cys-Arg159Cys,Ala54Cys-Arg159Cys,Gln55Cys-Arg159Cys,Gln56Cys-Arg159Cys,Thr57Cys-Arg159Cys,Glu58Cys-Arg159Cys,Arg47Cys-G160Cys,Tyr48Cys-G160Cys,Leu49Cys-G160Cys,Tyr50Cys-Gly160Cys,Thr51Cys-Gly160Cys,Asp52Cys-Gly160Cys,Asp53Cys-Gly160Cys,Ala54Cys-Gly160Cys,Gln55Cys-Gly160Cys,Gln56Cys-Gly160Cys,Thr57Cys-Gly160Cys,Glu58Cys-Gly160Cys,Arg47Cys-Pro161Cys,Tyr48Cys-Pro161Cys,Leu49Cys-Pro161Cys,Tyr50Cys-Pro161Cys,Thr51Cys-Pro161Cys,Asp52Cys-Pro161Cys,Asp53Cys-Pro161Cys,Ala54Cys-Pro161Cys,Gln55Cys-Pro161Cys,Gln56Cys-Pro161Cys,Thr57Cys-Pro161Cys,Glu58Cys-Pro161Cys,Arg47Cys-Ala162Cys,Tyr48Cys-Ala162Cys,Leu49Cys-Ala162Cys,Tyr50Cys-Ala162Cys,Thr51Cys-Ala162Cys,Asp52Cys-Ala162Cys,Asp53Cys-Ala162Cys,Ala54Cys-Ala162Cys,Gln55Cys-Ala162Cys,Gln56Cys-Ala162Cys,Thr57Cys-Ala162Cys,Glu58Cys-Ala162Cys,Arg47Cys-Arg163Cys,Tyr48Cys-Arg163Cys,Leu49Cys-Arg163Cys,Tyr50Cys-Arg163Cys,Thr51Cys-Arg163Cys,Asp52Cys-Arg163Cys,Asp53Cys-Arg163Cys,Ala54Cys-Arg163Cys,Gln55Cys-Arg163Cys,Gln56Cys-Arg163Cys,Thr57Cys-Arg163Cys,Glu58Cys-Arg163Cys。
本发明的另一个方面提供了包含野生型人FGF21的变体,或其生物学活性肽的融合蛋白,所述融合蛋白包含与本发明的第一个实施方案中指出的任何氨基酸位置处的任何带电和/或极性但不带电的氨基酸的取代与本发明的第二个实施方案中指出的两个或多个氨基酸位置处的半胱氨酸取代的组合。
本发明的融合蛋白相对于野生型蛋白质比较物及其变体的改善
本领域普遍已知,研发蛋白质药物的重要挑战是处理蛋白质的物理和化学不稳定性。当预计将蛋白质药物制剂用于多种用途时,该挑战甚至更明显,可注射制剂需要稳定的、浓缩的和保藏的溶液,同时保持有利的生物活性谱。文献中的野生型FGF21的生物物理特征确立了当浓缩的蛋白质溶液(>5mg/ml)暴露于胁迫条件(如高温或低pH)时,导致加快的缔合和聚集(即,低下的物理稳定性和生物制药特性)。FGF21的浓缩蛋白质溶液暴露于制药防腐剂(例如,间甲酚)也对物理稳定性具有负面影响。
因此,本发明的一个实施方案是在生理学和防腐制剂条件下,增强浓缩溶液的物理稳定性,同时维持化学稳定性和生物学效价。认为缔合和聚集可能是由疏水性相互作用导致的,因为在给定的蛋白质浓度,温度和离子强度对物理稳定性具有可观的影响。就大部分情况而言,靶向非保守的、假定的表面暴露的氨基酸残基。分析这些残基的局部环境,并选择在结构上被视为不重要的那些进行诱变。一种开始特异性改变的方法是通过导入谷氨酸残基进一步降低蛋白质的pI(“谷氨酸扫描”)。假设带电的取代基的导入将通过电荷-电荷排斥作用抑制疏水介导的聚集,并潜在的改善防腐剂相容性。此外,本领域技术人员还将认识到,在充分程度的诱变下,通过导入正电荷,有或没有同时减少负电荷,可以将pI改变到碱性pH范围内,从而允许电荷-电荷排斥作用。
与野生型FGF21作为生物治疗剂的治疗性应用相关的其他困难是例如其体内半寿期非常短(在小鼠和灵长类中,分别在0.5和2h的量级)。因此需要研发通过更高效价或更长半寿期而更有效的后续化合物。本发明的融合蛋白是作为以更高效价和在半寿期延长的制剂中实现FGF21治疗的理想效果的方式研发的。
如本文进一步所述,相比野生型FGF21短得多的半寿期和PCT公开WO10/129600中的融合蛋白Fc-L(15)-FGF21(L98R、P171G、A180E)的17小时的半寿期而言,本发明的融合蛋白在小鼠内具有大于2周的半寿期。本发明的融合蛋白还证实了比PEG化的V76改善的半寿期和药代动力学特性,如本文所述和2010年11月19日提交的美国专利申请61/415,476所述。
此外,1mpk的本发明的Fc-FGF21融合蛋白比5mpk的V76更有效降低葡萄糖、胰岛素、体重和肝脂肪。在ob/ob小鼠的为期12天的治疗研究中,融合蛋白表现出相对于载体的下列%改变(所有的融合蛋白都以1.0mg/kg施用,并且V76以5.0mg/kg施用):
相对于载体的总葡萄糖(AUC)%改变:V76是-42%;V101是-53%,V103是-46%,而V188是-42%;
相对于载体的总血浆胰岛素%改变:V76是-46%;V101是-82%,V103是-69%,而V188是-59%;
相对于载体的总体重%改变:V76是-7%;V101是-12%,V103是-12%,而V188是-11%;和
相对于载体的总肝脂肪%改变:V76是-30%;V101是-44%,V103是-50%,而V188是-51%;
类似的,体外测定揭示了本发明的融合蛋白相比V76同样5倍或更高的效价:
在人脂肪细胞测定法的pERK中(平均EC50±SEM),V76是21±2nM(n=3);V101是1.0±0.1nM(n=3),V103是1.3±0.2nM(n=3),而V188是1.4±0.4nM(n=3);
在用人βklotho测定法的HEK293的pERK中(平均EC50±SEM),V76是13±4nM(n=5),V101是0.60±0.06nM(n=5),V103是0.9±0.3nM(n=5),而V188是0.4±0.1nM(n=3);
在小鼠脂肪细胞测定法的葡萄糖摄取中(平均EC50±SEM),V76是5±1nM(n=3),V101是0.60±0.06nM(n=3),V103是0.60±0.07nM(n=3),而V188是0.48±0.14nM(n=3)。
虽然本发明的实施方案涉及在生理学和保藏的药物制剂条件下的物理和化学稳定性,保持本发明的融合蛋白与例如野生型FGF21相比的生物学效价也是重要的考虑因素。因此,本发明的蛋白质的生物学效价由蛋白质影响葡萄糖摄取和/或降低血浆葡萄糖水平的能力定义,如本文实施例中所示。
可以通过本领域已知的任何手段生成和/或分离根据本发明施用的本发明的蛋白质、多肽和/或肽。用于生产变体的最优选的方法是通过重组DNA方法,且是本领域技术人员普遍已知的。这类方法描述在Molecular Biology的Current Protocols中(John Wiley&Sons,Inc.),其通过引用整合到本文中。
此外,优选的实施方案包括源自本文所述变体的生物学活性肽。这类肽将含有所述取代中的至少一个,且变体将具有生物学活性。可以由本领域技术人员已知的任何和所有手段生产肽,其例子包括但不限于酶促消化、化学合成或重组DNA方法。
本领域已确立某些成纤维细胞生长因子的肽的片段是生物学活性的。参见例如Baird等人,Proc.Natl.Acad.Sci(USA)85:2324-2328(1988)和J.Cell.Phys.Suppl.5:101-106(1987)。因此,对变体的片段或肽的选择是基于本领域已知的标准的。例如,已知二肽肽酶IV(DPP-IV或DPP-4)是丝氨酸型蛋白酶,参与神经肽、内分泌肽和细胞因子的失活(Damme等人Chem.Immunol.72:42-56,(1999))。FGF21的N-末端(HisProIlePro)含有可以潜在地是DPP-IV的底物的2个二肽,导致在N-末端截短4个氨基酸的FGF21片段。预料不到的是,野生型FGF21的这一片段被证实保留了生物学活性,因此,在N-末端截短至多4个氨基酸的本发明的蛋白质是本发明的一个实施方案。
本发明还涵盖了编码上述变体的多核苷酸,可以是RNA的形式或DNA的形式,所述DNA包括cDNA、基因组DNA和合成DNA。DNA可以是双链的或单链的。编码本发明的蛋白质的编码序列可以作为遗传密码冗余性或简并性的结果而改变。
编码本发明的融合蛋白的多核苷酸可包括下列:仅变体的编码序列、变体的编码序列和额外的编码序列,如功能性多肽,或前导序列或分泌序列或原蛋白质序列;变体的编码序列和非编码序列,如内含子或变体的编码序列的5’和/或3’非编码序列。因此,术语“编码变体的多核苷酸”涵盖了这样的多核苷酸,其不仅可包括变体的编码序列,还包括包含额外的编码和/或非编码序列的多核苷酸。
本发明还涉及所述编码含有提示的取代的肽的片段、类似物和衍生物的多核苷酸的变体。多核苷酸的变体可以是人FGF21序列的天然存在的等位变体、上述非天然存在的变体,或截短的变体。因此,本发明还包括编码上述变体的多核苷酸,以及这类多核苷酸的变体,所述变体编码公开的变体的片段、衍生物或类似物。这类核苷酸变体包括缺失变体、取代变体、截短的变体,和添加或插入变体,只要存在第一或第二实施方案的提示的氨基酸取代中的至少一种。
在将序列与表达控制序列有效连接后(即,放置在确保功能的位置上),可在宿主中表达本发明的多核苷酸。这些表达载体通常在宿主生物体中是可复制的,是作为附加体或作为宿主染色体DNA的整合部分。通常,表达载体将含有选择标志物,例如四环素、新霉素和二氢叶酸还原酶,来允许检测用想要的DNA序列转化的细胞。FGF21变体可以在恰当的启动子控制下,在哺乳动物细胞、昆虫、酵母、细菌或其他细胞中表达。也可以应用无细胞翻译系统生产这类蛋白质,使用源自本发明的DNA构建体的RNA。
大肠杆菌是克隆本发明的多核苷酸的特别有用的原核宿主。其他适合使用的微生物宿主包括枯草芽孢杆菌(Bacillus subtilus)、鼠伤寒沙门氏菌(Salmonellatyphimurium)、和沙雷氏菌属(Serratia)、假单胞菌属(Pseudomonas)、链球菌属(Streptococcus)和葡萄球菌属(Staphylococcus)的多个物种,但其他也可以用作选择对象。在这些原核宿主中,还可以制备通常含有与宿主细胞相容的表达控制序列(例如,复制起点)的表达载体。此外,可以存在多种普遍已知的启动子中的任一种,如乳糖启动子系统、色氨酸(Trp)启动子系统、β-内酰胺酶启动子系统或来自噬菌体λ或T7的启动子系统。启动子,任选地与操纵子序列,通常控制表达,并且具有核糖体结合位点序列等,用于起始和完成转录和翻译。
蛋白质表达领域的技术人员将认识到,甲硫氨酸或甲硫氨酸-精氨酸序列可以在成熟序列(SEQ ID NO:3)的N-末端导入用于在大肠杆菌中表达,并考虑落入本发明的范围内。因此,除非另外指出,否则在大肠杆菌中表达的本发明的蛋白质在N-末端具有导入的甲硫氨酸序列。
其他微生物,如酵母或真菌,也可用于表达。巴斯德毕赤酵母(Pichia pastoris)、酿酒酵母(Saccharomyces cerevisiae)、粟酒裂殖酵母(Schizosaccharomyces pombe)和安格斯毕赤酵母(Pichia angusta)是优选的酵母宿主的例子,其含有具有表达控制序列(如启动子),需要时包括3-磷酸甘油酸激酶或其他糖分解酶,复制起点、终止序列等的合适载体。黑曲霉(Aspergillus niger)、里氏木霉(Trichoderma reesei);和裂褶菌(Schizophyllum commune)是真菌宿主的例子,但也可以应用其他菌作为选择对象。
还可以使用哺乳动物组织细胞培养表达和生产本发明的多肽。真核细胞实际上是优选的,因为现有技术已经研发了多种能够分泌完整的变体的合适的宿主细胞系,包括CHO细胞系、多种COS细胞系、NSO细胞、叙利亚仓鼠卵巢细胞系、HeLa细胞或人胚肾细胞系(即,HEK293、HEK293EBNA)。
用于这些细胞的表达载体可包括表达控制序列,如复制起点、启动子、增强子和必要的加工信息位点,如核糖体结合位点、RNA剪切位点、多聚腺苷酸化位点,和转录终止子序列。优选的表达控制序列是源自SV40、腺病毒、牛乳头瘤病毒、巨细胞病毒、劳氏肉瘤病毒等的启动子。优选的多聚腺苷酸化位点包括源自SV40和牛生长激素的序列。
可以将含有目标多核苷酸序列(例如,本发明的融合蛋白和表达控制序列)的载体通过普遍已知的方法转移到宿主细胞中,所述方法取决于细胞宿主的类型。例如,氯化钙转染是通常用于真核细胞的,而磷酸钙处理或电穿孔则可用于其他细胞宿主。
可以使用多种蛋白质纯化的方法,这类方法是本领域已知的,描述在例如Deutscher,Methods in Enzymology 182:83-9(1990)和Scopes,Protein Purification:Principles and Practice,Springer-Verlag,NY(1982)。选择的纯化步骤将取决于例如用于本发明的融合蛋白的生产过程的性质。
