CN103715234B - p型金属氧化物半导体材料 - Google Patents
p型金属氧化物半导体材料 Download PDFInfo
- Publication number
- CN103715234B CN103715234B CN201310447540.XA CN201310447540A CN103715234B CN 103715234 B CN103715234 B CN 103715234B CN 201310447540 A CN201310447540 A CN 201310447540A CN 103715234 B CN103715234 B CN 103715234B
- Authority
- CN
- China
- Prior art keywords
- oxide semiconductor
- metal oxide
- semiconductor material
- gallium
- zinc oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 120
- 239000000463 material Substances 0.000 title claims abstract description 96
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 79
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 73
- 239000010949 copper Substances 0.000 claims abstract description 38
- 239000011777 magnesium Substances 0.000 claims abstract description 37
- 239000011575 calcium Substances 0.000 claims abstract description 34
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 25
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910052802 copper Inorganic materials 0.000 claims abstract description 24
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 23
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 21
- 239000000126 substance Substances 0.000 claims abstract description 11
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 154
- 239000011787 zinc oxide Substances 0.000 description 88
- 229910052738 indium Inorganic materials 0.000 description 77
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 74
- 229960001296 zinc oxide Drugs 0.000 description 67
- 229910052733 gallium Inorganic materials 0.000 description 64
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 61
- 239000011701 zinc Substances 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 238000005259 measurement Methods 0.000 description 17
- 229910052725 zinc Inorganic materials 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 12
- 239000002738 chelating agent Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 238000004088 simulation Methods 0.000 description 12
- 150000004696 coordination complex Chemical class 0.000 description 11
- 239000013590 bulk material Substances 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- -1 indium gallium zinc metal oxide Chemical class 0.000 description 8
- 238000009694 cold isostatic pressing Methods 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 150000002258 gallium Chemical class 0.000 description 6
- 150000002471 indium Chemical class 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 239000013077 target material Substances 0.000 description 6
- 150000003751 zinc Chemical class 0.000 description 6
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229910001195 gallium oxide Inorganic materials 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 235000002906 tartaric acid Nutrition 0.000 description 5
- 239000011975 tartaric acid Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 102100021164 Vasodilator-stimulated phosphoprotein Human genes 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- 229910052755 nonmetal Inorganic materials 0.000 description 4
- 108010054220 vasodilator-stimulated phosphoprotein Proteins 0.000 description 4
- 240000002329 Inga feuillei Species 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000001879 copper Chemical class 0.000 description 2
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004984 smart glass Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- SXFBQAMLJMDXOD-UHFFFAOYSA-N (+)-hydrogentartrate bitartrate salt Chemical compound OC(=O)C(O)C(O)C(O)=O.OC(=O)C(O)C(O)C(O)=O SXFBQAMLJMDXOD-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/81—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
- C01G15/006—Compounds containing gallium, indium or thallium, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/453—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Dispersion Chemistry (AREA)
- Thin Film Transistor (AREA)
- Catalysts (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明提供一种p型金属氧化物半导体材料,具有化学式:In1-xGa1-yMx+yZnO4+m,其中M为钙(Ca)、镁(Mg)或铜(Cu),0<x+y≤0.1,0≤m≤3,且0<x,0≤y或0≤x,0<y,其中该p型金属氧化物半导体材料的空穴载流子浓度介于1×1015~6×1019cm-3之间。
Description
技术领域
本发明涉及一种金属氧化物半导体材料,且特别涉及一种p型氧化铟镓锌系的金属氧化物半导体材料。
背景技术
随着显示技术的快速发展,各种新世代的产品及材料也应运而生。在这些产品中,透明显示器(transparentdisplay)因具有可透光性、商品互动特性等特点,近年来其相关技术备受瞩目。其中,氧化铟镓锌(indiumgalliumzincoxide,IGZO)为一种可用以制作透明薄膜晶体管的金属氧化物半导体材料,与利用非晶硅材料所制作的薄膜晶体管相比,藉由将利用氧化铟镓锌系的透明金属氧化物半导体材料所制作的薄膜晶体管与显示技术结合,可缩小薄膜晶体管尺寸、提高像素开口率、实现高精细化、提高分辨率、以及提供较快的载流子(例如电子)迁移率。再者,亦可将简单的外部电路整合至显示器中,使电子装置更加轻薄并降低耗电量。
若将氧化铟镓锌系的n型透明金属氧化物半导体材料及p型透明金属氧化物半导体材料结合,不仅可实现透明互补式金属氧化物半导体组件(CMOS)、透明智能窗(smartwindow)等应用,亦可将其它例如变频器(inverter)、发光二极管等装置制作为透明状态。然而,目前所研发出的氧化铟镓锌系的透明金属氧化物半导体材料仍以n型透明金属氧化物半导体材料为主。
因此,急需寻求一种新的氧化铟镓锌系的p型透明金属氧化物半导体材料,其能够解决上述的问题,以提供透明金属氧化物半导体更多的应用空间。
发明内容
本发明提供一种p型金属氧化物半导体材料,具有化学式︰In1-xGa1-yMx+yZnO4+m,其中M为钙(Ca)、镁(Mg)或铜(Cu),0<x+y≤0.1,0≤m≤3,且0<x,0≤y或0≤x,0<y,其中p型金属氧化物半导体材料的空穴载流子浓度(holecarrierconcentration)介于1×1015~6×1019cm-3之间。
为让本发明的上述和其他目的、特征、和优点能更明显易懂,下文特举出较佳实施例,并配合附图,作详细说明如下:
附图说明
图1A~1F示出了本发明中不同掺杂元素的氧化铟镓锌系的金属氧化物半导体材料的模拟计算结果。
图2示出了本发明中钙取代铟的钙掺杂氧化铟镓锌系金属氧化物半导体材料的数个实施例的空穴载流子浓度测量结果。
图3示出了本发明中钙取代铟的钙掺杂氧化铟镓锌系金属氧化物半导体材料的数个实施例的电阻率测量结果。
图4示出了本发明中钙取代铟的钙掺杂氧化铟镓锌系金属氧化物半导体材料的数个实施例的空穴载流子迁移率测量结果。
具体实施方式
本发明提供数个实施例以说明本发明的技术特征,实施例的内容及绘制的图式仅作为例示说明之用,并非用以限缩本发明保护范围。
本发明一实施例提供一种p型金属氧化物半导体材料,具有化学式︰In1-xGa1-yMx+yZnO4+m,其中M为钙(Ca)、镁(Mg)或铜(Cu),0<x+y≤0.1,0≤m≤3,且0<x,0≤y或0≤x,0<y,其中上述p型金属氧化物半导体材料的空穴载流子浓度(holecarrierconcentration)介于1×1015~6×1019cm-3之间。
本发明的实施例是先藉由模拟计算,得到将钙、镁、铜等元素掺杂于氧化铟镓锌系金属氧化物半导体材料中可形成p型金属氧化物半导体的初步计算结果,再利用软化学法分别合成掺杂有钙、镁、或铜的p型氧化铟镓锌系金属氧化物半导体材料。
首先针对模拟计算的过程说明如下。本发明是利用全始量子分子动力学仿真软件套件(VASP,ViennaAb-initioSimulationPackage)计算在氧化铟镓锌系金属氧化物半导体材料中掺杂不同元素时,其能态密度(DOS,DensityofStates)对能量的变化关系,并将其结果示于图1A~1F中。
图1A为掺杂钙的氧化铟镓锌系金属氧化物半导体材料经VASP仿真所得的能态密度对能量关系图,经由模拟计算可知此掺杂钙的氧化铟镓锌系金属氧化物半导体材料的费米能级(EF,Fermilevel)降至价电带(VB,valenceband)处,故其应为一p型金属氧化物半导体材料。需注意的是,图1A中设定钙原子半数取代氧化铟镓锌系金属氧化物半导体材料中的铟原子(即,In0.5GaCa0.5ZnO4),是因为实际上在进行模拟计算时,为避免计算机处理数据过于庞大、耗时过久等问题,通常会先以半数取代的条件针对选定的掺杂物进行初步的模拟计算,待确认此掺杂物的初步计算结果后,再实际合成并调整掺杂物比例,以验证模拟结果,并非代表此掺杂物需在半数取代的条件下才可使氧化铟镓锌系金属氧化物半导体材料展现p型半导体材料的特性。图1B~1C分别为掺杂镁的氧化铟镓锌系金属氧化物半导体材料及掺杂铜的氧化铟镓锌系金属氧化物半导体材料藉由VASP模拟所得的结果,其中在掺杂镁的氧化铟镓锌系金属氧化物半导体材料中,将镁原子设定为半数取代氧化铟镓锌系金属氧化物半导体材料中的铟原子(即,In0.5GaMg0.5ZnO4),在掺杂铜的氧化铟镓锌系金属氧化物半导体材料中,将铜原子设定为半数取代氧化铟镓锌系金属氧化物半导体材料中的铟原子(即,In0.5GaCu0.5ZnO4)。由图1B~1C的模拟计算结果可知,由于上述半数取代铟原子的掺杂镁的氧化铟镓锌系金属氧化物半导体材料及掺杂铜的氧化铟镓锌系金属氧化物半导体材料的费米能级降至价电带处,故其亦应为一p型金属氧化物半导体材料。
图1D~1F亦为掺杂钙、镁、铜的氧化铟镓锌系金属氧化物半导体材料藉由VASP模拟所得的结果,但此处在掺杂钙的氧化铟镓锌系金属氧化物半导体材料中,将钙原子设定为半数取代氧化铟镓锌系金属氧化物半导体材料中的镓原子(即,InGa0.5Ca0.5ZnO4),在掺杂镁的氧化铟镓锌系金属氧化物半导体材料中,将镁原子设定为半数取代氧化铟镓锌系金属氧化物半导体材料中的镓原子(即,InGa0.5Mg0.5ZnO4),在掺杂铜的氧化铟镓锌系金属氧化物半导体材料中,将铜原子设定为半数取代氧化铟镓锌系金属氧化物半导体材料中的镓原子(即,InGa0.5Cu0.5ZnO4)。由图1D~1F的模拟计算结果可知,由于上述半数取代镓原子的掺杂钙的氧化铟镓锌系金属氧化物半导体材料、掺杂镁的氧化铟镓锌系金属氧化物半导体材料及掺杂铜的氧化铟镓锌系金属氧化物半导体材料的费米能级亦降至价电带处,故其亦应为一p型金属氧化物半导体材料。
随后,根据上述仿真结果,利用软化学法分别合成掺杂有不同含量的钙、镁、铜的氧化铟镓锌系金属氧化物半导体材料。
在一实施例中,此合成方法是先混合(1-x)摩尔份的铟盐、(1-y)摩尔份的镓盐、1摩尔份的锌盐、(x+y)摩尔份的掺杂金属盐(例如钙、镁、或铜的盐类)、及螯合剂于一溶液中,其中0<x+y≤0.1,且0<x,0≤y或0≤x,0<y,并于常温下混合60~70分钟,以形成一包含铟、镓、锌、及掺杂金属的络合物的溶液,其中各金属盐可使用包含铟、镓、锌、或掺杂金属的硝酸盐或柠檬酸盐,螯合剂可使用酒石酸(tartaricacid)。接着,升温至155℃~175℃,蒸发溶液中的液体使溶液成为凝胶态,再将其干燥成粉状,继而进行烧结步骤使金属络合物氧化,以形成金属氧化物粉体。之后,可进行陶瓷工艺的模压、射出、冷等静压(CIP,coldisostaticpress)、注浆等相关工艺,并进行烧结和机械加工工艺,以制作掺杂的氧化铟镓锌系金属氧化物半导体材料(例如,In1-xGa1-yMx+yZnO4+m,其中M为钙(Ca)、镁(Mg)或铜(Cu),0<x+y≤0.1,0≤m≤3,且0<x,0≤y或0≤x,0<y)的块材或靶材。
在形成上述块材或靶材后,可藉由溅镀等方法,形成掺杂的氧化铟镓锌系金属氧化物半导体材料的薄膜,以应用于电子装置(例如透明显示器、透明场效晶体管、发光二极管、透明集成电路半导体组件)的制作。
实施例1~7︰钙取代铟的钙掺杂氧化铟镓锌系金属氧化物半导体材料
首先,在保持金属总含量为0.5mol的条件下,将0.167mol的镓盐(Ga(NO3)3)、0.167mol的锌盐(Zn(NO3)2)以及依照表1的化学剂量所分别秤取的数种含量比例的铟盐(In(NO3)3)及钙盐(Ca(NO3)2)加入浓度为1.4N的硝酸(HNO3)水溶液中,并加入0.55mol的酒石酸作为螯合剂,于常温下混合1小时,以合成本发明的实施例1~7。上述反应是在混合金属离子析出后,藉由螯合剂将铟、镓、锌、钙结合而形成一金属络合物。
随后,升温至155℃,蒸发溶液中的液体使溶液成为凝胶态,并进行干燥步骤将其干燥成粉状,继而进行烧结步骤使上述金属络合物氧化以形成金属氧化物半导体粉体,此金属氧化物半导体具有In1-xGa1-yCax+yZnO4+m的化学式,其中0.0005≤x≤0.1,y=0,0≤m≤3。
接着,进行陶瓷工艺的模压、射出、冷等静压、注浆等相关工艺,以制作钙取代铟的钙掺杂氧化铟镓锌系金属氧化物半导体材料的块材或靶材。
藉由对合成出的钙掺杂氧化铟镓锌系金属氧化物半导体块材或靶材进行能量弥散X射线谱(Energy-DispersiveX-RaySpectroscopy,EDS)分析,可得到各成份元素的含量。其中,钙掺杂氧化铟镓锌系金属氧化物半导体材料中金属成份元素的含量(摩尔比)如表1所示,非金属成份元素的氧的含量(摩尔比)在实施例1~7中则落在0≤m≤3的范围内。例如,在实施例5中,藉由能量弥散X射线谱分析,可得到钙掺杂氧化铟镓锌系金属氧化物半导体材料中各成份元素的摩尔比为In:Ca:Ga:Zn:O=0.995:0.005:1:1:6。
再者,藉由对合成出的钙掺杂氧化铟镓锌系金属氧化物半导体块材或靶材进行霍尔测量(Hallmeasurement),可得到钙掺杂氧化铟镓锌系金属氧化物的主要载流子型态、载流子浓度、电阻率、载流子迁移率等特性,如表1及图2~4图所示。霍尔测量使用的是NanoMetrics生产的HL5550LN2Cryostat霍尔测量仪。
表1
表1显示了本发明的实施例1~7的钙掺杂氧化铟镓锌系金属氧化物半导体材料中各金属成份的比例及主要载流子型态,图2则为本发明中钙掺杂氧化铟镓锌材料的实施例的空穴载流子浓度测量结果。由图2可知,当钙取代铟使氧化铟镓锌系金属氧化物半导体材料In1-xGa1-yCax+yZnO4+m中0.0005≤x≤0.1,y=0,0≤m≤3时,藉由霍尔测量所得的主要载流子型态为空穴,且其空穴载流子浓度在约为1×1015~6×1019cm-3的半导体范围内,故可确定实施例1~7所合成的钙掺杂氧化铟镓锌系金属氧化物半导体材料为p型。
图3为本发明中钙掺杂氧化铟镓锌系金属氧化物半导体材料的数个实施例的电阻率测量结果,由图3可知,当钙取代铟使氧化铟镓锌系金属氧化物半导体材料In1-xGa1-yCax+yZnO4+m中0.0005≤x≤0.1,y=0,0≤m≤3时,可得到在约为0.89×10-2~1.44×102ohm-cm的范围内的电阻率。图4则为本发明中钙掺杂氧化铟镓锌系金属氧化物半导体材料的数个实施例的空穴载流子迁移率测量结果,如图4所示,当钙取代铟使氧化铟镓锌系金属氧化物半导体材料In1-xGa1-yCax+yZnO4+m中0.0005≤x≤0.1,y=0,0≤m≤3时,可得到大于约1.0cm2/V-s的空穴载流子迁移率。因此,藉由本发明的方法,可制作出具有良好电性的p型氧化铟镓锌系金属氧化物半导体材料。
实施例8~9︰镁取代铟的镁掺杂氧化铟镓锌系金属氧化物半导体材料
首先,在保持金属总含量为0.5mol的条件下,将0.167mol的镓盐(Ga(NO3)3)、0.167mol的锌盐(Zn(NO3)2)以及依照表2的化学剂量所分别秤取的数种含量比例的铟盐(In(NO3)3)及镁盐(Mg(NO3)2)加入浓度为1.4N的硝酸水溶液中,并加入0.55mol的酒石酸作为螯合剂,于常温下混合1小时,以合成本发明的实施例8~9。上述反应是在混合金属离子析出后,藉由螯合剂将铟、镓、锌、镁结合而形成一金属络合物。
随后,升温至155℃,蒸发溶液中的液体使溶液成为凝胶态,并进行干燥步骤将其干燥成粉状,继而进行烧结步骤使上述金属络合物氧化以形成金属氧化物半导体粉体,此金属氧化物半导体具有In1-xGa1-yMgx+yZnO4+m的化学式,其中0.001≤x≤0.005,y=0,0≤m≤3。
接着,进行陶瓷工艺的模压、射出、冷等静压、注浆等相关工艺,以制作镁取代铟的镁掺杂氧化铟镓锌系金属氧化物半导体材料的块材或靶材。
藉由对合成出的镁掺杂氧化铟镓锌系金属氧化物半导体块材或靶材进行能量弥散X射线谱分析,可得到镁掺杂氧化铟镓锌系金属氧化物半导体材料中金属成份元素的含量(摩尔比),如表2所示,以及非金属成份元素的氧的含量(摩尔比),其在实施例8~9中皆落在0≤m≤3的范围内。再者,藉由对合成出的镁掺杂氧化铟镓锌系金属氧化物半导体块材或靶材进行霍尔测量,可得到镁掺杂氧化铟镓锌系金属氧化物半导体的主要载流子型态等特性,如表2所示。
表2
表2显示了本发明的实施例8~9的镁掺杂氧化铟镓锌系金属氧化物半导体材料中各金属成份的比例及主要载流子型态。当镁取代铟使镁掺杂氧化铟镓锌系金属氧化物半导体材料In1-xGa1-yMgx+yZnO4+m中0.001≤x≤0.005,y=0,0≤m≤3时,藉由霍尔测量所得的主要载流子型态为空穴,其空穴载流子浓度大于1015cm-3,故可确定实施例8~9所合成的镁掺杂氧化铟镓锌系金属氧化物半导体材料为p型,如表2所示。
实施例10~12︰铜取代铟的铜掺杂氧化铟镓锌系金属氧化物半导体材料
首先,在保持金属总含量为0.5mol的条件下,将0.167mol的镓盐(Ga(NO3)3)、0.167mol的锌盐(Zn(NO3)2)以及依照表3的化学剂量所分别秤取的数种含量比例的铟盐(In(NO3)3)及铜盐(Cu(NO3)2)加入浓度为1.4N的硝酸水溶液中,并加入0.55mol的酒石酸作为螯合剂,于常温下混合1小时,以合成本发明的实施例10~12。上述反应是在混合金属离子析出后,藉由螯合剂将铟、镓、锌、铜结合而形成一金属络合物。
随后,升温至155℃,蒸发溶液中的液体使溶液成为凝胶态,并进行干燥步骤将其干燥成粉状,继而进行烧结步骤使上述金属络合物氧化以形成金属氧化物半导体粉体,此金属氧化物半导体具有In1-xGa1-yCux+yZnO4+m的化学式,其中0.001≤x≤0.1,y=0,0≤m≤3。。
接着,进行陶瓷工艺的模压、射出、冷等静压、注浆等相关工艺,以制作铜取代铟的铜掺杂氧化铟镓锌系金属氧化物半导体材料的块材或靶材。
藉由对合成出的铜掺杂氧化铟镓锌系金属氧化物半导体块材或靶材进行能量弥散X射线谱分析,可得到铜掺杂氧化铟镓锌系金属氧化物半导体材料中金属成份元素的含量(摩尔比),如表3所示,以及非金属成份元素的氧的含量(摩尔比),其在实施例10~12中皆落在0≤m≤3的范围内。再者,藉由对合成出的铜掺杂氧化铟镓锌系金属氧化物半导体块材或靶材进行霍尔测量,可得到铜掺杂氧化铟镓锌系金属氧化物半导体的主要载流子型态等特性,如表3所示。
表3
表3显示了本发明的实施例10~12的铜掺杂氧化铟镓锌系金属氧化物半导体材料中各金属成份的比例及主要载流子型态。当铜取代铟使铜掺杂氧化铟镓锌系金属氧化物半导体材料In1-xGa1-yCux+yZnO4+m中0.001≤x≤0.1,y=0,0≤m≤3时,藉由霍尔测量所得的主要载流子型态为空穴,其空穴载流子浓度大于1015cm-3,故可确定实施例10~12所合成的铜掺杂氧化铟镓锌系金属氧化物半导体材料为p型,如表3所示。
实施例13~14︰镁取代镓的镁掺杂氧化铟镓锌系金属氧化物半导体材料
首先,在保持金属总含量为0.5mol的条件下,将0.167mol的铟盐(In(NO3)3)、0.167mol的锌盐(Zn(NO3)2)以及依照表4的化学剂量所分别秤取的数种含量比例之镓盐(Ga(NO3)3)及镁盐(Mg(NO3)2)加入浓度为1.4N的硝酸水溶液中,并加入0.55mol的酒石酸作为螯合剂,于常温下混合1小时,以合成本发明的实施例13~14。上述反应是在混合金属离子析出后,藉由螯合剂将铟、镓、锌、镁结合而形成一金属络合物。
随后,升温至155℃,蒸发溶液中的液体使溶液成为凝胶态,并进行干燥步骤将其干燥成粉状,继而进行烧结步骤使上述金属络合物氧化以形成金属氧化物半导体粉体,此金属氧化物半导体具有In1-xGa1-yMgx+yZnO4+m的化学式,其中x=0,0.001≤y≤0.1,0≤m≤3。
接着,进行陶瓷工艺的模压、射出、冷等静压、注浆等相关工艺,以制作镁取代镓的镁掺杂氧化铟镓锌系金属氧化物半导体材料的块材或靶材。
藉由对合成出的镁掺杂氧化铟镓锌系金属氧化物半导体块材或靶材进行能量弥散X射线谱分析,可得到镁掺杂氧化铟镓锌系金属氧化物半导体材料中金属成份元素的含量(摩尔比),如表4所示,以及非金属成份元素的氧的含量(摩尔比),其在实施例13~14中皆落在0≤m≤3的范围内。再者,藉由对合成出的镁掺杂氧化铟镓锌系金属氧化物半导体块材或靶材进行霍尔测量,可得到镁掺杂氧化铟镓锌系金属氧化物半导体材料的主要载流子型态等特性,如表4所示。
表4
表4显示了本发明的实施例13~14的镁掺杂氧化铟镓锌系金属氧化物半导体材料中各金属成份的比例及主要载流子型态。当镁取代镓使镁掺杂氧化铟镓锌系金属氧化物半导体材料In1-xGa1-yMgx+yZnO4+m中x=0,0.001≤y≤0.1,0≤m≤3时,藉由霍尔测量所得的主要载流子型态为空穴,其空穴载流子浓度大于1015cm-3,故可确定实施例13~14所合成的镁掺杂氧化铟镓锌系金属氧化物半导体材料为p型,如表4所示。
实施例15~18︰铜取代镓的铜掺杂氧化铟镓锌系金属氧化物半导体材料
首先,在保持金属总含量为0.5mol的条件下,将0.167mol的铟盐(In(NO3)3)、0.167mol的锌盐(Zn(NO3)2)以及依照表5的化学剂量所分别秤取的数种含量比例的镓盐(Ga(NO3)3)及铜盐(Cu(NO3)2)加入浓度为1.4N的硝酸水溶液中,并加入0.55mol的酒石酸作为螯合剂,于常温下混合1小时,以合成本发明的实施例15~18。上述反应是在混合金属离子析出后,藉由螯合剂将铟、镓、锌、铜结合而形成一金属络合物。
随后,升温至155℃,蒸发溶液中的液体使溶液成为凝胶态,并进行干燥步骤将其干燥成粉状,继而进行烧结步骤使上述金属络合物氧化以形成金属氧化物半导体粉体,此金属氧化物半导体具有In1-xGa1-yCux+yZnO4+m的化学式,其中x=0,0.025≤y≤0.1,0≤m≤3。
接着,进行陶瓷工艺的模压、射出、冷等静压、注浆等相关工艺,以制作铜取代镓的铜掺杂氧化铟镓锌系金属氧化物半导体材料的块材或靶材。
藉由对合成出的铜掺杂氧化铟镓锌系金属氧化物半导体块材或靶材进行能量弥散X射线谱分析,可得到铜掺杂氧化铟镓锌系金属氧化物半导体材料中金属成份元素的含量(摩尔比),如表5所示,以及非金属成份元素的氧的含量(摩尔比),其在实施例15~18中皆落在0≤m≤3的范围内。再者,藉由对合成出的铜掺杂氧化铟镓锌系金属氧化物半导体块材或靶材进行霍尔测量,可得到铜掺杂氧化铟镓锌系金属氧化物半导体材料的主要载流子型态等特性,如表5所示。
表5
表5显示了本发明的实施例15~18的铜掺杂氧化铟镓锌系金属氧化物半导体材料中各金属成份的比例及主要载流子型态。当铜取代镓使铜掺杂氧化铟镓锌系金属氧化物半导体材料In1-xGa1-yCux+yZnO4+m中x=0,0.025≤y≤0.1,0≤m≤3时,藉由霍尔测量所得的主要载流子型态为空穴,其空穴载流子浓度大于1015cm-3,故可确定实施例15~18所合成的铜掺杂氧化铟镓锌系金属氧化物半导体材料为p型,如表5所示。
虽然本发明已以数个较佳实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作任意的更动与润饰,因此本发明的保护范围当视后附的申请专利范围所界定者为准。
Claims (6)
1.一种p型金属氧化物半导体材料,具有化学式:In1-xGa1-yMx+yZnO4+m,其中M为钙(Ca)、镁(Mg)或铜(Cu),0<x+y≤0.1,0≤m≤3,且0<x,0≤y或0≤x,0<y,其中该p型金属氧化物半导体材料的空穴载流子浓度介于1×1015~6×1019cm-3之间。
2.权利要求1所述的p型金属氧化物半导体材料,其中M为钙(Ca),0.0005≤x≤0.1,y=0。
3.权利要求1所述的p型金属氧化物半导体材料,其中M为镁(Mg),0.001≤x≤0.005,y=0。
4.权利要求1所述的p型金属氧化物半导体材料,其中M为铜(Cu),0.001≤x≤0.1,y=0。
5.权利要求1所述的p型金属氧化物半导体材料,其中M为镁(Mg),x=0,0.001≤y≤0.1。
6.权利要求1所述的p型金属氧化物半导体材料,其中M为铜(Cu),x=0,0.025≤y≤0.1。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101135764 | 2012-09-28 | ||
TW101135764 | 2012-09-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103715234A CN103715234A (zh) | 2014-04-09 |
CN103715234B true CN103715234B (zh) | 2016-05-04 |
Family
ID=50384322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310447540.XA Active CN103715234B (zh) | 2012-09-28 | 2013-09-27 | p型金属氧化物半导体材料 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8927986B2 (zh) |
CN (1) | CN103715234B (zh) |
TW (1) | TWI495615B (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014202178A1 (de) * | 2013-06-20 | 2014-12-24 | Merck Patent Gmbh | Verfahren zur steuerung der optischen eigenschaften von uv-filterschichten |
JP6547273B2 (ja) * | 2013-12-26 | 2019-07-24 | 株式会社リコー | p型酸化物半導体、p型酸化物半導体製造用組成物、p型酸化物半導体の製造方法、半導体素子、表示素子、画像表示装置、及びシステム |
TWI534089B (zh) * | 2013-12-31 | 2016-05-21 | 財團法人工業技術研究院 | p型金屬氧化物半導體材料及其製造方法 |
US20170137324A1 (en) * | 2014-06-26 | 2017-05-18 | Sumitomo Metal Mining Co., Ltd. | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target |
KR101705406B1 (ko) * | 2014-09-11 | 2017-02-10 | 경희대학교 산학협력단 | 갈륨을 포함하는 p형 산화물 반도체를 이용한 유기 발광 다이오드 및 이의 제조 방법 |
JP6415363B2 (ja) * | 2015-03-16 | 2018-10-31 | 国立大学法人室蘭工業大学 | Igzoの製造方法 |
US10566483B2 (en) * | 2015-03-17 | 2020-02-18 | Lg Electronics Inc. | Solar cell |
KR102467802B1 (ko) * | 2016-06-30 | 2022-11-16 | 가부시키가이샤 플로스피아 | 산화물 반도체 막 및 그 제조 방법 |
CN112424949A (zh) * | 2018-07-12 | 2021-02-26 | 株式会社Flosfia | 半导体装置 |
US11342484B2 (en) * | 2020-05-11 | 2022-05-24 | Silanna UV Technologies Pte Ltd | Metal oxide semiconductor-based light emitting device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005103320A1 (ja) * | 2004-04-21 | 2005-11-03 | Idemitsu Kosan Co., Ltd. | 酸化インジウム−酸化亜鉛−酸化マグネシウム系スパッタリングターゲット及び透明導電膜 |
CN102290443A (zh) * | 2011-07-28 | 2011-12-21 | 北京大学深圳研究生院 | 一种非晶薄膜晶体管及其制备方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003179242A (ja) | 2001-12-12 | 2003-06-27 | National Institute Of Advanced Industrial & Technology | 金属酸化物半導体薄膜及びその製法 |
US7141489B2 (en) | 2003-05-20 | 2006-11-28 | Burgener Ii Robert H | Fabrication of p-type group II-VI semiconductors |
EP2226847B1 (en) | 2004-03-12 | 2017-02-08 | Japan Science And Technology Agency | Amorphous oxide and thin film transistor |
EP1872415A4 (en) | 2005-03-30 | 2010-06-23 | Moxtronics Inc | Metal Oxide Semiconductor Films, Structures and Methods |
KR100711203B1 (ko) | 2005-08-23 | 2007-04-24 | 한국과학기술연구원 | 산화아연을 이용한 p형-진성-n형 구조의 발광 다이오드제조방법 |
JP4560502B2 (ja) * | 2005-09-06 | 2010-10-13 | キヤノン株式会社 | 電界効果型トランジスタ |
US7329915B2 (en) * | 2005-11-21 | 2008-02-12 | Hewlett-Packard Development Company, L.P. | Rectifying contact to an n-type oxide material or a substantially insulating oxide material |
JP2008140684A (ja) | 2006-12-04 | 2008-06-19 | Toppan Printing Co Ltd | カラーelディスプレイおよびその製造方法 |
EP2471972B1 (en) * | 2006-12-13 | 2014-01-29 | Idemitsu Kosan Co., Ltd. | Sputtering target |
JP2010518619A (ja) | 2007-02-05 | 2010-05-27 | ユニベルシダデ ノバ デ リスボア | 銅ニッケル及びガリウム−スズ−亜鉛−銅−チタンのp型及びn型酸化物に基づく電子半導体デバイス、周辺機器及びその製造工程 |
TWI435846B (zh) | 2008-01-31 | 2014-05-01 | Univ Nat Chunghsing | A method for preparing transparent conductive zinc oxide thin film by dipping stitch doping technique |
TWI385716B (zh) | 2008-11-28 | 2013-02-11 | Univ Nat Chiao Tung | 以水溶液製備金屬氧化物薄膜之方法 |
TWI388506B (zh) | 2008-12-16 | 2013-03-11 | Ind Tech Res Inst | P型金屬氧化物半導體材料之製備方法 |
JP4571221B1 (ja) | 2009-06-22 | 2010-10-27 | 富士フイルム株式会社 | Igzo系酸化物材料及びigzo系酸化物材料の製造方法 |
JP2011181722A (ja) | 2010-03-02 | 2011-09-15 | Idemitsu Kosan Co Ltd | スパッタリングターゲット |
-
2013
- 2013-09-27 CN CN201310447540.XA patent/CN103715234B/zh active Active
- 2013-09-27 TW TW102134951A patent/TWI495615B/zh active
- 2013-09-27 US US14/039,188 patent/US8927986B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005103320A1 (ja) * | 2004-04-21 | 2005-11-03 | Idemitsu Kosan Co., Ltd. | 酸化インジウム−酸化亜鉛−酸化マグネシウム系スパッタリングターゲット及び透明導電膜 |
CN102290443A (zh) * | 2011-07-28 | 2011-12-21 | 北京大学深圳研究生院 | 一种非晶薄膜晶体管及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI495615B (zh) | 2015-08-11 |
US8927986B2 (en) | 2015-01-06 |
TW201412642A (zh) | 2014-04-01 |
CN103715234A (zh) | 2014-04-09 |
US20140091302A1 (en) | 2014-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103715234B (zh) | p型金属氧化物半导体材料 | |
Wei et al. | Synthesis and characterization of nanostructured stannite Cu2ZnSnSe4 and Ag2ZnSnSe4 for thermoelectric applications | |
Sheng et al. | Design of InZnSnO semiconductor alloys synthesized by supercycle atomic layer deposition and their rollable applications | |
Kwon et al. | Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors | |
Liu et al. | Antimony fluoride (SbF3): a potent hole suppressor for tin (II)‐halide perovskite devices | |
Park et al. | Highly reliable amorphous In-Ga-Zn-O thin-film transistors through the addition of nitrogen doping | |
Pham et al. | DFT+ U studies of Cu doping and p-type compensation in crystalline and amorphous ZnS | |
Bang et al. | Effects of Li doping on the structural and electrical properties of solution-processed ZnO films for high-performance thin-film transistors | |
Park et al. | Improvement of bias stability of oxyanion-incorporated aqueous sol–gel processed indium zinc oxide TFTs | |
Ma et al. | Bowing of the defect formation energy in semiconductor alloys | |
Gayner et al. | Effects of Co-doping and microstructure on charge carrier energy filtering in thermoelectric titanium-doped zinc aluminum oxide | |
Tiwari et al. | Electrical characteristics of InGaZnO thin film transistor prepared by co-sputtering dual InGaZnO and ZnO targets | |
Graužinytė et al. | Towards bipolar tin monoxide: revealing unexplored dopants | |
Li et al. | Simultaneous enhancement of electrical performance and negative bias illumination stability for low-temperature solution-processed SnO 2 thin-film transistors by fluorine incorporation | |
Wu et al. | Effect of Mg doping on the electrical characteristics of high performance IGZO thin film transistors | |
Hsu et al. | Bipolar resistive switching characteristics of a sol-gel InZnO oxide semiconductor | |
TWI534089B (zh) | p型金屬氧化物半導體材料及其製造方法 | |
Nayek et al. | Ferromagnetic property of copper doped ZnO: A first-principles study | |
Wu et al. | Electrical Performance Enhancement and Low-Frequency Noise Estimation of In 2 O 3-Based Thin Film Transistor Based on Doping Engineering | |
KR101466013B1 (ko) | 비정질 산화물 반도체 층 및 이를 포함하는 박막 트랜지스터 | |
Yi et al. | Effect of annealing on performance of ZnO thin film transistors | |
CN104641422A (zh) | 透明化合物半导体及其p型掺杂方法 | |
Liang et al. | Efficient defect engineering for solution combustion processed In-Zn-O thin films for high performance transistors | |
Liu et al. | Comparative study of room temperature ferromagnetism in Cu, Co codoped ZnO film enhanced by hybridization | |
Jhang et al. | Performance improvement of a sol–gel ZTO-based TFT due to an interfacial SnO x dopant layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |