CN103717827A - 井下工具以及使用方法 - Google Patents
井下工具以及使用方法 Download PDFInfo
- Publication number
- CN103717827A CN103717827A CN201280037934.1A CN201280037934A CN103717827A CN 103717827 A CN103717827 A CN 103717827A CN 201280037934 A CN201280037934 A CN 201280037934A CN 103717827 A CN103717827 A CN 103717827A
- Authority
- CN
- China
- Prior art keywords
- slide block
- downhole tool
- plug
- metal slide
- instrument
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/18—Connecting or disconnecting drill bit and drilling pipe
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
- E21B33/129—Packers; Plugs with mechanical slips for hooking into the casing
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/02—Couplings; joints
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/10—Slips; Spiders ; Catching devices
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/01—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for anchoring the tools or the like
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
- E21B23/06—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
- E21B33/1208—Packers; Plugs characterised by the construction of the sealing or packing means
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
- E21B33/124—Units with longitudinally-spaced plugs for isolating the intermediate space
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
- E21B33/128—Packers; Plugs with a member expanded radially by axial pressure
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
- E21B33/129—Packers; Plugs with mechanical slips for hooking into the casing
- E21B33/1291—Packers; Plugs with mechanical slips for hooking into the casing anchor set by wedge or cam in combination with frictional effect, using so-called drag-blocks
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
- E21B33/129—Packers; Plugs with mechanical slips for hooking into the casing
- E21B33/1291—Packers; Plugs with mechanical slips for hooking into the casing anchor set by wedge or cam in combination with frictional effect, using so-called drag-blocks
- E21B33/1292—Packers; Plugs with mechanical slips for hooking into the casing anchor set by wedge or cam in combination with frictional effect, using so-called drag-blocks with means for anchoring against downward and upward movement
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/12—Packers; Plugs
- E21B33/129—Packers; Plugs with mechanical slips for hooking into the casing
- E21B33/1293—Packers; Plugs with mechanical slips for hooking into the casing with means for anchoring against downward and upward movement
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/10—Sealing or packing boreholes or wells in the borehole
- E21B33/13—Methods or devices for cementing, for plugging holes, crevices or the like
- E21B33/134—Bridging plugs
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/08—Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/16—Control means therefor being outside the borehole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/04—Ball valves
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geochemistry & Mineralogy (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
- Moulding By Coating Moulds (AREA)
- Adornments (AREA)
- Toys (AREA)
- Connection Of Plates (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
本发明的实施例涉及用于井下工具的金属滑块,所述滑块可以包括滑块主体、包含紧咬元件的外表面,以及经配置用于接收芯棒的内表面。在一些方面,滑块主体可以包括形成在其中的至少一个孔,并且有浮力的材料可以设置在所述孔中。
Description
技术领域
本发明大体涉及在石油和天然气钻井孔中使用的工具。具体而言,本发明涉及可以在钻井孔中使用的并且可以用于钻井孔隔离的井下工具,以及涉及相同工具的系统和方法。在特定的实施例中,所述工具可以是由可钻孔材料制成的复合塞。
背景技术
石油和天然气井包括延伸到表面(例如,地球表面)以下一定深度的地层中的钻井孔,并且通常具有管状衬里,例如,铸件,以增加井的强度。多种具有商业价值的烃源是在“致密”储层中发现的,也就是说目标烃产物可能不易于提取。这些储层的地层(例如,页岩)通常具有较低的穿透性,并且在不使用伴随有压裂(fracing)操作的钻孔的情况下从这种地层中以商业量来生产烃(即,天然气、石油等)是不经济的。
压裂是在工业中常用的并且越来越受欢迎且得到了普遍的接受,其包括在各个目标区域下方或者之外的钻井孔中使用塞子组,随后将高压压裂流体泵入或者注入到所述区域中。压裂操作导致了地层的破裂或者“裂缝”,从而使得烃更加容易由操作员提取出来并且进行生产,并且可以按照意愿或者需要来重复进行直到所有的目标区域都破裂为止。
压裂塞用于隔离目标区域以进行压裂操作的目的。此类工具通常是由耐用的金属构建的,其中密封元件是可压缩材料,该材料也可以径向向外扩展以啮合管状物并且封闭钻井孔的一部分,从而使得操作员能够控制流体的通道或者流动。举例来说,通过在钻井孔中形成压力密封以及/或者通过管状物,压裂塞使得压力流体或固体对目标区域或者地层的隔离部分进行处理。
图1描绘了常规的堵塞系统100,其包括井下工具102的使用,所述工具用于对钻入地层110的钻井孔106的一部分进行堵塞。工具或者塞子102可以在适当的情况下借助于工作管柱105(例如,e-线路(e-line)、金属线路、连续管路(coiledtubing)等)以及/或者安装工具112而下降到钻井孔106中。工具102通常包括具有可压缩密封部件122的主体103,以抵靠着周围的管状物(例如,壳体108)的内表面107来密封工具102。工具102可以包括设置在一个或多个滑块109、111之间的密封部件122,所述滑块用于帮助将工具102保持在原位。
在操作中,将力(通常相对于钻井孔106是轴向的)施加到滑块109、111和主体103。随着安装顺序的推进,滑块109相对于主体103和滑块111移动,密封部件122得到驱动,且滑块109、111抵靠着对应的圆锥表面104得到驱动。此移动轴向地压缩以及/或者径向地扩展可压缩部件122以及滑块109、111,这使得这些组件从工具102被向外推动,以接触内壁107。通过这种方式,工具102提供了一种密封,预期这种密封能够防止液体从钻井孔的一部分113跨过或者穿过工具102转移到另一部分115(或者反之亦然等),或者转移到表面。工具102还可以包括内部通道(未图示),所述通道在使用者期望时允许部分113与部分115之间的流体连通。时常地,多个部分是借助于一个或多个额外的塞子(例如,102A)而隔离的。
通过适当的安装,塞子可以经受较高的或者极端的压力和温度条件,这意味着塞子必须能够承受这些条件而不会发生塞子或者由密封元件形成的密封的毁坏。高温通常定义为高于200°F的井下温度,且高压通常定义为高于7,500psi以及甚至高于15,000psi的井下压力。极端钻井孔条件还可以包括较高和较低pH环境。在这些条件下,常规的工具,包括具有可压缩密封元件的那些,可能由于降解而变得无效。举例来说,密封元件可能会融化、固化,或者失去弹性,导致丧失形成密封屏障的能力。
在生产操作开始之前,还必须移除塞子,使得生产管道的安装可以发生。这通常是通过钻穿安装塞子而发生的,但是在一些实例中,可以基本上完整地将塞子从钻井孔中移除。可回收塞的一个常见的问题是塞子顶部的碎屑的累积,这可能会造成难以或者无法啮合和移除塞子。此类碎屑累积还可能不利地影响塞子内的多个部分的相对移动。另外,通过现有的回收工具,抵靠着井壳体的振动或摩擦可能造成回收工具的意外的拉开插栓(导致工具进一步滑入到钻井孔中),或者塞子的重新锁定(由塞子锚固元件的启动造成)。类似于这些的问题通常使得有必要钻出原本打算回收的塞子。
然而,由于要求塞子能够承受极端的井下条件,所以它们是出于耐久性和坚韧性来构造的,这通常会使得钻穿过程变得困难。即使是可钻孔的塞子通常也是由铸铁等金属构造的,可以使用钻头在钻柱的端部钻出所述塞子。钢也可以在塞子的结构主体中使用,以为安装所述工具提供结构强度。在工具中使用的金属部分越多,那么穿孔操作需要的时间就越长。由于金属组件是难以钻穿的,所以此过程可能需要进出钻井孔的额外的往返以替换磨损的钻头。
钻井孔中的塞子的使用并不是没有其他问题的,因为这些工具会受到已知的故障模式。当塞子准备就位时,滑块具有在塞子达到其目的地之前预先安装的趋势,从而导致了对壳体的损害和操作延迟。举例来说,可能由于先前的压裂留下的残余物或碎屑(例如,沙子)而引起预先安装。此外,已知的是常规的塞子不仅提供了与壳体的较差的密封,而且还提供了塞子组件之间的较差的密封。举例来说,当密封元件在压缩下放置时,其表面并不总是与周围的组件(例如,锥体等)适当地密封。
井下工具通常是由从表面向下流动到所述工具的下坠球来启动的,由此流体的压力必须足够克服钻井孔流体的静压和浮力,以使得球能够到达工具。压裂流体还是高度加压的,从而不仅将流体运送到钻井孔中并且穿过钻井孔,而且还延伸到地层中以引起破裂。因此,井下工具必须能够承受这些额外的较高的压力。
在所属领域中需要能够以可行的且经济的方式隔离钻井孔的新颖的系统和方法。在所属领域中非常需要抵靠周围的管状物形成可靠且具有弹性的密封的井下堵塞工具。还需要基本上由更加容易且快速的进行钻孔的可钻孔材料制成的井下工具。非常期望这些井下工具能够快速且轻易地承受极端钻井孔条件,并且同时是较廉价、较小、较轻,并且可以在与钻孔和完成操作相关联的高压的存在下使用的。
发明内容
本发明的实施例涉及用于井下工具的复合部件,所述复合部件可以包括弹性部分和可变形部分。可变形部分可以具有至少一个形成于其中的凹槽。所述凹槽可以以螺旋图案形成。可变形部分可以包括多个形成于其中螺旋凹槽。
本发明的实施例涉及用于井下工具的金属滑块,所述滑块可以包括滑块主体、包含紧咬元件的外表面,以及经配置用于接收芯棒的内表面。在一些方面,滑块主体可以包括形成在其中的至少一个孔,并且有浮力的材料可以设置在所述孔中。
外表面可以是热处理的。所述主体可以包括多个孔,其中一个或多个孔具有设置在其中的有浮力的材料。紧咬元件可以包括锯齿。在一些方面,金属滑块可以是表面硬化的。外表面可以具有在大约40到大约60的范围内的洛氏硬度,以及/或者内表面可以具有在大约10到大约25的范围内的洛氏硬度。
内表面可以包括多个凹槽。有浮力的材料可以从由聚氨酯、轻质珠子、环氧树脂以及玻璃泡组成的组中选择出来。多个凹槽可以设置在实质上对称的配置中。金属滑块可以由铸铁制成。
本发明的其他实施例涉及用于井下工具的一体式金属滑块,所述滑块可以包括:圆形滑块主体,所述主体包含设置在其中的有浮力的材料;外表面,所述外表面包含紧咬元件;以及内表面,所述内表面经配置用于接收芯棒。在一些方面,外表面可以具有在大约40到大约60的范围内的洛氏硬度,以及/或者内表面可以具有在大约10到大约25的范围内的洛氏硬度。圆形滑块主体可以包括至少一个形成在其中的孔。外表面可以是热处理的。
所述圆形滑块主体可以包括多个孔,每个孔具有设置在其中的有浮力的材料。紧咬元件可以包括锯齿。金属滑块可以是表面硬化的。内表面可以包括多个凹槽。有浮力的材料可以从由聚氨酯、轻质珠子、环氧树脂以及玻璃泡组成的组中选择出来。在一些方面,多个凹槽可以设置在实质上对称的配置中。所述一体式金属滑块可以由铸铁制成。
本发明的其他实施例涉及用于分离钻井孔的部分的井下工具,所述井下工具可以包括具有至少一组螺纹的复合芯棒,以及围绕所述复合芯棒设置的金属滑块。金属滑块可以包括:圆形滑块主体,所述主体具有设置在其中的有浮力的材料;包含紧咬元件的外表面;以及经配置用于接收复合芯棒的内表面。井下工具在钻井孔中的安装可以包括或使得金属滑块的至少一部分与周围管状物紧咬啮合。也可以有围绕复合芯棒设置的密封元件,并且在安装之后,所述密封元件可以与周围管状物密封式啮合。
复合芯棒可以包括穿过其中的流动通道,其中至少一组螺纹经配置用于耦合到安装工具,其中所述芯棒具有第二组螺纹用于耦合到下部套管,其中所述密封元件经配置以响应于密封元件上施加的力从第一位置径向扩展到第二位置。在一些方面,井下工具可以进一步包括复合部件,所述复合部件围绕芯棒设置并且靠近密封元件。复合部件可以具有可变形部分,所述可变形部分具有设置在其中的一个或多个凹槽。
井下工具可以包括:第一锥体,所述锥体围绕复合芯棒设置并且靠近密封元件的第二端;围绕复合芯棒设置的复合滑块,所述复合滑块进一步包含圆形滑块主体,所述滑块主体具有带围绕整个圆形滑块主体的至少部分连接性的一体式配置,以及设置在其中的至少两个凹槽或起伏;围绕复合芯棒设置的承重板,其中所述承重板经配置用于将负载从安装套管传递到金属滑块,其中所述复合滑块邻近第二锥体的外部逐渐变细的表面,并且其中下部套管围绕复合芯棒设置并且靠近金属滑块的逐渐变细端。
在一些方面,外表面可以具有在大约40到大约60的范围内的洛氏硬度,以及/或者内表面可以具有在大约10到大约25的范围内的洛氏硬度。近端可以包括切变螺纹和第一外径,且远端可以具有第二外径。复合芯棒可以由细丝缠绕的材料制成。第一外径可以大于第二外径。芯棒可以包括流动孔,所述流动孔在近端与远端之间延伸。
外表面的至少一部分可以是热处理的。所述主体可以包括多个孔,其中一个或多个孔具有设置在其中的有浮力的材料。紧咬元件可以包括锯齿。金属滑块可以是表面硬化的。内表面可以具有多个凹槽。多个凹槽可以设置在实质上对称的配置中。有浮力的材料可以从由聚氨酯、轻质珠子、环氧树脂以及玻璃泡组成的组中选择出来。
金属滑块可以由硬化铸铁形成。所述金属滑块可以配置有设置在其中的低密度材料。所述低密度材料可以是玻璃泡填充的环氧树脂。井下工具可以经配置以与安装工具中的抗旋转特征或总成啮合。
在一些方面,井下工具可以包括复合部件,所述复合部件围绕芯棒设置并且与密封元件啮合。复合部件可以由第一材料制成并且具有第一部分和第二部分。第一部分可以具有至少一个的凹槽。第二材料可以粘合到第一部分并且至少部分填充到至少一个凹槽中。
复合芯棒可以由细丝缠绕的复合材料制成。芯棒的螺纹可以是切变螺纹或圆形螺纹。在安装井下工具之后,第一部分可以在径向方向上远离所述轴扩展。复合部件和密封元件可以压缩在一起以在其间形成强化的屏障。
本发明的另外的其他实施例涉及一种操作井下工具的方法,以将钻井孔的一个或多个部分隔离,所述方法可以包括使井下工具进入到钻孔中的期望的位置。在一些方面,井下工具可以具有:芯棒,所述芯棒具有至少一组螺纹;以及金属滑块,所述金属滑块围绕所述复合芯棒设置。金属滑块可以进一步包括:圆形滑块主体,所述主体具有设置在其中的有浮力的材料;包含紧咬元件的外表面;以及经配置用于接收复合芯棒的内表面。
所述方法可以包括使芯棒承受拉伸负载,从而使得锥形表面与金属滑块啮合并且使圆形滑块主体向外扩展为至少部分地与周围管状物啮合。所述方法可以包括当拉伸负载足够使井下工具与安装工具分离时使井下工具不再同与其耦合的安装工具连接。
在一些方面,金属滑块可以由铸铁制成。金属滑块可以是表面硬化的,使得外表面具有在大约40到大约60的范围内的洛氏硬度,同时内表面维持在大约10到大约25的范围内的洛氏硬度。
所述方法可以包括将流体从表面注射到钻井孔中,并且随后注射到紧靠钻井孔的地层的至少一部分中。钻井孔的第一部分可以位于工具之上,而钻井孔的第二部分可以位于工具之下。在一些方面,在安装了井下工具之后,第二部分与第一部分之间的流体连通可以由工具来控制。有浮力的材料可以包括玻璃泡。
所述方法可以包括在安装所述井下工具之后使第二井下工具进入到钻井孔中、安装第二井下工具、执行压裂操作,以及/或者钻穿所述井下工具和第二井下工具。
复合部件可以是由细丝缠绕材料、纤维玻璃织物缠绕材料以及模制纤维玻璃复合物中的一者制成的。复合部件可以包括第一材料或者可以由第一材料制成。第二材料可以围绕可变形部分形成。多个凹槽中的每一个可以填充有第二材料。在一些方面,复合部件可以用于井下工具中,所述井下工具是压裂塞。
弹性部分和可变形部分可以由第一材料制成。弹性部分可以包括倾斜表面。第二材料可以粘合到可变形部分并且至少部分填充到凹槽中。螺旋图案可以包括沿着复合部件的轴的恒定的螺距。螺旋图案可以包括沿着复合部件的轴的可变的螺距。螺旋图案可以包括相对于复合部件的轴以一定角度倾斜的恒定的螺距。螺旋图案可以包括相对于复合部件的轴以一定角度倾斜的可变的螺距。在一些方面,可变形部分可以包括非盘旋凹槽。可以有三个凹槽形成于复合部件中。
在一些方面,螺旋图案包含可变形部件的外表面上的恒定的螺距、恒定的半径,以及/或者螺旋图案可以包括可变形部件的内表面上的恒定的螺距、可变的半径。在其他方面,螺旋图案可以包括可变形部分的外表面上的可变的螺距、恒定的半径,以及/或者螺旋图案可以包括可变形部分的内表面上的可变的螺距、可变的半径。
本发明的其他实施例涉及用于井下工具的复合部件,所述部件可以包括弹性部分和可变形部分,所述可变形部分整合到所述弹性部分并且配置有多个形成于其中的螺旋凹槽。所述可变形部分可以包括第一材料。第二材料可以围绕可变形部分形成。在一些方面,多个凹槽中的每一个可以填充有第二材料。复合部件可以是由细丝缠绕材料、纤维玻璃织物缠绕材料以及模制纤维玻璃复合物中的一者制成或形成的。
本发明中公开的其他实施例涉及用于隔离钻井孔的部分的井下工具,所述井下工具可以包括芯棒,以及复合部件,所述复合部件围绕芯棒设置并且与同样围绕芯棒设置的密封元件啮合。复合部件可以由第一材料制成并且还包括第一部分和第二部分。第一部分可以包括外表面,内表面、顶部和底部。至少一个螺旋凹槽的深度可以从外表面延伸到内表面。至少一个螺旋凹槽可以螺旋式形成在围绕底部到围绕顶部之间。
本发明的其他实施例涉及用于隔离钻井孔的部分的井下工具,所述井下工具可以包括:芯棒,所述芯棒具有至少一组圆形螺纹;复合部件,所述复合部件围绕芯棒设置并且与同样围绕芯棒设置的密封元件啮合,其中复合部件由第一材料制成并且包含第一部分和第二部分;第一滑块,所述第一滑块围绕芯棒设置并且配置用于与倾斜表面啮合;锥体,所述锥体围绕芯棒设置并且具有第一端和第二端,其中所述第一端经配置用于与密封元件啮合;以及第二滑块,所述第二滑块与所述锥体的第二端啮合。将井下工具安装在钻井孔中可以包括第一滑块和第二滑块与周围管状物紧咬啮合,以及密封元件与周围管状物无缝式啮合。
本发明的另外的其他实施例涉及一种安装井下工具的方法,以将钻井孔的一个或多个部分隔离,所述方法可以包括使井下工具进入到钻孔中的期望的位置。所述井下工具可以包括:芯棒,所述芯棒包含一组圆形螺纹和一组切变螺纹;复合部件,所述复合部件围绕芯棒设置并且与同样围绕芯棒设置的密封元件啮合,其中所述复合部件是由第一材料制成的并且包含可变形部分和弹性部分;第一滑块,所述第一滑块围绕芯棒设置并且经配置用于与弹性部分啮合。
本发明的实施例涉及用于分离钻井孔或地层中的区域的井下工具,所述井下工具可以包括:配置有穿过其中的流动通道的芯棒,所述芯棒配适有用于与安装工具匹配的第一组螺纹以及用于耦合到下部套管的第二组螺纹;围绕芯棒设置的密封元件,所述密封元件经配置以响应于施加在密封元件上的力从第一位置径向扩展到第二位置;以及围绕芯棒设置并且靠近密封元件的复合部件,所述复合部件包含具有设置在其中的一个或多个凹槽的可变形部分。
本发明的实施例涉及用于井下工具的芯棒,所述芯棒可以包括主体,所述主体具有第一外径的近端和第二外径的远端、一组设置在远端上的圆形螺纹、形成于近端与远端之间的主体上的过渡区域。第一外径可以大于第二外径。
本发明的另外的其他实施例涉及用于井下工具的芯棒,所述芯棒可以包括主体,所述主体具有包含切变螺纹和第一外径的近端以及包含圆形螺纹和第二外径的远端。芯棒可以由复合的细丝缠绕的材料制成。第一外径可以大于第二外径。芯棒可以包括形成于近端与远端之间的主体上的过渡区域。芯棒可以包括流动孔。流动孔可以从近端延伸到远端。流动孔可以包括球式止回阀。
本发明的其他实施例涉及可以包括内部切变螺纹轮廓的复合芯棒,其中所述切变螺纹可以经配置以在受到预定的轴向力时发生剪切,造成井下工具不再与安装工具连接。切变螺纹可以经配置以在大于安装井下工具所需的力但是小于分开工具的主体所需的力的预定轴向力下进行剪切。
在另外的其他实施例中,本发明涉及用于隔离钻井孔的部分的井下工具,所述井下工具可以包括复合芯棒,所述芯棒可以包括具有近端和远端的主体、设置在远端上的一组圆形螺纹,以及在近端与远端之间形成在主体上的过渡区域,并且具有倾斜的过渡表面。所述工具可以进一步包括:复合部件,所述复合部件围绕芯棒设置并且与同样围绕芯棒设置的密封元件啮合,其中所述复合部件是由第一材料制成的并且包含第一部分和第二部分;以及承重板,所述承重板围绕芯棒设置并且与倾斜的过渡表面啮合。井下工具的安装可以包括复合部件和密封元件至少部分地与周围管状物啮合。
本发明的其他实施例涉及经配置用于抗旋转的井下工具,所述井下工具可以包括与主体啮合的套管外壳、设置在所述套管外壳中的抗旋转总成。所述总成可以包括抗旋转装置,以及与抗旋转装置啮合的锁定环。
抗旋转装置可以从由弹簧、机械式弹簧赋能部件以及复合管状件组成的组中选择。抗旋转总成可以经配置并且用于防止井下工具组件的不期望或意外的移动或解绕。锁定环可以包括引导孔,由此抗选择装置的一端可以滑动式地与之啮合。
在另外的其他实施例中,本发明涉及用于井下工具的复合滑块,所述滑块可以包括圆形滑块主体,所述主体具有一体式配置,所述配置具有设置在其中的至少一个凹槽。所述滑块可以包括设置在其中的两个或两个以上交替布置的凹槽。
复合滑块可以设置或布置在井下工具中,靠近锥体的一端且与锥体的一端啮合。井下工具的安装可以包括复合滑块的至少一部分与周围管状物紧咬啮合。圆形滑块主体可以包括围绕整个滑块主体的至少部分的连接性。
本发明的另外的其他实施例涉及用于井下工具的复合滑块,所述滑块可以包括:圆形滑块主体,所述滑块主体具有带围绕整个圆形滑块主体的至少部分的连接性的一体式配置;以及至少两个设置在其中的凹槽。滑块主体可以由细丝缠绕的材料制成或形成。所述凹槽可以交替地布置。在一些方面,复合滑块可以设置在井下工具中,靠近锥体的一端且与锥体的一端啮合。井下工具的安装可以包括复合滑块的至少一部分与周围管状物紧咬啮合。圆形主体可以包括至少三个凹槽。所述至少三个凹槽可以彼此等距间隔。
通过以下具体实施方式和附图,这些和其他实施例、特征以及优势将更加显而易见。
附图说明
为了更详细地描述本发明,现在将参考以下附图,其中:
图1是常规堵塞系统的流程图;
图2A至图2B示出了根据本发明的实施例的具有井下工具的系统的等距视图;
图2C至图2E分别示出了根据本发明的实施例的井下工具的纵视图、纵视截面图,以及等距组件分解视图;
图3A至图3D示出了可以与根据本发明的实施例的井下工具一起使用的芯棒的多个视图;
图4A至图4B示出了可以与根据本发明的实施例的井下工具一起使用的密封元件的多个视图;
图5A至图5G示出了可以与根据本发明的实施例的井下工具一起使用的一个或多个滑块;
图6A至图6E示出了可以与根据本发明的实施例的井下工具一起使用的复合可变形部件(及其子部件)的多个视图;
图7A和图7B示出了可以与根据本发明的实施例的井下工具一起使用的承重板的多个视图;
图8A和图8B示出了可以与根据本发明的实施例的井下工具一起使用的一个或多个锥体的多个视图;
图9A和图9B分别示出了可以与根据本发明的实施例的井下工具一起使用的下部套筒的等距视图以及纵视截面图;
图10A和图10B示出了可以与根据本发明的实施例的井下工具一起使用的球座的多个视图;
图11A和图11B示出了根据本发明的实施例的配置有多个复合部件和金属滑块的井下工具的多个视图;
图12A和图12B示出了根据本发明的实施例的封装井下工具的多个视图;
图13A、图13B、图13C和图13D示出了可以与根据本发明的实施例的滑块一起使用的插件的多个实施例;以及
图14A和图14B示出了根据本发明的实施例的井下工具的多种配置的纵视截面图。
具体实施方式
本发明揭示了涉及可用于钻井孔操作的井下工具的新颖的设备、系统和方法,在本发明中对所述井下工具进行了详细描述。
根据本发明所揭示的实施例的井下工具可以包括一个或多个锚固滑块、可以与所述滑块啮合的一个或多个压缩锥,以及设置在其间的可压缩密封元件,所有的这些可以配置成或者设置成围绕芯棒。所述芯棒可以包括流动孔,所述流动孔朝向所述工具的一端开口,并且延伸所述工具的相对端。在实施例中,所述井下工具可以是压裂塞或者桥塞。因此,所述井下工具可以适用于压裂操作。在一项示例性实施例中,所述井下工具可以是由可钻孔材料制成的复合压裂塞,所述塞适用于在纵向或横向钻井孔中使用。
可用于隔离钻井孔的部分的井下工具可以包括具有第一组螺纹和第二组螺纹的芯棒。所述工具可以包括复合部件,所述部件围绕芯棒设置并且与同样围绕芯棒设置的密封元件啮合。根据本发明,所述复合部件可以是部分可变形的。举例来说,在施加负载之后,复合部件的一部分,例如,弹性部分,可以承受负载且维持其原始形状和配置而仅有非常少的偏斜或变形或者没有偏斜或变形。与此同时,负载可能导致另一部分,例如,可变形部分,经历偏斜或变形到一定程度使得可变形部分由其原始位置和/或位置改变形状。
因此,复合部件可以具有第一部分和第二部分,或者类似地上部部分和下部部分。应注意第一、第二、上部、下部等等仅仅是出于描述性和/或说明性的角度的,因此复合部件并不局限于任何特定的取向。在实施例中,上部(或可变形)部分以及下部(或弹性)部分可以由第一材料制成。弹性部分可以包括倾斜表面,而可变形部分可以包括至少一个凹槽。第二材料可以粘合或者模制到复合部件(或者与其粘合或模制在一起)。在一项实施例中,第二材料可以粘合到可变形部分,且至少部分填充到至少一个凹槽中。
可变形部分可以包括外表面,内表面、顶部边缘和底部边缘。至少一个凹槽的深度(宽度)可以从外表面延伸到内表面。在一些实施例中,至少一个凹槽可以从围绕底部边缘到围绕顶部边缘沿着或者在可变形部分中形成于螺旋或盘旋图案中。凹槽图案并不意味着限制于任何特定的取向,因此任何凹槽可以具有可变的螺距和可变的半径。
在实施例中,可以相对于工具(或工具组件)轴以大约60度到大约120度的范围内的背锥角对至少一个凹槽进行切割。可以有多个凹槽形成于复合部件内。在一项实施例中,可以有大约二到三个类似的螺旋形式的凹槽位于复合部件中。在其他实施例中,凹槽之间可以具有实质上等距的间隔。在另外的其他实施例中,背锥角可以为大约75度(例如,向下或者向外倾斜)。
井下工具可以包括第一滑块,所述滑块围绕芯棒设置并且配置用于与复合部件啮合。在一项实施例中,第一滑块可以与复合部件的弹性部分的倾斜表面啮合。井下工具可以进一步包括围绕芯棒设置的锥体件。锥体件可以包括第一端和第二端,其中所述第一端可以配置用于与密封元件啮合。井下工具也可以包括第二滑块,所述滑块配置用于与锥体接触。在一项实施例中,在安装期间第二滑块可以移动到与锥体的第二端啮合或者压缩锥体的第二端。在另一项实施例中,第二滑块可以具有一体式配置,至少一个凹槽或起伏设置在其中。
根据本发明的实施例,钻井孔中的井下工具的安装可以包括第一滑块和第二滑块与周围管状物的紧咬啮合、密封元件与周围管状物的密封啮合,以及/或者将足够使一组螺纹中的一个发生剪切的负载施加到芯棒。
任何的滑块可以是复合材料或金属(例如,铸铁)。任何的滑块可以包括紧咬元件,例如,插入件、钮扣、齿、锯齿等,所述元件经配置以提供所述工具与周围表面,例如,管状物的紧咬啮合。在一项实施例中,第二滑块可以包括设置在其周围的多个插入件。在一些方面,任何的插入件可以配置有平坦表面,而在其他方面,任何的插入件可以配置有凹陷表面(相对于面朝钻井孔)。
井下工具(或者工具组件)可以包括纵向轴,所述轴包括中心长轴。在井下工具的安装期间,复合部件的可变形部分可以扩展或“开花”,例如在远离所述轴的径向方向上。安装可以进一步导致复合部件和密封元件压缩在一起以在其间形成强化密封或屏障。在实施例中,在对密封元件进行压缩之后,密封元件可能会围绕设置在其中的内部圆周通道或凹槽而部分坍塌或弯曲。
芯棒可以具有远端和近端。在其间可以形成有孔。在一项实施例中,芯棒上的一组螺纹中的一个可以是切变螺纹。在其他实施例中,一组螺纹中的一个可以是在近端沿着孔的表面设置的切变螺纹。在另外的其他实施例中,一组螺纹中的一个可以是圆形螺纹。举例来说,一组螺纹中的一个可以是沿着外部芯棒表面,例如在远端,设置的圆形螺纹。圆形螺纹可以用于组装和安装负载保持。
芯棒可以耦合有安装适配器,所述适配器配置有与第一组螺纹匹配的对应的螺纹。在一项实施例中,所述适配器可以配置用于使流体从其中流过。芯棒也可以耦合有套管,所述套管配置有与芯棒的一端上的螺纹匹配的对应的螺纹。在一项实施例中,所述套管可以与第二组螺纹匹配。在其他实施例中,工具的安装可能导致以远离轴取向的角度的沿着第二组螺纹的负载力的分配。
虽然未进行限制,但是井下工具或者其任何组件可以由复合材料制成。在一项实施例中,芯棒、锥体,以及第一材料各自由细丝缠绕的可钻孔材料组成。
在实施例中,可以将e线路或金属线路机构与部署和/或安装所述工具结合使用。可以有预先确定的压力设置,其中当出现过量的压力时会在芯棒上生成拉伸负载,所述负载导致间接地位于芯棒与安装套管之间的对应的压力。静态安装套管的使用可能导致一个或多个滑块移动到与周围管状物(例如,壳体柱)接触或者与周围管状物牢固紧咬,以及密封元件的压缩(以及/或者坍塌)。密封元件的轴向压缩可以(但是非必须的)实质上与其向外的径向扩展同时并且与周围管状物密封啮合。为了使工具从安装机构(或者金属线路适配器)脱离,必须将足够的张力施加给芯棒,以使得其匹配的螺纹发生剪切。
当钻穿所述工具时,与芯棒啮合的下部套管(由锚固销、剪切销等紧固就位)可以协助于防止工具旋转。随着工具钻穿的进行,所述销可能被毁坏或者掉落,并且下部套管可能从芯棒中释放并且进一步落入到钻井孔中以及/或者与另一井下工具啮合,协助于在其钻穿期间与随后的工具锁定。钻穿可以继续直到将井下工具从与周围管状物的啮合中移除。
现在同时参考图2A和图2B,示出了说明了本发明中公开的实施例的具有井下工具202的系统200的等距视图。图2B描绘了形成于地层210中的钻井孔206,其中管状物208设置在所述钻井孔中。在一项实施例中,管状物208可以是壳体(例如,壳体、悬挂壳体、壳体柱等)(它们可以是粘合的)。可以使用工作管柱212(它可以包括与适配器252耦合的安装工具的部分217)将井下工具202定位或放置到钻井孔206中并且从钻井孔中穿过到达期望的位置。
根据本发明的实施例,工具202可以配置为堵塞工具,其可以以某种方式安装在管状物208内,使得工具202抵靠管状物208的内表面207形成流体密封。在一项实施例中,井下工具202可以配置为桥塞,由此对从钻井孔213的一部分到另一部分(例如,在工具202的上方或者下方)的流动进行控制。在其他实施例中,井下工具202可以配置为压裂塞,其中进入到钻井孔206的一部分213的流动可以被阻断或者改道到周围的地层或储层210中。
在另外的其他实施例中,井下工具202也可以配置为坠球工具。在这方面,球可以被丢入到钻井孔206中并且流到工具202中,并且到达芯棒214的端部处的对应的球座中停止下来。球的就坐可以在工具202内提供引起堵塞条件的密封,由此可以造成工具202内的压力差。球座可以包括半径或曲率。
在其他实施例中,井下工具202可以是球阀塞,由此当工具202进入到钻井孔中时工具202配置有已经就位的球。工具202随后可以作为止回阀,并且提供单向流动能力。流体可以从钻井孔206中被引导到具有这些配置中的任何一个的结构中。
一旦工具202到达管状物内的安装位置,可以通过多种方法将安装机构或工作管柱212从工具202上拆卸下来,导致工具202留在周围管状物中且钻井孔的一个或多个部分是隔离的。在一项实施例中,一旦安装了工具202,那么可以将张力施加到适配器252直到适配器252与芯棒214之间的螺纹连接被破坏为止。举例来说,适配器252和芯棒214(如图2D所示分别为256和216)上的匹配螺纹可以设计为剪切的,且因此可以根据所属领域中已知的方法进行拉动和剪切。施加到适配器252上的负载的量可以在例如,大约20,000到40,000磅的力的范围内。在其他应用中,负载可以在小于大约10,000磅的力的范围内。
因此,适配器252可以与芯棒214分离或从所述芯棒上拆卸下来,导致工作管柱212能够与工具202分离,这可以在预定的时刻发生。本发明中提供的负载是非限制性的并且仅仅是示例性的。安装力的确定可以通过对工具的相互作用表面与各个工具表面角进行特定的设计来进行。工具202也可以配置有预定的故障点(未图示),所述故障点配置为发生故障或损坏。举例来说,故障点可以在大于安装工具所需的力但是小于分开工具的主体所需的力的预定轴向力下发生损坏。
井下工具202的操作可以允许快速地进入工具202中以隔离钻井孔206的一个或多个部分,以及快速且简单地钻穿以毁坏或移除工具202。工具202的钻穿可以由工具202的组件或子组件来协助,所述组件或子组件由可钻孔材料制成,所述材料与常规的塞子中的材料相比对钻头的损坏更少。在一项实施例中,井下工具202和/或其组件可以是由可钻孔复合材料制成的可钻孔工具,所述复合材料例如,玻璃纤维/环氧树脂、碳纤维/环氧树脂、玻璃纤维/PEEK、碳纤维/PEEK等。其他树脂可以包括酚醛树脂、聚酰胺等。井下工具202的所有匹配表面可以配置有一定角度,使得对应的组件可以处于压力而非剪切力下。
现在同时参考图2C至图2E,分别示出了可以与系统(200,图2A)一起使用的并且说明了本发明中公开的实施例的井下工具202的纵视图、纵视截面图,以及等距组件分解视图。井下工具202可以包括延伸穿过工具(或工具主体)202的芯棒214。芯棒214可以是实心体。在其他方面,芯棒214可以包括形成于其中的流路或孔250(例如,轴向孔)。孔250可以穿过芯棒214部分地延伸或者延伸较短的距离,如图2E所示。或者,孔250可以延伸穿过整个芯棒214,其中在其近端248处具有开口且在其远端246处(靠近工具202的井下端)具有相对的开口,如图2D所示。
孔250或者穿过芯棒214的其他流路的存在可以间接地由操作条件来决定。也就是说,在大多数情况下,工具202在直径上可以足够大(例如,4-3/4英寸)使得孔250可以对应地足够大(例如,1-1/4英寸),使得碎屑和废物可以通过或流过孔250而不会造成堵塞的问题。然而,随着较小直径工具202的使用,孔250的尺寸可能需要对应地较小,这可能导致工具202易于发生堵塞。因此,可以将芯棒制成实心的以减少在工具202内发生堵塞的可能。
由于孔250的存在,芯棒214可以具有内孔表面247,所述表面可以包括形成于其上的一个或多个螺纹表面。因此,可以有第一组螺纹216,其经配置用于将芯棒214与安装适配器252的对应的螺纹256耦合。
可以是切变螺纹的螺纹的耦合可以协助于工具202以及安装适配器252和/或螺纹处的工作管柱(212,图2B)的可拆卸连接。在本发明的范围内工具202也可以具有一个或多个预定故障点(未图示),所述故障点配置为独立于任何螺纹连接而发生故障或损坏。故障点可以在大于安装工具202缩小到力的预定的轴向力下发生故障或剪切。
适配器252可以包括螺柱253,所述螺柱配置有位于其上的螺纹256。在一项实施例中,螺柱253具有外部(阳)螺纹256且芯棒214具有内部(阴)螺纹,然而,螺纹的类型和配置并不意味着进行限制,并且可以分别是,例如,反过来的阴阳连接。
井下工具202可以通过工作管柱(212,图2A)进入到钻井孔(206,图2A)中的期望的深度或位置,所述工作管柱可以配置有安装装置或机构。工作管柱212和安装套管254可以是堵塞工具系统200的一部分,所述系统用于使井下工具202进入到钻井孔中,并且启动工具202以从未安装位置移动到安装位置。安装位置可以包括密封元件222和/或滑块234、242,所述滑块与管状物(208,图2B)啮合。在一项实施例中,安装套管254(可以配置为安装机构或工作管柱的一部分)可以得到利用以迫使或促使密封元件222的压缩,以及使密封元件222膨胀以与周围管状物密封啮合。
安装装置以及井下工具202的组件可以与芯棒214耦合,并且可沿着芯棒轴向地和/或径向地移动。当安装顺序开始时,芯棒214可以被拉伸为具有张力而同时安装套管254仍然是静止的。下部套管260也可以被拉伸,因为它凭借螺纹218和螺纹262的耦合而附接到芯棒214上。如图2C和图2D的实施例中所示,下部套管260和芯棒214可以分别具有匹配的或对齐的孔281A和281B,由此一个或多个锚固销211或类似物可以设置在其中或牢固地定位在其中。在实施例中,可以使用铜定位螺钉。销(或螺钉等)211可以防止钻孔或进入期间的剪切或旋转脱离。
随着下部套管260在箭头A的方向上拉伸,在下部套管260和安装套管254之间围绕芯棒214设置的组件可以开始抵靠彼此进行压缩。这种力以及所带来的移动引起了密封元件222的压缩和扩展。下部套管260也可以具有与滑块234啮合的倾斜套管端263,并且随着下部套管260进一步在箭头A的方向上拉伸,端部263抵靠滑块234进行压缩。因此,滑块234可以沿着组合部件220的逐渐变细的或倾斜表面228移动,并且最终径向向外地与周围管状物(208,图2B)啮合。
滑块234的锯齿状外表面或齿298可以经配置使得表面298防止滑块234(或工具)在周围管状物内移动(例如,轴向或径向),否则的话工具202可能会无意地释放或从其位置中移动。虽然滑块234是用齿298来说明的,但是在本发明的范围内滑块234可以配置有其他紧咬特征,例如钮扣或插入件(例如,图13A至图13D)。
最初,密封元件222可以发生膨胀以与管状物接触,随后通过工具202中进一步的张力可以导致密封元件222和复合部件220被压缩在一起,使得表面289作用于内表面288上。“开花”、解绕,和/或扩展的能力可以使得复合部件220完全延伸以与周围管状物的内表面啮合。
可以将额外的张力或负载施加给工具202,从而导致锥体236的移动,所述锥体以某种方式设置在芯棒214的周围,其中至少一个表面237向第二滑块242内部倾斜(或具有斜度、逐渐变细等)。第二滑块242可以位于衬圈或锥体236的附近或靠近所述衬圈或锥体。因此,密封元件222迫使锥体236抵靠滑块242,使滑块242径向向外移动以与管状物接触或紧咬啮合。因此,可以促使一个或多个滑块234、242径向向外并且与管状物啮合(208,图2B)。在一项实施例中,锥体236可以滑动式啮合并且设置在芯棒214的周围。如图所示,第一滑块234可以位于远端246或在远端246附近,而第二滑块242可以设置在位于远端248处或远端248附近的芯棒214周围。在本发明的范围内可以对滑块234和242的位置进行互换。此外,滑块234可以与类似于滑块242的滑块互换,且反之亦然。
由于套管254牢固地保持在原位,套管254可以抵靠着承重板283进行啮合,从而可以导致通过工具202的其余部分来传递负载。安装套管254可以具有套管端255,所述套管端毗邻承重板端284。随着通过工具202的张力的增大,锥体236的一端,例如,第二端240,抵靠着滑块242进行压缩,所述滑块可以通过承重板283而保持在原位。由于锥体236能够进行自由移动及其锥形表面237,锥体236可以移动到滑块242下方的下侧,迫使滑块242向外并且与周围管状物啮合(208,图2B)。
第二滑块242可以包括一个或多个紧咬元件,例如,钮扣或插入件278,所述钮扣或插入件可以经配置以提供与管状物的额外的紧咬。插入件278可以具有适用于提供与管状物表面的额外的咬合的边缘或角落279。在一项实施例中,插入件278可以具有低碳钢,例如1018热处理钢。低碳钢的使用可以引起减少的或消除的由滑块啮合造成的壳体损坏以及减少的由磨损造成的钻孔管柱和设备损坏。
在一项实施例中,滑块242可以是一体式滑块,由此滑块242具有通过其整个圆周的至少部分的连接性。这意味着,在滑块242本身具有配置在其中的一个或多个凹槽(或凹口、起伏等)244的同时,滑块242本身不具有初始圆周分离点。在一项实施例中,凹槽244可以在第二滑块242中等距地间隔或设置在所述第二滑块中。在其他实施例中,凹槽244可以具有交替布置的配置。也就是说,一个凹槽244A可以靠近滑块端241,下一个凹槽244B可以靠近相对的滑块端243,并且依次类推。
工具202可以配置有球阀止回阀总成,所述总成包括球座286。所述总成是可以移除的或者在其中整体形成的。在一项实施例中,芯棒214的孔250可以配置有球座286,所述球座形成在其中或者可移除的设置在其中。在一些实施例中,球座286可以整体形成在芯棒214的孔250内。在其他实施例中,球座286可以如同所期望的单独地或任选地安装在芯棒214内。
球座286可以按某种方式进行配置,使得球285位于其中或放置在其中,由此可以关闭通过芯棒214的流路(例如,由于球285的存在使得通过孔250的流动得到了限制或控制)。举例来说,来自一个方向的流体流动可以迫使并使保持球285抵靠着球座286,而来自相反反向的流体流动可以迫使球285离开或者远离球座286。因此,球285和止回阀总成可以用于防止或控制通过工具202的流体流动。球285可以常规地由酚醛树脂等复合材料制成,由此球285能够在井下操作期间(例如,压裂)保持所经受的最大压力。通过保留销287的利用,球285和球座286可以配置为保留球阀。因此,球285可以适用于作为止回阀,方法是对来自一个方向的压力进行密封,但是允许相反方向的流体通过。
工具202可以配置为坠球塞,使得坠球可以流入到坠球座259中。所述坠球的直径可以远远大于球阀的球的直径。在一项实施例中,端部248可以配置有坠球座表面259,使得所述坠球可能位于或放置于靠近端部248的座中。如果适用的话,那么坠球(此处未图示)可以下降到钻井孔(206,图2A)中并且朝向形成于工具202中的坠球座259流动。球座可以以半径259A形成(即,四周的圆形边缘或表面)。
在其他方面,工具202可以配置为桥塞,所述桥塞一旦安装在钻井孔中,可以防止或允许在任一方向上(例如,向上/向下等)通过工具202的流动。因此,对于所属领域的技术人员而言显而易见的是本发明的工具202是可以简单地通过利用多个适配器或其他可选组件中的一个而配置为压裂塞、坠球塞、桥塞等的。在任何配置中,一旦工具202适当的安装,那么钻井孔中的流体压力可以上升,使得进一步的井下操作,例如,目标区域中的断裂可以发生。
工具202可以包括抗旋转总成,所述总成包括抗旋转装置或机构282,所述装置或机构可以是弹簧、机械式弹簧赋能复合管状部件等等。装置282可以经配置并且用于防止工具202组件的不期望或意外的移动或解绕。如图所示,装置282可以位于套管(或外壳)254的腔294中。在组装期间,可以通过使用锁定环296将装置282固定在原位。在其他方面,可以使用销将装置282保持在原位。
图2D示出了锁定环296可以设置在与工作管柱212耦合的安装工具的零件217的周围。可以用穿过套管254插入的螺钉将锁定环296牢牢地固定在原位。锁定环296可以包括引导孔或凹槽295,由此装置282的端部282A可以与其滑动啮合。突起或夹具295A可以经配置使得在组装期间,芯棒214和各个工具组件可以抵靠装置282在一个方向上如棘轮般转动和旋转,然而,突起295A与装置端282B的啮合可以防止相反方向上的阻塞或松弛。
抗旋转机构可以为工具和操作者提供额外的安全性,这是根据它可以在工具在错误的应用中被无意的使用的情况下防止工具的不适宜操作而言的。举例来说,如果工具在错误的温度应用中使用,那么工具的组件可能易于融化,由此装置282和锁定环296可以辅助于将工具的其余部分保持在一起。因此,装置282可以防止工具组件松弛和/或拧松,并且防止工具202拧松或从工作管柱212上落下。
工具202的钻穿可以由以下事实来协助,即,芯棒214、滑块234、242、锥体236、复合部件220等可以由可钻孔材料制成,所述材料与常规的塞子中的材料相比对钻头的损坏更少。钻头将继续在工具202内移动直到井下滑块234和/或242被充分地钻孔使得此类滑块失去其与钻井孔的啮合。当这种情况发生时,工具的其余部分会落入井中,所述部分通常会包括下部套管260以及下部套管260内的芯棒214的任何部分。如果在被钻穿的工具202的下方在钻井孔中存在额外的工具202,那么离开部分将位于位置在钻井孔的更深处的工具202的顶部,并且将通过与位置在钻井孔的更深处的工具202相关的钻穿操作而被钻穿。因此,可以将工具202完全地移除,这可以导致管状物208的开启。
现在同时参考图3A、图3B、图3C和图3D,示出了根据本发明所公开的实施例的可以与井下工具一起使用的芯棒314(及其子组件)的多个视图。井下工具的组件可以围绕芯棒314布置和设置,如同所属领域的技术人员所描述和理解的。可以由细丝缠绕的可钻孔材料制成的芯棒314可以具有远端346和近端348。所述细丝缠绕材料可以按照需要从各种角度制成,以增加轴向和径向方向上芯棒314的强度。芯棒314的存在可以为工具提供在安装或堵塞操作期间保持压力和线性力的能力。
芯棒314的长度应该是足够长的,使得芯棒可以延伸穿过工具(或工具主体)(202,图2B)的长度。芯棒314可以是实心体。在其他方面,芯棒314可以包括穿过其中形成的流路或孔350(例如,轴向孔)。可以存在延伸穿过整个芯棒314的流路或孔350,例如,轴向孔,其中开口位于近端348并且相对地位于其远端346。因此,芯棒314可以具有内部孔表面347,所述表面可以包括形成于其上的一个或多个螺纹表面。
芯棒314的端部346、348可以包括内部或外部(或这两者)螺纹部分。如图3C所示,芯棒314可以具有孔350内的内部螺纹316,所述孔经配置以收纳机械或金属线路安装工具、适配器等(此处未图示)。举例来说,可以有第一组螺纹316,其经配置用于将芯棒314与另一组件(例如,适配器252,图2B)的对应的螺纹耦合。在一项实施例中,第一组螺纹316是切变螺纹。在一项实施例中,施加到芯棒314的负载必须足够大以对第一组螺纹316进行剪切。虽然不是必要的,但是切变螺纹的使用可以消除对单独的切变环或销的需要,并且可以用于从工作管柱中对芯棒314进行剪切。
近端348可以包括外锥348A。外锥348A可以帮助防止工具被卡住或者束缚。举例来说,在安装期间,较小工具的使用可能会导致工具被束缚在安装套管上,由此外锥348的使用可以允许工具更轻易地滑离安装套管。在一项实施例中,外锥348A可以相对于轴358以大约为5度的角度形成。外锥348A的长度可以为大约0.5英寸到大约0.75英寸。
可以有颈部或过渡部分349,使得芯棒的外径可以发生变化。在一项实施例中,芯棒314可以具有第一外径D1,所述第一外径大于第二外径D2。常规的芯棒组件配置有肩部(即,大约90度的表面角),这使得组件易于发生直接剪切和故障。相比之下,本发明的实施例可以包括过渡部分349,所述过渡部分配置有倾斜过渡表面349A。过渡表面角b可以相对于所述工具(或工具组件轴)358呈大约25度。
过渡部分349可以在对工具组件进行压缩时承受径向力,从而分担负载。也就是说,在压缩承重板383和芯棒314时,力并不是仅仅在切变方向上取向的。可以在组件之间分担负载的能力意味着组件不需要很大,从而带来了总体上较小的工具尺寸。
除了第一组螺纹316之外,芯棒314可以具有第二组螺纹318。在一项实施例中,第二组螺纹318可以是沿着远端346处的外部芯棒表面345设置的圆形螺纹。圆形螺纹的使用可以增大螺纹连接的切变强度。
图3D说明了在芯棒314的远端346处的组件连接性的一项实施例。如图所示,芯棒314可以耦合有套管360,所述套管具有对应的螺纹362,所述螺纹经配置以与第二组螺纹318匹配。通过这种方式,工具的安装可能导致以远离轴358的角度沿着第二组螺纹318的负载力的分配。可以有一个或多个球364设置在套管360与滑块334之间。球364可以帮助促进滑块334的均匀的断裂。
因此,圆形螺纹的使用可以允许表面之间的非轴向相互作用,使得在除了切变/轴向方向上之外还存在矢量力。圆形螺纹轮廓可以在螺纹根上形成径向负载(而不是剪切)。因此,圆形螺纹轮廓也可以允许沿着多个螺纹表面的力的分配。由于复合材料通常是最适于压缩的,因此这允许较小的组件和增加的螺纹强度。与常规的复合工具连接相比,这有利地提供了高于5倍的螺纹轮廓的强度。
特别参考图3C,芯棒314可以具有设置在其中的球座386。在一些实施例中,球座386可以是单独的组件,而在其他实施例中球座386可以是与芯棒314一体式形成的。也可以有在近端348处形成于孔350中的坠球座表面359。球座359可以具有半径359A,所述半径提供了圆形边缘或表面以供坠球与之进行匹配。在一项实施例中,座359的半径359A可以小于位于所述座中的球的半径。在就座之后,压力可以“迫使”坠球进入半径或将坠球挤入半径,由此在没有额外量的压力的情况下坠球将不会离座。迫使或挤压坠球使其抵靠半径表面所需的压力的量以及需要使坠球不再受到挤压所需的压力的量可以是预定的。因此,可以根据具体应用对坠球的尺寸、球座,以及半径进行设计。
与球座表面的常规的锋利点或边缘相比,较小的曲率或半径359A的使用可以是有利的。举例来说,与特定的直径相比,半径359A可以通过可变的直径为工具提供容纳坠球的能力。此外,与正好位于其他球座的接触边缘/点相比,表面359和半径359A可能更加适于围绕球座的多个表面区域对负载进行分配。
现在同时参考图6A、图6B、图6C、图6D、图6E和图6F,示出了根据本发明所公开的实施例的可以与井下工具一起使用的复合可变形部件320(及其子组件)的多个视图。复合部件320可以按某种方式进行配置,使得在施加压力时,复合部件的至少一部分可以在远离工具轴(例如,258,图2C)的径向方向上开始发生变形(或扩展、偏转、扭曲、失去弹力、断开、解绕等)。虽然被举例为“复合物”,但是在本发明的范围内部件320可以由包含合金等在内的金属制成。
在安装顺序期间,密封元件322和复合部件320可以压缩在一起。作为密封元件322的倾斜外表面389与复合部件320的内表面388接触的结果,可以迫使复合部件320的可变形(或第一或上部)部分326径向向外并且在密封元件322至少部分地与周围管状物密封式啮合的位置处或附近与周围管状物(未图示)发生啮合。也可以存在弹性(或第二或下部)部分328。在一项实施例中,与可变形部分326相比,弹性部分328可以配置有发生变形的较大的或增大的弹性。
复合部件320可以是具有至少第一材料331和第二材料332的复合组件,但是复合部件320也可以是由单个材料制成的。第一材料331和第二材料332不需要是化学结合的。在一项实施例中,第一材料331可以是与第二材料332化学键合、固化、模制等的。另外,第二材料332可以类似地与可变形部分326是物理结合或化学键合的。在其他实施例中,第一材料331可以是复合材料,且第二材料332可以是第二复合材料。
复合部件320可以具有形成在其中的切口或凹槽330。凹槽330和/或螺旋(或盘旋)切口图案的使用可以减少可变形部分326的结构容量,使得复合部件320可以向外“开花”。凹槽330或凹槽图案并不意味着限制于任何特定的取向,因此任何凹槽330可以具有可变的螺距和可变的半径。
由于凹槽330形成于可变形部分326中,第二材料332可以被模制或结合到可变形部分326,使得凹槽330填充有第二材料332并且被第二材料包围。在实施例中,第二材料332可以是弹性材料。在其他实施例中,第二材料332可以是60-95度的聚氨酯或硅酮。其他材料可以包括,例如,TFE或PTFE套管选择热收缩。复合部件320的第二材料332可以具有内部材料表面368。
不同的井下条件可以指示第一材料和/或第二材料的选择。举例来说,在低温操作中(例如,低于大约250F),包含聚氨酯的第二材料可能是足够的,而对于高温操作(例如,高于大约250F),聚氨酯可能不是足够的并且可以使用硅酮等不同的材料。
第二材料332结合凹槽330的使用可以为凹槽图案提供支持并且减少预设问题。由于第二材料332的附加的益处是与可变形部分326结合或模制,抵靠着密封元件322的复合部件320的压缩可能带来组件之间的以及与管柱部件(例如,图2B中的208)的内表面的坚固的、加强的且具有弹性的屏障和密封。由于增大的强度,使得密封以及本发明的工具可以承受较高的井下压力。较高的井下压力可以为使用者提供较好的压裂结果。
凹槽330可以允许复合部件320抵靠着管状物扩展,从而可以带来工具与管状物之间的牢固的屏障。在一项实施例中,凹槽330可以是形成于可变形部分326中的螺旋(或盘旋、缠绕等)切口。在一项实施例中,可以有多个凹槽或切口330。在另一项实施例中,可以有两个对称形成的凹槽330,如借助于图6E中的实例所示。在又一项实施例中,可以有三个凹槽330。
如图6C所示,任何切口或凹槽330的深度d可以完全地从外侧表面364延伸到上侧内表面366。任何凹槽330的深度d可以随着凹槽330沿着可变形部分326的行进而改变。在一项实施例中,外部平坦表面364A可以在与外侧表面364相切的点处具有交点,并且类似地,内部平坦表面366A可以在与上侧内表面366相切的点处具有交点。表面364和366的平面364A和366A可以分别是平行的或者它们可以具有交点367。虽然复合部件320被描绘为具有由平面366A说明的线性表面,但是并不意图对复合部件320进行限制,因为内表面可以是非线性或非平坦的(例如,具有曲率或圆形轮廓)。
在一项实施例中,凹槽330或凹槽图案可以是在可变形部件326的外表面364上具有恒定螺距(p1约等于p2)、恒定半径(r3约等于r4)的螺旋图案。在一项实施例中,螺旋图案可以包括可变形部件326的内表面366上的恒定螺距(p1约等于p2)、可变半径(r1不等于r2)。
在一项实施例中,凹槽330或凹槽图案可以是在可变形部件326的外表面364上具有可变螺距(p1不等于p2)、恒定半径(r3约等于r4)的螺旋图案。在一项实施例中,螺旋图案可以包括可变形部件320的内表面366上的可变螺距(p1不等于p2)、可变半径(r1不等于r2)。作为一个实例,节距(例如,p1、p2等)可以在大约0.5转/英寸到大约1.5转/英寸的范围内。
作为另一实例,外表面上任何给定的点处的半径可以在大约1.5英寸到大约8英寸的范围内。内表面上任何给定的点处的半径可以在大约小于1英寸到大约7英寸的范围内。虽然是作为实例给出的,但是所述尺寸并不意味着进行限制,因为其他螺距和径向尺寸也在本发明的范围内。
在图6B中反映的示例性实施例中,复合部件320可以具有背锥角β上的凹槽图案切口。背锥角上切割的图案或与背锥角一起形成的图案可以允许复合部件320在向外扩展的同时不受限制。在一项实施例中,背锥角β可以为大约75度(相对于轴258)。在其他实施例中,角β可以在大约60度到大约120度的范围内。
凹槽330的存在可以允许复合部件320在压缩时具有解绕、扩展,或“开花”动作,例如,借助于抵靠可变形部分326的内表面的表面(例如,表面389)的压缩。举例来说,当密封元件322移动时,表面389被迫使抵靠着内表面388。通常,高压密封中的故障模式是组件之间的间隙,然而,解绕和/或扩展的能力允许复合部件320完全延伸到与周围管状物的内表面的啮合。
现在同时参考图4A和图4B,示出了根据本发明所公开的实施例的可以与井下工具一起使用的密封元件322(及其子组件)的多个视图。密封元件322可以由弹性体和/或聚合材料制成,例如,橡胶、丁腈橡胶、氟化橡胶或聚氨酯,并且可以经配置用于围绕芯棒(例如,214,图2C)定位或设置。在一项实施例中,密封元件322可以是由75度的弹性体材料制成的。密封元件322可以设置在第一滑块和第二滑块之间(参见图2C,密封元件222和滑块234、236)。
在井下工具(202,图2C)的安装顺序期间,密封元件322可以经配置以发生弯曲(变形、压缩等),例如,以轴向的方式。然而,虽然密封元件322可以发生弯曲,但是密封元件322也可以适用于扩展或膨胀,例如,以径向的方式,在工具组件的压缩之后与周围管状物(208,图2B)密封啮合。在优选实施例中,密封元件322提供了抵靠管状物的密封表面321的流体密封。
密封元件322可以具有一个或多个倾斜表面,所述表面经配置用于与靠近它的其他组件表面接触。举例来说,密封元件可以具有倾斜表面327和389。密封元件322可以配置有内部圆周凹槽376。凹槽376的存在可以协助密封元件322在安装顺序开始时最初进行弯曲。凹槽376可以具有大约0.25英寸的尺寸(例如,宽度、深度等)。
滑块.现在同时参考图5A、图5B、图5C、图5D、图5E、图5F和图5G,示出了根据本发明所公开的实施例的可以与井下工具一起使用的一个或多个滑块334、342(以及相关子组件)的多个视图。所描述的滑块334、342可以由金属制成,例如,铸铁,或者由复合材料制成,例如,细丝缠绕的复合物。在操作期间,复合材料的缠绕可以在压缩下与插入件联合工作,以增大工具的径向负载。
滑块334、342可以在上部滑块位置或下部滑块位置中使用,或者在这两个位置中使用,而不受到限制。显而易见的是,可以有围绕芯棒(214,图2C)设置的第一滑块334,并且还可以有也围绕所述芯棒设置的第二滑块342。滑块334、342中的任一个可以包括用于紧咬管状物、壳体和/或钻井孔的内壁的构件,例如,多个紧咬元件,包括锯齿或齿398、插入件378等。如图5D至图5F所示,第一滑块334可以包括锯齿398的行和/或列399。紧咬元件可以经布置或配置,由此滑块334、342以某种方式与管状物(未图示)啮合,使得一旦安装好之后可以防止滑块或工具的移动(例如,纵向轴向地)。
在实施例中,滑块334可以是聚合可模制材料。在其他实施例中,对于所属领域的技术人员而言显而易见的是,滑块334可以是经硬化的、表面硬化的、热处理的、碳化的等。然而,在一些实例中,滑块334也可能是过硬的从而导致无法钻穿或者钻穿所需的时间过长。
通常,齿398的硬度可以是大约40-60洛氏硬度。如同所属领域的技术人员所理解的,洛氏标度是基于材料的压痕硬度的硬度标度。非常硬的钢的典型的值为具有大约55-66的洛氏数(HRC)。在一些方面,即使是仅通过外表面热处理,内部滑块核心材料也可能变得过于硬,这可能会导致滑块334的钻穿变得不可能或不实际。
因此,滑块334可以经配置以包括形成于其中的一个或多个孔393。孔393可以是穿过滑块334纵向取向的。一个或多个孔393的存在可以使得作为主要和/或大多数滑块材料的金属滑块的外表面307受到热处理,而滑块334的核心或内部主体(或表面)309得到了保护。换言之,孔393可以提供热传递的屏障,方法是减少从外表面307到内部核心或表面309的滑块334的热传导(即,k值)。认为孔393的存在影响了滑块334的热导率轮廓,使得从外部到内部的热传递减少,因为否则的话当加热/淬火发生时,整个滑块334都会被加热并发生硬化。
因此,在热处理期间,滑块334上的齿398可以被加热并且发生硬化,带来了热处理过的外部区域/齿,但是并会影响滑块的其余部分。通过这种方式,通过火焰(表面)硬化等处理,火焰的接触点被最小化(限制)到齿398的附近。
由于一个或多个孔393的存在,从齿到内径/核心(例如,横向的)硬度轮廓可以显著地减小,使得内部滑块材料或表面309具有大约为15的HRC(或大约为常规的钢/铸铁的标准硬度)。在这方面,齿398保持坚硬并且提供最大的咬合,但是滑块334的其余部分是非常容易钻穿的。
一个或多个孔隙空间/孔393可以填充有有用的“有浮力的”(或低密度)材料400,以有助于在钻穿之后将碎屑和类似物抬升到表面上。设置在孔393中的材料400可以是,例如,聚氨酯轻质珠子,或玻璃泡/珠子,例如由3M公司制造和销售的K系列的玻璃泡。可以使用其他低密度材料。
材料400的有利的使用有助于在滑块334被钻穿之后促进碎屑的抬升。对于所属领域的技术人员而言显而易见的是可以将材料400通过环氧树脂胶合或注射到孔393中。
滑块334中的狭缝392可以促进断裂。狭缝392的间隔均匀的配置促进了滑块334的均匀的断裂。
如同所属领域的技术人员所知的,第一滑块334可以围绕芯棒(214,图2B)设置或者耦合到所述芯棒,例如对条带或切变螺钉(未图示)进行配置以维持滑块334的位置直到施加足够的压力(例如,剪切)为止。所述条带可以由具有足够强度的所需特征的钢丝、塑料材料或复合材料制成,以将滑块334保持在原位,同时使井下工具进入到钻井孔中,并且这是在开始安装之前的。所述条带可以是可穿孔的。
当施加足够的负载时,滑块334抵靠着复合部件(例如,220,图2C)的弹性部分或表面进行压缩,且随后径向向外扩展以与周围管状物啮合(参见,例如,图2C中的滑块234和复合部件220)。
图5G说明了滑块334可以是硬化铸铁滑块而不具有形成于其中的任何凹槽或孔393的存在。
简要地同时参考图11A和图11B,示出了根据本发明的实施例的配置有多个复合部件1120、1120A和金属滑块1134、1142的井下工具1102的多个视图。滑块1134、1142在本质上可以是一体式的,并且可以由多种材料制成,例如,金属(例如,铸铁)或复合物。已知的是与复合物相比,金属材料使得滑块在钻穿方面更加硬,但是在一些应用中,可能有必要抵抗压力和/或防止工具1102在两个方向上(例如,上方/下方)移动,使得两个金属的滑块1134的使用是有利的。类似地,在高压/高温应用中(HP/HT),使用由硬化金属制成的滑块可能是有利的/更好的。滑块1134、1142可以按照本发明中讨论的方式围绕1114设置。
在本发明的范围内本文中所描述的工具可以包括多个复合部件1120、1120A。复合部件1120、1120A可以是相同的,或者它们可以是不同的并且涵盖本发明中描述的多项实施例中的任何一个并且对于所属领域的技术人员而言是显而易见的。
再次参考图5A至图5C,滑块342可以是一体式滑块,由此滑块342具有通过其整个圆周的至少部分的连接性。这意味着,在滑块342本身可以具有配置在其中的一个或多个凹槽344的同时,滑块342在预设配置中没有分离点。在一项实施例中,凹槽344可以在第二滑块342中等距地间隔或切入所述第二滑块。在其他实施例中,凹槽344可以具有交替布置的配置。也就是说,一个凹槽344A可以靠近滑块端341,且邻近的凹槽344B可以靠近相对的滑块端343。如图所示,凹槽344A可以一直延伸穿过滑块端341,使得滑块端341在点372处缺乏材料。
在滑块342在其端部缺乏材料之处,滑块的该部分或靠近的区域可能具有在安装过程中首先张开的趋势。滑块342的凹槽344的布置或位置可以根据需要进行设计。在一项实施例中,滑块342可以设计有凹槽344,带来了沿着滑块342的径向负载的均等的分配。或者,一个或多个凹槽,例如凹槽344B可以靠近或基本上接近滑块端343延伸,但是在其中留下少量的材料335。少量的材料的存在提供了少量的刚性,以拖延张开的趋势。因此,滑块342的某些部分可以在滑块342的其他部分之前首先扩展或张开。
滑块342可以具有呈不同角度的一个或多个内表面。举例来说,可以有第一倾斜滑块表面329和第二倾斜滑块表面333。在一项实施例中,第一倾斜滑块表面329可以具有20度的角,且第二倾斜滑块表面333可以具有40度的角,然而,滑块表面的任何角的度数并不局限于任何特定的角度。倾斜表面的使用使得滑块342具有显著的啮合力,同时尽可能利用最小的滑块342。
刚性的单个滑块配置或一体式滑块配置的使用可以减少与常规的滑块环相关联的预设的机会,如同所知的常规的滑块在进入期间会发生枢轴旋转和/或扩展。随着预设的机会的减少,较快的进入时间成为可能。
滑块342可以用于在安装过程期间将工具锁定在原位,方法是将压缩组件的势能保持在原位。滑块342还可以防止由于抵靠着工具的流体压力引起的工具的移动。第二滑块(342,图5A)可以包括设置在其上的插入件378。在一项实施例中,插入件378可以通过环氧树脂胶合或按压配适到形成于滑块342中的对应的插入孔或凹槽375中。
简要地同时参考图13A至图13D,示出了可以与本发明的滑块一起使用的插入件378的多项实施例。插入件378中的一个或多个可以具有平坦表面380A或凹形表面380。在一项实施例中,凹形表面380可以包括形成于其中的凹陷377。插入件378中的一个或多个可以具有锋利的(例如,机器加工的)边缘或角落379,使得插入件378具有更大的咬合能力。
现在同时参考图8A和图8B,示出了根据本发明所公开的实施例的可以与井下工具一起使用的一个或多个锥体336(及其子组件)的多个视图。在一项实施例中,锥体336可以滑动式地啮合和设置在芯棒周围(例如,图2C中的锥体236和芯棒214)。锥体336可以按某种方式围绕芯棒设置,使得至少一个表面337相对于其他靠近的组件向内倾斜(或具有斜度、逐渐变细等),所述组件为,例如,第二滑块(242,图2C)。因此,具有表面337的锥体336可以经配置以与滑块协作从而迫使滑块径向向外地与管状物接触或与管状物紧咬啮合,这对于所属领域的技术人员而言是显而易见且容易理解的。
在安装期间,随着张力在工具中的增大,锥体336的一端,例如,第二端340,可以抵靠滑块进行压缩(参见图2C)。作为锥形表面337的结果,锥体336可以移动到滑块下方的下侧,迫使滑块向外并且与周围管状物啮合(参见图2A)。锥体336的第一端338可以配置有锥体轮廓351。锥体轮廓351可以经配置以与密封元件(222,图2C)匹配。在一项实施例中,锥体轮廓351可以经配置以与密封元件的对应的轮廓327A匹配(参见图4A)。锥体轮廓351可以帮助约束密封元件在锥体336上方或下方的滚动。
现在同时参考图9A和图9B,分别示出了根据本发明所公开的实施例的可以与井下工具一起使用的下部套管360(及其子组件)的等距视图以及纵视截面图。在安装期间,下部套管360将被拉动,这是因为它附接到芯棒214上。如图9A和图9B一起示出的,下部套管360可以具有与芯棒孔(281B,图2C)对齐的一个或多个孔381A。一个或多个锚固销311可以设置在其中或牢固地定位在其中。在一项实施例中,可以使用铜定位螺钉。销(或螺钉等)311可以防止钻孔期间的切变或旋转脱离。
随着下部套管360被拉动,围绕芯棒设置的组件可以进一步抵靠彼此进行压缩。下部套管360可以具有一个或多个逐渐变细的表面361、361A,所述表面可以减小被其他工具阻碍的机会。下部套管360还可以具有倾斜套管端363,所述套管端与例如,第一滑块(234,图2C)啮合。随着下部套管360被进一步拉动,端363按压所述滑块。下部套管360可以配置有内部螺纹轮廓362。在一项实施例中,轮廓362可以包括圆形螺纹。在另一实施例中,轮廓362可以配置用于与芯棒(214,图2C)啮合和/或匹配。可以使用球364。球364可以用于对例如,滑块334进行取向或与所述滑块间隔开来。球364也可以有助于维持滑块334的断裂对称性。球364可以是,例如,铜或陶瓷的。
现在同时参考图7A和图7B,示出了根据本发明所公开的实施例的可以与井下工具一起使用的承重板383(及其子组件)的多个视图。承重板383可以由具有广角的细丝缠绕材料制成。因此,承重板383可以容忍增大的轴向负载,同时还具有增大的压缩强度。
由于套管(254,图2C)可以牢固地保持在原位,承重板383可以类似地保持在原位。安装套管可以具有套管端255,所述套管端毗邻承重板端284、384。简要地说,图2C说明了套管端255与板端284的压缩如何可以在安装顺序开始时发生。随着工具中的张力的增大,承重板283的另一端239可以被滑块242压缩,迫使滑块242向外并且与周围管状物(208,图2B)啮合。
内部板表面319可以配置用于与芯棒倾斜啮合。在一项实施例中,板表面319可以与芯棒314的过渡部分349啮合。唇部323可以用于保持承重板383与工具202和滑块242同心。小唇部323A也可以辅助于承重板383的中心化和对齐。
现在同时参考图10A和图10B,示出了根据本发明所公开的实施例的可以与井下工具一起使用的球座386(及其子组件)的多个视图。球座386可以由细丝缠绕的复合材料或金属制成,例如,铜。球座386可以经配置以装载和固持球385,由此球座386可以作为阀门,例如,止回阀。作为止回阀,来自工具的一侧的压力可以受到抵抗或停止,而来自另一侧的压力可以得到减轻并从其中通过。
在一项实施例中,芯棒(214,图2D)的孔(250,图2D)可以配置有形成于其中的球座386。在一些实施例中,球座386可以整体形成在芯棒的孔内,而在其他实施例中,球座386可以根据需要单独地或可选地安装在芯棒内。因此,球座386可以具有与芯棒的孔粘合的外表面386A。球座386可以具有球座表面386B。
球座386可以按某种方式进行配置,使得当球(385,图3C)位于其中时,可以关闭通过芯棒的流路(例如,由于球385的存在使得通过孔250的流动得到了限制)。球385可以由复合材料制成,由此球385能够在井下操作(例如,压裂)期间保持最大压力。
因此,球385可以用于防止或控制流经工具的流体。如果适用的话,那么球385可以下降到钻井孔(206,图2A)中并且朝向形成于工具202中的球座386流动。或者,球385可以在进入期间保留在工具202内,使得球坠落时间得到消除。因此,通过保留销(387,图3C)的利用,球385和球座386可以配置为保留球阀。因此,球385可以适用于作为止回阀,方法是对来自一个方向的压力进行密封,但是允许相反方向的流体通过。
现在同时参考图12A和图12B,示出了根据本发明中公开的实施例的封装井下工具的多个视图。在实施例中,本发明的井下工具1202可以包括封装。封装可以由注射模制过程来完成。举例来说,工具1202可以经组装,放置到配置用于注射模制的夹具装置中,由此封装材料1290可以相应地注射到夹具中,并且使其在工具1202(未图示)上静置或固化预定量的时间。
封装可以有助于解决预设问题,材料1290是足够牢固的以将工具零件,例如,滑块1234、1242固定在原位或者限制它们的移动,并且其材料特性是足够的以承受极端的井下条件,但是在常规的安装和操作中可以由工具1202组件轻易地破坏。用于封装的实例材料包括聚氨酯或硅酮,然而,对于所属领域的技术人员而言显而易见的是任何类型的可以流动、硬化,并且不会限制井下工具的功能性的材料都是可以使用的。
现在同时参考图14A和图14B,示出了根据本发明中公开的实施例的井下工具的多个配置的纵视截面图。如同在本发明所公开的实施例中所描述的以及所属领域的技术人员所理解的,井下工具1402的组件是可以进行布置和可操作的。
工具1402可以包括配置为实心体的芯棒1414。在其他方面,芯棒1414可以包括穿过其中形成的流路或孔1450(例如,轴向孔)。孔1450的形成可以是芯棒1414的制造的结果,例如,通过用细丝或织物来缠绕棒。如图14A所示,芯棒可以具有孔1450,所述孔配置有设置在其中的插入件1414A。销1411可以用于紧固下部套管1460、芯棒1414,以及插入件1414A。孔1450可以延伸穿过整个芯棒1414,并具有在第一端1448以及相对的在其第二端1446的开口。图14B说明了芯棒1414的端部1448可以与塞子1403配适。
在某些情况下,坠球可能不是可用的选择,因此芯棒1414可以可选地与固定塞1403配适。塞子1403可以配置为更容易钻穿,例如,中空的。因此,塞子可以足够牢固以固持在原位并且抵抗流体压力,但是可以被轻易地钻穿。塞子1403可以是螺纹式地和/或密封式地啮合在孔1450中的。
芯棒1414的端部1446、1448可以包括内部或外部(或这两者)螺纹部分。在一项实施例中,工具1402可以用于压裂服务中,并且经配置以阻止来自工具1401上方的压力。在另一项实施例中,复合部件1420B的取向(例如,位置)可以是与第二滑块1442啮合的。在这个方面,工具1402可以用于消除流动,方法是经配置以阻止来自工具1402下方的压力,在另外的其他实施例中,工具1402可以在工具的每一端上具有复合部件1420、1420A。图14A示出了与第一滑块1434啮合的合成部件1420,以及与第二滑块1442啮合的第二合成部件1420A。合成部件1420、1420A不需要是相同的。在这个方面,工具1402可以用于双向服务中,使得可以在工具1402的上方和/或下方阻止压力。复合杆可以胶合到孔1450中。
优势.所述井下工具的实施例在尺寸上是较小的,从而允许所述工具在细长的孔径中使用。在尺寸上较小还意味着每个工具的材料成本较低。因为隔离工具,例如,塞子,是以巨大的数目使用的,并且通常是不可再次使用的,所以每个工具的小量的成本节约带来了巨大的年度资本成本节约。
协同效应得到了实现,因为较小的工具意味着可以轻易地达到较快的钻孔时间。同样,即使是每个单个工具的钻穿时间上的少量的节约也可以带来年度基础上的大量的节约。
有利地是,组件的配置,以及借助于复合部件形成的弹性屏障使得工具可以承受非常高的压力。能够应付较高的钻井孔压力的能力使得操作者能够钻出更深且更长的钻井孔,以及更大的压裂流体压力。具有较长的钻井孔和增大的储层断裂的能力带来了显著增大的产量。
由于工具可以是较小的(较短的),所述工具可以在钻井管中操控较短的半径弯曲而不会发生阻碍和预设。穿过较短工具的通道具有较低的液压阻力并且因此可以在较低的压降下承受较高的流体流速。当球就位时,所述工具可以承受较大的压力峰值(球峰值)。
复合部件可以有利地膨胀或撑开,这协助了泵送期间的进入,从而减小了所需的泵送流体体积。这构成了水的节约并且减少了与处理/处置回收流体相关联的成本。
一体式滑块总成是可以抵抗预设的,因为轴向和径向影响允许较快的泵送速度。这进一步减少了完成压裂操作所需的时间/水的量。
尽管已示出和描述了本发明的优选实施例,但是所属领域的技术人员在不脱离本发明的精神和教示的情况下可以对其作出修改。本发明中所描述的实施例仅仅是示例性而并非意图进行限制。本说明书中所公开的本发明的许多改变和修改是可行的并且涵盖在本发明的范围内。其中数字范围或限制是明确地陈述的,此类表述范围或限制应被理解为包括落入明确陈述的范围或限制内的类似大小的迭代的范围或限制。对于权利要求的任何元件的术语“可选地”的使用意图表示对象元件是需要的,或者是不需要的。这两者都意图涵盖在权利要求书的范围内。使用诸如“包含”、“包括”、“具有”等较广义术语应被理解为提供对诸如“由…组成”、“实质上由…组成”以及“大体上由…组成”等较狭义术语的支持。
因此,保护范围不受上文所述描述的限制,而是仅受所附权利要求书的限制,所述范围包括权利要求书的标的物的所有等效物。每项和每条权利要求被并入到说明书中作为本发明的一项实施例。因此,权利要求书是进一步的描述并且是本发明的优选实施例的补充。对参考的包括或论述并不是承认其为本发明的现有技术,尤其是公开日期在本申请案的在先申请优先权日期之后的任何参考。本发明中所引用的所有专利、专利申请案和公开案的揭示内容以引用的方式并入本文本中,以提供补充本发明中提出的内容的背景知识或示例性、程序性或其他细节。
Claims (30)
1.一种用于井下工具的金属滑块,所述金属滑块包含:
滑块主体;
包含紧咬元件的外表面;以及
经配置用于接收芯棒的内表面;
其中所述滑块主体包含形成在其中的至少一个孔,并且其中有浮力的材料设置在所述孔中。
2.根据权利要求1所述的金属滑块,其中所述外表面是热处理的,其中所述主体包含多个孔,所述孔中的每一个具有设置在其中的有浮力的材料,并且其中所述紧咬元件包含锯齿。
3.根据权利要求1所述的金属滑块,其中所述金属滑块是表面硬化的,其中所述外表面具有在大约40到大约60的范围内的洛氏硬度,并且其中所述内表面具有在大约10到大约25的范围内的洛氏硬度。
4.根据权利要求1所述的金属滑块,其中所述内表面包含多个凹槽,并且其中所述有浮力的材料是从由聚氨酯、轻质珠子、环氧树脂以及玻璃泡组成的组中选择出来的。
5.根据权利要求4所述的金属滑块,其中所述多个凹槽是设置在实质上对称的配置中的。
6.根据权利要求1所述的金属滑块,其中所述金属滑块是由铸铁制成的。
7.一种用于井下工具的一体式金属滑块,所述金属滑块包含:
圆形滑块主体,所述滑块主体包含设置在其中的有浮力的材料;
包含紧咬元件的外表面;以及
经配置用于接收芯棒的内表面;
其中所述外表面具有在大约40到大约60的范围内的洛氏硬度,并且其中所述内表面具有在大约10到大约25的范围内的洛氏硬度。
8.根据权利要求7所述的一体式金属滑块,其中所述圆形滑块主体包含形成在其中的至少一个孔,并且其中所述外表面是热处理的。
9.根据权利要求7所述的一体式金属滑块,其中所述圆形滑块主体包含多个孔,所述孔中的每一个具有设置在其中的有浮力的材料,并且其中所述紧咬元件包含锯齿。
10.根据权利要求9所述的一体式金属滑块,其中所述金属滑块是表面硬化的。
11.根据权利要求9所述的一体式金属滑块,其中所述内表面包含多个凹槽,并且其中所述有浮力的材料是从由聚氨酯、轻质珠子、环氧树脂以及玻璃泡组成的组中选择出来的。
12.根据权利要求7所述的一体式金属滑块,其中所述多个凹槽是设置在实质上对称的配置中的。
13.根据权利要求7所述的一体式金属滑块,其中所述一体式金属滑块是由铸铁制成的。
14.一种用于隔离钻井孔的部分的井下工具,所述井下工具包含:
复合芯棒,所述复合芯棒具有至少一组螺纹;以及
围绕所述复合芯棒设置的金属滑块,所述金属滑块包含:
圆形滑块主体,所述滑块主体具有设置在其中的有浮力的材料;
包含紧咬元件的外表面;以及
经配置用于接收所述复合芯棒的内表面,
其中将所述井下工具安装在钻井孔中包括所述金属滑块的至少一部分与周围管状物紧咬啮合,以及同样围绕所述复合芯棒设置的密封元件与所述周围管状物无缝式啮合。
15.根据权利要求14所述的井下工具,其中所述复合芯棒进一步包含穿过其中的流动通道,其中所述至少一组螺纹经配置用于耦合到安装工具,其中所述芯棒具有第二组螺纹用于耦合到下部套管,其中所述密封元件经配置以响应于所述密封元件上施加的力从第一位置径向扩展到第二位置,并且所述工具进一步包含:
复合部件,所述复合部件围绕所述芯棒设置并且靠近所述密封元件,所述复合部件具有可变形部分,所述可变形部分具有设置在其中的一个或多个凹槽。
16.根据权利要求15所述的井下工具,所述井下工具进一步包含:
第一锥体,所述第一锥体围绕所述复合芯棒设置并且靠近所述密封元件的第二端;
复合滑块,所述复合滑块围绕所述复合芯棒设置,所述复合滑块进一步包含圆形滑块主体,所述滑块主体具有带围绕所述整个圆形滑块主体的至少部分连接性的一体式配置,以及设置在其中的至少两个凹槽;
围绕所述复合芯棒设置的承重板,其中所述承重板经配置以将负载从安装套管传递到所述金属滑块;
其中所述复合滑块邻近第二锥体的外部逐渐变细的表面;以及
其中所述下部套管围绕所述复合芯棒设置并且靠近所述金属滑块的逐渐变细端。
17.根据权利要求14所述的井下工具,其中所述外表面具有在大约40到大约60的范围内的洛氏硬度,并且其中所述内表面具有在大约10到大约25的范围内的洛氏硬度。
16.根据权利要求15所述的井下工具,其中所述近端包含切变螺纹和第一外径,并且所述远端包含第二外径,其中所述复合芯棒是由细丝缠绕的材料制成的,并且其中所述第一外径大于所述第二外径,并且其中所述芯棒进一步包含在所述近端与所述远端之间延伸的流动孔。
17.根据权利要求14所述的井下工具,其中所述外表面的至少一部分是热处理的,其中所述主体包含多个孔,所述孔中的每一个具有设置在其中的有浮力的材料,并且其中所述紧咬元件包含锯齿。
18.根据权利要求14所述的井下工具,其中所述金属滑块是表面硬化的。
19.根据权利要求18所述的井下工具,其中所述内表面包含多个凹槽,并且其中所述有浮力的材料是从由聚氨酯、轻质珠子、环氧树脂以及玻璃泡组成的组中选择出来的。
20.根据权利要求19所述的井下工具,其中所述多个凹槽是设置在实质上对称的配置中的。
21.根据权利要求14所述的井下工具,其中所述金属滑块是由硬化铸铁形成的,并且其中所述金属滑块配置有设置在其中的低密度材料。
22.根据权利要求21所述的井下工具,其中所述低密度材料是玻璃泡填充的环氧树脂。
23.根据权利要求21所述的井下工具,其中所述井下工具被配置为压裂塞。
24.根据权利要求14所述的井下工具,所述工具进一步包含复合部件,所述复合部件围绕所述芯棒设置并且与所述密封元件啮合,其中所述复合部件是由第一材料制成的并且包含第一部分和第二部分,其中所述第一部分包含至少一个凹槽,并且其中第二材料粘合到所述第一部分并且至少部分填充到所述至少一个凹槽中。
25.根据权利要求24所述的井下工具,其中所述复合芯棒是由细丝缠绕的复合材料制成的,并且其中所述螺纹是切变螺纹或圆形螺纹。
26.根据权利要求25所述的井下工具,其中在安装所述井下工具之后,所述第一部分可以在离开所述轴的径向方向上扩展,并且其中所述复合部件和所述密封元件可以压缩在一起以在其间形成强化的屏障。
27.一种用于安装井下工具以分离钻井孔的一个或多个部分的方法,所述方法包含:
使所述井下工具进入到钻井孔中的期望的位置,所述井下工具包含:
芯棒,所述复合芯棒具有至少一组螺纹;
围绕所述复合芯棒设置的金属滑块,所述金属滑块包含:
圆形滑块主体,所述滑块主体具有设置在其中的有浮力的材料;
包含紧咬元件的外表面;以及
经配置用于接收所述复合芯棒的内表面,
使所述芯棒承受拉伸负载,从而使得锥形表面与所述金属滑块啮合并且使所述圆形滑块主体向外扩展为至少部分地与周围管状物啮合;以及
当所述拉伸负载足够使所述井下工具与所述安装工具分离时使所述井下工具不再同与其耦合的安装工具连接。
28.根据权利要求27所述的方法,其中所述金属滑块是由铸铁制成的,并且其中所述金属滑块是表面硬化的,使得外表面具有在大约40到大约60的范围内的洛氏硬度,并且其中所述内表面具有在大约10到大约25的范围内的洛氏硬度。
29.根据权利要求27所述的方法,其中所述方法进一步包含将流体从所述表面注射到钻井孔中,并且随后注射到紧靠所述钻井孔的地层的至少一部分中,其中所述钻井孔的第一部分位于所述工具之上,并且所述钻井孔的第二部分位于所述工具之下,并且其中在安装所述井下工具之后,所述第二部分与所述第一部分之间的流体连通可以由所述工具来控制。
30.根据权利要求29所述的方法,其中所述有浮力的材料包含玻璃泡,并且所述方法进一步包含:
在安装所述井下工具之后,使第二井下工具进入到钻井孔中;
安装所述第二井下工具;
执行压裂操作;并且
钻穿所述井下工具和所述第二井下工具。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161526217P | 2011-08-22 | 2011-08-22 | |
US61/526,217 | 2011-08-22 | ||
US201161558207P | 2011-11-10 | 2011-11-10 | |
US61/558,207 | 2011-11-10 | ||
PCT/US2012/051940 WO2013028803A2 (en) | 2011-08-22 | 2012-08-22 | Downhole tool and method of use |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103717827A true CN103717827A (zh) | 2014-04-09 |
Family
ID=47741953
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280037968.0A Active CN103717828B (zh) | 2011-08-22 | 2012-08-22 | 井下工具以及使用方法 |
CN201280037872.4A Active CN103717825B (zh) | 2011-08-22 | 2012-08-22 | 用于井下工具的复合部件及井下工具 |
CN201610417094.1A Active CN106089148B (zh) | 2011-08-22 | 2012-08-22 | 井下工具 |
CN201610420549.5A Active CN105927173B (zh) | 2011-08-22 | 2012-08-22 | 使用井下工具的方法 |
CN201280037934.1A Pending CN103717827A (zh) | 2011-08-22 | 2012-08-22 | 井下工具以及使用方法 |
CN201610417027.XA Active CN106089145B (zh) | 2011-08-22 | 2012-08-22 | 一种用于井下工具的芯棒 |
CN201280037894.0A Active CN103717826B (zh) | 2011-08-22 | 2012-08-22 | 井下工具以及使用方法 |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280037968.0A Active CN103717828B (zh) | 2011-08-22 | 2012-08-22 | 井下工具以及使用方法 |
CN201280037872.4A Active CN103717825B (zh) | 2011-08-22 | 2012-08-22 | 用于井下工具的复合部件及井下工具 |
CN201610417094.1A Active CN106089148B (zh) | 2011-08-22 | 2012-08-22 | 井下工具 |
CN201610420549.5A Active CN105927173B (zh) | 2011-08-22 | 2012-08-22 | 使用井下工具的方法 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610417027.XA Active CN106089145B (zh) | 2011-08-22 | 2012-08-22 | 一种用于井下工具的芯棒 |
CN201280037894.0A Active CN103717826B (zh) | 2011-08-22 | 2012-08-22 | 井下工具以及使用方法 |
Country Status (7)
Country | Link |
---|---|
US (22) | US8955605B2 (zh) |
EP (4) | EP2748407B1 (zh) |
CN (7) | CN103717828B (zh) |
AU (10) | AU2012298868B2 (zh) |
CA (8) | CA2952200C (zh) |
MX (4) | MX2014002019A (zh) |
WO (4) | WO2013028799A2 (zh) |
Families Citing this family (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040231845A1 (en) | 2003-05-15 | 2004-11-25 | Cooke Claude E. | Applications of degradable polymers in wells |
US20090107684A1 (en) | 2007-10-31 | 2009-04-30 | Cooke Jr Claude E | Applications of degradable polymers for delayed mechanical changes in wells |
US8540033B2 (en) * | 2008-02-22 | 2013-09-24 | Fecon, Inc. | Apparatus for land clearing and preparation |
US9587475B2 (en) | 2008-12-23 | 2017-03-07 | Frazier Ball Invention, LLC | Downhole tools having non-toxic degradable elements and their methods of use |
US9506309B2 (en) | 2008-12-23 | 2016-11-29 | Frazier Ball Invention, LLC | Downhole tools having non-toxic degradable elements |
US9500061B2 (en) | 2008-12-23 | 2016-11-22 | Frazier Technologies, L.L.C. | Downhole tools having non-toxic degradable elements and methods of using the same |
US9217319B2 (en) | 2012-05-18 | 2015-12-22 | Frazier Technologies, L.L.C. | High-molecular-weight polyglycolides for hydrocarbon recovery |
CN103717828B (zh) * | 2011-08-22 | 2016-08-17 | 井下技术有限责任公司 | 井下工具以及使用方法 |
US9567827B2 (en) * | 2013-07-15 | 2017-02-14 | Downhole Technology, Llc | Downhole tool and method of use |
US10036221B2 (en) * | 2011-08-22 | 2018-07-31 | Downhole Technology, Llc | Downhole tool and method of use |
US10316617B2 (en) * | 2011-08-22 | 2019-06-11 | Downhole Technology, Llc | Downhole tool and system, and method of use |
US9777551B2 (en) * | 2011-08-22 | 2017-10-03 | Downhole Technology, Llc | Downhole system for isolating sections of a wellbore |
US9617823B2 (en) | 2011-09-19 | 2017-04-11 | Schlumberger Technology Corporation | Axially compressed and radially pressed seal |
US10337279B2 (en) | 2014-04-02 | 2019-07-02 | Magnum Oil Tools International, Ltd. | Dissolvable downhole tools comprising both degradable polymer acid and degradable metal alloy elements |
US9238953B2 (en) | 2011-11-08 | 2016-01-19 | Schlumberger Technology Corporation | Completion method for stimulation of multiple intervals |
US8590616B1 (en) * | 2012-02-22 | 2013-11-26 | Tony D. McClinton | Caged ball fractionation plug |
US8839855B1 (en) * | 2012-02-22 | 2014-09-23 | McClinton Energy Group, LLC | Modular changeable fractionation plug |
US9650851B2 (en) | 2012-06-18 | 2017-05-16 | Schlumberger Technology Corporation | Autonomous untethered well object |
US9157288B2 (en) * | 2012-07-19 | 2015-10-13 | General Plastics & Composites, L.P. | Downhole tool system and method related thereto |
EP2882925A4 (en) * | 2012-08-07 | 2016-06-15 | Enventure Global Technology | HYBRID SPRING CONE |
US9995107B2 (en) * | 2012-10-29 | 2018-06-12 | Ccdi Composites, Inc. | Optimized composite downhole tool for well completion |
US9416617B2 (en) * | 2013-02-12 | 2016-08-16 | Weatherford Technology Holdings, Llc | Downhole tool having slip inserts composed of different materials |
CN103244074B (zh) * | 2013-04-27 | 2016-02-10 | 河南理工大学 | 伞式封孔器 |
GB2513851A (en) | 2013-05-03 | 2014-11-12 | Tendeka Bv | A packer and associated methods, seal ring and fixing ring |
US20180128073A1 (en) * | 2016-11-08 | 2018-05-10 | Magnum Oil Tools International, Ltd. | Powder metal gripping elements for settable downhole tools having slips |
CA2912868C (en) * | 2013-05-30 | 2018-07-03 | Frank's International, Llc | Coating system for tubular gripping components |
EP3017138B1 (en) | 2013-07-05 | 2019-05-01 | Bruce A. Tunget | Apparatus and method for cultivating a downhole surface |
US10450829B2 (en) * | 2013-07-19 | 2019-10-22 | Schlumberger Technology Corporation | Drillable plug |
US9631468B2 (en) | 2013-09-03 | 2017-04-25 | Schlumberger Technology Corporation | Well treatment |
US20150068728A1 (en) * | 2013-09-12 | 2015-03-12 | Weatherford/Lamb, Inc. | Downhole Tool Having Slip Composed of Composite Ring |
US9657547B2 (en) | 2013-09-18 | 2017-05-23 | Rayotek Scientific, Inc. | Frac plug with anchors and method of use |
US9353596B2 (en) * | 2013-09-18 | 2016-05-31 | Rayotek Scientific, Inc. | Oil well plug and method of use |
CA2854716A1 (en) * | 2013-10-29 | 2015-04-29 | Resource Completion Systems Inc. | Drillable debris barrier tool |
US11649691B2 (en) * | 2013-11-22 | 2023-05-16 | Target Completions, LLC | IPacker bridge plug with slips |
CA2931143C (en) * | 2013-11-22 | 2019-01-08 | Target Completions, LLC | Packer bridge plug with slips |
CA2886988C (en) | 2014-04-02 | 2017-08-29 | Magnum Oil Tools International, Ltd. | Dissolvable aluminum downhole plug |
MX2017001258A (es) | 2014-08-28 | 2017-05-01 | Halliburton Energy Services Inc | Dispositivos de aislamiento de pozos degradables con grandes areas de flujo. |
US11613688B2 (en) | 2014-08-28 | 2023-03-28 | Halliburton Energy Sevices, Inc. | Wellbore isolation devices with degradable non-metallic components |
CN104329045A (zh) * | 2014-09-01 | 2015-02-04 | 吉林市旭峰激光科技有限责任公司 | 一种投球双锥角密封球座 |
US9828828B2 (en) * | 2014-10-03 | 2017-11-28 | Baker Hughes, A Ge Company, Llc | Seat arrangement, method for creating a seat and method for fracturing a borehole |
US9677373B2 (en) * | 2014-10-31 | 2017-06-13 | Team Oil Tools, Lp | Downhole tool with anti-extrusion device |
US20160160591A1 (en) * | 2014-12-05 | 2016-06-09 | Baker Hughes Incorporated | Degradable anchor device with inserts |
WO2016100269A1 (en) * | 2014-12-15 | 2016-06-23 | Schlumberger Canada Limited | Downhole expandable and contractable ring assembly |
US10144065B2 (en) | 2015-01-07 | 2018-12-04 | Kennametal Inc. | Methods of making sintered articles |
MY187492A (en) * | 2015-03-03 | 2021-09-24 | Welltec As | Downhole stroking tool |
US9845658B1 (en) | 2015-04-17 | 2017-12-19 | Albany International Corp. | Lightweight, easily drillable or millable slip for composite frac, bridge and drop ball plugs |
CA2982989C (en) * | 2015-04-17 | 2020-01-14 | Downhole Technology, Llc | Downhole tool and system, and method of use |
US10000991B2 (en) | 2015-04-18 | 2018-06-19 | Tercel Oilfield Products Usa Llc | Frac plug |
US9835003B2 (en) | 2015-04-18 | 2017-12-05 | Tercel Oilfield Products Usa Llc | Frac plug |
CN104879090B (zh) * | 2015-06-12 | 2018-05-01 | 西南石油大学 | 一种单卡瓦双作用速钻复合桥塞 |
CA2937076C (en) | 2015-07-24 | 2021-11-23 | Lakhena Yong | Interventionless frangible disk isolation tool |
AU2015409125B2 (en) * | 2015-09-14 | 2019-07-04 | The Wellboss Company, Llc | Downhole tool and system, and method for the same |
CA2995066C (en) | 2015-09-22 | 2019-10-29 | Halliburton Energy Services, Inc. | Wellbore isolation device with slip assembly |
EP3170969A1 (en) * | 2015-11-17 | 2017-05-24 | Services Pétroliers Schlumberger | Encapsulated sensors and electronics |
US20180023366A1 (en) * | 2016-01-06 | 2018-01-25 | Baker Hughes, A Ge Company, Llc | Slotted Backup Ring Assembly |
US10851603B2 (en) * | 2016-02-01 | 2020-12-01 | G&H Diviersified Manufacturing LP | Slips for downhole sealing device and methods of making the same |
AU2017225543A1 (en) | 2016-02-29 | 2018-09-27 | Tercel Oilfield Products Usa Llc | Frac plug |
AU2017293401A1 (en) * | 2016-07-05 | 2018-03-08 | The Wellboss Company, Llc | Composition of matter and use thereof |
USD806136S1 (en) * | 2016-11-15 | 2017-12-26 | Maverick Downhole Technologies Inc. | Frac plug slip |
CA3000323C (en) * | 2016-11-17 | 2021-01-05 | Downhole Technology, Llc | Downhole tool and method of use |
US11065863B2 (en) | 2017-02-20 | 2021-07-20 | Kennametal Inc. | Cemented carbide powders for additive manufacturing |
US10472911B2 (en) | 2017-03-20 | 2019-11-12 | Weatherford Technology Holdings, LLC. | Gripping apparatus and associated methods of manufacturing |
US10519740B2 (en) | 2017-03-20 | 2019-12-31 | Weatherford Technology Holdings, Llc | Sealing apparatus and associated methods of manufacturing |
US10626696B1 (en) * | 2017-03-23 | 2020-04-21 | Christopher A. Branton | Fluid-sealing downhole bridge plugs |
US10519745B2 (en) * | 2017-04-12 | 2019-12-31 | Baker Hughes, A Ge Company, Llc | Magnetic flow valve for borehole use |
GB201710376D0 (en) * | 2017-06-28 | 2017-08-16 | Peak Well Systems Pty Ltd | Seal apparatus and methods of use |
US11248436B2 (en) | 2017-07-26 | 2022-02-15 | Schlumberger Technology Corporation | Frac diverter |
CA176247S (en) * | 2017-08-01 | 2018-09-17 | Stas Inc | Rotor for molten metal processing machine |
AU201810865S (en) * | 2017-08-17 | 2018-03-06 | Downhole Products Ltd | Tubing shoe |
JP1593594S (zh) * | 2017-08-22 | 2017-12-25 | ||
USD877780S1 (en) * | 2017-09-08 | 2020-03-10 | XR Lateral, LLC | Directional drilling assembly |
USD863919S1 (en) | 2017-09-08 | 2019-10-22 | XR Lateral, LLC | Directional drilling assembly |
US10907437B2 (en) | 2019-03-28 | 2021-02-02 | Baker Hughes Oilfield Operations Llc | Multi-layer backup ring |
US10689942B2 (en) | 2017-09-11 | 2020-06-23 | Baker Hughes, A Ge Company, Llc | Multi-layer packer backup ring with closed extrusion gaps |
US10907438B2 (en) | 2017-09-11 | 2021-02-02 | Baker Hughes, A Ge Company, Llc | Multi-layer backup ring |
CA3078610A1 (en) * | 2017-10-06 | 2019-04-11 | G&H Diversified Manufacturing Lp | Systems and methods for sealing a wellbore |
US10662716B2 (en) | 2017-10-06 | 2020-05-26 | Kennametal Inc. | Thin-walled earth boring tools and methods of making the same |
US10605040B2 (en) | 2017-10-07 | 2020-03-31 | Geodynamics, Inc. | Large-bore downhole isolation tool with plastically deformable seal and method |
US11998987B2 (en) | 2017-12-05 | 2024-06-04 | Kennametal Inc. | Additive manufacturing techniques and applications thereof |
USD878632S1 (en) | 2018-02-23 | 2020-03-17 | Joe BAKER | Swimming pool liner shield |
SG11202004882SA (en) | 2018-02-27 | 2020-06-29 | Halliburton Energy Services Inc | Improved sealing element |
US11512545B2 (en) | 2018-02-27 | 2022-11-29 | Halliburton Energy Services, Inc. | Downhole check valve assembly with a ratchet mechanism |
US10890036B2 (en) | 2018-02-28 | 2021-01-12 | Repeat Precision, Llc | Downhole tool and method of assembly |
US10801300B2 (en) | 2018-03-26 | 2020-10-13 | Exacta-Frac Energy Services, Inc. | Composite frac plug |
JP2019178569A (ja) * | 2018-03-30 | 2019-10-17 | 株式会社クレハ | 保護部材を備えるダウンホールプラグ |
GB2581059B (en) * | 2018-04-12 | 2022-08-31 | The Wellboss Company Llc | Downhole tool with bottom composite slip |
US10689940B2 (en) | 2018-04-17 | 2020-06-23 | Baker Hughes, A Ge Company, Llc | Element |
CA3081968C (en) * | 2018-04-23 | 2022-07-19 | The Wellboss Company, Llc | Downhole tool with tethered ball |
CN108819212A (zh) * | 2018-06-04 | 2018-11-16 | 吉林市旭峰激光科技有限责任公司 | 一种复合桥塞碳纤维中心管制造方法 |
US10724311B2 (en) | 2018-06-28 | 2020-07-28 | Baker Hughes, A Ge Company, Llc | System for setting a downhole tool |
WO2020013949A1 (en) | 2018-07-13 | 2020-01-16 | Kingdom Downhole Tools, Llc | One run setting tool |
US10837254B2 (en) | 2018-08-14 | 2020-11-17 | Saudi Arabian Oil Company | Tandem cement retainer and bridge plug |
US11236576B2 (en) | 2018-08-17 | 2022-02-01 | Geodynamics, Inc. | Complex components for molded composite frac plugs |
JP7159709B2 (ja) * | 2018-09-05 | 2022-10-25 | 日立金属株式会社 | マグネットロールの製造装置及び該製造装置に使用される金型 |
CN109184616B (zh) * | 2018-09-07 | 2021-06-08 | 大庆市晟威机械制造有限公司 | 双孔管注浆封堵器及其使用方法 |
US11434717B2 (en) | 2018-10-26 | 2022-09-06 | Solgix, Inc | Method and apparatus for providing a plug with a deformable expandable continuous ring creating a fluid barrier |
US11193347B2 (en) * | 2018-11-07 | 2021-12-07 | Petroquip Energy Services, Llp | Slip insert for tool retention |
US11125039B2 (en) | 2018-11-09 | 2021-09-21 | Innovex Downhole Solutions, Inc. | Deformable downhole tool with dissolvable element and brittle protective layer |
US11965391B2 (en) | 2018-11-30 | 2024-04-23 | Innovex Downhole Solutions, Inc. | Downhole tool with sealing ring |
US11629566B2 (en) | 2018-12-04 | 2023-04-18 | Halliburton Energy Services, Inc. | Systems and methods for positioning an isolation device in a borehole |
CN111411914B (zh) * | 2019-01-07 | 2024-06-11 | 中国石油化工股份有限公司 | 井筒防喷堵塞器 |
US11396787B2 (en) | 2019-02-11 | 2022-07-26 | Innovex Downhole Solutions, Inc. | Downhole tool with ball-in-place setting assembly and asymmetric sleeve |
WO2020172032A1 (en) * | 2019-02-21 | 2020-08-27 | Geodynamics, Inc. | Top set plug and method |
US11261683B2 (en) | 2019-03-01 | 2022-03-01 | Innovex Downhole Solutions, Inc. | Downhole tool with sleeve and slip |
US11203913B2 (en) | 2019-03-15 | 2021-12-21 | Innovex Downhole Solutions, Inc. | Downhole tool and methods |
WO2020198245A1 (en) | 2019-03-25 | 2020-10-01 | Kennametal Inc. | Additive manufacturing techniques and applications thereof |
WO2020206196A1 (en) * | 2019-04-04 | 2020-10-08 | Schlumberger Technology Corporation | Voided moldable buttons |
CN109973044B (zh) * | 2019-04-11 | 2021-05-18 | 雪曼圣杰科技有限公司 | 金属密封副封隔器 |
USD916937S1 (en) * | 2019-05-03 | 2021-04-20 | Innovex Downhole Solutions, Inc. | Downhole tool including a swage |
WO2020231861A1 (en) * | 2019-05-10 | 2020-11-19 | G&H Diversified Manufacturing Lp | Mandrel assemblies for a plug and associated methods |
US11788375B2 (en) | 2019-05-30 | 2023-10-17 | Schlumberger Technology Corporation | Resilient matrix suspension for frangible components |
CN110067531B (zh) * | 2019-06-11 | 2020-08-04 | 大庆丹枫石油技术开发有限公司 | 一种具有稳定的锚定装置的桥塞 |
US12215565B2 (en) | 2019-06-14 | 2025-02-04 | Nine Downhole Technologies, Llc | Compact downhole tool |
US11365600B2 (en) * | 2019-06-14 | 2022-06-21 | Nine Downhole Technologies, Llc | Compact downhole tool |
US11578555B2 (en) * | 2019-08-01 | 2023-02-14 | Vertice Oil Tools Inc. | Methods and systems for a frac plug |
US11168535B2 (en) | 2019-09-05 | 2021-11-09 | Exacta-Frac Energy Services, Inc. | Single-set anti-extrusion ring with 3-dimensionally curved mating ring segment faces |
US10662734B1 (en) * | 2019-09-14 | 2020-05-26 | Vertice Oil Tools | Methods and systems for preventing hydrostatic head within a well |
US11035197B2 (en) | 2019-09-24 | 2021-06-15 | Exacta-Frac Energy Services, Inc. | Anchoring extrusion limiter for non-retrievable packers and composite frac plug incorporating same |
US10961805B1 (en) | 2019-10-14 | 2021-03-30 | Exacta-Frac Energy Services, Inc. | Pre-set inhibiting extrusion limiter for retrievable packers |
US11028666B2 (en) * | 2019-11-07 | 2021-06-08 | Target Completions Llc | Apparatus for isolating one or more zones in a well |
US11142978B2 (en) | 2019-12-12 | 2021-10-12 | Baker Hughes Oilfield Operations Llc | Packer assembly including an interlock feature |
USD949936S1 (en) * | 2019-12-23 | 2022-04-26 | Paramount Design LLC | Downhole hydraulic fracturing plug |
US11753882B2 (en) | 2020-01-10 | 2023-09-12 | William Thomas Phillips, Inc. | System and apparatus comprising a guide for a gripping tool |
US11401758B2 (en) | 2020-01-10 | 2022-08-02 | William Thomas Phillips, Inc. | System and apparatus comprising a guide for a gripping tool and method of using same |
USD935491S1 (en) | 2020-01-10 | 2021-11-09 | William Thomas Phillips, Inc. | Nubbin having a guide for a gripping tool |
US11230903B2 (en) | 2020-02-05 | 2022-01-25 | Weatherford Technology Holdings, Llc | Downhole tool having low density slip inserts |
US11608705B2 (en) | 2020-02-14 | 2023-03-21 | Chengdu Innox Technology Co., Ltd. | Dissolvable frac plug adapter, method for measuring dynamic downhole temperature, and method for fabricating dissolvable frac plug |
US11572753B2 (en) | 2020-02-18 | 2023-02-07 | Innovex Downhole Solutions, Inc. | Downhole tool with an acid pill |
CN111287689A (zh) * | 2020-04-15 | 2020-06-16 | 西南石油大学 | 一种单卡瓦全可溶油管封堵桥塞 |
CN111441742A (zh) * | 2020-05-13 | 2020-07-24 | 中国石油集团渤海钻探工程有限公司 | 可溶桥塞坐封接头包 |
US11319770B2 (en) | 2020-06-24 | 2022-05-03 | Weatherford Technology Holdings, Llc | Downhole tool with a retained object |
US11434715B2 (en) | 2020-08-01 | 2022-09-06 | Lonestar Completion Tools, LLC | Frac plug with collapsible plug body having integral wedge and slip elements |
CN112031701B (zh) * | 2020-08-07 | 2023-04-28 | 黄越 | 一种水泥承托装置以及油气井水泥塞作业施工方法 |
US11655685B2 (en) | 2020-08-10 | 2023-05-23 | Saudi Arabian Oil Company | Downhole welding tools and related methods |
US11613947B2 (en) | 2020-10-29 | 2023-03-28 | The Charles Machine Works, Inc. | Drill pipe with internal flow check valve |
USD959521S1 (en) * | 2020-11-16 | 2022-08-02 | Adam Abrams | Tool |
US11549329B2 (en) | 2020-12-22 | 2023-01-10 | Saudi Arabian Oil Company | Downhole casing-casing annulus sealant injection |
US11828128B2 (en) | 2021-01-04 | 2023-11-28 | Saudi Arabian Oil Company | Convertible bell nipple for wellbore operations |
US11598178B2 (en) | 2021-01-08 | 2023-03-07 | Saudi Arabian Oil Company | Wellbore mud pit safety system |
GB2589269B (en) * | 2021-02-01 | 2021-11-10 | Viking Completion Tech Fzco | Exercise tool |
CN112576231B (zh) * | 2021-02-24 | 2021-06-01 | 四川省威沃敦化工有限公司 | 一种全金属可溶压裂分段器 |
US12054999B2 (en) | 2021-03-01 | 2024-08-06 | Saudi Arabian Oil Company | Maintaining and inspecting a wellbore |
US11761297B2 (en) | 2021-03-11 | 2023-09-19 | Solgix, Inc | Methods and apparatus for providing a plug activated by cup and untethered object |
US12247458B2 (en) | 2021-03-11 | 2025-03-11 | Robert Jacob | Method and apparatus for providing a ball-in-place plug activated by cup and internal continuous expansion mechanism |
USD954755S1 (en) * | 2021-03-24 | 2022-06-14 | Mark A. Kelley | Inner sonde tube terminal cap |
USD954756S1 (en) * | 2021-03-24 | 2022-06-14 | Mark A. Kelley | Reversed bent sub with spring pocket |
USD954757S1 (en) * | 2021-03-29 | 2022-06-14 | Mark A. Kelley | Inner sonde tube timed cap |
USD954758S1 (en) * | 2021-03-29 | 2022-06-14 | Mark A. Kelley | Inner sonde tube timed cap |
US11608704B2 (en) | 2021-04-26 | 2023-03-21 | Solgix, Inc | Method and apparatus for a joint-locking plug |
US11448026B1 (en) | 2021-05-03 | 2022-09-20 | Saudi Arabian Oil Company | Cable head for a wireline tool |
US11859815B2 (en) | 2021-05-18 | 2024-01-02 | Saudi Arabian Oil Company | Flare control at well sites |
CA3160073A1 (en) * | 2021-05-19 | 2022-11-19 | Brett OLSON | Well abandonment tool |
US11905791B2 (en) | 2021-08-18 | 2024-02-20 | Saudi Arabian Oil Company | Float valve for drilling and workover operations |
US11913298B2 (en) | 2021-10-25 | 2024-02-27 | Saudi Arabian Oil Company | Downhole milling system |
US12180802B2 (en) * | 2022-02-14 | 2024-12-31 | Innovex Downhole Solutions, Inc. | Hybrid composite and dissolvable downhole tool |
US11680459B1 (en) | 2022-02-24 | 2023-06-20 | Saudi Arabian Oil Company | Liner system with integrated cement retainer |
USD1009088S1 (en) * | 2022-05-10 | 2023-12-26 | Kaldera, LLC | Wellbore tool with extendable arms |
US12018565B2 (en) | 2022-05-24 | 2024-06-25 | Saudi Arabian Oil Company | Whipstock to plug and abandon wellbore below setting depth |
US12221853B2 (en) | 2022-06-01 | 2025-02-11 | Revolution Strategic Consulting Inc. | Downhole plug |
US11993992B2 (en) | 2022-08-29 | 2024-05-28 | Saudi Arabian Oil Company | Modified cement retainer with milling assembly |
US12146385B2 (en) * | 2022-10-20 | 2024-11-19 | Innovex International, Inc. | Toe valve |
WO2024186405A1 (en) * | 2023-03-08 | 2024-09-12 | American Axle & Manufacturing, Inc. | Method for forming an electric motor using a mandrel assembly |
US12270272B2 (en) | 2023-09-01 | 2025-04-08 | Saudi Arabian Oil Company | Ground-level plug and perf ball drop tool |
CN117514119B (zh) * | 2024-01-03 | 2024-04-12 | 中国石油大学(华东) | 一种页岩油立体开发压裂装置及压裂方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3687196A (en) * | 1969-12-12 | 1972-08-29 | Schlumberger Technology Corp | Drillable slip |
US4440223A (en) * | 1981-02-17 | 1984-04-03 | Ava International Corporation | Well slip assemblies |
US5484040A (en) * | 1992-12-22 | 1996-01-16 | Penisson; Dennis J. | Slip-type gripping assembly |
CN2844420Y (zh) * | 2005-11-21 | 2006-12-06 | 杨玉军 | 注水封隔器 |
US20080264627A1 (en) * | 2007-04-30 | 2008-10-30 | Smith International, Inc. | Permanent anchoring device |
WO2009112853A2 (en) * | 2008-03-13 | 2009-09-17 | National Oilwell Varco, L.P. | Gripping element for gripping a tubular in the construction and maintenance of oil and gas wells |
US20110094802A1 (en) * | 2008-01-17 | 2011-04-28 | Vatne Per A | Slip device for suspending a drill or casing string in a drill floor |
Family Cites Families (248)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1583982A (en) * | 1924-06-30 | 1926-05-11 | William G Long | Plug for wells |
US2134749A (en) * | 1937-01-21 | 1938-11-01 | Baker Oil Tools Inc | Method of making cast iron slips for oil tools |
US2153035A (en) * | 1937-01-21 | 1939-04-04 | Baker Oil Tools Inc | Method of producing slips for oil well tools |
US2230712A (en) | 1940-04-11 | 1941-02-04 | Bendeler William | Well bridging plug |
US2687775A (en) | 1950-07-10 | 1954-08-31 | Baker Oil Tools Inc | Setting tool and well packer |
US2797758A (en) | 1954-08-17 | 1957-07-02 | Clayton W Showalter | Packer unit and packing ring for pipe testing apparatus |
US3163225A (en) | 1961-02-15 | 1964-12-29 | Halliburton Co | Well packers |
US3343607A (en) | 1965-10-11 | 1967-09-26 | Schlumberger Technology Corp | Non-retrievable bridge plug |
US3371716A (en) * | 1965-10-23 | 1968-03-05 | Schlumberger Technology Corp | Bridge plug |
US3422898A (en) | 1967-08-17 | 1969-01-21 | Schlumberger Technology Corp | Setting apparatus for well tools |
US3769127A (en) | 1968-04-23 | 1973-10-30 | Goldsworthy Eng Inc | Method and apparatus for producing filament reinforced tubular products on a continuous basis |
US3497002A (en) * | 1968-07-11 | 1970-02-24 | Schlumberger Technology Corp | Guided frangible slips |
US3530934A (en) * | 1968-07-11 | 1970-09-29 | Schlumberger Technology Corp | Segmented frangible slips with guide pins |
US3548936A (en) * | 1968-11-15 | 1970-12-22 | Dresser Ind | Well tools and gripping members therefor |
US3776561A (en) | 1970-10-16 | 1973-12-04 | R Haney | Formation of well packers |
JPS56143889A (en) * | 1980-04-12 | 1981-11-09 | Nippon Steel Corp | Screw joint for high airtightness oil pipe |
US4355825A (en) * | 1980-10-15 | 1982-10-26 | Cameron Iron Works, Inc. | Mudline suspension system |
US4457369A (en) * | 1980-12-17 | 1984-07-03 | Otis Engineering Corporation | Packer for high temperature high pressure wells |
US4437516A (en) | 1981-06-03 | 1984-03-20 | Baker International Corporation | Combination release mechanism for downhole well apparatus |
US4359090A (en) | 1981-08-31 | 1982-11-16 | Baker International Corporation | Anchoring mechanism for well packer |
US4436150A (en) | 1981-09-28 | 1984-03-13 | Otis Engineering Corporation | Bridge plug |
US4388971A (en) | 1981-10-02 | 1983-06-21 | Baker International Corporation | Hanger and running tool apparatus and method |
US4440233A (en) * | 1982-07-06 | 1984-04-03 | Hughes Tool Company | Setting tool |
US4469172A (en) | 1983-01-31 | 1984-09-04 | Hughes Tool Company | Self-energizing locking mechanism |
EP0136659A3 (en) | 1983-09-30 | 1986-10-08 | Teijin Limited | Wet-degradable fibers |
US4708202A (en) * | 1984-05-17 | 1987-11-24 | The Western Company Of North America | Drillable well-fluid flow control tool |
US4630690A (en) | 1985-07-12 | 1986-12-23 | Dailey Petroleum Services Corp. | Spiralling tapered slip-on drill string stabilizer |
US4711300A (en) | 1986-05-14 | 1987-12-08 | Wardlaw Iii Louis J | Downhole cementing tool assembly |
US4784226A (en) | 1987-05-22 | 1988-11-15 | Arrow Oil Tools, Inc. | Drillable bridge plug |
DE4008403A1 (de) | 1990-03-16 | 1991-09-19 | Merck Patent Gmbh | Glykolsaeurederivate |
US5224540A (en) * | 1990-04-26 | 1993-07-06 | Halliburton Company | Downhole tool apparatus with non-metallic components and methods of drilling thereof |
US5113940A (en) | 1990-05-02 | 1992-05-19 | Weatherford U.S., Inc. | Well apparatuses and anti-rotation device for well apparatuses |
US5246069A (en) | 1990-05-02 | 1993-09-21 | Weatherford-Petco, Inc. | Self-aligning well apparatuses and anti-rotation device for well apparatuses |
US5025858A (en) | 1990-05-02 | 1991-06-25 | Weatherford U.S., Inc. | Well apparatuses and anti-rotation device for well apparatuses |
US5048606A (en) * | 1990-09-10 | 1991-09-17 | Lindsey Completion Systems, Inc. | Setting tool for a liner hanger assembly |
CA2062928C (en) | 1991-03-19 | 2003-07-29 | Thurman B. Carter | Method and apparatus to cut and remove casing |
CN2092598U (zh) * | 1991-05-22 | 1992-01-08 | 河南石油勘探局采油工艺研究所 | 可捞式热力桥塞 |
US5398975A (en) * | 1992-03-13 | 1995-03-21 | Centron Corporation | Composite threaded pipe connectors and method |
US5253714A (en) | 1992-08-17 | 1993-10-19 | Baker Hughes Incorporated | Well service tool |
US5333685A (en) * | 1993-05-14 | 1994-08-02 | Bruce Gilbert | Wireline set and tubing retrievable packer |
US5376200A (en) | 1993-08-30 | 1994-12-27 | General Dynamics Corporation | Method for manufacturing an integral threaded connection for a composite tank |
US5449040A (en) * | 1994-10-04 | 1995-09-12 | Milner; John E. | Wireline-set tubing-release packer apparatus |
CN2256931Y (zh) * | 1996-01-24 | 1997-06-25 | 霍春林 | 可捞式桥塞 |
US5895079A (en) * | 1996-02-21 | 1999-04-20 | Kenneth J. Carstensen | Threaded connections utilizing composite materials |
US5884699A (en) * | 1996-02-26 | 1999-03-23 | Halliburton Energy Services, Inc. | Retrievable torque-through packer having high strength and reduced cross-sectional area |
US5701959A (en) * | 1996-03-29 | 1997-12-30 | Halliburton Company | Downhole tool apparatus and method of limiting packer element extrusion |
US6353771B1 (en) | 1996-07-22 | 2002-03-05 | Smith International, Inc. | Rapid manufacturing of molds for forming drill bits |
US5819846A (en) * | 1996-10-01 | 1998-10-13 | Bolt, Jr.; Donald B. | Bridge plug |
US5918846A (en) * | 1996-12-11 | 1999-07-06 | Meritor Automotive Canada, Inc. | Seat track with continuous engagement and memory easy entry mechanism |
US5967352A (en) | 1997-03-28 | 1999-10-19 | Portola Packaging, Inc. | Interrupted thread cap structure |
US5927403A (en) * | 1997-04-21 | 1999-07-27 | Dallas; L. Murray | Apparatus for increasing the flow of production stimulation fluids through a wellhead |
US5842517A (en) | 1997-05-02 | 1998-12-01 | Davis-Lynch, Inc. | Anti-rotational cementing apparatus |
US5839515A (en) | 1997-07-07 | 1998-11-24 | Halliburton Energy Services, Inc. | Slip retaining system for downhole tools |
US5906240A (en) * | 1997-08-20 | 1999-05-25 | Halliburton Energy Services, Inc. | Slip having passageway for lines therethrough |
US5984007A (en) | 1998-01-09 | 1999-11-16 | Halliburton Energy Services, Inc. | Chip resistant buttons for downhole tools having slip elements |
JP3700108B2 (ja) * | 1998-04-13 | 2005-09-28 | 株式会社メタルワン | 油井管用ネジ継手 |
US6167963B1 (en) | 1998-05-08 | 2001-01-02 | Baker Hughes Incorporated | Removable non-metallic bridge plug or packer |
US6131663A (en) | 1998-06-10 | 2000-10-17 | Baker Hughes Incorporated | Method and apparatus for positioning and repositioning a plurality of service tools downhole without rotation |
US6347674B1 (en) * | 1998-12-18 | 2002-02-19 | Western Well Tool, Inc. | Electrically sequenced tractor |
US6564871B1 (en) * | 1999-04-30 | 2003-05-20 | Smith International, Inc. | High pressure permanent packer |
US6241018B1 (en) * | 1999-07-07 | 2001-06-05 | Weatherford/Lamb, Inc. | Hydraulic running tool |
WO2001009480A1 (en) | 1999-08-03 | 2001-02-08 | Latiolais, Burney, J., Jr. | Anti-rotation device for use with well tools |
US6695080B2 (en) * | 1999-09-09 | 2004-02-24 | Baker Hughes Incorporated | Reaming apparatus and method with enhanced structural protection |
CN1178015C (zh) * | 1999-09-16 | 2004-12-01 | 西德尔卡有限公司 | 高安定性及稳定性的螺纹接头 |
US6598678B1 (en) * | 1999-12-22 | 2003-07-29 | Weatherford/Lamb, Inc. | Apparatus and methods for separating and joining tubulars in a wellbore |
US6354372B1 (en) * | 2000-01-13 | 2002-03-12 | Carisella & Cook Ventures | Subterranean well tool and slip assembly |
FR2807138B1 (fr) * | 2000-03-31 | 2002-05-17 | Vallourec Mannesmann Oil & Gas | Element filete tubulaire pour joint filete tubulaire resistant a la fatigue et joint filete tubulaire resultant |
US7600572B2 (en) * | 2000-06-30 | 2009-10-13 | Bj Services Company | Drillable bridge plug |
US6578633B2 (en) * | 2000-06-30 | 2003-06-17 | Bj Services Company | Drillable bridge plug |
US7255178B2 (en) | 2000-06-30 | 2007-08-14 | Bj Services Company | Drillable bridge plug |
US6394180B1 (en) | 2000-07-12 | 2002-05-28 | Halliburton Energy Service,S Inc. | Frac plug with caged ball |
CN2457332Y (zh) * | 2000-09-13 | 2001-10-31 | 中国石油化工股份有限公司中原油田分公司采油工程技术研究院 | 一种改进型可钻桥塞 |
US7357197B2 (en) * | 2000-11-07 | 2008-04-15 | Halliburton Energy Services, Inc. | Method and apparatus for monitoring the condition of a downhole drill bit, and communicating the condition to the surface |
US6712153B2 (en) | 2001-06-27 | 2004-03-30 | Weatherford/Lamb, Inc. | Resin impregnated continuous fiber plug with non-metallic element system |
US20030010533A1 (en) * | 2001-07-11 | 2003-01-16 | Hart Daniel R. | Mono-bore retrievable whipstock |
US6578638B2 (en) | 2001-08-27 | 2003-06-17 | Weatherford/Lamb, Inc. | Drillable inflatable packer & methods of use |
US6793022B2 (en) | 2002-04-04 | 2004-09-21 | Halliburton Energy Services, Inc. | Spring wire composite corrosion resistant anchoring device |
US20030188860A1 (en) * | 2002-04-04 | 2003-10-09 | Weatherford/Lamb, Inc. | Releasing mechanism for downhole sealing tool |
US7341110B2 (en) * | 2002-04-05 | 2008-03-11 | Baker Hughes Incorporated | Slotted slip element for expandable packer |
US6695050B2 (en) * | 2002-06-10 | 2004-02-24 | Halliburton Energy Services, Inc. | Expandable retaining shoe |
US6695051B2 (en) * | 2002-06-10 | 2004-02-24 | Halliburton Energy Services, Inc. | Expandable retaining shoe |
US6800593B2 (en) | 2002-06-19 | 2004-10-05 | Texas United Chemical Company, Llc. | Hydrophilic polymer concentrates |
US6796376B2 (en) | 2002-07-02 | 2004-09-28 | Warren L. Frazier | Composite bridge plug system |
CN2567337Y (zh) * | 2002-07-19 | 2003-08-20 | 辽河石油勘探局井下作业公司 | 套管外窜封固工具 |
US7087109B2 (en) | 2002-09-25 | 2006-08-08 | Z Corporation | Three dimensional printing material system and method |
US7048066B2 (en) * | 2002-10-09 | 2006-05-23 | Halliburton Energy Services, Inc. | Downhole sealing tools and method of use |
GB2428719B (en) | 2003-04-01 | 2007-08-29 | Specialised Petroleum Serv Ltd | Method of Circulating Fluid in a Borehole |
CA2482681C (en) | 2004-09-28 | 2008-08-12 | Halliburton Energy Services, Inc. | Energized slip ring assembly |
US7017672B2 (en) | 2003-05-02 | 2006-03-28 | Go Ii Oil Tools, Inc. | Self-set bridge plug |
US20090107684A1 (en) | 2007-10-31 | 2009-04-30 | Cooke Jr Claude E | Applications of degradable polymers for delayed mechanical changes in wells |
CN2647679Y (zh) * | 2003-06-20 | 2004-10-13 | 雷正保 | 螺纹剪切式汽车碰撞吸能装置 |
GB0315144D0 (en) * | 2003-06-28 | 2003-08-06 | Weatherford Lamb | Centraliser |
US7036602B2 (en) | 2003-07-14 | 2006-05-02 | Weatherford/Lamb, Inc. | Retrievable bridge plug |
CN2651434Y (zh) * | 2003-08-23 | 2004-10-27 | 辽河石油勘探局工程技术研究院 | 一种小井眼压裂封隔器 |
US6976534B2 (en) * | 2003-09-29 | 2005-12-20 | Halliburton Energy Services, Inc. | Slip element for use with a downhole tool and a method of manufacturing same |
CN2707952Y (zh) * | 2003-10-16 | 2005-07-06 | 徐建 | 可取式挤灰桥塞 |
US20050109502A1 (en) | 2003-11-20 | 2005-05-26 | Jeremy Buc Slay | Downhole seal element formed from a nanocomposite material |
US7044230B2 (en) | 2004-01-27 | 2006-05-16 | Halliburton Energy Services, Inc. | Method for removing a tool from a well |
US7424909B2 (en) | 2004-02-27 | 2008-09-16 | Smith International, Inc. | Drillable bridge plug |
US8469088B2 (en) | 2004-02-27 | 2013-06-25 | Smith International, Inc. | Drillable bridge plug for high pressure and high temperature environments |
US7244492B2 (en) | 2004-03-04 | 2007-07-17 | Fairmount Minerals, Ltd. | Soluble fibers for use in resin coated proppant |
US7093664B2 (en) | 2004-03-18 | 2006-08-22 | Halliburton Energy Services, Inc. | One-time use composite tool formed of fibers and a biodegradable resin |
US7484940B2 (en) | 2004-04-28 | 2009-02-03 | Kinetic Ceramics, Inc. | Piezoelectric fluid pump |
US10316616B2 (en) | 2004-05-28 | 2019-06-11 | Schlumberger Technology Corporation | Dissolvable bridge plug |
US7350569B2 (en) | 2004-06-14 | 2008-04-01 | Weatherford/Lamb, Inc. | Separable plug for use in a wellbore |
US7350582B2 (en) | 2004-12-21 | 2008-04-01 | Weatherford/Lamb, Inc. | Wellbore tool with disintegratable components and method of controlling flow |
CN2856407Y (zh) * | 2005-05-31 | 2007-01-10 | 中国石油天然气股份有限公司 | 水平井射孔压裂联作管柱 |
US20070003449A1 (en) | 2005-06-10 | 2007-01-04 | Mehdi Hatamian | Valve for facilitating and maintaining fluid separation |
WO2007014339A2 (en) | 2005-07-27 | 2007-02-01 | Enventure Global Technology, L.L.C. | Method and apparatus for coupling expandable tubular members |
CN2876318Y (zh) * | 2005-09-02 | 2007-03-07 | 新疆石油管理局采油工艺研究院 | 可取可钻高压桥塞 |
WO2007058864A1 (en) | 2005-11-10 | 2007-05-24 | Bj Services Company | Self centralizing non-rotational slip and cone system for downhole tools |
US8231947B2 (en) | 2005-11-16 | 2012-07-31 | Schlumberger Technology Corporation | Oilfield elements having controlled solubility and methods of use |
US7588078B2 (en) * | 2006-02-02 | 2009-09-15 | Baker Hughes Incorporated | Extended reach anchor |
US20110067889A1 (en) * | 2006-02-09 | 2011-03-24 | Schlumberger Technology Corporation | Expandable and degradable downhole hydraulic regulating assembly |
US8211248B2 (en) | 2009-02-16 | 2012-07-03 | Schlumberger Technology Corporation | Aged-hardenable aluminum alloy with environmental degradability, methods of use and making |
US7373973B2 (en) * | 2006-09-13 | 2008-05-20 | Halliburton Energy Services, Inc. | Packer element retaining system |
US7578353B2 (en) * | 2006-09-22 | 2009-08-25 | Robert Bradley Cook | Apparatus for controlling slip deployment in a downhole device |
US7762323B2 (en) | 2006-09-25 | 2010-07-27 | W. Lynn Frazier | Composite cement retainer |
US7779926B2 (en) | 2006-12-05 | 2010-08-24 | Weatherford/Lamb, Inc. | Wellbore plug adapter kit and method of using thereof |
US8127851B2 (en) | 2007-01-18 | 2012-03-06 | Baker Hughes Incorporated | Mill and method for drilling composite bridge plugs |
US7854257B2 (en) | 2007-02-15 | 2010-12-21 | Baker Hughes Incorporated | Mechanically coupled screen and method |
US7607496B2 (en) * | 2007-03-05 | 2009-10-27 | Robert Charles Southard | Drilling apparatus and system for drilling wells |
US20090090516A1 (en) * | 2007-03-30 | 2009-04-09 | Enventure Global Technology, L.L.C. | Tubular liner |
US8611560B2 (en) | 2007-04-13 | 2013-12-17 | Navisense | Method and device for voice operated control |
US7735549B1 (en) * | 2007-05-03 | 2010-06-15 | Itt Manufacturing Enterprises, Inc. | Drillable down hole tool |
US20080277162A1 (en) | 2007-05-08 | 2008-11-13 | Baker Hughes Incorporated | System and method for controlling heat flow in a downhole tool |
US8196654B2 (en) * | 2007-05-16 | 2012-06-12 | Frank's International, Inc. | Expandable centralizer for expandable pipe string |
CO6030029A1 (es) | 2007-05-23 | 2009-04-30 | Mi Llc | Uso de emulsiones epoxicas directas para estabilizacion de orificio de pozo |
AR061224A1 (es) | 2007-06-05 | 2008-08-13 | Tenaris Connections Ag | Una union roscada de alta resistencia, preferentemente para tubos con recubrimiento interno. |
US8016295B2 (en) | 2007-06-05 | 2011-09-13 | Baker Hughes Incorporated | Helical backup element |
US20090038790A1 (en) | 2007-08-09 | 2009-02-12 | Halliburton Energy Services, Inc. | Downhole tool with slip elements having a friction surface |
US7740079B2 (en) | 2007-08-16 | 2010-06-22 | Halliburton Energy Services, Inc. | Fracturing plug convertible to a bridge plug |
US8267177B1 (en) | 2008-08-15 | 2012-09-18 | Exelis Inc. | Means for creating field configurable bridge, fracture or soluble insert plugs |
US8627901B1 (en) * | 2009-10-01 | 2014-01-14 | Foro Energy, Inc. | Laser bottom hole assembly |
US8893780B2 (en) | 2008-10-27 | 2014-11-25 | Donald Roy Greenlee | Downhole apparatus with packer cup and slip |
US8113276B2 (en) | 2008-10-27 | 2012-02-14 | Donald Roy Greenlee | Downhole apparatus with packer cup and slip |
US8496052B2 (en) | 2008-12-23 | 2013-07-30 | Magnum Oil Tools International, Ltd. | Bottom set down hole tool |
US8079413B2 (en) | 2008-12-23 | 2011-12-20 | W. Lynn Frazier | Bottom set downhole plug |
US9506309B2 (en) | 2008-12-23 | 2016-11-29 | Frazier Ball Invention, LLC | Downhole tools having non-toxic degradable elements |
US9500061B2 (en) | 2008-12-23 | 2016-11-22 | Frazier Technologies, L.L.C. | Downhole tools having non-toxic degradable elements and methods of using the same |
US8307891B2 (en) * | 2009-01-28 | 2012-11-13 | Baker Hughes Incorporated | Retractable downhole backup assembly for circumferential seal support |
US9260935B2 (en) | 2009-02-11 | 2016-02-16 | Halliburton Energy Services, Inc. | Degradable balls for use in subterranean applications |
US9181772B2 (en) | 2009-04-21 | 2015-11-10 | W. Lynn Frazier | Decomposable impediments for downhole plugs |
US9562415B2 (en) * | 2009-04-21 | 2017-02-07 | Magnum Oil Tools International, Ltd. | Configurable inserts for downhole plugs |
US20100263876A1 (en) * | 2009-04-21 | 2010-10-21 | Frazier W Lynn | Combination down hole tool |
US9062522B2 (en) | 2009-04-21 | 2015-06-23 | W. Lynn Frazier | Configurable inserts for downhole plugs |
US9163477B2 (en) | 2009-04-21 | 2015-10-20 | W. Lynn Frazier | Configurable downhole tools and methods for using same |
US9109428B2 (en) * | 2009-04-21 | 2015-08-18 | W. Lynn Frazier | Configurable bridge plugs and methods for using same |
US8123888B2 (en) | 2009-04-28 | 2012-02-28 | Schlumberger Technology Corporation | Fiber reinforced polymer oilfield tubulars and method of constructing same |
US8066065B2 (en) * | 2009-08-03 | 2011-11-29 | Halliburton Energy Services Inc. | Expansion device |
US20110048740A1 (en) | 2009-08-31 | 2011-03-03 | Weatherford/Lamb, Inc. | Securing a composite bridge plug |
US8167033B2 (en) | 2009-09-14 | 2012-05-01 | Max White | Packer with non-extrusion ring |
US8567492B2 (en) | 2009-09-14 | 2013-10-29 | Max White | Modified packer with non-extrusion ring |
WO2011041562A2 (en) * | 2009-09-30 | 2011-04-07 | Baker Hughes Incorporated | Remotely controlled apparatus for downhole applications and methods of operation |
EP2305450A1 (en) | 2009-10-02 | 2011-04-06 | Services Pétroliers Schlumberger | Apparatus and methods for preparing curved fibers |
US8408290B2 (en) * | 2009-10-05 | 2013-04-02 | Halliburton Energy Services, Inc. | Interchangeable drillable tool |
US20110088891A1 (en) | 2009-10-15 | 2011-04-21 | Stout Gregg W | Ultra-short slip and packing element system |
US8205671B1 (en) | 2009-12-04 | 2012-06-26 | Branton Tools L.L.C. | Downhole bridge plug or packer assemblies |
US8584746B2 (en) | 2010-02-01 | 2013-11-19 | Schlumberger Technology Corporation | Oilfield isolation element and method |
US8839869B2 (en) | 2010-03-24 | 2014-09-23 | Halliburton Energy Services, Inc. | Composite reconfigurable tool |
WO2011133810A2 (en) * | 2010-04-23 | 2011-10-27 | Smith International, Inc. | High pressure and high temperature ball seat |
USD632309S1 (en) * | 2010-05-03 | 2011-02-08 | Bilco Tools, Inc. | Downhole magnet jet tool |
US8336616B1 (en) | 2010-05-19 | 2012-12-25 | McClinton Energy Group, LLC | Frac plug |
TR201809277T4 (tr) | 2010-06-24 | 2018-07-23 | Acheron Product Pty Ltd | Epoksi kompozit, üretim yöntemi ve kullanımı. |
US8579024B2 (en) | 2010-07-14 | 2013-11-12 | Team Oil Tools, Lp | Non-damaging slips and drillable bridge plug |
US8403036B2 (en) | 2010-09-14 | 2013-03-26 | Halliburton Energy Services, Inc. | Single piece packer extrusion limiter ring |
USD644668S1 (en) * | 2010-10-06 | 2011-09-06 | Longyear Tm, Inc. | Core barrel head assembly with axial groove |
US8596347B2 (en) | 2010-10-21 | 2013-12-03 | Halliburton Energy Services, Inc. | Drillable slip with buttons and cast iron wickers |
US8919452B2 (en) * | 2010-11-08 | 2014-12-30 | Baker Hughes Incorporated | Casing spears and related systems and methods |
US8991485B2 (en) * | 2010-11-23 | 2015-03-31 | Wireline Solutions, Llc | Non-metallic slip assembly and related methods |
WO2012097235A1 (en) | 2011-01-14 | 2012-07-19 | Utex Industries, Inc. | Disintegrating ball for sealing frac plug seat |
US8701787B2 (en) * | 2011-02-28 | 2014-04-22 | Schlumberger Technology Corporation | Metal expandable element back-up ring for high pressure/high temperature packer |
CN201934054U (zh) * | 2011-03-08 | 2011-08-17 | 荆州市赛瑞能源技术有限公司 | 一种新型复合材质的桥塞 |
US20120234538A1 (en) | 2011-03-14 | 2012-09-20 | General Plastics & Composites, Lp | Composite frac ball |
US20120255723A1 (en) * | 2011-04-05 | 2012-10-11 | Halliburton Energy Services, Inc. | Drillable slip with non-continuous outer diameter |
US8770276B1 (en) * | 2011-04-28 | 2014-07-08 | Exelis, Inc. | Downhole tool with cones and slips |
US8695714B2 (en) * | 2011-05-19 | 2014-04-15 | Baker Hughes Incorporated | Easy drill slip with degradable materials |
US8794309B2 (en) * | 2011-07-18 | 2014-08-05 | Baker Hughes Incorporated | Frangible slip for downhole tools |
USD673183S1 (en) * | 2011-07-29 | 2012-12-25 | Magnum Oil Tools International, Ltd. | Compact composite downhole plug |
USD673182S1 (en) | 2011-07-29 | 2012-12-25 | Magnum Oil Tools International, Ltd. | Long range composite downhole plug |
US9057242B2 (en) | 2011-08-05 | 2015-06-16 | Baker Hughes Incorporated | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate |
US10036221B2 (en) * | 2011-08-22 | 2018-07-31 | Downhole Technology, Llc | Downhole tool and method of use |
US9567827B2 (en) * | 2013-07-15 | 2017-02-14 | Downhole Technology, Llc | Downhole tool and method of use |
CN103717828B (zh) * | 2011-08-22 | 2016-08-17 | 井下技术有限责任公司 | 井下工具以及使用方法 |
US9777551B2 (en) * | 2011-08-22 | 2017-10-03 | Downhole Technology, Llc | Downhole system for isolating sections of a wellbore |
US10246967B2 (en) | 2011-08-22 | 2019-04-02 | Downhole Technology, Llc | Downhole system for use in a wellbore and method for the same |
US8584765B2 (en) * | 2011-08-23 | 2013-11-19 | Baker Hughes Incorporated | Apparatus and methods for assisting in setting a downhole tool in a well bore |
US20130098600A1 (en) | 2011-10-25 | 2013-04-25 | Team Oil Tools Lp | Manufacturing Technique for a Composite Ball for Use Downhole in a Hydrocarbon Wellbore |
US8887818B1 (en) * | 2011-11-02 | 2014-11-18 | Diamondback Industries, Inc. | Composite frac plug |
US9388662B2 (en) * | 2011-11-08 | 2016-07-12 | Magnum Oil Tools International, Ltd. | Settable well tool and method |
US8839855B1 (en) | 2012-02-22 | 2014-09-23 | McClinton Energy Group, LLC | Modular changeable fractionation plug |
GB201206381D0 (en) * | 2012-04-11 | 2012-05-23 | Welltools Ltd | Apparatus and method |
US8839874B2 (en) | 2012-05-15 | 2014-09-23 | Baker Hughes Incorporated | Packing element backup system |
US9157288B2 (en) * | 2012-07-19 | 2015-10-13 | General Plastics & Composites, L.P. | Downhole tool system and method related thereto |
JP6151255B2 (ja) | 2012-08-08 | 2017-06-21 | 株式会社クレハ | 炭化水素資源回収用ボールシーラーならびにその製造方法及びそれを用いる坑井の処理方法 |
US9677356B2 (en) | 2012-10-01 | 2017-06-13 | Weatherford Technology Holdings, Llc | Insert units for non-metallic slips oriented normal to cone face |
US9725981B2 (en) | 2012-10-01 | 2017-08-08 | Weatherford Technology Holdings, Llc | Non-metallic slips having inserts oriented normal to cone face |
US9187975B2 (en) | 2012-10-26 | 2015-11-17 | Weatherford Technology Holdings, Llc | Filament wound composite ball |
US9995107B2 (en) | 2012-10-29 | 2018-06-12 | Ccdi Composites, Inc. | Optimized composite downhole tool for well completion |
CA2831586A1 (en) | 2012-10-29 | 2014-04-29 | Jarrett Lane Skarsen | Production string activated wellbore sealing apparatus and method for sealing a wellbore using a production string |
US9416617B2 (en) | 2013-02-12 | 2016-08-16 | Weatherford Technology Holdings, Llc | Downhole tool having slip inserts composed of different materials |
US9441448B2 (en) | 2013-02-14 | 2016-09-13 | Magnum Oil Tools International, Ltd | Down hole tool having improved segmented back up ring |
US9404329B2 (en) * | 2013-03-15 | 2016-08-02 | Weatherford Technology Holdings, Llc | Downhole tool for debris removal |
US9920585B2 (en) | 2013-05-21 | 2018-03-20 | Halliburton Energy Services, Inc. | Syntactic foam frac ball and methods of using same |
JP6327946B2 (ja) | 2013-05-31 | 2018-05-23 | 株式会社クレハ | 分解性材料から形成されるマンドレルを備える坑井掘削用プラグ |
WO2014197834A1 (en) | 2013-06-06 | 2014-12-11 | Halliburton Energy Services, Inc. | Fluid loss well treatment |
US9926746B2 (en) | 2013-06-19 | 2018-03-27 | Smith International, Inc. | Actuating a downhole tool |
US20150068728A1 (en) | 2013-09-12 | 2015-03-12 | Weatherford/Lamb, Inc. | Downhole Tool Having Slip Composed of Composite Ring |
US9140070B2 (en) * | 2013-11-22 | 2015-09-22 | Thru Tubing Solutions, Inc. | Method of using a downhole force generating tool |
NO347692B1 (en) * | 2013-12-23 | 2024-02-26 | Halliburton Energy Services Inc | Surface Actuated Downhole Adjustable Mud Motor |
US9611700B2 (en) * | 2014-02-11 | 2017-04-04 | Saudi Arabian Oil Company | Downhole self-isolating wellbore drilling systems |
CA2936851A1 (en) | 2014-02-21 | 2015-08-27 | Terves, Inc. | Fluid activated disintegrating metal system |
US9915114B2 (en) | 2015-03-24 | 2018-03-13 | Donald R. Greenlee | Retrievable downhole tool |
CA2886527A1 (en) | 2014-03-28 | 2015-09-28 | Ncs Multistage Inc. | Frac ball and hydraulic fracturing system |
WO2015187915A2 (en) | 2014-06-04 | 2015-12-10 | McClinton Energy Group, LLC | Decomposable extended-reach frac plug, decomposable slip, and methods of using same |
NO3120944T3 (zh) | 2014-06-18 | 2018-10-20 | ||
AU2014400642B2 (en) | 2014-07-07 | 2018-01-04 | Halliburton Energy Services, Inc. | Downhole tools comprising aqueous-degradable sealing elements |
GB201412778D0 (en) * | 2014-07-18 | 2014-09-03 | Siceno S A R L | Torque control apparatus |
US9745847B2 (en) | 2014-08-27 | 2017-08-29 | Baker Hughes Incorporated | Conditional occlusion release device |
MX2017001258A (es) | 2014-08-28 | 2017-05-01 | Halliburton Energy Services Inc | Dispositivos de aislamiento de pozos degradables con grandes areas de flujo. |
GB2542095B (en) | 2014-08-28 | 2020-09-02 | Halliburton Energy Services Inc | Subterranean formation operations using degradable wellbore isolation devices |
USD762737S1 (en) * | 2014-09-03 | 2016-08-02 | Peak Completion Technologies, Inc | Compact ball seat downhole plug |
USD763324S1 (en) * | 2014-09-03 | 2016-08-09 | PeakCompletion Technologies, Inc. | Compact ball seat downhole plug |
JP6328019B2 (ja) | 2014-09-22 | 2018-05-23 | 株式会社クレハ | 反応性金属を含有するダウンホールツール部材及び分解性樹脂組成物を含有するダウンホールツール部材を備えるダウンホールツール、並びに坑井掘削方法 |
US9677373B2 (en) | 2014-10-31 | 2017-06-13 | Team Oil Tools, Lp | Downhole tool with anti-extrusion device |
US20160130906A1 (en) | 2014-11-07 | 2016-05-12 | Ensign-Bickford Aerospace & Defense Company | Destructible frac-ball and device and method for use therewith |
US20160160591A1 (en) | 2014-12-05 | 2016-06-09 | Baker Hughes Incorporated | Degradable anchor device with inserts |
US9850709B2 (en) * | 2015-03-19 | 2017-12-26 | Newsco International Energy Services USA Inc. | Downhole mud motor with a sealed bearing pack |
US9845658B1 (en) | 2015-04-17 | 2017-12-19 | Albany International Corp. | Lightweight, easily drillable or millable slip for composite frac, bridge and drop ball plugs |
US10000991B2 (en) | 2015-04-18 | 2018-06-19 | Tercel Oilfield Products Usa Llc | Frac plug |
US10472890B2 (en) * | 2015-05-08 | 2019-11-12 | Halliburton Energy Services, Inc. | Drilling apparatus with a unitary bearing housing |
MY177439A (en) | 2015-05-08 | 2020-09-15 | Halliburton Energy Services Inc | Degradable downhole tools comprising cellulosic derivatives |
US20170044859A1 (en) | 2015-08-10 | 2017-02-16 | Tyler W. Blair | Slip Element and Assembly for Oilfield Tubular Plug |
CN105099841B (zh) | 2015-08-31 | 2018-10-26 | 小米科技有限责任公司 | 消息的发送方法、装置、终端及路由器 |
USD807991S1 (en) * | 2015-09-03 | 2018-01-16 | Peak Completion Technologies Inc. | Compact ball seat downhole plug |
CA2995066C (en) | 2015-09-22 | 2019-10-29 | Halliburton Energy Services, Inc. | Wellbore isolation device with slip assembly |
US9375765B1 (en) * | 2015-10-09 | 2016-06-28 | Crossford International, Llc | Tube scraper projectile |
US10024134B2 (en) | 2015-10-09 | 2018-07-17 | General Plastics & Composites, L.P. | Slip assembly for downhole tools |
JP1552350S (zh) * | 2015-10-16 | 2016-06-20 | ||
USD786645S1 (en) * | 2015-11-03 | 2017-05-16 | Z Drilling Holdings, Inc. | Reamer |
WO2017079819A1 (en) | 2015-11-10 | 2017-05-18 | Ncs Multistage Inc. | Apparatuses and methods for enabling multistage hydraulic fracturing |
CA2941571A1 (en) | 2015-12-21 | 2017-06-21 | Packers Plus Energy Services Inc. | Indexing dart system and method for wellbore fluid treatment |
US10119360B2 (en) | 2016-03-08 | 2018-11-06 | Innovex Downhole Solutions, Inc. | Slip segment for a downhole tool |
US10273769B2 (en) | 2016-05-06 | 2019-04-30 | Stephen L. Crow | Running tool for recess mounted adaptive seat support for an isolating object for borehole treatment |
US20170342773A1 (en) * | 2016-05-27 | 2017-11-30 | Scientific Drilling International, Inc. | Motor Power Section with Integrated Sensors |
US10533388B2 (en) * | 2016-05-31 | 2020-01-14 | Access Downhole Lp | Flow diverter |
US10829995B2 (en) * | 2016-08-18 | 2020-11-10 | Innovex Downhole Solutions, Inc. | Downhole tool for generating vibration in a tubular |
USD806136S1 (en) | 2016-11-15 | 2017-12-26 | Maverick Downhole Technologies Inc. | Frac plug slip |
-
2012
- 2012-08-22 CN CN201280037968.0A patent/CN103717828B/zh active Active
- 2012-08-22 US US13/592,013 patent/US8955605B2/en active Active
- 2012-08-22 CA CA2952200A patent/CA2952200C/en active Active
- 2012-08-22 CA CA2842711A patent/CA2842711C/en active Active
- 2012-08-22 AU AU2012298868A patent/AU2012298868B2/en active Active
- 2012-08-22 MX MX2014002019A patent/MX2014002019A/es unknown
- 2012-08-22 WO PCT/US2012/051934 patent/WO2013028799A2/en active Application Filing
- 2012-08-22 CA CA2968661A patent/CA2968661C/en active Active
- 2012-08-22 EP EP12826346.4A patent/EP2748407B1/en active Active
- 2012-08-22 CN CN201280037872.4A patent/CN103717825B/zh active Active
- 2012-08-22 AU AU2012298867A patent/AU2012298867B2/en active Active
- 2012-08-22 MX MX2014002108A patent/MX356844B/es active IP Right Grant
- 2012-08-22 CA CA2842381A patent/CA2842381C/en active Active
- 2012-08-22 CA CA2947059A patent/CA2947059C/en active Active
- 2012-08-22 AU AU2012298866A patent/AU2012298866B2/en active Active
- 2012-08-22 US US13/592,004 patent/US9074439B2/en active Active
- 2012-08-22 MX MX2014002109A patent/MX364053B/es active IP Right Grant
- 2012-08-22 CN CN201610417094.1A patent/CN106089148B/zh active Active
- 2012-08-22 CN CN201610420549.5A patent/CN105927173B/zh active Active
- 2012-08-22 CN CN201280037934.1A patent/CN103717827A/zh active Pending
- 2012-08-22 EP EP12826447.0A patent/EP2748409B1/en active Active
- 2012-08-22 EP EP12826425.6A patent/EP2748408B1/en active Active
- 2012-08-22 EP EP12825660.9A patent/EP2748406A4/en not_active Withdrawn
- 2012-08-22 CA CA2966374A patent/CA2966374C/en active Active
- 2012-08-22 US US13/592,009 patent/US8997853B2/en active Active
- 2012-08-22 WO PCT/US2012/051936 patent/WO2013028800A2/en active Application Filing
- 2012-08-22 MX MX2014002017A patent/MX348061B/es active IP Right Grant
- 2012-08-22 CN CN201610417027.XA patent/CN106089145B/zh active Active
- 2012-08-22 CA CA2842378A patent/CA2842378C/en active Active
- 2012-08-22 AU AU2012298870A patent/AU2012298870A1/en not_active Abandoned
- 2012-08-22 WO PCT/US2012/051938 patent/WO2013028801A1/en active Application Filing
- 2012-08-22 WO PCT/US2012/051940 patent/WO2013028803A2/en active Application Filing
- 2012-08-22 CN CN201280037894.0A patent/CN103717826B/zh active Active
- 2012-08-22 US US13/592,019 patent/US9334703B2/en active Active
- 2012-08-22 US US13/592,015 patent/US9103177B2/en not_active Expired - Fee Related
- 2012-08-22 CA CA2842713A patent/CA2842713C/en active Active
-
2014
- 2014-02-14 US US14/181,565 patent/US9097095B2/en not_active Expired - Fee Related
- 2014-11-17 US US14/543,504 patent/US9010411B1/en active Active
-
2015
- 2015-02-20 US US14/628,053 patent/US9725982B2/en active Active
- 2015-03-23 US US14/665,014 patent/US9631453B2/en active Active
- 2015-05-28 US US14/723,931 patent/US9316086B2/en active Active
- 2015-05-29 US US14/725,079 patent/US9976382B2/en active Active
- 2015-07-08 US US14/794,691 patent/US9689228B2/en active Active
-
2016
- 2016-04-25 US US15/137,071 patent/US9562416B2/en active Active
- 2016-06-29 AU AU2016204503A patent/AU2016204503B2/en active Active
- 2016-06-29 AU AU2016204506A patent/AU2016204506B2/en active Active
- 2016-09-21 AU AU2016231525A patent/AU2016231525B2/en active Active
- 2016-09-21 AU AU2016231528A patent/AU2016231528B2/en active Active
- 2016-12-17 US US15/382,647 patent/US9719320B2/en active Active
-
2017
- 2017-05-30 AU AU2017203642A patent/AU2017203642B2/en active Active
- 2017-05-30 AU AU2017203640A patent/AU2017203640B2/en active Active
- 2017-09-20 US US15/710,719 patent/US10494895B2/en active Active
- 2017-09-21 US US15/710,900 patent/US10480277B2/en active Active
- 2017-10-04 US US29/621,032 patent/USD827000S1/en active Active
-
2018
- 2018-03-16 US US15/924,036 patent/US20180202257A1/en not_active Abandoned
- 2018-06-13 US US16/007,675 patent/US20180291703A1/en not_active Abandoned
-
2019
- 2019-06-14 US US16/441,809 patent/US10900321B2/en active Active
-
2020
- 2020-07-08 US US16/924,146 patent/US11136855B2/en active Active
- 2020-07-08 US US16/924,125 patent/US11008827B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3687196A (en) * | 1969-12-12 | 1972-08-29 | Schlumberger Technology Corp | Drillable slip |
US4440223A (en) * | 1981-02-17 | 1984-04-03 | Ava International Corporation | Well slip assemblies |
US5484040A (en) * | 1992-12-22 | 1996-01-16 | Penisson; Dennis J. | Slip-type gripping assembly |
CN2844420Y (zh) * | 2005-11-21 | 2006-12-06 | 杨玉军 | 注水封隔器 |
US20080264627A1 (en) * | 2007-04-30 | 2008-10-30 | Smith International, Inc. | Permanent anchoring device |
US20110094802A1 (en) * | 2008-01-17 | 2011-04-28 | Vatne Per A | Slip device for suspending a drill or casing string in a drill floor |
WO2009112853A2 (en) * | 2008-03-13 | 2009-09-17 | National Oilwell Varco, L.P. | Gripping element for gripping a tubular in the construction and maintenance of oil and gas wells |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103717825B (zh) | 用于井下工具的复合部件及井下工具 | |
CN108431365A (zh) | 井下工具及使用方法 | |
CA3081968C (en) | Downhole tool with tethered ball | |
CN108699895B (zh) | 井下工具和系统以及用于井下工具和系统的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20160420 Address after: Sergey Houston street in Texas, No. 7123 Applicant after: BOSS HOG OIL TOOLS LLC Address before: Houston, the American state of Texas Applicant before: BOSS HOG OIL TOOLS LLC |
|
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140409 |