本发明的蛋白质、多肽和/或肽,例如本发明的双活性融合蛋白,应该以与良好的医学实践一致的方式配制和给药,考虑患者的临床病况、递送蛋白质组合物的位点、施用方法、施用的计划,和实践人员已知的其他因素。因此,通过这类考虑确定用于本文目的的本发明的融合蛋白的“治疗有效量”。
可以通过实现一般预期目的:治疗1型和2型糖尿病、肥胖、代谢综合征或危重患者的任何手段,施用本发明的蛋白质的药物组合物。非限制性的可允许的施用手段包括例如,通过吸入或栓剂或例如通过灌洗阴道、直肠、尿道、口腔和舌下组织,口腔、鼻、局部、鼻内、腹膜内、不经肠道、静脉内、肌肉内、胸骨内、通过关节内注射,淋巴管内、间质、动脉内、皮下、滑膜内、经上皮和经皮向粘膜组织施用。在一些实施方案中,通过灌洗、口腔或动脉内施用药物组合物。其他合适的导入方法还可以包括可充电的或可生物降解的装置,和缓释或持续释放的聚合物装置。本发明的药物组合物还可以作为与其他已知代谢剂的组合疗法的一部分施用。
施用剂量取决于接受者的年龄、健康和体重、同步治疗的种类(如果有的话)、治疗的频率,和理想效应的性质。本发明范围内的组合物包括所有其中存在FGF21变体的组合物,所述FGF21变体的量有效实现了治疗1型或2型糖尿病、肥胖或代谢综合征的理想医学效果。虽然个体需求在每个患者中不同,确定所有组分的有效量的最佳范围属于普通医生的能力范围内。
可以根据已知方法配制本发明的蛋白质,以制备制药上有效的组合物。理想的制剂是可用高纯度的恰当稀释剂或水性溶液重建的稳定的冻干产物,任选地具有可药用的运载体、防腐剂、赋形剂或稳定剂(Remington’s Pharmaceutical Sciences第16版(1980))。可以组合本发明的蛋白质与可药用的缓冲剂,并且调节pH以提供可接受的稳定性和对于施用而言可接受的pH。
对于不经肠道的施用,在一个实施方案中,一般如下配制本发明的融合蛋白:在可注射形式(溶液、悬浮液或乳化液)的单位剂量中,以理想的纯度混合一种或多种所述蛋白质与可药用的运载体,即,在所应用的剂量和浓度下对接受者无毒且与制剂的其他成分相容的运载体。优选的,可以添加一种或多种可药用的抗微生物剂。苯酚、间甲酚和苯甲醇是优选的可药用的抗微生物剂。
任选的,可以添加一种或多种可药用的盐以调节离子强度或渗透压。可以添加一种或多种赋形剂以进一步调节制剂的等渗性。甘油、氯化钠和甘露醇是等渗性调节赋形剂的例子。
本领域技术人员可以容易地优化用于包含本发明的蛋白质的治疗组合物的制药上有效的剂量和施用方案,如由良好医学实践和个体患者的临床病况所确定。本发明蛋白质的典型剂量范围是成人从约0.01mg/天至约1000mg/天(或约0.05mg/周至约5000mg/周,每周施用1次)。优选的,剂量范围是从约0.1mg/天至约100mg/天(或约0.5mg/周至约500mg/周,每周施用1次),更优选从约1.0mg/天至约10mg/天(或约5mg/周至约50mg/周,每周施用1次)。最优选的,剂量是约1-5mg/天(或约5mg/周至约25mg/周,每周施用1次)。施用的FGF21变体的恰当剂量将导致降低的血糖水平,增加空腹的能量消耗和更有效的葡萄糖利用,因而可用于治疗1型或2型糖尿病、肥胖和代谢综合征。
此外,由于在使用营养支持的危重患者中常见高血糖和胰岛素抗性,一些ICU施用胰岛素,来治疗饲喂的危重患者的过高的高血糖。事实上,近期研究记载了使用外源性胰岛素维持血糖在不超过110mg/分升的水平降低了手术重症监护病房中的危重患者的发病率和死亡率,不论所述患者是否具有糖尿病史(Van den Berghe等人N Engl J Med.,345(19):1359,(2001))。因而,本发明的蛋白质是独特地适合帮助恢复代谢不稳定的危重患者中的代谢稳定性的。本发明的蛋白质(如含有FGF21变体的蛋白质)是独特的,在于其刺激葡萄糖摄取并增强胰岛素灵敏度,且不诱导高血糖。
在本发明的另一个方面,考虑使用本发明的蛋白质作为药物,用于治疗肥胖、1型和2型糖尿病、胰腺炎、血脂异常、非醇型脂肪肝病(NAFLD)、非醇型脂肪性肝炎(NASH)、胰岛素耐受、高胰岛素血症、葡萄糖不耐受、高血糖、代谢综合征、急性心肌梗塞、与胰岛素受体的严重失活突变相关的病况、和其他代谢病症。
位点特异性FGF21突变体
在一些实施方案中,本发明的融合蛋白包括额外的FGF21突变体或具有非天然氨基酸的FGF21类似物。
在一些实施方案中,本发明的融合蛋白包含具有野生型FGF21的一个或多个下列额外修饰的的FGF21激动剂:
(i)额外的二硫键、非天然氨基酸或修饰以促进二聚化,如在R154C处形成二硫键,或在另一个位点导入半胱氨酸,或通过融合的Fc结构域二聚化,或通过交联剂(如双功能PEG)形成二聚体;
(ii)FGF21的片段;
(iii)选择的具有FGF21活性(与β-klotho结合,结合和激活FGFR)的蛋白质;和
(iv)FGF21模拟抗体(多种模式,如Fab、unibody、svFc等)。
在一些实施方案中,本发明的融合蛋白包含一个或多个下列接头:简单的酰胺键、短肽(特别是Ser/Gly重复)、FGF21翻译序列的额外残基,或多至完整蛋白质的较大接头(如Fc结构域、结合HAS的螺旋束,HSA等)。还可以通过其他化学手段连接两个部分,如通过非天然氨基酸或标准化学接头(马来酰亚胺-Cys、NHS-Lys、“点击”等)。
本发明的其他实施方案包括但不限于下列用于延长半寿期的连接:结合HAS的脂类或小分子或微团与融合物的单体或二聚体形态连接。
在本发明的某些实施方案中,可以对本发明的蛋白质、多肽和/或肽进行其他连接,实现延长半寿期和其他改良的生物学特性。可包括连接PEG-胆固醇缀合物(包括微团和脂质体)与本发明的蛋白质、多肽和/或肽,和/或连接糖类(糖基化)与本发明的蛋白质、多肽和/或肽。在仍然其他的实施方案中,应用类似的技术向蛋白质、多肽和/或肽添加缀合物,例如,多唾液酸(PSA)、羟乙基淀粉(HES)、白蛋白结合配体,或碳水化合物盾。
HES化技术通过还原性烷基化作用,例如偶联分枝的羟乙基淀粉(HES)链(60kDa或100kDa,来自玉米淀粉的高分枝的支链淀粉片段)与蛋白质、多肽和/或肽。多唾液酸化作用以与PEG化相似的方式用多唾液酸(PSA)缀合目标蛋白质、多肽和/或肽。PSA聚合物是天然存在于体内的带负电的、非免疫原性的聚合物,并且可以10-50kD的分子量获得。
在本发明的仍然其他的实施方案中,可以对本发明的蛋白质、多肽和/或肽进行其他连接或修饰,以实现延长半寿期和其他改善的生物学特性。这些包括生成重组PEG(rPEG)基团,及其与本发明的蛋白质、多肽和/或肽的连接。如公司Amunix,Inc.研发的。rPEG技术是基于具有PEG-样特性的蛋白质序列,所述序列在遗传上与生物药剂融合,避免了额外的化学缀合步骤。rPEG是半寿期延长的艾塞那肽构建体,其含有疏水性氨基酸的长的非结构性尾部,并且能够增加蛋白质或肽的血清半寿期并减慢其吸收速率,因此显著降低了峰-谷比。rPEG具有增加的水动力学半径,并且显示了是其实际分子量约15倍的表观分子量,模拟了PEG化实现长的血清半寿期的方式。
截短的FGF21多肽
本发明的一个实施方案涉及成熟的FGF21多肽(SEQ ID NO:3)的截短形式。本发明的这一实施方案产生自鉴别截短的FGF21多肽的工作,所述截短的FGF21多肽能够提供与未截短形式的成熟FGF21多肽相似的,在一些情况下更优秀的活性。
如本文中使用的,术语“截短的FGF21多肽”指这样的FGF21多肽,其中已经从FGF21多肽的氨基末端(或N-末端)去除了氨基酸残基,已经从FGF21多肽的羧基末端(或C-末端)去除了氨基酸残基,或者已经从FGF21多肽的氨基末端和羧基末端去除了氨基酸残基。如本文所述制备本文公开的多种截短。
可以使用体外磷酸化-ERK测定法,测定N-末端截短的FGF21多肽和C-末端截短的FGF21多肽的活性。可用于检验截短的FGF21多肽的活性的体外测定法的具体细节可见于实施例中。
还可以在体内测定法中评估本发明的截短的FGF21多肽的活性,例如ob/ob小鼠。一般而言,为了评估截短的FGF21多肽的体内活性,可以将截短的FGF21多肽腹膜内施用给测试动物。在理想的孵育期之后(例如1小时或更久),可以提取血样,并可以测量血葡萄糖水平。
a.N-末端截短
在本发明的一些实施方案中,N-末端截短包含来自成熟FGF21多肽的N-末端的1、2、3、4、5、6、7或8个氨基酸残基。具有少于9个氨基酸残基的N-末端截短的截短的FGF21多肽保留了成熟FGF21多肽降低个体的血葡萄糖的能力。因此,在特定的实施方案中,本发明涵盖了具有N-末端截短1、2、3、4、5、6、7或8个氨基酸残基的截短形式的成熟FGF21多肽或FGF21蛋白变体。
b.C-末端截短
在本发明的一些实施方案中,C-末端截短包含来自成熟FGF21多肽的C-末端的1、2、3、4、5、6、7、8、9、10、11或12个氨基酸残基。在体外ELK-荧光素酶测定法(Yie J.等人,FEBS Letts 583:19-24(2009))中,具有少于13个氨基酸残基的C-末端截短的截短的FGF21多肽表现出的功效是野生型FGF21功效的至少50%,提示这些FGF21突变体保留了成熟FGF21多肽降低个体的血葡萄糖的能力。因此,在特定的实施方案中,本发明涵盖了具有C-末端截短1、2、3、4、5、6、7、8、9、10、11或12个氨基酸残基的截短形式的成熟FGF21多肽或FGF21蛋白变体。
c.N-末端和C-末端截短
在本发明的一些实施方案中,截短的FGF21多肽可具有N-末端和C-末端截短的组合。具有N-末端和C-末端截短的组合的截短的FGF21多肽共享具有单独的N-末端或C-末端截短的相对应的截短的FGF21多肽的活性。换言之,具有少于9个氨基酸残基的N-末端截短和少于13个氨基酸残基的C-末端截短的截短的FGF21多肽拥有与具有少于9个氨基酸残基的N-末端截短的截短的FGF21多肽或具有少于13个氨基酸残基的C-末端截短的截短的FGF21多肽相似的或更大的降血糖活性。因此,在特定的实施方案中,本发明涵盖了具有N-末端截短1、2、3、4、5、6、7或8个氨基酸残基和C-末端截短1、2、3、4、5、6、7、8、9、10、11或12个氨基酸残基的截短形式的成熟FGF21多肽或FGF21蛋白变体。
对于本发明的所有的FGF21变体,截短的FGF21多肽可任选地包含氨基末端的甲硫氨酸残基,其可通过直接突变导入,或者是细菌表达过程的结果。
可以如本文所述的实施例中所述,制备本发明的截短的FGF21多肽。熟悉标准分子生物学技术的本领域普通技术人员可以应用所述知识,结合本文公开的内容,制备和使用本发明的截短的FGF21多肽。可使用用于重组DNA、寡核苷酸合成、组织培养和转化(例如电穿孔、脂质体转染)的标准技术。参见例如Sambrook等人,Molecular Cloning:ALaboratory Manual,见上文,其出于任何目的通过引用整合到本文中。可以根据生产商的说明,如本领域常规实践的那样,实施酶促反应和纯化技术。除非提供了特殊的定义,否则本文所述的分析化学、合成有机化学、药物化学和制药化学的实验室方法和技术相关内容中使用的术语都是本领域普遍已知的和常规使用的。可以使用用于化学合成;化学分析;药剂制备、配方和递送;和患者治疗的标准技术。
本发明的截短的FGF21多肽还可以与另一种实体融合,所述实体可以赋予截短的FGF21多肽额外的特性。在本发明的一个实施方案中,截短的FGF21多肽可以与IgG恒定结构域或其片段(例如Fc区)、人血清白蛋白(HAS)、或白蛋白结合多肽融合。可以使用已知的分子生物学方法和/或本文提供的指导实现这类融合。本文中更详细的讨论了这类融合多肽的好处,以及制备这类融合多肽的方法。
FGF21融合蛋白
如本文中使用的,术语“FGF21融合多肽”或“FGF21融合蛋白”指在本文所述的任何FGF21蛋白质变体的N-末端或C-末端处融合一个或多个氨基酸残基(如异源蛋白质或肽)。
可以通过在例如本文定义的FGF21蛋白质变体的N-末端或C-末端处融合异源序列,制备FGF21融合蛋白。如本文所述,异源序列可以是氨基酸序列或含有非氨基酸的聚合物。异源序列可以直接与FGF21蛋白变体融合,或者通过接头或衔接子分子融合。接头或衔接子分子可以是一个或多个氨基酸残基(或-mer),例如1、2、3、4、5、6、7、8或9个残基(或-mer),优选从10至50个氨基酸残基(或-mer),例如10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45或50个残基(或-mer),和更优选从15至35个氨基酸残基(或-mer)。接头或衔接子分子还可以设计为具有DNA限制性内切酶或蛋白酶的切割位点,以允许分开融合的实体。
异源肽和多肽包括但不限于,允许检测和/或分离FGF21蛋白变体的表位;跨膜受体蛋白质或其部分,如胞外结构域或跨膜和胞内结构域;与跨膜受体蛋白结合的配体或其部分;具有催化活性的酶或其部分;促进寡聚化的多肽或肽,如亮氨酸拉链结构域;增加稳定性的多肽或肽,如免疫球蛋白恒定区;功能性或非功能性抗体,或其重链或轻链;和具有不同于本发明的FGF21蛋白变体的活性,如治疗活性的多肽。本发明还涵盖了与人血清白蛋白(HAS)融合的FGF21突变体。
a.Fc融合物
在本发明的一个实施方案中,将FGF21蛋白变体与人IgG的Fc区的一个或多个结构域融合。抗体包含2个功能上独立的部分,被称为“Fab”的可变结构域,其结合抗原,和被称为“Fc”的恒定结构域,其涉及效应子功能,如补体激活和吞噬细胞攻击。Fc具有长血清半寿期,而Fab是短寿命的(Capon等人,1989,Nature 337:525-31)。当与治疗性蛋白质连接在一起时,Fc结构域可以提供更长的半寿期或掺入以下功能,例如结合Fc受体、结合蛋白A、固定补体,和甚至可能的胎盘转运(Capon等人,1989)。
贯穿于本公开内容,Fc-FGF21指Fc序列与FGF21的N-末端融合的融合蛋白。类似的,贯穿于本公开内容,FGF21-Fc指Fc序列与FGF21的C-末端融合的融合蛋白。
本发明的优选的实施方案是包含如本文定义的FGF21变体的Fc-FGF21融合蛋白。特别优选的实施方案是包含如本文定义的修饰的Fc片段(例如FcLALA)和FGF21变体的Fc-FGF21融合蛋白。
可以通过例如使用蛋白A亲和柱纯化融合蛋白。已发现与Fc区融合的肽和蛋白质表现出比非融合的对应物实质上更长的体内半寿期。与Fc区的融合还允许融合多肽二聚化/多聚化。Fc区可以是天然存在的Fc区,或者可以经改变而改善某些品质,如治疗品质、循环时间、或降低的凝聚。
PCT公开号WO 00/024782中详细讨论了通过与抗体的“Fc”结构域融合的蛋白质治疗剂的有用修饰。该文件讨论了与“载体”,如聚乙二醇(PEG)、葡聚糖或Fc区的连接。
b.融合蛋白接头
当形成本发明的融合蛋白时,可以但不必需应用接头。当存在时,接头的化学结构可以不是关键的,因为其主要作为间隔子发挥作用。接头可以由通过肽键连接在一起的氨基酸组成。在本发明的一些实施方案中,接头由通过肽键连接的从1-20个氨基酸组成,其中氨基酸选自20种天然存在的氨基酸。在多个实施方案中,1-20个氨基酸选自氨基酸甘氨酸、丝氨酸、丙氨酸、脯氨酸、天冬酰胺、谷氨酰胺和赖氨酸。在一些实施方案中,接头由大多数立体结构上无阻碍的氨基酸组成,如甘氨酸和丙氨酸。在一些实施方案中,接头是聚甘氨酸、聚丙氨酸、甘氨酸和丙氨酸的组合(如聚(Gly-Ala))、或甘氨酸和丝氨酸的组合(如聚(Gly-Ser))。尽管已发现15个氨基酸残基的接头对于FGF21融合蛋白特别有效,本发明考虑任何长度或组成的接头。
本文所述的接头是示例性的,并且本发明也考虑长得多并且包括其他残基的接头。本发明还考虑非肽类接头。例如,可以使用烷基接头。这类烷基接头可以进一步被任何无立体结构阻碍的基团取代,所述基团包括但不限于低级烷基(例如C1-C6)、低级酰基、卤素(例如Cl、Br)、CN、NH2或苯基。示例性的非肽接头是聚乙二醇接头,其中接头具有100至5000kD,例如100至500kD的分子量。
化学修饰的融合蛋白
本领域技术人员可以参考本文所述的公开内容,制备本文所述的融合蛋白的化学修饰形式,包括例如本文所述的FGF21融合物的截短的和变体形式。改变这类化学修饰的融合蛋白,使得化学修饰的突变体在与突变体天然连接的分子的类型或位置上不同于未修饰的突变体。化学修饰的突变体可包括通过缺失一个或多个天然连接的化学基团而形成的分子。
在一个实施方案中,可以通过共价连接一个或多个聚合物,修饰本发明的蛋白质。例如,选择的聚合物通常是水溶性的,使得其连接的蛋白质在水性环境,如生理环境中不沉淀。包括在合适的聚合物的范围内的是聚合物的混合物。优选的,为了终产物制品的治疗用途,聚合物将是可药用的。与本发明的蛋白质缀合的不溶于水的聚合物也形成本发明的一个方面。
每种示例性聚合物可以是任何分子量,且可以是分枝的或不分枝的。每种聚合物通常具有在约2kDa至约100kDa之间的平均分子量(术语“约”表示,在水溶性聚合物的制品中,一些分子重于,而一些轻于所述分子量)。每种聚合物的平均分子量优选在约5kDa至约50kDa之间,更优选在约12kDa至约40kDa之间,最优选在约20kDa至约35kDa之间。
合适的水溶性聚合物或其混合物包括但不限于N-连接或O-连接的碳水化合物、糖、磷酸盐、聚乙二醇(PEG)(包括已经用于衍生蛋白质的PEG的形式,包括单-(C1-C10)、烷氧基,或芳氧基-聚乙二醇)、单甲氧基-聚乙二醇、葡聚糖(如低分子量葡聚糖,例如约6kD)、纤维素或基于其他碳水化合物的聚合物、聚-(N-乙烯吡咯烷酮)聚乙二醇、丙二醇同聚物、聚环氧丙烷/环氧乙烷共聚物、聚氧乙基化的(polyoxyethlated)多元醇(例如,甘油)和聚乙烯醇。本发明还涵盖了可用于制备共价连接的FGF21蛋白变体多聚体的双功能交联分子。本发明还涵盖了与多唾液酸共价连接的FGF21突变体。
多糖聚合物是可用于蛋白质修饰的另一类型的水溶性聚合物。因此,与多糖聚合物融合的本发明的融合蛋白形成了本发明的实施方案。葡聚糖是包含主要通过α1-6键连接的单个葡萄糖亚基的多糖聚合物。葡聚糖本身可以多种分子量获得,并可以从约1kD至约70kD的分子量方便的获得。葡聚糖是本身适用作为载体或与另一种载体(例如Fc)组合的水溶性聚合物。参见例如国际公开号WO 96/11953。已报道了与治疗性或诊断性免疫球蛋白缀合的葡聚糖的用途。参见例如欧洲专利公开号0 315 456,其通过引用整合到本文中。本发明还涵盖了约1kD至约20kD的葡聚糖的用途。
一般而言,可以在任何适合反应蛋白质与活化的多聚物分子的条件下实施化学修饰。用于制备化学修饰的多肽的方法一般包括步骤:(a)在使得FGF21蛋白变体变得与一个或多个聚合物分子连接的条件下,使多肽与活化的聚合物分子(如聚合物分子的反应性酯类或醛类衍生物)反应,和(b)获得反应产物。基于已知的参数和理想的结果,确定最佳反应条件。例如,聚合物分子与蛋白质的比例越大,连接的聚合物分子的百分比就越大。在本发明的一个实施方案中,化学修饰的FGF21突变体可以在氨基末端具有单个聚合物分子部分(参见例如美国专利号5,234,784)。
在本发明的另一个实施方案中,本发明的蛋白质可以与生物素化学偶联。然后,本发明的生物素/蛋白质允许与链霉亲和素结合,获得三价的链霉亲和素/生物素/本发明的蛋白质。本发明的蛋白质还可以与二硝基苯酚(DNP)或三硝基苯酚(TNP)共价偶联,并且用抗DNP或抗TNP-IgM沉淀得到的缀合物,以形成10价的十聚缀合物。
一般而言,可以通过施用本发明的化学修饰的FGF21突变体减轻或调节的病况包括本文所述的关于本发明的蛋白质的那些病况。然而,本文公开的化学修饰的FGF21突变体可具有额外的活性、增强的或降低的生物学活性或其他特征,如与未修饰的FGF21突变体相比增加的或减少的半寿期。
融合蛋白的治疗组合物及其施用
本发明还提供了包含一种或多种本文所述的本发明的融合蛋白的治疗组合物,所述融合蛋白与根据施用模式的适合性选择的制药上或生理学上可接受的制剂活性剂或可药用的运载体混合。鉴于例如鉴别表现出增强的特性的融合蛋白,来具体考虑组合物。
在一些实施方案中,治疗组合物以作为液体溶液或悬浮液的可注射剂制备;也可以制备成适合在注射前溶解或悬浮在液体载体中的固体形态。可药用的载体的定义中包括了脂质体。可药用的盐也可以存在于药物组合物中,例如矿物酸盐,如盐酸盐、氢溴酸盐、磷酸盐、硫酸盐等;有机酸的盐,如乙酸盐、丙酸盐、丙二酸盐、苯甲酸盐等。关于制药可接受的赋形剂的充分讨论可获得自Remington:The Science and Practice of Pharmacy(1995)Alfonso Gennaro,Lippincott,Williams,&Wilkins。
在应用的剂量和浓度,可接受的制剂材料优选对受体是无毒的。
药物组合物可含有制剂材料,用于修饰、维持或保持例如组合物的pH、渗透压、粘度、清澈度、颜色、等渗性、气味、无菌、稳定性、溶解或释放速率、吸收或渗透。合适的制剂材料包括但不限于氨基酸(如甘氨酸、谷氨酰胺、天冬酰胺、精氨酸或赖氨酸)、抗微生物剂、抗氧化剂(如抗坏血酸、亚硫酸钠或亚硫酸氢钠)、缓冲剂(如硼酸盐、碳酸氢盐、Tris-HCl、柠檬酸盐、磷酸盐或其他有机酸)、填充剂(如甘露醇或甘氨酸)、螯合剂(如乙二胺四乙酸(EDTA))、络合剂(如咖啡因、聚乙烯吡咯烷酮、β-环糊精或羟丙基-β-环糊精)、填料、单糖、二糖和其他碳水化合物(如葡萄糖、甘露糖或糊精)、蛋白质(如血清白蛋白、明胶或免疫球蛋白)、着色剂、芳香剂和稀释剂、乳化剂、亲水性聚合物(如聚乙烯吡咯烷酮)、低分子量多肽、成盐的抗衡离子(如钠)、防腐剂(如苯扎氯铵、苯甲酸、水杨酸、硫柳汞、苯乙醇、对羟基苯甲酸甲酯、对羟基苯甲酸丙酯、氯己定、山梨酸或过氧化氢)、溶剂(如甘油、丙二醇或聚乙二醇)、糖醇(如甘露糖醇或山梨糖醇)、悬浮剂、表面活性剂或湿润剂(如普朗尼克(pluronic);PEG;山梨糖酯;聚山梨醇酯类如聚山梨醇酯20或聚山梨醇酯80;triton;氨丁三醇;卵磷脂;胆固醇或tyloxapal)、稳定性增强剂(如蔗糖或山梨醇)、张力增强剂(如碱金属卤化物;优选氯化钠或氯化钾;或甘露醇山梨糖醇)、递送载体、稀释剂、赋形剂和/或药物佐剂(参见例如,Remington’s Pharmaceutical Sciences(第18版,A.R.Gennaro编著,MackPublishing Company 1990)及其随后版,出于任何目的通过引用整合到本文中)。
熟练的技术人员可根据例如预期的施用途径、递送模式和理想剂量,确定最佳的药物组合物(参见例如,Remington’s Pharmaceutical Sciences,见上文)。这类组合物可以影响本发明的融合蛋白的物理状态、稳定性、体内释放速率和体内清除速率。
药物组合物中的主要载体或运载体本质上可以是水性的或非水性的。例如,用于注射的合适载体或运载体可以是水、生理盐溶液或人工脑脊液,可能补充了不经肠道施用的其他组合物中常见的材料。中性的缓冲生理盐水或与血清白蛋白混合的生理盐水是另一示例性的载体。其他示例性的药物组合物包含约pH 7.0-8.5的Tris缓冲剂,或约pH 4.0-5.5的醋酸缓冲剂,其还可包括山梨糖醇或合适的组分。在本发明的一个实施方案中,可以通过混合处于冻干的饼或水性溶液形式的具有理想纯度的选择的组合物与任选的制剂活性剂(Remington’s Pharmaceutical Sciences,见上文),制备双功能药物组合物用于储藏。此外,可以使用恰当的赋形剂(如蔗糖),将双功能蛋白质产物配制为冻干产物。
可以选择含有本发明的融合蛋白的药物组合物用于不经肠道的递送。备选的,可以选择组合物用于吸入,或用于通过消化道,如口腔递送。这类可药用的组合物的制备是本领域的常规技术。
制剂组分以施用位点可接受的浓度存在。例如,使用缓冲剂维持组合物处于生理学pH或略低的pH,通常在从约5至约8的pH范围内。
当考虑不经肠道的施用时,用于本发明的治疗性组合物可以是不含致热源的、肠道外可接受,水性溶液的形式,在可药用的运载体中包含理想的双功能蛋白质。用于不经肠道注射的特别合适的载体是无菌蒸馏水,其中双功能蛋白质被配制为无菌的等渗溶液,被正确的保藏。而另一种制品可以涉及理想的分子和活性剂的制剂,所述活性剂例如可注射的微球、可生物蚀解的颗粒、多聚化合物(如聚乳酸或聚乙醇酸)、珠或脂质体,所述活性剂提供产物的受控或持续的释放,然后通过积存注射剂递送所述产物。还可以使用透明质酸,其具有促进在循环中持续期的效果。用于导入理想分子的其他合适手段包括可植入的药物递送装置。
在一个实施方案中,可以配制用于吸入的药物组合物。例如,可以将本发明的双功能蛋白质配制为用于吸入的干燥粉末。也可以用推进剂配制双功能蛋白质的吸入溶液,用于气雾剂递送。在仍然另一个实施方案中,溶液可以是雾化的。国际公开号WO 94/20069中进一步描述了肺部施用,其描述了肺部递送化学修饰的蛋白质。
还考虑某些可以口服施用的制剂。在本发明的一个实施方案中,可以用或不用在混合固体剂型(如片剂和胶囊)中常规使用的运载体,配制以该方式施用的本发明的融合蛋白。例如,当使生物利用度最大化和使前全身性降解最小化时,可以设计胶囊以在胃肠道中的点释放制剂的活性部分。可以包括额外的活性剂以促进吸收本发明的融合蛋白。还可以应用稀释剂、风味剂、低熔点蜡、蔬菜油、润滑剂、悬浮剂、片剂崩解剂和粘合剂。
另一种药物组合物可以涉及有效量的本发明的蛋白质与适用于生产片剂的无毒的赋形剂的混合物。通过在无菌水或另一种恰当的载体中溶解片剂,可以制备单位剂型的溶液。合适的赋形剂包括但不限于惰性稀释剂,如碳酸钙、碳酸钠或碳酸氢钠、乳糖或磷酸钙;或结合剂,如淀粉、明胶或阿拉伯树胶;或润滑剂,如硬脂酸镁、硬脂酸或滑石。
包含本发明的融合蛋白的额外的药物组合物对本领域技术人员是明显的,包括涉及处于持续或受控递送制剂的本发明的融合蛋白的制剂。用于配制多种其他持续或受控递送工具的技术也是本领域技术人员已知的,如脂质体运载体、可生物蚀解的颗粒、或多孔珠和积存注射剂(参见例如,国际公开号WO 93/15722,其描述了用于递送药物组合物的多孔聚合物微颗粒的受控释放,和Wischke&Schwendeman,2008,Int.J Pharm.364:298-327,和Freiberg&Zhu,2004,Int.J Pharm.282:1-18,其讨论了微球/微颗粒制品及用途)。
缓释制品的额外的例子包括作为成型物件形式的半透性聚合物基质,例如膜或微胶囊。缓释基质可包括聚酯、水凝胶、聚丙交酯(美国专利号3,773,919和欧洲专利号0058481)、L-谷氨酸和γ乙基-L-谷氨酸的共聚物(Sidman等人,1983,Biopolymers 22:547-56)、聚(2-羟乙基-甲基丙烯酸酯)(Langer等人,1981,J.Biomed.Mater.Res.15:167-277和Langer,1982,Chem.Tech.12:98-105)、乙烯-醋酸乙烯(Langer等人,见上文)或聚-D-3-羟基丁酸(欧洲专利号0133988)。缓释组合物还可包括脂质体,其可以通过本领域已知的若干种方法的任一种制备。参见例如,Epstein等人,1985,Proc.Natl.Acad.Sci.U.S.A.82:3688-92;和欧洲专利号0036676、0088046和0143949。
用于体内施用的本发明药物组合物通常必须是无菌的。这可以通过无菌过滤膜过滤来实现。当冻干组合物时,可以在冻干和重建之前或之后进行利用该方法的灭菌。用于不经肠道施用的组合物可以以冻干的形式或溶液储藏。此外,不经肠道的组合物一般放在具有无菌入口的容器中,例如具有可被皮下注射针头穿刺的塞子的静脉输液袋或输液瓶。
一旦配制了药物组合物,则可以作为溶液、悬浮液、凝胶、乳剂、固体或作为脱水的或冻干的粉末储藏在无菌瓶中。这类制剂可以以即用形式,或者以需要在施用前重建的形式(例如冻干的)储藏。
在特定的实施方案中,本发明涉及用于生产单剂量施用单元的试剂盒。每个试剂盒可含有具有理想蛋白质的第一容器和具有水性制剂的第二容器。本发明的范围内还包括了含有单室和多室的预填装的注射器(例如,液体注射器和lyosyringe)的试剂盒。
融合蛋白的剂量及其施用
待应用的本发明的药物组合物的有效量在治疗上取决于例如治疗内容和目标。本领域技术人员将理解,用于治疗的恰当的剂量水平将部分的根据递送的分子、融合蛋白变体所用于的适应症、施用途径、患者的大小(体重、体表面积或器官大小)和条件(年龄和健康状态)而改变。因此,医生可以滴定剂量,并修饰施用途径,以获得最佳的治疗效果。典型的剂量范围可从约0.1μg/kg至多至约100mg/kg或更高,取决于上述因素。在其他实施方案中,剂量范围可从0.1μg/kg多至约100mg/kg;或1μg/kg多至约100mg/kg。
给药频率将取决于使用的制剂中的双功能蛋白质的药代动力学参数。通常,医生将施用组合物直到达到实现理想效果的剂量。因此,组合物可以通过植入装置或导管随时间作为单次剂量、作为两次或多次剂量(可含有或不含相同量的理想分子),或作为连续灌注来施用。本领域普遍技术人员常规地对恰当剂量进行进一步精细化,这属于常规实施的任务的范围。可以通过使用恰当的剂量-应答数据,确定恰当的剂量。
药物组合物的施用途径与已知的方法一致,例如口服;通过静脉内、腹膜内、脑内(脑实质内)、脑室内、肌肉内、动脉内、门静脉内或病损内的途径注射;通过缓释系统(也可以注射的);或通过植入装置。需要时,可以通过团注射(bolus injection)或连续灌注,或通过植入装置,来施用组合物。
可选的或此外,可以通过植入其上已经吸附或囊封了理想分子的膜、海绵或其他恰当的材料,局部施用组合物。当使用植入装置时,装置可以植入到任何合适的组织或器官中,可以通过扩散、控制时间的快速浓注或连续施用,递送理想的分子。
融合蛋白的治疗性用途
本发明的蛋白质可用于治疗、诊断、减轻或预防多种疾病、病症或病况,包括但不限于代谢病症。在一个实施方案中,所治疗的代谢病症是糖尿病,例如2型糖尿病。在其他实施方案中,代谢病症是肥胖。其他实施方案包括代谢病况或病症,如1型糖尿病、胰腺炎、血脂异常、非醇型脂肪肝病(NAFLD)、非醇型脂肪性肝炎(NASH)、胰岛素耐受、高胰岛素血症、葡萄糖不耐受、高血糖、代谢综合征、高血压、心血管病、急性心肌梗塞、动脉粥样硬化、外周动脉病、中风、心脏衰竭、冠心病、肾病、糖尿病并发症、神经病、与胰岛素受体的严重失活突变相关的病症、胃轻瘫和其他的代谢病症。
在应用中,可以通过向有需要的患者施用治疗有效剂量的本文所述的FGF21蛋白变体,治疗病症或病况如1型或2型糖尿病或肥胖。可以如本文所述实施施用,如通过IV注射、腹膜内注射、肌肉内注射或以片剂形式或液体制剂口服。在大部分情况下,理想的剂量可以由医生确定,如本文所述,并可以代表FGF21突变体多肽的治疗有效剂量。对本领域技术人员显而易见的是,FGF21突变体多肽的治疗有效剂量将尤其取决于施用计划、施用的抗原的单位剂量、核酸分子或多肽是否与其他治疗剂组合施用、接受者的免疫状态和健康。如本文使用的,术语“治疗有效剂量”意指研究人员、医学博士或其他医生发现在组织系统、动物或人中触发生物学或医学应答的FGF21突变体多肽的量,包括所治疗的疾病或病症的症状的减轻。
现已经详细描述了本发明,参考下列实施例将更清楚地理解本发明,所述实施例仅出于示例的目的包含在本文中,并非意在限制本发明。
除非另外指出,否则本发明的实践将应用化学、生物化学、分子生物学、免疫学和药理学的本领域技术内的常规方法。文献中充分解释了这类技术。参见例如Remington’sPharmaceutical Sciences,第18版(Easton,Pennsylvania:Mack Publishing Company,1990);Methods In Enzymology(S.Colowick和N.Kaplan编著,Academic Press,Inc.);和Handbook of Experimental Immunology,I-IV卷(D.M.Weir和C.C.Blackwell编著,1986,Blackwell Scientific Publications);和Sambrook等人,Molecular Cloning:ALaboratory Manual(第2版,1989)。
实施例
实施例1:制备FGF21变体蛋白
FGF21V76的表达构建体:将FGF21变体克隆到Achmuller等(2007)(NatureMethods 4:1037-1043)所述的修饰的大肠杆菌表达载体pET30a中,生成与六组氨酸标签符合读框的融合物,之后是在FGF21的N-末端处的Npro-EDDIE标签(aa 33-209)。
FGF21V76的表达和纯化:将pET30a-His-Npro-EDDIE-FGF21表达质粒转化到大肠杆菌BL21Star(DE3)感受态细胞(Invitrogen)中。在含有50μg/mL卡那霉素的50mL TerrificBroth(TB)中37℃生长新鲜转化的细胞的单克隆过夜。将预培养物转移到1L含卡那霉素的TB培养基中,并在带有挡板的烧瓶中37℃和250rpm振荡下培养。培养6小时后,通过添加终浓度为1mM的IPTG诱导FGF21的表达,并在37℃生长培养物过夜。然后收获细胞,并重悬在50mL冰冷的裂解缓冲液(50mM Tris-HCl,pH 8,150mM NaCl,1mM EDTA)中,再使用microfluidizerTM裂解。
通过在30,000x g 4℃离心1小时,沉淀内涵体(IB)。用50mM Tris-HCl,pH 8,150mM NaCl洗涤IB,并然后溶解在30mL溶解缓冲液(10mM Tris-HCl,pH8,100mM NaH2PO4,6MGnHCl)中。通过在30,000x g 25℃离心1小时,使溶解的IB澄清。将IB溶液装载到用溶解缓冲液平衡的5mL Ni-NTA高性能树脂柱(GE Healthcare)上。通过将pH减少至4.5,洗脱与树脂结合的蛋白质。通过调节pH和添加浓度为20mM的二硫苏糖醇(DTT),使洗脱液条件化。将条件化的洗脱液缓慢稀释为1L重折叠缓冲液(50mM Tris-HCl,pH 8,0.5M精氨酸,20mMDTT)中,随后在4℃孵育2天。对稀释的样品进行浓缩并使用超滤方法缓冲液交换为20mMTris-HCl,pH9。将浓缩的样品装载到用20mMTris-HCl(pH9)平衡的10mL Q sepharose快速流动树脂柱(GE Healthcare)上。
在用平衡缓冲液洗涤树脂后,用20mM Tris-HCl,pH9,500mM NaCl洗脱与树脂结合的蛋白质。为了从重折叠的FGF21蛋白中去除切下来的His-Npro融合片段和任何未切割的融合蛋白,将洗脱液装载到用20mM Tris,pH8.0,50mM咪唑平衡的5mL Ni-NTA高性能树脂柱(GE Healthcare)上,并收集含FGF21的流通级分。为了降低内毒素水平,用以10mM Tris,pH8,50mM咪唑,500mM NaCl,1mM CaCl2平衡的EndoTrap HD树脂(Hyglos)处理FGF21级分。用PBS透析低内毒素样品,然后用0.22μm滤器除菌。将纯化的FGF21蛋白在液氮中速冻,并储藏在-80℃。使用9362M-1cm-1作为FGF21的摩尔消光系数,通过280nm的吸光值,确定蛋白质浓度。通过HPLC、SDS-PAGE和液相色谱-质谱,确定蛋白质纯度和完整性。
FGF21变体的半胱氨酸PEG化:FGF21变体V76(R154C)具有通过改造的半胱氨酸二聚化的倾向;因此,在PEG化前,在冰上用5mM巯基乙醇胺温和地还原蛋白质溶液(通常是在Tris缓冲液中5mg/mL)30分钟,并立即在20mM Tris-HCl,pH7中脱盐。然后,用1.5当量的40kDa分枝的马来酰亚胺-PEG试剂(NOF,货号#GL2-400MA,来自Sunbright系列)在冰上将新还原的蛋白质(通常为3mg/mL)立即PEG化3小时。最后,通过阴离子交换层析(MonoQ)纯化PEG化的蛋白质,整体产量为约25%。
Fc-FGF21融合变体的表达构建体:将编码氨基酸33-209的人FGF21变体的cDNA克隆到哺乳动物表达载体中与包括指导蛋白质分泌的前导肽(免疫球蛋白κ链)的N-末端序列读框符合的巨细胞病毒(CMV)启动子的下游,后接Fc结构域和短接头。
Fc-FGF21变体的表达和纯化:在HEK293细胞(美国典型培养物收藏中心)中表达Fc-FGF21变体蛋白。在Freestyle 293表达培养基(Invitrogen,货号#12338-018)中37℃,8%CO2中以悬浮培养生长细胞直到转染当天。在吊桶式转头中以1000xg离心细胞7min,并用自动化细胞计数器计数。在900mL的Freestyle 293培养基中稀释细胞至终浓度为1.4x106细胞/mL,并放入3L无挡板的烧瓶(Corning,货号#431252)中。用聚乙烯亚胺(PEI)和质粒的混合物如下转染细胞。将3mL无菌的线性M.W.25,000PEI(Alfa Aesar,货号#43896)的1mg/mL储液加入到50mL Freestyle 293培养基中,温和混合,并在25℃孵育5分钟。与此同时,向50mL Freestyle 293培养基中加入1mg无内毒素的质粒,并用0.22μm滤器无菌过滤。然后,将PEI混合物加入到无菌过滤的DNA中,温和混合,并允许在25℃孵育10分钟。然后,将PEI-质粒混合物加入到含有稀释的HEK293细胞的3L烧瓶中,并置于125RPM,37℃,8%CO2的振荡温箱中。
在转染后第6天,以2000xg离心细胞10min,收获上清液。通过0.8/0.2uM滤器(PallCorporation,货号#4628)过滤,进一步澄清上清液。
通过直接向澄清的上清液中添加1mL重组蛋白A Sepharose Fast Flow(GE,货号#17-5138-03)/20mg待纯化的预期的蛋白质,并在温和转动下4℃孵育1小时,进行FGF21蛋白的批量纯化。然后,将上清液混合物倒在一次性的Poly-Prep层析柱(Bio-Rad,货号#731-1550)上,并弃去流通液。用5倍柱体积的DPBS,pH 7.4(Invitrogen,货号#14190-144)洗涤剩下的珠子。通过添加20倍柱体积的50mM柠檬酸钠缓冲液pH3.0,从蛋白A珠子上洗脱蛋白质。通过添加20%Tris-HCl缓冲液,pH9.0中和洗脱缓冲液。通过在High Load 26/600Superdex 200pg柱(GE,货号#28-9893-36)上运行蛋白A批量纯化的材料,实施尺寸排阻层析作为第二精制步骤。用A280定量纯化的蛋白质产物。运行SDS-Page,验证纯度和分子量。通过使用Endosafe PTS系统(Charles River Labs)定量内毒素水平。
实施例2:测量FGF21依赖性2-脱氧葡萄糖(2-DOG)摄取
已经显示在存在和不存在胰岛素的条件下,FGF2刺激小鼠3T3-L1脂肪细胞的葡萄糖摄入,并以剂量依赖性的方式减少ob/ob和db/db小鼠和8周龄ZDF大鼠的餐后和空腹血糖、甘油三酯和胰高血糖素水平,因此,提供了使用FGF21作为用于治疗糖尿病和肥胖的疗法的基础(参见例如,专利公开WO03/011213,和Kharitonenkov等人,(2005)Jour.ofClinical Invest.115:1627-1635)。还观察到FGF21刺激3T3-L1脂肪细胞中的FGFR-1和FGFR-2的酪氨酸磷酸化。
3T3-L1成纤维细胞购自ATCC(货号#CL173)。在150cm培养皿中,生长细胞至汇合,并在补充了10%胎牛血清和1%青霉素-链霉素的高糖DMEM(Invitrogen,货号#11995065)中维持额外4天。然后,细胞在补充了4μg/mL胰岛素(Sigma,货号#I-5500)、115μg/mL IBMX(Sigma,货号#I5879)和0.0975μg/mL地塞米松(Sigma,货号#D1756)的上述培养基中分化3天,之后用完全DMEM替代分化培养基。在替换培养基的第二天,将一平板分化的3T3-L1脂肪细胞接种到4个96孔板中。
然后在完全培养基中,用FGF21-WT和FGF21变体蛋白处理脂肪细胞过夜(参见表2的变体列表;30pM至100nM是使用的典型浓度范围)。在每孔50μL KRH缓冲液(0.75%NaCl;0.038%KCl;0.0196%CaCl2;0.032%MgSO4;0.025M HEPES,pH 7.5;0.5%BSA;2mM丙酮酸钠)中,血清饥饿用FGF21样品处理过的脂肪细胞2小时。用于空白的孔添加1μL(终浓度5μg/ml)细胞松弛素B 15min。在5.1mM冷的2-DOG中1:20稀释[3H]-2-DOG(20.6mCi/mmoL,1mCi/mL),每孔加入1μL稀释的2-DOG,孵育细胞5min。用100μL/孔KRH缓冲液洗涤细胞3次。向细胞中加入40μL/孔1%SDS,振荡细胞至少10分钟。加入200μL/孔闪烁液,振荡平板过夜,在β显微读板器中读数。将从用细胞松弛素B处理过的整列/行获得的数值平均,并从所有其他的数值中减去。用GraphPad Prism软件分析数据,其结果概括在表2中。在诱导鼠3T3-L1脂肪细胞摄取2-脱氧葡萄糖中,Fc-FGF21融合变体V101、V103和V188比PEG化的FGF21变体V76优秀。
实施例3:细胞Western(ICW)测定法中的pERK
在DMEM高糖,10%FBS,1%PS和600ng/mL G418中培养用人β-klotho稳定转染的HEK293细胞,并按每孔30,000个细胞接种在多聚D赖氨酸包被的96孔板(BD bioscience,货号#356640)中过夜。细胞在DMEM高糖,0.5%BSA,和10mM HEPES中血清饥饿4小时。在饥饿培养基中,将WT FGF21和FGF21变体(参见表3的变体列表)稀释成多种浓度(100pM至300nM是使用的典型浓度范围)。用FGF21刺激细胞10分钟。在FGF21或FGF21变体蛋白刺激后,从孔中吸出培养基,用100μL冷的PBS洗涤细胞1次,然后用100μl 4%多聚甲醛室温固定15分钟,随后用100μL冰冷的甲醇孵育额外的10分钟。
固定后,用PBS中的0.3%Triton X-100洗涤细胞4次,每次5分钟。向透性化的细胞中加入150μL Odyssey封闭缓冲液,室温1.5小时。在Odyssey封闭缓冲液中,将磷酸-ERK(pERK)抗体稀释至浓度为0.17μg/mL(1:200稀释,或所示稀释度),并将总ERK(tERK)抗体稀释至浓度为2.2μg/mL(1:200稀释,或所示稀释度)。每孔加入50μL,留下一列仅用二抗处理,用于归一化背景。用湿纸巾和盖子盖住平板,防止蒸发,然后4℃孵育过夜。
之后,吸出一抗,并用PBS中的0.3%Tween 20洗涤细胞4次,每次5分钟。在洗涤过程中,在含有1:1000稀释的(或所示稀释度)山羊抗小鼠Alexa 680和1:1000稀释的(或所示稀释度)IRDye800山羊抗兔抗体的Odyssey封闭缓冲液中制备二抗反应混合物。一旦完成洗涤,向每个孔加入40μL反应混合物。用黑色盖子覆盖平板以保护二抗不受光照,并在摇床上室温孵育平板1小时。最后,再次用PBS中的0.3%Tween 20洗涤细胞4次,每次5分钟,然后在LI-COR Bioscience Odyssey Infrared Imaging System(Li-Cor Biosciences,Lincoln,NE)上的700nm(红)和800nm(绿)通道中扫描。Alexa 680将tERK染成具有远红外荧光(发射波长668nm),而IRDye800将pERK染成具有绿色荧光(发射波长800nm)。为了消除荧光背景,将从仅用二抗处理过的整列/行获得的数值平均并从平板中获得的所有其他的数值中减去。为了将每个样品中的pERK量归一化,用每个孔的pERK的值除以tERK的值。用GraphPadPrism软件分析数据,其结果概括在表2中。在该ERK磷酸化测定法中,Fc-FGF21融合变体V101、V103和V188比PEG化的FGF21变体V76优秀。
表2:细胞Western中的ERK和小鼠3T3-L1脂肪细胞葡萄糖摄取测定法结果的概括
实施例4:FGF21变体的体内测试
Ob/ob小鼠是2型糖尿病的小鼠模型。小鼠缺少功能性的瘦素并且特征是高血糖、胰岛素抗性、摄食过量、肝脂肪变性和肥胖。使用雄性ob/ob小鼠(10-13周龄)测量下列PEG化的FGF21变体V76和Fc-FGF21融合变体V101、V103和V188对血糖的效果。
皮下施用1mg/kg FGF21变体(V101、V103和V188)或PBS,或皮下施用5mg/kg V76,每周2次,12天(共计4次剂量)。在研究的第一天,测量尾部血糖和体重,并将小鼠分入不同的组(n=8/组),各组间具有匹配的平均血糖和体重。使用测糖仪(OneTouch)测量血糖。在第1天给药前,和第12天,最后一次给药24小时后测量血浆胰岛素。这些研究的结果概括在表3中。
这些研究的结果概括在表3和图1-3中。在上述研究中测量的每个终点和低5倍的剂量下,Fc-FGF21融合变体V101、V103和V188比PEG化的FGF21变体V76优秀。
表3:在ob/ob小鼠中的12天的研究中,FGF21变体导致的血浆葡萄糖、胰岛素、体重(BW)增加、肝TG/脂质相对载体的%改变
实施例5:小鼠中FGF21融合变体的药代动力学
为了确定Fc-FGF21融合变体V101、V103和V188的药代动力学谱,IV注射C57BL/6J小鼠1mg/kg测试物,并在多个时间点放血至第16天(384小时)。将来自下颌下或眶后丛的血样收集到EDTA包被的microtainer管中。每个时间点收集约50μL血液,产生~25μL血浆。
为了通过ELISA测量测试物的血浆浓度,用2μg/mL抗人Fc-γ山羊多克隆抗体(30μL/孔)室温(RT)包被384孔板过夜,然后用基于酪蛋白的稀释剂RT封闭2小时(100μL/孔)。向平板中加入稀释的样品、标准品和对照(30μL/孔),RT孵育2小时。在去除样品后,用基于磷酸盐的洗涤溶液洗涤孔3次(100μL/孔)。向平板加入检测抗体,HRP标记的形态的捕获抗体并RT孵育1小时(30μL/孔)。再用基于磷酸盐的洗涤溶液洗涤孔3次后(100μL/孔),加入化学发光底物(30μL/孔),并用恰当的读板器在5分钟内读取平板的化学发光。如图4A和4B所示,Fc-FGF21融合变体具有相对于现有技术中已知的Fc-FGF21融合物(图4A)和相对于PEG化的FGF21变体V76(图4B)大大延长的血浆半寿期。
通过Western印迹验证Fc-FGF21测试物的血清水平,用于与由ELISA测量的水平比较,确保在ELISA中检测到的是全长Fc-FGF21变体而非仅Fc。将2μL小鼠血清与2.5μL 4X上样缓冲液,1μL 10X变性剂和4μL dH2O组合,加热至95℃5分钟,并上样至4-12%梯度聚丙烯酰胺凝胶上,并在100伏特(恒定电压)电泳1小时。使用iblot系统(Invitrogen,货号#IB1001,7分钟运行时间),通过Western印迹将样品转移至硝酸纤维素滤纸上。用30mLRockland封闭溶液(货号#MB-070)封闭硝酸纤维素滤纸,并用1:2000稀释的山羊抗FGF21一抗(R&D systems,货号#BAF2539)和1:10000稀释的荧光标记的链霉亲和素作为二抗,按快速iblot系统的操作规程探测。在Licor Odyssey系统中,在700nm成像蛋白质水平,并与在同一凝胶上运行的2nM对照V101相比。如图4C所示,使用抗FGF21抗体在Western印迹中可以检测到全长Fc-FGF21变体V101、V103和V188,至来自药代动力学研究的小鼠血清的第15天。
实施例6:Fc-FGF21融合变体V101、V103和V188是极为热动力学稳定的
蛋白质可以在特定的温度范围解折叠。蛋白质解折叠的温度是描述蛋白质的热稳定性的内在参数。差异扫描量热法(DSC)被用于检测蛋白质的解折叠温度。该特征温度被描述为融解温度(Tm),其是蛋白质解折叠过程中的峰值温度。
在PBS中将最初的蛋白质样品稀释至~1mg/ml(0.5mg/ml至1.2mg/ml)的浓度,总体积为0.5ml。向DSC 96孔板中加入每孔等份的0.4ml稀释的蛋白质样品、标准、PBS和DI水。然后用封条覆盖平板。在MicroCal的96孔差异扫描量热仪中分析样品。扫描温度是从10-110摄氏度,速率为1摄氏度/分钟。
如图4D所示,Fc-FGF21变体V101、V103和V188的融解温度非常高。这与FGF21变体V76和野生型FGF21的较低融解温度(数据未显示)相反。将V101、V103和V188的改善的稳定性归因于特别添加的来自新的Q55C和G148C突变的第二个二硫键。已知该类型的热动力学稳定性保护蛋白质免受蛋白水解作用,并还可以转变成显著延长的体内稳定性和改善的药代动力学谱,如图4B和4C中的数据所示例。
Claims (5)
1.包含FGF21变体和Fc区的融合蛋白,其中所述融合蛋白的氨基酸序列选自SEQ IDNO:11和SEQ ID NO:12。
2.根据权利要求1所述的融合蛋白,其中融合蛋白的氨基酸序列是SEQ ID NO:11。
3.根据权利要求1所述的融合蛋白,其包含在Gln55Cys和Cys 103、Cys 121、Gly148Cys、Asn149Cys、Lys150Cys、Ser151Cys、Pro152Cys、His153Cys、Arg154Cys、Asp155Cys、Pro156Cys、Ala157Cys、Pro158Cys、Arg159Cys、Gly160Cys、Pro161Cys、Ala162Cys以及Arg163Cys中之一处的半胱氨酸之间改造的至少一个二硫键。
4.根据权利要求1所述的融合蛋白,其包含在Gly148Cys和Cys 103、Cys 121、Arg47Cys、Tyr48Cys、Leu49Cys、Tyr50Cys、Thr51Cys、Asp52Cys、Asp53Cys、Ala54Cys、Gln55Cys、Gln56Cys、Thr57Cys、Glu58Cys、Gly160Cys、Pro161Cys、Ala162Cys、Arg163Cys以及Phe164Cys中之一处的半胱氨酸之间改造的至少一个二硫键。
5.根据权利要求4所述的融合蛋白,其还以改造的二硫键Gln55Cys-Gly148Cys进一步增强。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710255835.5A CN107266579B (zh) | 2011-09-26 | 2012-09-26 | 用于治疗代谢疾病的融合蛋白 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161539280P | 2011-09-26 | 2011-09-26 | |
US61/539,280 | 2011-09-26 | ||
PCT/US2012/057384 WO2013049247A1 (en) | 2011-09-26 | 2012-09-26 | Fusion proteins for treating metabolic disorders |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710255835.5A Division CN107266579B (zh) | 2011-09-26 | 2012-09-26 | 用于治疗代谢疾病的融合蛋白 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103945871A CN103945871A (zh) | 2014-07-23 |
CN103945871B true CN103945871B (zh) | 2017-04-26 |
Family
ID=46970456
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710255835.5A Active CN107266579B (zh) | 2011-09-26 | 2012-09-26 | 用于治疗代谢疾病的融合蛋白 |
CN201280057789.3A Active CN103945871B (zh) | 2011-09-26 | 2012-09-26 | 用于治疗代谢疾病的融合蛋白 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710255835.5A Active CN107266579B (zh) | 2011-09-26 | 2012-09-26 | 用于治疗代谢疾病的融合蛋白 |
Country Status (42)
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602007006492D1 (de) | 2006-07-25 | 2010-06-24 | Lipoxen Technologies Ltd | Derivatisierung des granulozytenkoloniestimulierenden faktors |
KR20160121601A (ko) | 2007-03-30 | 2016-10-19 | 암브룩스, 인코포레이티드 | 변형된 fgf-21 폴리펩티드 및 그 용도 |
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
MX2013003681A (es) | 2010-10-01 | 2013-11-20 | Moderna Therapeutics Inc | Ácidos nucleicos manipulados y métodos de uso de los mismos. |
JP2014511687A (ja) | 2011-03-31 | 2014-05-19 | モデルナ セラピューティクス インコーポレイテッド | 工学操作された核酸の送達および製剤 |
PT2726511T (pt) | 2011-07-01 | 2019-10-14 | Ngm Biopharmaceuticals Inc | Composições, usos e métodos para o tratamento de distúrbios e doenças metabólicas |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
UY34347A (es) | 2011-09-26 | 2013-04-30 | Novartis Ag | Proteínas de función dual para tratar trastornos metabólicos |
JO3476B1 (ar) * | 2011-09-26 | 2020-07-05 | Novartis Ag | بروتينات مندمجة لعلاج الاضطرابات الايضية |
EP2763701B1 (en) | 2011-10-03 | 2018-12-19 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
CA3018046A1 (en) | 2011-12-16 | 2013-06-20 | Moderna Therapeutics, Inc. | Modified nucleoside, nucleotide, and nucleic acid compositions |
DE18200782T1 (de) | 2012-04-02 | 2021-10-21 | Modernatx, Inc. | Modifizierte polynukleotide zur herstellung von proteinen im zusammenhang mit erkrankungen beim menschen |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
JP6144355B2 (ja) | 2012-11-26 | 2017-06-07 | モデルナティエックス インコーポレイテッドModernaTX,Inc. | 化学修飾mRNA |
US9290557B2 (en) | 2012-11-28 | 2016-03-22 | Ngm Biopharmaceuticals, Inc. | Compositions comprising variants and fusions of FGF19 polypeptides |
EP3798228A1 (en) | 2012-11-28 | 2021-03-31 | NGM Biopharmaceuticals, Inc. | Compositions and methods for treatment of metabolic disorders and diseases |
US9273107B2 (en) | 2012-12-27 | 2016-03-01 | Ngm Biopharmaceuticals, Inc. | Uses and methods for modulating bile acid homeostasis and treatment of bile acid disorders and diseases |
EP4083221A1 (en) | 2012-12-27 | 2022-11-02 | NGM Biopharmaceuticals, Inc. | Chimeric fgf19 peptides for use in treating bile acid disorders |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
WO2015048744A2 (en) | 2013-09-30 | 2015-04-02 | Moderna Therapeutics, Inc. | Polynucleotides encoding immune modulating polypeptides |
BR112016007255A2 (pt) | 2013-10-03 | 2017-09-12 | Moderna Therapeutics Inc | polinucleotídeos que codificam receptor de lipoproteína de baixa densidade |
WO2015057908A1 (en) | 2013-10-18 | 2015-04-23 | Novartis Ag | Methods of treating diabetes and related disorders |
SG11201602870YA (en) | 2013-10-28 | 2016-05-30 | Ngm Biopharmaceuticals Inc | Cancer models and associated methods |
PT3097122T (pt) | 2014-01-24 | 2020-07-21 | Ngm Biopharmaceuticals Inc | Anticorpos de ligação de domínio 2 de beta klotho e métodos de utilização dos mesmos |
EP3125921B1 (en) * | 2014-03-11 | 2020-07-08 | Novartis AG | Fgf21 variants for use in treating hiv-haart induced partial lipodystrophy |
US10398758B2 (en) | 2014-05-28 | 2019-09-03 | Ngm Biopharmaceuticals, Inc. | Compositions comprising variants of FGF19 polypeptides and uses thereof for the treatment of hyperglycemic conditions |
EP3155005A4 (en) | 2014-06-16 | 2018-07-11 | NGM Biopharmaceuticals, Inc. | Methods and uses for modulating bile acid homeostasis and treatment of bile acid disorders and diseases |
UA123763C2 (uk) * | 2014-10-23 | 2021-06-02 | Енджіем Байофармасьютикалз, Інк. | Фармацевтична композиція для контролю або лікування захворювання або порушення, пов’язаного з fgf19 |
SMT202100388T1 (it) | 2014-10-24 | 2021-09-14 | Bristol Myers Squibb Co | Polipeptidi fgf-21 modificati e loro usi |
WO2016073855A1 (en) | 2014-11-07 | 2016-05-12 | Ngm Biopharmaceuticals, Inc. | Methods for treatment of bile acid-related disorders and prediction of clinical sensitivity to treatment of bile acid-related disorders |
KR20160088656A (ko) | 2015-01-16 | 2016-07-26 | 주식회사유한양행 | 지속형 fgf21 융합 단백질 및 이를 포함하는 약학적 조성물 |
US10800843B2 (en) | 2015-07-29 | 2020-10-13 | Ngm Biopharmaceuticals, Inc. | Beta klotho-binding proteins |
CA2994516A1 (en) | 2015-08-03 | 2017-02-09 | Novartis Ag | Methods of treating fgf21-associated disorders |
US10744185B2 (en) | 2015-11-09 | 2020-08-18 | Ngm Biopharmaceuticals, Inc. | Methods of using variants of FGF19 polypeptides for the treatment of pruritus |
TW201731867A (zh) * | 2015-12-02 | 2017-09-16 | 賽諾菲公司 | Fgf21變異體 |
CA3025020A1 (en) * | 2016-05-20 | 2017-11-23 | President And Fellows Of Harvard College | Gene therapy methods for age-related diseases and conditions |
US11318186B2 (en) | 2016-05-25 | 2022-05-03 | Board Of Regents, The University Of Texas System | Use of FGF21 in methods of increasing exocrine pancreatic secretion |
CN106317226B (zh) * | 2016-08-19 | 2017-09-05 | 安源医药科技(上海)有限公司 | 用于构建融合蛋白的连接肽 |
CN106279437B (zh) | 2016-08-19 | 2017-10-31 | 安源医药科技(上海)有限公司 | 高糖基化人凝血因子viii融合蛋白及其制备方法与用途 |
WO2018032638A1 (zh) | 2016-08-19 | 2018-02-22 | 安源医药科技(上海)有限公司 | 用于构建融合蛋白的连接肽 |
EP3503882A4 (en) | 2016-08-26 | 2020-07-29 | NGM Biopharmaceuticals, Inc. | METHOD FOR TREATING FIBROBLAST GROWTH FACTOR-19-MEDIATED CARCINOMAS AND TUMORS |
EP3558341A1 (en) | 2016-12-22 | 2019-10-30 | Sanofi | Fgf21 compound / glp-1r agonist combinations with optimized activity ratio |
CN108570109B (zh) * | 2017-03-14 | 2022-04-26 | 广东东阳光药业有限公司 | 包含免疫球蛋白Fc部分的双靶点融合蛋白 |
CN107050429B (zh) * | 2017-04-01 | 2020-12-15 | 杭州生物医药创新研究中心 | 人成纤维生长因子21在制备用于治疗脑卒中药物中的应用 |
AU2018261021B2 (en) * | 2017-05-05 | 2024-09-12 | Trefoil Therapeutics, Inc. | Recombinant modified fibroblast growth factors and therapeutic uses thereof |
CN109836504B (zh) * | 2017-11-24 | 2022-08-02 | 浙江道尔生物科技有限公司 | 一种治疗代谢疾病的多结构域活性蛋白 |
CN109929806B (zh) | 2017-12-19 | 2020-05-08 | 北京吉源生物科技有限公司 | 一种表达glp1和fgf21的干细胞及其用途 |
RS65720B1 (sr) * | 2017-12-22 | 2024-08-30 | Novartis Ag | Tretiranje metaboličkih poremećaja pomoću fgf21 varijanti |
WO2019154189A1 (en) | 2018-02-08 | 2019-08-15 | Sunshine Lake Pharma Co., Ltd. | Fgf21 variant, fusion protein and application thereof |
BR112020026512A2 (pt) | 2018-07-03 | 2021-04-06 | Bristol-Myers Squibb Company | Formulações de fgf-21 |
CN111195234B (zh) * | 2018-11-16 | 2022-08-26 | 鲁南制药集团股份有限公司 | 一种重组FGF21-Fc融合蛋白冻干粉制剂 |
EP3736574A1 (en) * | 2019-05-07 | 2020-11-11 | Atlas Antibodies AB | A formulation comprising an isotope labeled fusion polypeptide |
CN114853908B (zh) | 2019-05-16 | 2024-06-07 | 浙江道尔生物科技有限公司 | 一种治疗代谢疾病的融合蛋白 |
CN112386575B (zh) * | 2019-08-19 | 2023-03-21 | 鲁南制药集团股份有限公司 | 一种代谢调节融合蛋白的冻干制剂 |
EP4028413A1 (en) | 2019-09-10 | 2022-07-20 | Obsidian Therapeutics, Inc. | Ca2-il15 fusion proteins for tunable regulation |
WO2021127466A1 (en) | 2019-12-20 | 2021-06-24 | Novartis Ag | Combination treatment of liver diseases using integrin inhibitors |
JP6924291B2 (ja) | 2020-01-21 | 2021-08-25 | シャープ株式会社 | 端末装置、方法、および、集積回路 |
US11981718B2 (en) | 2020-05-27 | 2024-05-14 | Ampsource Biopharma Shanghai Inc. | Dual-function protein for lipid and blood glucose regulation |
WO2022101853A1 (en) | 2020-11-16 | 2022-05-19 | Novartis Ag | Method of determining liver fibrosis |
CN113265007B (zh) * | 2021-06-10 | 2022-02-15 | 江南大学 | 一种治疗代谢疾病的融合蛋白及其制备方法和应用 |
CN115286705B (zh) * | 2021-12-30 | 2024-05-10 | 长江大学 | 一种黄鳝成纤维细胞因子21重组蛋白及其制备方法和应用 |
WO2023245543A1 (en) * | 2022-06-23 | 2023-12-28 | Ampsource Biopharma Shanghai Inc. | Uses of fgf21 fusion proteins |
WO2024123812A1 (en) | 2022-12-05 | 2024-06-13 | Shattuck Labs, Inc. | Fusion proteins for the treatment of cardiometabolic diseases |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010129503A1 (en) * | 2009-05-05 | 2010-11-11 | Amgen Inc. | Fgf21 mutants and uses thereof |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
US4263428A (en) | 1978-03-24 | 1981-04-21 | The Regents Of The University Of California | Bis-anthracycline nucleic acid function inhibitors and improved method for administering the same |
IE52535B1 (en) | 1981-02-16 | 1987-12-09 | Ici Plc | Continuous release pharmaceutical compositions |
EP0088046B1 (de) | 1982-02-17 | 1987-12-09 | Ciba-Geigy Ag | Lipide in wässriger Phase |
HUT35524A (en) | 1983-08-02 | 1985-07-29 | Hoechst Ag | Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance |
EP0143949B1 (en) | 1983-11-01 | 1988-10-12 | TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION | Pharmaceutical composition containing urokinase |
DE3889853D1 (de) | 1987-11-05 | 1994-07-07 | Hybritech Inc | Polysaccharidmodifizierte Immunglobuline mit reduziertem immunogenem Potential oder verbesserter Pharmakokinetik. |
US6565841B1 (en) | 1991-03-15 | 2003-05-20 | Amgen, Inc. | Pulmonary administration of granulocyte colony stimulating factor |
US5470582A (en) | 1992-02-07 | 1995-11-28 | Syntex (U.S.A.) Inc. | Controlled delivery of pharmaceuticals from preformed porous polymeric microparticles |
US5234784A (en) | 1992-04-01 | 1993-08-10 | Eastman Kodak Company | Method of making a projection viewable transparency comprising an electrostatographic toner image |
US5824784A (en) | 1994-10-12 | 1998-10-20 | Amgen Inc. | N-terminally chemically modified protein compositions and methods |
US6096871A (en) | 1995-04-14 | 2000-08-01 | Genentech, Inc. | Polypeptides altered to contain an epitope from the Fc region of an IgG molecule for increased half-life |
WO1997034631A1 (en) | 1996-03-18 | 1997-09-25 | Board Of Regents, The University Of Texas System | Immunoglobin-like domains with increased half lives |
US6660843B1 (en) | 1998-10-23 | 2003-12-09 | Amgen Inc. | Modified peptides as therapeutic agents |
US7459540B1 (en) | 1999-09-07 | 2008-12-02 | Amgen Inc. | Fibroblast growth factor-like polypeptides |
US6716626B1 (en) | 1999-11-18 | 2004-04-06 | Chiron Corporation | Human FGF-21 nucleic acids |
EP2163626A1 (en) | 1999-11-18 | 2010-03-17 | Novartis Vaccines and Diagnostics, Inc. | Human FGF-21 gene and gene expression products |
ATE459369T1 (de) | 1999-12-23 | 2010-03-15 | Zymogenetics Inc | Verfahren zur behandlung von entzündungen |
WO2003011213A2 (en) | 2001-07-30 | 2003-02-13 | Eli Lilly And Company | Method for treating diabetes and obesity |
JP2007531707A (ja) | 2003-10-15 | 2007-11-08 | ピーディーエル バイオファーマ, インコーポレイテッド | IGの重鎖定常領域の位置250、314および/または428の変異誘発によるFc融合タンパク質血清半減期の改変 |
KR20060135648A (ko) * | 2003-12-10 | 2006-12-29 | 일라이 릴리 앤드 캄파니 | 섬유모세포 성장인자 21의 뮤테인 |
JP2008506635A (ja) * | 2004-05-13 | 2008-03-06 | イーライ リリー アンド カンパニー | Fgf−21融合タンパク質 |
EP1789442B1 (en) * | 2004-09-02 | 2009-09-30 | Eli Lilly And Company | Muteins of fibroblast growth factor 21 |
EP1846019A2 (en) | 2005-01-21 | 2007-10-24 | Eli Lilly And Company | Method for treating cardiovascular disease |
JOP20190083A1 (ar) * | 2008-06-04 | 2017-06-16 | Amgen Inc | بولي ببتيدات اندماجية طافرة لـfgf21 واستخداماتها |
KR101316159B1 (ko) | 2008-10-24 | 2013-10-15 | 아이알엠 엘엘씨 | 생합성적으로 생성된 피롤린-카르복시-리신, 및 피롤린-카르복시-리신 및 피롤리신 잔기의 화학적 유도체화를 통한 부위 특이적 단백질 변형 |
AU2010246038A1 (en) * | 2009-05-05 | 2011-12-01 | Amgen Inc. | FGF21 mutants and uses thereof |
CA2764835A1 (en) * | 2009-06-17 | 2010-12-23 | Amgen Inc. | Chimeric fgf19 polypeptides and uses thereof |
CA2785139A1 (en) | 2009-12-22 | 2011-06-30 | Novartis Ag | Tetravalent cd47-antibody constant region fusion protein for use in therapy |
DE102010038140B4 (de) * | 2010-10-13 | 2020-06-18 | Hettich-Heinze Gmbh & Co. Kg | Beschlag für eine Schiebetür |
US9023791B2 (en) | 2010-11-19 | 2015-05-05 | Novartis Ag | Fibroblast growth factor 21 mutations |
UY34347A (es) * | 2011-09-26 | 2013-04-30 | Novartis Ag | Proteínas de función dual para tratar trastornos metabólicos |
JO3476B1 (ar) * | 2011-09-26 | 2020-07-05 | Novartis Ag | بروتينات مندمجة لعلاج الاضطرابات الايضية |
EP3125921B1 (en) | 2014-03-11 | 2020-07-08 | Novartis AG | Fgf21 variants for use in treating hiv-haart induced partial lipodystrophy |
-
2012
- 2012-09-25 JO JOP/2012/0279A patent/JO3476B1/ar active
- 2012-09-25 US US13/626,194 patent/US9006400B2/en active Active
- 2012-09-25 UY UY34346A patent/UY34346A/es active IP Right Grant
- 2012-09-25 TW TW101135183A patent/TWI593708B/zh active
- 2012-09-26 BR BR112014007069-5A patent/BR112014007069B1/pt active IP Right Grant
- 2012-09-26 IN IN2043DEN2014 patent/IN2014DN02043A/en unknown
- 2012-09-26 CA CA2849464A patent/CA2849464C/en active Active
- 2012-09-26 EP EP17201957.2A patent/EP3321276B1/en active Active
- 2012-09-26 SG SG10201602339XA patent/SG10201602339XA/en unknown
- 2012-09-26 AR ARP120103553 patent/AR088044A1/es active IP Right Grant
- 2012-09-26 CN CN201710255835.5A patent/CN107266579B/zh active Active
- 2012-09-26 SI SI201231391T patent/SI2760475T1/sl unknown
- 2012-09-26 ES ES12768999.0T patent/ES2689762T3/es active Active
- 2012-09-26 PT PT12768999T patent/PT2760475T/pt unknown
- 2012-09-26 DK DK17201957.2T patent/DK3321276T3/da active
- 2012-09-26 WO PCT/US2012/057384 patent/WO2013049247A1/en active Application Filing
- 2012-09-26 JP JP2014532117A patent/JP6186361B2/ja active Active
- 2012-09-26 LT LTEP17201957.2T patent/LT3321276T/lt unknown
- 2012-09-26 HU HUE17201957A patent/HUE055584T2/hu unknown
- 2012-09-26 PE PE2014000418A patent/PE20141551A1/es active IP Right Grant
- 2012-09-26 AP AP2014007543A patent/AP2014007543A0/xx unknown
- 2012-09-26 SG SG11201400538QA patent/SG11201400538QA/en unknown
- 2012-09-26 PE PE2018001106A patent/PE20181159A1/es unknown
- 2012-09-26 PT PT17201957T patent/PT3321276T/pt unknown
- 2012-09-26 UA UAA201402419A patent/UA113856C2/uk unknown
- 2012-09-26 EA EA201490695A patent/EA039633B1/ru unknown
- 2012-09-26 HU HUE12768999A patent/HUE039857T2/hu unknown
- 2012-09-26 CU CUP2015000171A patent/CU24314B1/xx unknown
- 2012-09-26 SI SI201231952T patent/SI3321276T1/sl unknown
- 2012-09-26 PL PL12768999T patent/PL2760475T3/pl unknown
- 2012-09-26 EP EP12768999.0A patent/EP2760475B1/en active Active
- 2012-09-26 LT LTEP12768999.0T patent/LT2760475T/lt unknown
- 2012-09-26 RS RS20181146A patent/RS57868B1/sr unknown
- 2012-09-26 MX MX2014003677A patent/MX350273B/es active IP Right Grant
- 2012-09-26 MY MYPI2014700650A patent/MY166059A/en unknown
- 2012-09-26 RS RS20211120A patent/RS62341B1/sr unknown
- 2012-09-26 ES ES17201957T patent/ES2895080T3/es active Active
- 2012-09-26 DK DK12768999.0T patent/DK2760475T3/en active
- 2012-09-26 KR KR1020147010946A patent/KR102085605B1/ko active Active
- 2012-09-26 AU AU2012316052A patent/AU2012316052A1/en not_active Abandoned
- 2012-09-26 CN CN201280057789.3A patent/CN103945871B/zh active Active
- 2012-09-26 SM SM20210595T patent/SMT202100595T1/it unknown
- 2012-09-26 HR HRP20211575TT patent/HRP20211575T1/hr unknown
- 2012-09-26 PL PL17201957T patent/PL3321276T3/pl unknown
-
2014
- 2014-03-07 ZA ZA2014/01700A patent/ZA201401700B/en unknown
- 2014-03-12 TN TNP2014000109A patent/TN2014000109A1/en unknown
- 2014-03-13 IL IL231533A patent/IL231533B/en active IP Right Grant
- 2014-03-13 MA MA36824A patent/MA35437B1/fr unknown
- 2014-03-25 CL CL2014000736A patent/CL2014000736A1/es unknown
- 2014-03-26 CR CR20140140A patent/CR20140140A/es unknown
- 2014-03-26 CO CO14064516A patent/CO6920257A2/es unknown
- 2014-03-26 CU CUP2014000034A patent/CU24206B1/es active IP Right Grant
- 2014-03-26 GT GT201400055A patent/GT201400055A/es unknown
- 2014-09-30 HK HK18110595.8A patent/HK1251238A1/zh unknown
-
2015
- 2015-02-24 US US14/630,206 patent/US9266935B2/en active Active
-
2016
- 2016-01-04 US US14/987,338 patent/US10076554B2/en active Active
- 2016-09-02 CL CL2016002215A patent/CL2016002215A1/es unknown
-
2017
- 2017-07-28 JP JP2017146984A patent/JP6567613B2/ja active Active
-
2018
- 2018-08-30 US US16/117,960 patent/US11129874B2/en active Active
- 2018-09-28 HR HRP20181558TT patent/HRP20181558T1/hr unknown
- 2018-10-03 CY CY181101017T patent/CY1120928T1/el unknown
-
2019
- 2019-07-31 JP JP2019141242A patent/JP2020007314A/ja not_active Withdrawn
-
2021
- 2021-03-08 UY UY0001039119A patent/UY39119A/es not_active Application Discontinuation
- 2021-08-24 US US17/410,307 patent/US11944664B2/en active Active
- 2021-10-06 CY CY20211100868T patent/CY1124697T1/el unknown
- 2021-10-25 AR ARP210102949A patent/AR123908A2/es unknown
-
2022
- 2022-01-11 JP JP2022002030A patent/JP7339372B2/ja active Active
-
2024
- 2024-02-07 US US18/435,440 patent/US20240261372A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010129503A1 (en) * | 2009-05-05 | 2010-11-11 | Amgen Inc. | Fgf21 mutants and uses thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7339372B2 (ja) | 代謝障害を処置するための融合タンパク質 | |
CN104024273B (zh) | 用于治疗代谢疾病的双功能蛋白 | |
CN103328502B (zh) | 治疗fgf21相关的病症的方法 | |
AU2015202304C1 (en) | Fusion proteins for treating metabolic disorders | |
AU2016202834A1 (en) | Fusion proteins for treating metabolic disorders | |
NZ622998B2 (en) | Fusion proteins for treating metabolic disorders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |