CN103794561A - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor device Download PDFInfo
- Publication number
- CN103794561A CN103794561A CN201210435239.2A CN201210435239A CN103794561A CN 103794561 A CN103794561 A CN 103794561A CN 201210435239 A CN201210435239 A CN 201210435239A CN 103794561 A CN103794561 A CN 103794561A
- Authority
- CN
- China
- Prior art keywords
- layer
- grid
- area
- semiconductor device
- metal silicide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 61
- 239000002184 metal Substances 0.000 claims abstract description 48
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 47
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 47
- 230000008569 process Effects 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 238000005530 etching Methods 0.000 claims abstract description 25
- 230000003647 oxidation Effects 0.000 claims abstract description 14
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 14
- 238000001465 metallisation Methods 0.000 claims abstract description 10
- 238000000137 annealing Methods 0.000 claims abstract description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims description 14
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 9
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- 238000004544 sputter deposition Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- -1 ozone ion Chemical class 0.000 claims description 5
- 238000013459 approach Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 2
- 239000010409 thin film Substances 0.000 abstract description 16
- 239000010410 layer Substances 0.000 description 111
- 239000000463 material Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 12
- 125000006850 spacer group Chemical group 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/017—Manufacturing their source or drain regions, e.g. silicided source or drain regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
本发明提供一种半导体器件的制造方法,包括,提供半导体衬底,所述半导体衬底包括第一区域和第二区域,在所述第一区域上形成有第一栅极,在第二区域上形成第二栅极;进行金属化工艺,以在所述第一栅极、第二栅极及半导体衬底上形成金属硅化物层;进行薄膜氧化处理,在所述金属硅化物层上薄膜氧化层;在所述第二区域上形成拉应力层;在所述第一区域上形成压应力层;进行退火工艺。本发明通过在进行金属化工艺之后进行薄膜氧化处理,以在所述金属硅化物层上薄膜氧化层,从而避免后续在形成拉应力层和压应力层的过程中,因必要的刻蚀步骤损伤所述金属硅化物层,从而保护金属硅化物层,进而提高半导体器件的性能。
The present invention provides a method for manufacturing a semiconductor device, comprising: providing a semiconductor substrate, the semiconductor substrate includes a first region and a second region, a first gate is formed on the first region, and a first gate is formed on the second region forming a second gate; performing a metallization process to form a metal silicide layer on the first gate, the second gate and the semiconductor substrate; performing thin film oxidation treatment to form a thin film on the metal silicide layer an oxide layer; forming a tensile stress layer on the second region; forming a compressive stress layer on the first region; performing an annealing process. In the present invention, the thin film oxidation treatment is carried out after the metallization process to form a thin film oxide layer on the metal silicide layer, thereby avoiding damage due to the necessary etching steps in the subsequent process of forming the tensile stress layer and the compressive stress layer. The metal silicide layer protects the metal silicide layer, thereby improving the performance of the semiconductor device.
Description
技术领域technical field
本发明涉及一种集成电路制造方法,尤其涉及一种降低金属硅化物层的刻蚀损伤的半导体器件的制造方法。The invention relates to an integrated circuit manufacturing method, in particular to a semiconductor device manufacturing method for reducing etching damage of a metal silicide layer.
背景技术Background technique
随着半导体器件的集成度越来越高,半导体器件工作需要的电压和电流不断降低,晶体管开关的速度也随之加快,随之对半导体工艺各方面要求大幅提高。现有技术工艺已经将晶体管以及其他种类的半导体器件组成部分做到了几个分子和原子的厚度,组成半导体的材料已经达到了物理电气特性的极限。As the integration of semiconductor devices becomes higher and higher, the voltage and current required for the operation of semiconductor devices continue to decrease, and the switching speed of transistors is also accelerated, and the requirements for various aspects of semiconductor technology have been greatly increased. The prior art process has made transistors and other types of semiconductor device components as thick as several molecules and atoms, and the materials that make up semiconductors have reached the limit of physical and electrical characteristics.
业界提出了比二氧化硅具有更高的介电常数和更好的场效应特性的材料-高介电常数材料(High-K Material),用以更好的分隔栅极和晶体管其他部分,大幅减少漏电量。同时,为了与高介电常数材料兼容,采用金属材料代替原有多晶硅作为栅导电层材料,从而形成了新的栅极结构。金属材料的栅极结构在高温退火工艺过程中,其功函数(Work Function)会发生大幅变化、导致栅极耗尽和RC延迟等问题影响半导体器件性能。为解决上述金属材料的栅极结构的问题,形成了栅极最后工艺(Gate-Last Process),即先形成多晶硅材料的虚设栅极,进行源/漏注入及高温退火工艺后,再去除虚设栅极多晶硅层,并沉积金属材料,最终形成金属栅极。The industry has proposed a material with a higher dielectric constant and better field effect characteristics than silicon dioxide - High-K Material, which is used to better separate the gate and other parts of the transistor, greatly Reduce leakage. At the same time, in order to be compatible with high dielectric constant materials, metal materials are used to replace the original polysilicon as the material of the gate conductive layer, thereby forming a new gate structure. During the high-temperature annealing process of the gate structure of metal materials, its work function (Work Function) will change greatly, resulting in problems such as gate depletion and RC delay, which will affect the performance of semiconductor devices. In order to solve the problem of the gate structure of the above-mentioned metal materials, a gate-last process (Gate-Last Process) is formed, that is, a dummy gate of polysilicon material is formed first, and after source/drain implantation and high-temperature annealing process, the dummy gate is removed. Extremely polysilicon layer, and deposit metal material, and finally form the metal gate.
金属氧化物半导体(CMOS)器件包括核心器件层和互连层,在核心器件层中形成栅极、源极和漏极等结构,通过互连层中的金属通孔和金属互连线将栅极、源极和漏极等结构电性引出。随着器件尺寸的不断减小,金属互连线与栅极、源极和漏极的接触面积不断缩小,其接触处的寄生电阻对器件的影响随之增加。为了减小寄生电阻,硅化金属工艺(Salicide)应运而生,由于金属硅化物(Silicide)具有高熔点、稳定性及低电阻率的特点,因而能够提高整个半导体器件的驱动电流及操作速度,所以在集成电路工艺上的应用愈来愈普遍。Metal-oxide-semiconductor (CMOS) devices include a core device layer and an interconnection layer. Structures such as gates, sources, and drains are formed in the core device layer. Structures such as electrode, source and drain are electrically drawn out. As the size of the device continues to decrease, the contact area between the metal interconnection and the gate, source and drain continues to shrink, and the influence of the parasitic resistance at the contact on the device increases accordingly. In order to reduce the parasitic resistance, the metal silicide process (Salicide) came into being. Because the metal silicide (Silicide) has the characteristics of high melting point, stability and low resistivity, it can improve the driving current and operating speed of the entire semiconductor device, so The application in integrated circuit technology is more and more common.
此外,为了减少由于尺寸缩小造成的问题,可以通过应力技术来改善器件沟道区的应力,从而提高载流子的迁移率,提高器件的性能。现有技术中一种方法是通过在金属-氧化物-半导体场效应管(MOSFET)的沟道区引入双轴应变或者单轴应变,以增加沟道区载流子的迁移速率,提高MOSFET的器件响应速度,改善MOSFET器件的性能,称为应力记忆技术(SMT,Stress MemorizationTechnique)。具体的应力记忆技术是在半导体器件的上方形成固有应变材料层,即应力层,并进行高温退火工艺以使应力被记忆在半导体器件上,例如记忆在栅极多晶硅或扩散区或硅衬底中,通过应力改变在FET的栅极下沟道处的硅原子的间距,减小载流子通行所受到的阻碍,也就是相当于减小了电阻,因而半导体器件发热量和能耗都会降低,然后去除应变材料,使应力得以保留并改进电子或空穴的迁移率,因而改善半导体整体的性能。对于N型器件和P型器件不同的应力产生不同的效果,其中拉应力(Tensile Stress)可以增大N型器件栅极下沟道处的硅原子的间距,运行速度得到提升;压应力(Compressive Stress)可以减小P型器件的栅极下沟道处的硅原子的间距,使运行速度得到提升。因此对于NFET和PFET的上需要形成不同的应力层,以提高半导体器件的性能。In addition, in order to reduce the problems caused by size reduction, stress technology can be used to improve the stress of the channel region of the device, thereby increasing the mobility of carriers and improving the performance of the device. One method in the prior art is to introduce biaxial strain or uniaxial strain to the channel region of a metal-oxide-semiconductor field effect transistor (MOSFET) to increase the mobility of carriers in the channel region and improve the MOSFET's Device response speed, improve the performance of MOSFET devices, known as stress memory technology (SMT, Stress MemorizationTechnique). The specific stress memory technology is to form an inherently strained material layer, that is, a stress layer, above the semiconductor device, and perform a high-temperature annealing process so that the stress is memorized on the semiconductor device, such as in the gate polysilicon or diffusion region or in the silicon substrate. , by changing the spacing of silicon atoms in the channel under the gate of the FET through stress, reducing the obstruction of the passage of carriers, which is equivalent to reducing the resistance, so the heat generation and energy consumption of the semiconductor device will be reduced. The strained material is then removed, allowing the stress to be preserved and improving the mobility of electrons or holes, thereby improving the performance of the semiconductor as a whole. Different stresses have different effects on N-type devices and P-type devices, among which Tensile Stress can increase the spacing of silicon atoms in the channel under the gate of N-type devices, and the operating speed is improved; Compressive Stress (Compressive Stress) Stress) can reduce the spacing of silicon atoms in the channel under the gate of the P-type device, so that the operating speed can be improved. Therefore, different stress layers need to be formed on the NFET and the PFET to improve the performance of the semiconductor device.
然而,在形成不同的应力层时,需要利用沉积的方法覆盖一层应力层薄膜后,再采用刻蚀方法去除不保留的区域,而在必要的刻蚀过程中,由于刻蚀停止有一定延时以及其他工艺因素的影响,因此,刻蚀过程经常会损伤金属硅化物层,影响金属硅化物层电阻等各方面性能,进而影响半导体器件的整体性能。However, when forming different stress layers, it is necessary to use a deposition method to cover a layer of stress layer film, and then use an etching method to remove the unretained area. In the necessary etching process, there is a certain delay due to the etching stop. Therefore, the etching process often damages the metal silicide layer, affects various properties such as the resistance of the metal silicide layer, and then affects the overall performance of the semiconductor device.
发明内容Contents of the invention
本发明的目的是提供一种能够保护金属硅化物层不受刻蚀损伤的半导体器件的制造方法。The object of the present invention is to provide a manufacturing method of a semiconductor device capable of protecting a metal silicide layer from etching damage.
本发明提供一种半导体器件的制造方法,包括以下步骤:The invention provides a method for manufacturing a semiconductor device, comprising the following steps:
提供半导体衬底,所述半导体衬底包括第一区域和第二区域,在所述第一区域上形成有第一栅极,在所述第二区域上形成第二栅极;providing a semiconductor substrate, the semiconductor substrate comprising a first region and a second region, a first gate is formed on the first region, and a second gate is formed on the second region;
进行金属化工艺,以在所述第一栅极、第二栅极及半导体衬底上形成金属硅化物层;performing a metallization process to form a metal silicide layer on the first gate, the second gate and the semiconductor substrate;
进行薄膜氧化处理,以在所述金属硅化物层上薄膜氧化层;performing thin film oxidation treatment to form a thin film oxide layer on the metal silicide layer;
在所述第二区域上形成拉应力层;forming a tensile stress layer on the second region;
在所述第一区域上形成压应力层;forming a compressive stress layer on the first region;
进行退火工艺,以对所述第一区域和第二区域分别产生应力作用。An annealing process is performed to generate stress on the first region and the second region respectively.
进一步的,在进行薄膜氧化处理的步骤中,采用充有臭氧的去离子水冲洗所述金属硅化物层。Further, in the step of performing film oxidation treatment, the metal silicide layer is rinsed with deionized water filled with ozone.
进一步的,所述臭氧在去离子水中的浓度为200PPM~2000PPM,去离子水冲洗所述金属硅化物层的时间为5s~600s。Further, the concentration of the ozone in the deionized water is 200PPM-2000PPM, and the time for washing the metal silicide layer with the deionized water is 5s-600s.
进一步的,在进行薄膜氧化处理的步骤中,采用溅射法将所述臭氧离子溅射至所述金属硅化物层表面。Further, in the step of performing film oxidation treatment, the ozone ions are sputtered onto the surface of the metal silicide layer by sputtering.
进一步的,采用溅射法将所述臭氧离子溅射至所述金属硅化物层表面的过程中,环境温度为150℃~600℃,时间为5s~120s,射频功率为50W~1000W,臭氧通入量为1000sccm~20000sccm。Further, in the process of sputtering the ozone ions onto the surface of the metal silicide layer by sputtering, the ambient temperature is 150°C-600°C, the time is 5s-120s, the radio frequency power is 50W-1000W, and the ozone passes through The intake amount is 1000sccm~20000sccm.
进一步的,在所述第二区域上形成拉应力层的步骤包括:Further, the step of forming a tensile stress layer on the second region includes:
在所述半导体衬底上覆盖拉应力层,并在所述第二区域上的拉应力层上覆盖第一阻挡光刻胶;covering the tensile stress layer on the semiconductor substrate, and covering the first blocking photoresist on the tensile stress layer on the second region;
刻蚀去除所述第一区域上的拉应力层;removing the tensile stress layer on the first region by etching;
去除所述第一阻挡光刻胶。removing the first blocking photoresist.
进一步的,在所述第一区域上形成压应力层的步骤包括:Further, the step of forming a compressive stress layer on the first region includes:
在所述半导体衬底上覆盖压应力层,并在所述第一区域上的压应力层上覆盖第二阻挡光刻胶;Covering a compressive stress layer on the semiconductor substrate, and covering a second blocking photoresist on the compressive stress layer on the first region;
刻蚀去除所述第二区域上的压应力层;removing the compressive stress layer on the second region by etching;
去除所述第二阻挡光刻胶。removing the second blocking photoresist.
进一步的,所述第一栅极包括第一栅极导电层、第一栅极介质层和位于所述第一栅极导电层和第一栅极介质层侧壁的第一栅极侧墙,所述第二栅极包括第二栅极导电层、第二栅极介质层和位于所述第二栅极导电层和第二栅极介质层侧壁的第二栅极侧墙。Further, the first gate includes a first gate conductive layer, a first gate dielectric layer, and a first gate spacer located on sidewalls of the first gate conductive layer and the first gate dielectric layer, The second gate includes a second gate conductive layer, a second gate dielectric layer, and a second gate spacer located on sidewalls of the second gate conductive layer and the second gate dielectric layer.
进一步的,在进行金属化工艺的步骤中,在第一栅极导电层、第二栅极导电层及半导体衬底上形成金属硅化物层。Further, in the step of performing the metallization process, a metal silicide layer is formed on the first gate conductive layer, the second gate conductive layer and the semiconductor substrate.
进一步的,进行薄膜氧化处理步骤和在所述第一区域上形成拉应力层的步骤之间,还包括进行压力接近处理过程,以减薄所述第一栅极侧墙和第二栅极侧墙。Further, between the step of performing film oxidation treatment and the step of forming a tensile stress layer on the first region, it also includes performing a pressure approach treatment process to thin the first gate sidewall and the second gate sidewall wall.
进一步的,所述第一区域为P型区,所述第一栅极为P型栅极;所述第二区域为N型区,所述第二栅极为N型栅极。Further, the first region is a P-type region, the first gate is a P-type gate; the second region is an N-type region, and the second gate is an N-type gate.
综上所述,本发明通过在进行金属化工艺之后进行薄膜氧化处理,以在所述金属硅化物层上薄膜氧化层,从而避免后续在形成拉应力层和压应力层的过程中刻蚀步骤损伤所述金属硅化物层,从而保护金属硅化物层,进而提高半导体器件的性能。In summary, the present invention performs thin film oxidation treatment after the metallization process to form a thin film oxide layer on the metal silicide layer, thereby avoiding subsequent etching steps in the process of forming the tensile stress layer and the compressive stress layer The metal silicide layer is damaged, thereby protecting the metal silicide layer, thereby improving the performance of the semiconductor device.
附图说明Description of drawings
图1为本发明一实施例中半导体器件的制造方法的流程示意图。FIG. 1 is a schematic flowchart of a method for manufacturing a semiconductor device in an embodiment of the present invention.
图2~图9为本发明一实施例中半导体器件的制造过程的结构示意图。2 to 9 are structural schematic diagrams of a manufacturing process of a semiconductor device in an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。In order to make the content of the present invention clearer and easier to understand, the content of the present invention will be further described below in conjunction with the accompanying drawings. Of course, the present invention is not limited to this specific embodiment, and general replacements known to those skilled in the art are also covered within the protection scope of the present invention.
其次,本发明利用示意图进行了详细的表述,在详述本发明实例时,为了便于说明,示意图不依照一般比例局部放大,不应以此作为对本发明的限定。Secondly, the present invention is described in detail by means of schematic diagrams. When describing the examples of the present invention in detail, for the convenience of explanation, the schematic diagrams are not partially enlarged according to the general scale, which should not be used as a limitation of the present invention.
本发明提供一种半导体器件的制造方法,包括以下步骤:The invention provides a method for manufacturing a semiconductor device, comprising the following steps:
步骤S01:提供半导体衬底,所述半导体衬底包括第一区域和第二区域,在所述第一区域上形成有第一栅极,在所述第二区域上形成第二栅极;Step S01: providing a semiconductor substrate, the semiconductor substrate includes a first region and a second region, a first gate is formed on the first region, and a second gate is formed on the second region;
步骤S02:进行金属化工艺,以在所述第一栅极、第二栅极及半导体衬底上形成金属硅化物层;Step S02: performing a metallization process to form a metal silicide layer on the first gate, the second gate and the semiconductor substrate;
步骤S03:进行薄膜氧化处理,以在所述金属硅化物层上薄膜氧化层;Step S03: performing thin film oxidation treatment to form a thin film oxide layer on the metal silicide layer;
步骤S04:在所述第二区域上形成拉应力层;Step S04: forming a tensile stress layer on the second region;
步骤S05:在所述第一区域上形成压应力层;Step S05: forming a compressive stress layer on the first region;
步骤S06:进行退火工艺,以对所述第一区域和第二区域分别产生应力作用。Step S06: performing an annealing process to generate stress on the first region and the second region respectively.
图2~图9为本发明一实施例中半导体器件的制造过程的结构示意图,以下结合图2~图9详细说明本发明一实施例中半导体器件的制造方法。2 to 9 are structural schematic diagrams of a manufacturing process of a semiconductor device in an embodiment of the present invention. The manufacturing method of a semiconductor device in an embodiment of the present invention will be described in detail below with reference to FIGS. 2 to 9 .
如图2所示,在步骤S01中,提供半导体衬底100,所述半导体衬底100包括第一区域10和第二区域20,所述第一区域10和第二区域20通过沟槽103隔离,在所述第一区域10上形成有第一栅极101,在第二区域20上形成第二栅极102;所述第一栅极101包括第一栅极导电层101a、第一栅极介质层101c和第一栅极侧墙101b,所述第二栅极102包括第二栅极导电层102a、第二栅极介质层102c和第二栅极侧墙102b。在本实施例中,所述半导体衬底100的材质可以为单质硅、硅锗化合物或绝缘体上硅(SOI)等,其他半导体材料亦可作为半导体衬底100的材料。As shown in FIG. 2, in step S01, a
所述第一栅极101和第二栅极102的具体形成过程包括:在所述半导体衬底上覆盖栅极介质层薄膜(图中未标示)和栅极导电层薄膜,利用光刻和刻蚀工艺,在所述第一区域10上形成第一栅极介质层101c和第一栅极导电层101a,并在所述第二区域20上形成第二栅极介质层102c和第二栅极导电层102a。接着,在半导体衬底100上覆盖侧墙薄膜(图中未标示);所述侧墙薄膜的材质可以为氮化硅、氧化硅、氮氧化硅,碳氧化硅、氮化硅或无定形碳中的一种或其组合,在本实施例中,所述侧墙薄膜的材质为氮化硅,所述侧墙薄膜可以采用化学气相沉积(CVD)的方法形成,所述侧墙薄膜的厚度为100埃~200埃。接着,刻蚀所述侧墙薄膜,以在所述第一栅极介质层101c和第一栅极导电层101a的侧壁上形成第一侧墙101b,在所述第二栅极介质层102c和第二栅极导电层102a的侧壁上形成第一侧墙102b。The specific formation process of the
在步骤S02中,进行金属化工艺,以在所述第一栅极101、第二栅极102及半导体衬底100上形成金属硅化物层106;通常金属材料硅化物层106可以蒸镀(evaporation)或溅射(sputtering)的方式形成于于第一栅极101、第二栅极102及半导体衬底100上,再经由炉管或快速热退火处理,并在纯度极高的气体(氮气或氩气)中,便由金属与硅化界面反应而形成如图2所示的金属硅化物层106,金属硅化物层106能够很好地改善半导体器件的电连特性。In step S02, a metallization process is performed to form a
如图3所示,在步骤S03中,本发明的关键在于,进行薄膜氧化处理,以在所述金属硅化物层106上薄膜氧化层105;在进行薄膜氧化处理的步骤中,具体可以采用充有臭氧的去离子水冲洗所述金属硅化物层,其中所述臭氧在去离子水中的浓度为200PPM~2000PPM,去离子水冲洗所述金属硅化物层的时间为5s~600s;在另一实施例中,还可以采用溅射法将所述臭氧离子溅射至所述金属硅化物层表面,其中溅射过程中环境温度为150℃~600℃,时间为5s~120s,射频功率为50W~1000W,臭氧通入量为1000sccm~20000sccm。As shown in Figure 3, in step S03, the key of the present invention is to perform thin film oxidation treatment to form a thin
如图4所示,在步骤S03和步骤S04之间,还可以包括进行压力接近处理过程,以减薄所述第一栅极侧墙101b和第二栅极侧墙102b。该方法能够使后续形成的压应力层或拉应力层产生的应力能够更好地接近并作用于第一栅极101的第一栅极介质层101c、第二栅极102的第二栅极介质层102c和半导体衬底100上,从而更好地提高半导体器件的性能。As shown in FIG. 4 , between step S03 and step S04 , it may also include performing a pressure approach process to thin the
继续以图3所示的结构为例,结合图5和图6,在步骤S04中,在所述第二区域20上形成拉应力层107的步骤包括:如图5所示,在所述半导体衬底100上覆盖拉应力层107,并在所述第二区域20上的拉应力层107上覆盖第一阻挡光刻胶109,形成所述拉应力层107的反应气体可以为硅烷、氨气、氢气和氩气;其后,刻蚀去除所述第一区域10上的拉应力层107,其后去除第一阻挡光刻胶109,所述第一阻挡光刻胶109可以采用离子灰化法去除。在刻蚀过程中,所述薄膜氧化层105可以作为刻蚀阻挡层作用,及时将刻蚀过程停止于所述第一区域10上的金属硅化物层106,进而避免刻蚀损伤所述第一区域10上的金属硅化物层106。Continuing to take the structure shown in FIG. 3 as an example, in combination with FIG. 5 and FIG. 6, in step S04, the step of forming the
结合图7和图8,在步骤S05中,在所述第一区域10上形成压应力层111的步骤包括:如图7所示,在所述半导体衬底100上覆盖压应力层111,形成所述压应力层111的反应气体可以为硅烷、氨气、氢气和氩气;并在所述第一区域上10的压应力层111上覆盖第二阻挡光刻胶113,所述第二阻挡光刻胶113;然后,刻蚀去除所述第二区域20上的压应力层111;其后可以采用离子灰化法去除第二阻挡光刻胶113。同样,在刻蚀过程中,所述薄膜氧化层105可以作为刻蚀阻挡作用,及时将刻蚀过程停止于所述第二区域20上金属硅化物层106,进而避免刻蚀损伤所述第二区域20上金属硅化物层106。7 and 8, in step S05, the step of forming the
当然,在本发明中,步骤S04和步骤S05的先后顺序不被限制,可以先进行步骤S04后进行步骤S05,亦可以先进行步骤S05后进行步骤S04。Of course, in the present invention, the sequence of step S04 and step S05 is not limited, step S04 can be performed first and then step S05 can be performed, or step S05 can be performed first and then step S04 can be performed.
最后,在步骤S06中,进行退火工艺,以对所述第一区域10和第二区域20分别产生应力作用。在第一区域10上的压应力层111产生拉应力,在第二区域20的拉应力层107产生压应力。在本实施例中,所述第一区域10为P型区,所述第一栅极101为P型栅极,所述第二区域20为N型区,所述第二栅极102为N型栅极。因此实现了不同应力对不同类型的区域产生应力作用,进而相应起到提高半导体器件性能的作用。Finally, in step S06 , an annealing process is performed to generate stress on the
参考图9,其后的工艺步骤,可以为去除拉应力层107和压应力层111,在半导体衬底100上形成多层层间介质层和互连层等,完成全部半导体器件的制造工艺。其工艺步骤为本领域技术人员所熟知的技术手段,故不再赘述。Referring to FIG. 9 , the following process steps may be removing the
综上所述,本发明通过在进行金属化工艺之后进行薄膜氧化处理,以在所述金属硅化物层上薄膜氧化层,从而避免后续在形成拉应力层和压应力层的过程中,因必要的刻蚀步骤损伤所述金属硅化物层,从而保护金属硅化物层,进而提高半导体器件的性能。In summary, the present invention performs thin film oxidation treatment after the metallization process to form a thin film oxide layer on the metal silicide layer, thereby avoiding the subsequent process of forming the tensile stress layer and the compressive stress layer due to necessity. The etching step damages the metal silicide layer, thereby protecting the metal silicide layer, thereby improving the performance of the semiconductor device.
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视权利要求书所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and changes without departing from the spirit and scope of the present invention. modification, so the scope of protection of the present invention should be defined by the claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210435239.2A CN103794561A (en) | 2012-11-02 | 2012-11-02 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210435239.2A CN103794561A (en) | 2012-11-02 | 2012-11-02 | Manufacturing method of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103794561A true CN103794561A (en) | 2014-05-14 |
Family
ID=50670095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210435239.2A Pending CN103794561A (en) | 2012-11-02 | 2012-11-02 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103794561A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108447824A (en) * | 2017-02-16 | 2018-08-24 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor device and its manufacturing method |
CN117153855A (en) * | 2023-10-30 | 2023-12-01 | 合肥晶合集成电路股份有限公司 | Semiconductor structure of a back-illuminated image sensor and its manufacturing method |
CN118315344A (en) * | 2024-06-07 | 2024-07-09 | 杭州积海半导体有限公司 | Method for forming semiconductor device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101043037A (en) * | 2006-03-20 | 2007-09-26 | 株式会社瑞萨科技 | Semiconductor device and a method of manufacturing the same |
CN101150064A (en) * | 2006-09-21 | 2008-03-26 | 联华电子股份有限公司 | Method for removing spacer, metal oxide semiconductor transistor element and manufacturing method thereof |
US20080150041A1 (en) * | 2006-09-12 | 2008-06-26 | Pei-Yu Chou | Method of removing a spacer, method of manufacturing a metal-oxide-semiconductor transistor device, and metal-oxide-semiconductor transistor device |
CN101286478A (en) * | 2007-04-11 | 2008-10-15 | 联华电子股份有限公司 | CMOS transistor and method for manufacturing the same |
CN102194750A (en) * | 2010-03-11 | 2011-09-21 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing complementary metal oxide semiconductor device |
CN102376645A (en) * | 2010-08-19 | 2012-03-14 | 中芯国际集成电路制造(上海)有限公司 | Forming method of CMOS (Complementary Metal-Oxide-Semiconductor Transistor) device stress film |
-
2012
- 2012-11-02 CN CN201210435239.2A patent/CN103794561A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101043037A (en) * | 2006-03-20 | 2007-09-26 | 株式会社瑞萨科技 | Semiconductor device and a method of manufacturing the same |
US20080150041A1 (en) * | 2006-09-12 | 2008-06-26 | Pei-Yu Chou | Method of removing a spacer, method of manufacturing a metal-oxide-semiconductor transistor device, and metal-oxide-semiconductor transistor device |
CN101150064A (en) * | 2006-09-21 | 2008-03-26 | 联华电子股份有限公司 | Method for removing spacer, metal oxide semiconductor transistor element and manufacturing method thereof |
CN101286478A (en) * | 2007-04-11 | 2008-10-15 | 联华电子股份有限公司 | CMOS transistor and method for manufacturing the same |
CN102194750A (en) * | 2010-03-11 | 2011-09-21 | 中芯国际集成电路制造(上海)有限公司 | Method for manufacturing complementary metal oxide semiconductor device |
CN102376645A (en) * | 2010-08-19 | 2012-03-14 | 中芯国际集成电路制造(上海)有限公司 | Forming method of CMOS (Complementary Metal-Oxide-Semiconductor Transistor) device stress film |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108447824A (en) * | 2017-02-16 | 2018-08-24 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor device and its manufacturing method |
CN117153855A (en) * | 2023-10-30 | 2023-12-01 | 合肥晶合集成电路股份有限公司 | Semiconductor structure of a back-illuminated image sensor and its manufacturing method |
CN117153855B (en) * | 2023-10-30 | 2024-03-01 | 合肥晶合集成电路股份有限公司 | Semiconductor structure of back-illuminated image sensor and manufacturing method thereof |
CN118315344A (en) * | 2024-06-07 | 2024-07-09 | 杭州积海半导体有限公司 | Method for forming semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103311281B (en) | Semiconductor device and method for manufacturing the same | |
KR101027107B1 (en) | Metal gate MOSPFET by fully converted semiconductor metal alloy | |
US9601337B2 (en) | Manufacturing method of graphene modulated high-K oxide and metal gate MOS device | |
CN101661958B (en) | Semiconductor device and manufacturing method thereof | |
CN104347380B (en) | The method for forming the semiconductor structure comprising silication and non-silicidated circuit unit | |
US7612389B2 (en) | Embedded SiGe stressor with tensile strain for NMOS current enhancement | |
US7265425B2 (en) | Semiconductor device employing an extension spacer and a method of forming the same | |
US20120264261A1 (en) | Method for manufacturing an nmos with improved carrier mobility | |
CN103681337B (en) | Fin formula field effect transistor and forming method thereof | |
CN102110612B (en) | Semiconductor device and manufacturing method thereof | |
CN102623405A (en) | A method of forming a semiconductor structure | |
JP2008283182A (en) | PMOS transistor manufacturing method and CMOS transistor manufacturing method | |
CN102569394B (en) | Transistor and manufacture method thereof | |
CN101320711A (en) | Metal oxide semiconductor transistor and manufacturing method thereof | |
JP2024102121A (en) | HORIZONTAL GATE-ALL-AROUND (hGAA) NANO-WIRE AND NANO-SLAB TRANSISTORS | |
US20150270399A1 (en) | Semiconductor structure and method for manufacturing the same | |
CN103794561A (en) | Manufacturing method of semiconductor device | |
CN104078358A (en) | Method for producing MOS transistor | |
CN102683210B (en) | A kind of semiconductor structure and its manufacturing method | |
WO2013155760A1 (en) | Semiconductor structure and manufacturing method thereof | |
CN111613672A (en) | Semiconductor structure and method of forming the same | |
CN103094217B (en) | Transistor Manufacturing Method | |
US9984870B2 (en) | Combined reactive gas species for high-mobility channel passivation | |
CN107492496B (en) | Semiconductor structure and its manufacturing method | |
CN104392960A (en) | Method for improving electrical performance of PMOS (P-channel Metal Oxide Semiconductor) device in silicon germanium CMOS (Complementary Metal Oxide Semiconductor) process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140514 |
|
RJ01 | Rejection of invention patent application after publication |