US20170137324A1 - Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target - Google Patents
Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target Download PDFInfo
- Publication number
- US20170137324A1 US20170137324A1 US15/319,569 US201515319569A US2017137324A1 US 20170137324 A1 US20170137324 A1 US 20170137324A1 US 201515319569 A US201515319569 A US 201515319569A US 2017137324 A1 US2017137324 A1 US 2017137324A1
- Authority
- US
- United States
- Prior art keywords
- phase
- oxide
- sintered body
- gaino
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 97
- 239000004065 semiconductor Substances 0.000 title claims abstract description 54
- 238000005477 sputtering target Methods 0.000 title claims abstract description 24
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 70
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052738 indium Inorganic materials 0.000 claims abstract description 41
- 238000004544 sputter deposition Methods 0.000 claims abstract description 33
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000011575 calcium Substances 0.000 claims abstract description 22
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 11
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 8
- 239000010941 cobalt Substances 0.000 claims abstract description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 8
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims abstract description 8
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 180
- 229910005264 GaInO3 Inorganic materials 0.000 claims description 94
- 239000010408 film Substances 0.000 claims description 33
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 16
- 238000002425 crystallisation Methods 0.000 claims description 14
- 230000008025 crystallization Effects 0.000 claims description 13
- 238000002441 X-ray diffraction Methods 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 238000003754 machining Methods 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 54
- 238000005245 sintering Methods 0.000 description 42
- 239000000843 powder Substances 0.000 description 37
- 229910052760 oxygen Inorganic materials 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 22
- 239000001301 oxygen Substances 0.000 description 22
- 239000002994 raw material Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 12
- 238000000151 deposition Methods 0.000 description 11
- 230000008021 deposition Effects 0.000 description 10
- 229910003437 indium oxide Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 6
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 5
- 229910001195 gallium oxide Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 108091006149 Electron carriers Proteins 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 238000004993 emission spectroscopy Methods 0.000 description 3
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- IUYLTEAJCNAMJK-UHFFFAOYSA-N cobalt(2+);oxygen(2-) Chemical compound [O-2].[Co+2] IUYLTEAJCNAMJK-UHFFFAOYSA-N 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 238000009694 cold isostatic pressing Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005459 micromachining Methods 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- -1 argon and oxygen Chemical compound 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G15/00—Compounds of gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62218—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
- H01J37/3429—Plural materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02483—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02554—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02592—Microstructure amorphous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/34—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/18, H10D48/04 and H10D48/07, with or without impurities, e.g. doping materials
- H01L21/46—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
- H01L21/461—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/465—Chemical or electrical treatment, e.g. electrolytic etching
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
- H10D30/6756—Amorphous oxide semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/40—Crystalline structures
- H10D62/402—Amorphous materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/86—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group II-VI materials, e.g. ZnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3296—Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6583—Oxygen containing atmosphere, e.g. with changing oxygen pressures
- C04B2235/6584—Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6586—Processes characterised by the flow of gas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/81—Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- H01L29/78693—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/874—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Pb compounds or alloys, e.g. PbO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the present invention relates to an oxide sintered body, a target, and an oxide semiconductor thin film obtained by using the target, and more particularly to a crystalline oxide semiconductor thin film which has low carrier density and high carrier mobility and contains indium, gallium, and a positive divalent element (one or more positive divalent elements selected from the group consisting of nickel, cobalt, calcium, strontium, and lead), a sputtering target that is suitable for the formation of the crystalline oxide semiconductor thin film and contains Indium, gallium, and a positive divalent element (one or more positive divalent elements selected from the group consisting of nickel, cobalt, calcium, strontium, and lead), and an oxide sintered body that is suitable for obtaining the sputtering target and contains indium, gallium, and a positive divalent element (one or more positive divalent elements selected from the group consisting of nickel, cobalt, calcium, strontium, and lead).
- a positive divalent element one or more positive divalent elements selected from the group consisting of nickel, cobalt, calcium
- TFTs Thin film transistors
- FETs field effect transistors
- TFTs are three-terminal elements having a gate terminal, a source terminal, and a drain terminal in the basic structure.
- TFTs are active elements having a function of switching the current between the source terminal and the drain terminal so that a semiconductor thin film deposited on a substrate is used as a channel layer in which electrons or holes move and a voltage is applied to the gate terminal to control the current flowing in the channel layer.
- TFTs are electronic devices that are most widely used these days in practical application. Typical applications of TFTs include liquid-crystal driving elements.
- MIS-FETs metal-insulator-semiconductor-FETs
- a polycrystalline silicon film or an amorphous silicon film is used as a channel layer material.
- MIS-FETs including silicon are opaque to visible light and thus fail to form transparent circuits. Therefore, when MIS-FETs are used as switching elements for driving liquid crystals in liquid crystal displays, the aperture ratio of a display pixel in the devices is small.
- Patent Document 1 proposes a transparent semi-insulating amorphous oxide thin film which is a transparent amorphous oxide thin film deposited by vapor deposition and containing elements of In, Ga, Zn, and O.
- the composition of the oxide is InGaO 3 (ZnO) m (m is a natural number less than 6) when the oxide is crystallized.
- the transparent semi-insulating amorphous oxide thin film is a semi-insulating thin film having a carrier mobility (also referred to as carrier electron mobility) of more than 1 cm 2 V ⁇ 1 sec ⁇ 1 and a carrier density (also referred to as carrier electron density) of 10 16 cm ⁇ 3 or less without doping with an impurity ion.
- Patent Document 1 also proposes a thin film transistor in which the transparent semi-insulating amorphous oxide thin film is used as a channel layer.
- Patent Document 2 proposes a thin film transistor including an oxide thin film in which gallium is dissolved in indium oxide.
- the oxide thin film In the oxide thin film, the Ga/(Ga+In) atomic ratio is 0.001 to 0.12, and the percentage of indium and gallium with respect to the total metal atoms is 80 at % or more.
- the oxide thin film has an In 2 O 3 bixbyite structure.
- An oxide sintered body is proposed as the material of the oxide thin film in which gallium is dissolved in indium oxide.
- the Ga/(Ga+In) atomic ratio In the oxide sintered body, the Ga/(Ga+In) atomic ratio is 0.001 to 0.12, and the percentage of indium and gallium with respect to the total metal atoms is 80 at % or more.
- the oxide sintered body has an In 2 O 3 bixbyite structure.
- Patent Document 3 proposes a semiconductor device using a polycrystalline oxide semiconductor thin film which contains In and two or more kinds of metal other than In and has an electron carrier density of less than 1 ⁇ 10 18 cm ⁇ 3 . It is described that the two or more kinds of metal other than In are the positive divalent metal and the positive trivalent metal in claim 6 of Patent Document 3 and the positive divalent metal is at least one element selected from Zn, Mg, Cu, Ni, Co, Ca, and Sr and the positive trivalent metal is at least one element selected from Ga, Al, B, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu in claim 7 of Patent Document 3.
- the positive divalent metal is at least one element selected from Zn, Mg, Cu, Ni, Co, Ca, and Sr
- the positive trivalent metal is at least one element selected from Ga, Al, B, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,
- Patent Document 3 Examples for the combination of Ga and at least one element selected from Ni, Co, Ca, and Sr are not described.
- the hole mobility is as low as less than 10 cm 2 V ⁇ 1 sec ⁇ 1 in Examples for combinations other than the combination of these.
- the sputter deposition is performed by high frequency (RF) sputtering, and it is also not clear whether the sputtering target can be subjected to direct current (DC) sputtering or not.
- RF high frequency
- DC direct current
- the oxide sintered body includes indium, gallium, and a positive divalent element as oxides.
- the gallium content is 0.08 or more and less than 0.20 in terms of Ga/(In+Ga) atomic ratio.
- the total content of all the positive divalent elements is 0.0001 or more and 0.05 or less in terms of M/(In+Ga+M) atomic ratio.
- the positive divalent element is one or more selected from the group consisting of nickel, cobalt, calcium, strontium, and lead.
- the gallium content is 0.08 or more and 0.15 or less in terms of Ga/(In+Ga) atomic ratio in the oxide sintered body according to the first or second embodiment.
- the oxide sintered body according to any one of the first to third embodiments is substantially free of positive divalent elements other than the positive divalent elements and positive trivalent to positive hexavalent elements other than indium and gallium.
- a sputtering target is obtained by machining the oxide sintered body according to any one of the first to fifth embodiments.
- a crystalline oxide semiconductor thin film is obtained by forming an amorphous film on a substrate by sputtering using the sputtering target according to the sixth embodiment, followed by crystallization of the amorphous film by heating in an oxidizing atmosphere.
- the oxide semiconductor thin film according to the seventh or eighth embodiment has a carrier density of less than 1.0 ⁇ 10 18 cm ⁇ 3 .
- the oxide sintered body of the present invention contains Indium, gallium, and a positive divalent element M.
- the gallium content is 0.08 or more and less than 0.20 in terms of Ga/(In+Ga) atomic ratio
- the concentration of the positive divalent element M is 0.0001 or more and 0.05 or less in terms of M/(In+Ga+M) atomic ratio
- the divalent element M is one or more elements selected from the group consisting of nickel, cobalt, calcium, strontium, and lead.
- the oxide sintered body of the present invention contains the positive divalent element M in addition to indium and gallium in the composition ranges defined above.
- concentration of the positive divalent element M in terms of M/(In+Ga+M) atomic ratio, is 0.0001 or more and 0.05 or less and preferably 0.0001 or more and 0.03 or less.
- the element M′ include positive divalent elements, such as Cu, Mg, and Zn; positive trivalent elements, such as Al, Y, Sc, B, and lanthanoids; positive tetravalent elements, such as Sn, Ge, Ti, Si, Zr, Hf, C, and Ce; positive pentavalent elements, such as Nb and Ta; and positive hexavalent elements, such as W and Mo.
- positive divalent elements such as Cu, Mg, and Zn
- positive trivalent elements such as Al, Y, Sc, B, and lanthanoids
- positive tetravalent elements such as Sn, Ge, Ti, Si, Zr, Hf, C, and Ce
- positive pentavalent elements such as Nb and Ta
- positive hexavalent elements such as W and Mo.
- the oxide sintered body of the present invention is composed of an In 2 O 3 phase having a bixbyite-type structure; and a GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure as a formed phase other than the In 2 O 3 phase, or a GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure and a (Ga, In) 2 O 3 phase as a formed phase other than the In 2 O 3 phase.
- the oxide sintered body of the present invention is composed only of an In 2 O 3 phase, nodules are generated, for example, as in Comparative Example 11 of Patent Document 4 (WO2003/014409 A) regardless of the presence of the positive divalent element M.
- Gallium and the positive divalent element M are dissolved in the In 2 O 3 phase.
- gallium makes up the GaInO 3 phase or the (Ga, In) 2 O 3 phase.
- gallium and the positive divalent element M substitute for indium, which is a trivalent cation, at the lattice positions. It is not preferred that gallium is not dissolved in the In 2 O 3 phase but forms a Ga 2 O 3 phase having a ⁇ -Ga 2 O 3 -type structure because of unsuccessful sintering or the like. Since the Ga 2 O 3 phase has low conductivity, abnormal discharge arises.
- the oxide sintered body of the present invention includes only a GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure or a GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure and a (Ga, In) 2 O 3 phase in a range in which the X-ray diffraction peak intensity ratio defined by formula 1 below is 2% or more and 75% or less other than the In 2 O 3 phase having a bixbyite-type structure.
- I [In 2 O 3 phase (400)] represents a (400) peak intensity of the In 2 O 3 phase having a bixbyite-type structure
- I [GaInO 3 phase (111)] represents a (111) peak intensity of the complex oxide ⁇ -GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure.
- these raw material powders are mixed and then compacted, and the compact is sintered by ordinary-pressure sintering.
- the formed phases in the structure of the oxide sintered body of the present invention strongly depend on the conditions in each step for producing the oxide sintered body, for example, the particle size of the raw material powders, the mixing conditions, and the sintering conditions.
- the structure of the oxide sintered body of the present invention is preferably composed of an In 2 O 3 phase having a bixbyite-type structure; and a GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure as a formed phase other than the In 2 O 3 phase, or a GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure and a (Ga, In) 2 O 3 phase as a formed phase other than the In 2 O 3 phase in a desired ratio.
- the mean particle size of each raw material powder is preferably 3 ⁇ m or less and more preferably 1.5 ⁇ m or less.
- the oxide sintered body includes the GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure or both the GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure and the (Ga, In) 2 O 3 phase.
- the mean particle size of the raw material powders is preferably 1.5 ⁇ m or less.
- Indium oxide powder is a raw material for ITO (indium tin oxide), and fine indium oxide powder having good sintering properties has been developed along with improvements in ITO. Since indium oxide powder has been continuously used in large quantities as a raw material for ITO, raw material powder having a mean particle size of 0.8 ⁇ m or less is available these days.
- gallium oxide powder or the oxide powder of the positive divalent element M used is still smaller than that of indium oxide powder used, it is difficult to obtain raw material powder having a mean particle size of 1.5 ⁇ m or less. Therefore, when only coarse gallium oxide powder is available, the powder needs to be pulverized into particles having a mean particle size of 1.5 ⁇ m or less.
- hard ZrO 2 balls may be used as mixing balls.
- the slurry is taken out, filtrated, dried, and granulated. Subsequently, the resultant granulated material is compacted under a pressure of about 9.8 MPa (0.1 ton/cm 2 ) to 294 MPa (3 ton/cm 2 ) by cold isostatic pressing to form a compact.
- the sintering process by ordinary-pressure sintering is preferably preformed in an atmosphere containing oxygen.
- the volume fraction of oxygen in the atmosphere is preferably over 20%.
- the oxide sintered body is further densified.
- An excessive amount of oxygen in the atmosphere causes the surface of the compact to undergo sintering in advance during the early stage of sintering. Subsequently, sintering proceeds while the inside of the compact is reduced, and a highly dense oxide sintered body is finally obtained.
- indium oxide decomposes particularly at about 900° C. to 1000° C. to form metal indium, which makes it difficult to obtain a desired oxide sintered body.
- the temperature range of ordinary-pressure sintering is preferably 1200° C. or higher and 1550° C. or lower and more preferably from 1350° C. or higher and 1450° C. or lower in an atmosphere obtained by introducing oxygen gas into air in a sintering furnace.
- the sintering time is preferably 10 to 30 hours, and more preferably 15 to 25 hours.
- an oxide sintered body that is composed of an In 2 O 3 phase having a bixbyite-type structure; and a GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure as a formed phase other than the In 2 O 3 phase, or a GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure and a (Ga, In) 2 O 3 phase as a formed phase other than the In 2 O 3 phase is obtained.
- the sintering reaction does not proceed well and the disadvantage is caused that the density of the oxide sintered body is less than 6.4 g/cm 3 .
- the formation of the (Ga, In) 2 O 3 phase is significant at a sintering temperature higher than 1550° C.
- the (Ga, In) 2 O 3 phase causes a decrease in deposition rate since it has a higher electrical resistance value than the GaInO 3 phase.
- the sintering temperature is preferably 1200° C. or higher and 1550° C. or lower and more preferably from 1350° C. or higher and 1450° C. or lower.
- the temperature elevation rate until the sintering temperature is reached is preferably in the range of 0.2 to 5° C./min in order to cause debinding without forming cracks in the sintered body. As long as the temperature elevation rate is this range, the temperature may be increased to the sintering temperature in a combination of different temperature elevation rates as desired. During the temperature elevation process, a particular temperature may be maintained for a certain time in order for debinding and sintering to proceed. Particularly in the case of using a lead oxide powder as a raw material powder, it is effective to hold the oxide sintered body at a temperature of 1100° C. or lower for a certain time in order to promote the dissolution of the lead element into the In 2 O 3 phase.
- the holding time is not particularly limited, but is preferably 1 hour or longer and 10 hours or shorter.
- oxygen introduction is stopped before cooling.
- the temperature is preferably decreased to 1000° C. at a temperature drop rate in the range of preferably 0.2 to 5° C./min, and particularly 0.2° C./min or more and less than 1° C./min.
- the target of the present invention can be obtained by machining the oxide sintered body to a predetermined size, grinding the surface thereof and bonding the oxide sintered body to a backing plate.
- the target preferably has a flat shape, but may have a cylindrical shape. When a cylindrical target is used, it is preferred to suppress particle generation due to target rotation.
- the density of the oxide sintered body of the present invention is preferably 6.4 g/cm 3 or more, and it is preferably 6.8 g/cm 3 or more when the gallium content is 0.08 or more and less than 0.20 in terms of Ga/(In+Ga) atomic ratio. It is not preferred that the density is less than 6.4 g/cm 3 since nodules are generated when being used in mass production.
- the crystalline oxide semiconductor thin film of the present invention is obtained as follows: once forming an amorphous thin film on a substrate by sputtering using the sputtering target; and subjecting the amorphous thin film to heat treatment.
- the sputtering target is formed from the oxide sintered body.
- the structure of the oxide sintered body namely, the structure composed basically of an In 2 O 3 phase having a bixbyite-type structure and a GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure, is important. It is important that the crystallization temperature of the amorphous oxide thin film to be once formed is sufficiently high in order to obtain the crystalline oxide semiconductor thin film according to the present invention, but this is related to the structure of the oxide sintered body.
- the oxide sintered body includes only an In 2 O 3 phase having a bixbyite-type structure
- the oxide thin film has a low crystallization temperature of about 190 to 230° C. and is not completely amorphous in some cases, for example, as disclosed in Patent Document 2 (WO2010/032422 A). This is because microcrystals are already generated after the film deposition in this case and it is difficult to perform patterning by wet etching due to the formation of residue.
- sputtering is used in the process for forming the amorphous thin film, but in particular, direct current (DC) sputtering is industrially advantageous because the thermal effects are minimized during film deposition and high-rate deposition is achieved.
- a gas mixture of an inert gas and oxygen, particularly argon and oxygen is preferably used as a sputtering gas.
- Sputtering is preferably performed in a chamber of a sputtering apparatus at an internal pressure of 0.1 to 1 Pa, particularly 0.2 to 0.8 Pa.
- the substrate is typically a glass substrate and is preferably an alkali-free glass substrate.
- any resin sheet and resin film that withstands the above process temperature can be used.
- presputtering can be performed as follows: for example, after evacuation to 1 ⁇ 10 ⁇ 4 Pa or less, introducing a gas mixture of argon and oxygen until the gas pressure reaches 0.2 to 0.5 Pa; and generating a direct current plasma by applying direct current power so that the direct current power with respect to the area of the target, namely, the direct current power density, is in the range of about 1 to 7 W/cm 2 . It is preferred that, after this presputtering for 5 to 30 minutes, the substrate position be corrected as desired and then sputtering be performed. In sputter deposition, the direct current power applied is increased in the acceptable range in order to increase the deposition rate.
- the crystalline oxide semiconductor thin film of the present invention is obtained by forming the amorphous thin film and crystalizing this through a heat treatment.
- the condition for a heat treatment is a temperature higher than the crystallization temperature in an oxidizing atmosphere.
- the oxidizing atmosphere is preferably an atmosphere containing oxygen, ozone, water vapor, or nitrogen oxides.
- the temperature for heat treatment is preferably 250 to 600° C., more preferably 300 to 550° C., and even more preferably 350 to 500° C.
- the time for heat treatment i.e., the time during which the amorphous thin film is held at the heat treatment temperature, is preferably 1 to 120 minutes and more preferably 5 to 60 minutes.
- the crystallization method involves, for example, once forming an amorphous film at a low temperature, for example, near room temperature or at a substrate temperature of 100 to 300° C., and then crystalizing the oxide thin film through a heat treatment at the crystallization temperature or higher, or heating the substrate to the crystallization temperature of the oxide thin film or higher to form a crystalline oxide thin film.
- the heating temperature in these two methods is only about 600° C. or lower, and there is no significant difference in treatment temperature as compared with a known semiconductor process described in Patent Document 5 (JP 2012-253372 A), for example.
- the proportion of indium, gallium, and the positive divalent element M in the amorphous thin film and the crystalline oxide semiconductor thin film substantially corresponds to the composition of the oxide sintered body of the present invention. That is, the crystalline oxide semiconductor thin film contains indium and gallium as oxides and further contains the positive divalent element M.
- the gallium content is 0.08 or more and less than 0.20 in terms of Ga/(In+Ga) atomic ratio.
- the content of the positive divalent element M is 0.0001 or more and 0.05 or less in terms of M/(In+Ga+M) atomic ratio.
- the gallium content is more preferably 0.08 or more and 0.15 or less in terms of Ga/(In+Ga) atomic ratio.
- the content of the positive divalent element M is more preferably 0.0001 or more and 0.03 or less in terms of M/(In+Ga+M) atomic ratio.
- the crystalline oxide semiconductor thin film of the present invention preferably includes only an In 2 O 3 phase having a bixbyite structure.
- In the In 2 O 3 phase gallium is dissolved to substitute for indium, which is a trivalent cation, at the lattice positions, and the positive divalent element M is dissolved to substitute, as in the oxide sintered body.
- the carrier density decreases to less than 1.0 ⁇ 10 18 cm ⁇ 3 because doping of the positive divalent element M has an effect of neutralizing carrier electrons generated mainly by oxygen defects.
- the carrier density is more preferably 3.0 ⁇ 10 17 cm ⁇ 3 or less.
- the carrier mobility tends to decrease as the carrier density decreases, but the carrier mobility is preferably 10 cm 2 V ⁇ 1 sec ⁇ 1 or more, more preferably 15 cm 2 V ⁇ 1 sec ⁇ 1 or more, and particularly preferably 20 cm 2 V ⁇ 1 sec ⁇ 1 or more.
- the crystalline oxide semiconductor thin film of the present invention is subjected to micromachining, which is required in applications such as TFTs by wet etching or dry etching. It is possible to perform micromachining by wet etching using a weak acid after the formation of an amorphous film when an amorphous film is once formed at a low temperature, and then the oxide thin film is crystallized by being subjected to a heat treatment at a temperature equal to or higher than the crystallization temperature.
- weak acids can be used, but a weak acid composed mainly of oxalic acid is preferably used.
- commercial products such as ITO-06N available from Kanto Chemical Co., Inc., can be used.
- the thickness of the crystalline oxide semiconductor thin film of the present invention is not limited, the thickness is 10 to 500 nm, preferably 20 to 300 nm, and more preferably 30 to 100 nm.
- the thickness is less than 10 nm, unfavorable crystallinity is obtained, and as a result, high carrier mobility is not achieved.
- the film thickness is more than 500 nm, it is disadvantageous in that a problem associated with productivity arises.
- the crystalline oxide semiconductor thin film of the present invention has an average transmittance in the visible region (400 to 800 nm) of preferably 80% or more, more preferably 85% or more, and even more preferably 90% or more.
- the light extraction efficiency by a liquid crystal element, an organic EL element, and the like as a transparent display device decreases when the average transmittance is less than 80%.
- the composition of the metal elements in the obtained oxide sintered body was determined by ICP emission spectroscopy.
- the formed phases were identified by a powder method with an X-ray diffractometer (available from Philips) using rejects of the obtained oxide sintered body.
- An indium oxide powder, a gallium oxide powder, and a nickel oxide powder as the positive divalent element M were prepared as raw material powders so that each powder has a mean particle size of 1.5 ⁇ m or less. These raw material powders were prepared so as to obtain the Ga/(In+Ga) atomic ratio and the M/(In+Ga+M) atomic ratio of Examples and Comparative Examples shown in Table 1 and Table 2.
- the raw material powders were placed in a resin pot together with water and mixed by wet ball milling. In this case, hard ZrO 2 balls were used, and the mixing time was 18 hours. After mixing, the slurry was taken out, filtered, dried, and granulated. The granulated material was compacted by cold isostatic pressing under a pressure of 3 ton/cm 2 .
- the compact was sintered as described below.
- the compact was sintered at a sintering temperature of between 1000 and 1550° C. for 20 hours in an atmosphere obtained by introducing oxygen into air in a sintering furnace at a rate of 5 L/min per 0.1 m 3 furnace volume. At this time, the temperature was increased by 1° C./min, oxygen introduction was stopped during cooling after sintering, and the temperature was decreased to 1000° C. by 10° C./min.
- the composition of the obtained oxide sintered body was analyzed by ICP emission spectrometry. As a result, it was confirmed that the proportion of the metal elements was substantially the same as the composition prepared at the time of mixing raw material powders in all Examples.
- phase identification of the oxide sintered body was performed by X-ray diffraction measurement, as in Table 1 and Table 2, only the diffraction peak attributed to the In 2 O 3 phase having a bixbyite-type structure or only the diffraction peaks attributed to the In 2 O 3 phase having a bixbyite-type structure and the GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure and the (Ga, In) 2 O 3 phase were confirmed.
- the oxide sintered body was machined to a size of 152 mm in diameter and 5 mm in thickness.
- the sputtering surface was grinded with a cup grinding wheel so that the maximum height Rz was 3.0 ⁇ m or less.
- the machined oxide sintered body was bonded to an oxygen-free copper backing plate by using metal indium to provide a sputtering target.
- the oxide sintered body was produced in the same manner as in the case in which the positive divalent element M was Ni except that cobalt(II) oxide, calcium(II) oxide, strontium(II) oxide, and lead(II) oxide were used as the positive divalent element M, the composition was analyzed, the phases were identified, and the X-ray diffraction peak intensity ratio of the GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure was thus calculated. The results are shown in Table 3 for the case of using cobalt(II) oxide, Table 4 for the case of using calcium(II) oxide, Table 5 for the case of using lead(II) oxide, and Table 6 for the case of using strontium(II) oxide. Incidentally, in the composition analysis, it was confirmed that the proportion of the metal elements was substantially the same as the composition prepared at the time of mixing raw material powders in all Examples.
- Film deposition by direct current sputtering was performed at room temperature without heating the substrate in Examples 1 to 11, 17 to 22, 25, 26, 29, 30, 33, and 34 and Comparative Examples 1 to 5, 8, 9, 11, 12, 14, 15, 17, and 18 and at a substrate temperature of 200° C. in Examples and Comparative Examples other than Examples and Comparative Examples above by using the sputtering targets of the respective Examples and Comparative Examples and an alkali-free glass substrate (Eagle XG available from Corning).
- the sputtering target was attached to a cathode of a direct current magnetron sputtering apparatus (available from Tokki Corporation) having a direct current power supply with no arcing control function. At this time, the target-substrate (holder) distance was fixed at 60 mm.
- a gas mixture of argon and oxygen was introduced at an appropriate oxygen ratio, which depends on the gallium content in each target.
- the gas pressure was controlled to 0.6 Pa.
- a direct current plasma was generated by applying a direct current power of 300 W (1.64 W/cm 2 ).
- the substrate was placed directly above the sputtering target, namely, in the stationary opposing position, and an oxide thin film having a thickness of 50 nm was deposited.
- the composition of the obtained oxide thin film was confirmed to be substantially the same as that of the target.
- the oxide thin film was confirmed to be amorphous as a result of the X-ray diffraction measurement.
- the obtained amorphous oxide thin film was subjected to a heat treatment at 300 to 600° C. for 30 minutes in an oxidizing atmosphere by using an RTA (Rapid Thermal Annealing) apparatus.
- the oxide thin film after the heat treatment was confirmed to be crystallized from the results of the X-ray diffraction measurement, and In 2 O 3 (111) was the main peak.
- the Hall-effect measurement was performed on the crystallized oxide semiconductor thin films thus obtained to determine the carrier density and the carrier mobility.
- the evaluation on nodule generation was carried out by mass production-simulated sputter deposition for sputtering targets of Examples 3, 13, 18, 26, 30, and 34 and Comparative Examples 1, 4, 7, 9, 12, 15, and 18.
- a load-lock-system pass-type magnetron sputtering device equipped with a direct current power source without an arcing suppression function (available from ULVAC Technologies, Inc.) was used as the sputtering device.
- a square target having a height of 5 inches and a width of 15 inches was used as the target.
- the sputtering chamber for the evaluation of sputter deposition was evacuated to 7 ⁇ 10 ⁇ 5 Pa or less, a mixed gas of argon and oxygen was then introduced into the chamber so that a suitable oxygen ratio was obtained in accordance with the gallium amount in each target, and the gas pressure was adjusted to 0.6 Pa.
- the reason for selecting the sputtering gas having such conditions is because it is not possible to carry out fair evaluation when the degree of vacuum in the sputtering chamber exceeds 1 ⁇ 10 ⁇ 4 Pa and the moisture pressure in the chamber is high or hydrogen gas is doped.
- the crystallization temperature of the film increases when H + derived from moisture or hydrogen gas is incorporated into the film, and the film adhering to the target non-erosion portion is likely to be amorphous. As a result, the film stress decreases and thus the film is less likely to peel off the non-erosion portion and nodules are less likely to be generated.
- the direct current power was set to 2500 W (direct current power density: 5.17 W/cm 2 ) by taking the fact into account that the direct current power density employed in mass production is generally about 3 to 6 W/cm 2 .
- the target surface was observed after the continuous sputtering discharge of 50 kWh and the presence or absence of nodule generation was evaluated.
- the oxide sintered body of Comparative Example 1 in which the gallium content is less than 0.08 in terms of Ga/(In+Ga) atomic ratio and the oxide sintered bodies of Comparative Examples 2, 3, 8, 11, 14, and 17 in which the content of the positive divalent element M is less than 0.0001 in terms of M/(In+Ga+M) atomic ratio are an oxide sintered body composed only of an In 2 O 3 phase having a bixbyite-type structure.
- the oxide sintered body of the present invention which is composed of an In 2 O 3 phase having a bixbyite-type structure; and a GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure as a formed phase other than the In 2 O 3 phase, or a GaInO 3 phase having a ⁇ -Ga 2 O 3 -type structure and a (Ga, In) 2 O 3 phase as a formed phase other than the In 2 O 3 phase is not obtained.
- the generated phase other than the In 2 O 3 phase having a bixbyite-type structure includes a NiGa 2 O 4 phase, a CoGa 2 O 4 phase, a CaGa 4 O 7 phase, a Ca 5 Ga 6 O 14 phase, a SrGa 12 O 19 phase, a SrGa 2 O 4 phase, a Sr 3 Ga 2 O 6 phase, and a Ga 2 PbO 4 phase that are a complex oxide composed of the positive divalent element M and gallium or a complex oxide phase of these since the content of the positive divalent element M exceeds 0.05 in terms of M/(In+Ga+M) atomic ratio, and thus the intended oxide sintered body of the present invention is not obtained.
- the oxide semiconductor thin films of Examples 1 to 4, 6, 8 to 10, and 17 to 19, 21, 22, 25, 29, and 33 in which the gallium content is 0.08 or more and 0.15 or less in terms of Ga/(In+Ga) atomic ratio and the content of the positive divalent element M is 0.0001 or more and 0.03 or less in terms of M/(In+Ga+M) atomic ratio exhibit excellent properties so that the carrier mobility thereof is 15 cm 2 V ⁇ 1 sec ⁇ 1 or more.
- the oxide semiconductor thin films of Comparative Examples 1 to 3, 8, 11, 14, and 17 are an oxide semiconductor thin film composed only of an In 2 O 3 phase having a bixbyite-type structure, but it is not suitable for the active layer of TFTs since the carrier density thereof exceeds 1.0 ⁇ 10 18 cm ⁇ 3 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Thin Film Transistor (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Provided are an oxide sintered compact whereby low carrier density and high carrier mobility are obtained when the oxide sintered compact is used to obtain an oxide semiconductor thin film by a sputtering method, and a sputtering target which uses the oxide sintered compact. This oxide sintered compact contains, as an oxide, one or more positive divalent elements selected from the group consisting of indium, gallium, nickel, cobalt, calcium, strontium, and lead. The gallium content is less than 0.08 to 0.20 in terms of Ga/(In+Ga) atomic ratio, and the positive dyad (M) content is 0.0001 to 0.05 in terms of M/(In+Ga+M) atomic ratio. In a crystalline oxide semiconductor thin film formed using the oxide sintered compact as a sputtering target, the carrier density is less than 1×1018 cm−3, and the carrier mobility is at least 10 cm2V−1sec−1.
Description
- The present invention relates to an oxide sintered body, a target, and an oxide semiconductor thin film obtained by using the target, and more particularly to a crystalline oxide semiconductor thin film which has low carrier density and high carrier mobility and contains indium, gallium, and a positive divalent element (one or more positive divalent elements selected from the group consisting of nickel, cobalt, calcium, strontium, and lead), a sputtering target that is suitable for the formation of the crystalline oxide semiconductor thin film and contains Indium, gallium, and a positive divalent element (one or more positive divalent elements selected from the group consisting of nickel, cobalt, calcium, strontium, and lead), and an oxide sintered body that is suitable for obtaining the sputtering target and contains indium, gallium, and a positive divalent element (one or more positive divalent elements selected from the group consisting of nickel, cobalt, calcium, strontium, and lead).
- Thin film transistors (TFTs) are a type of field effect transistors (hereinafter referred to as FETs). TFTs are three-terminal elements having a gate terminal, a source terminal, and a drain terminal in the basic structure. TFTs are active elements having a function of switching the current between the source terminal and the drain terminal so that a semiconductor thin film deposited on a substrate is used as a channel layer in which electrons or holes move and a voltage is applied to the gate terminal to control the current flowing in the channel layer. TFTs are electronic devices that are most widely used these days in practical application. Typical applications of TFTs include liquid-crystal driving elements.
- Currently, most widely used TFTs are metal-insulator-semiconductor-FETs (MIS-FETs) in which a polycrystalline silicon film or an amorphous silicon film is used as a channel layer material. MIS-FETs including silicon are opaque to visible light and thus fail to form transparent circuits. Therefore, when MIS-FETs are used as switching elements for driving liquid crystals in liquid crystal displays, the aperture ratio of a display pixel in the devices is small.
- Due to the recent need for high-resolution liquid crystals, switching elements for driving liquid crystals now require high-speed driving. In order to achieve high-speed driving, a semiconductor thin film in which the mobility of electrons or holes, is higher than that in at least amorphous silicon needs to be used as a channel layer.
- Under such circumstances, Patent Document 1 proposes a transparent semi-insulating amorphous oxide thin film which is a transparent amorphous oxide thin film deposited by vapor deposition and containing elements of In, Ga, Zn, and O. The composition of the oxide is InGaO3(ZnO)m (m is a natural number less than 6) when the oxide is crystallized. The transparent semi-insulating amorphous oxide thin film is a semi-insulating thin film having a carrier mobility (also referred to as carrier electron mobility) of more than 1 cm2 V−1 sec−1 and a carrier density (also referred to as carrier electron density) of 1016 cm−3 or less without doping with an impurity ion. Patent Document 1 also proposes a thin film transistor in which the transparent semi-insulating amorphous oxide thin film is used as a channel layer.
- However, as proposed in Patent Document 1, the transparent amorphous oxide thin film (a-IGZO film) containing elements of In, Ga, Zn, and O and deposited by any method of vapor deposition selected from sputtering and pulsed laser deposition has a relatively high electron carrier mobility in a range of from 1 to 10 cm2 V−1 sec−1, but instability has been often pointed out as a problem in the case of forming a device such as a TFT as the fact that the amorphous oxide thin film is originally likely to generate oxygen loss and the behavior of the electron carrier is not always stable against external factors such as heat cause adverse effects.
- Regarding materials for solving such a problem, Patent Document 2 proposes a thin film transistor including an oxide thin film in which gallium is dissolved in indium oxide. In the oxide thin film, the Ga/(Ga+In) atomic ratio is 0.001 to 0.12, and the percentage of indium and gallium with respect to the total metal atoms is 80 at % or more. The oxide thin film has an In2O3 bixbyite structure. An oxide sintered body is proposed as the material of the oxide thin film in which gallium is dissolved in indium oxide. In the oxide sintered body, the Ga/(Ga+In) atomic ratio is 0.001 to 0.12, and the percentage of indium and gallium with respect to the total metal atoms is 80 at % or more. The oxide sintered body has an In2O3 bixbyite structure.
- However, the carrier density described in Examples 1 to 8 of Patent Document 2 is at the level of 1018 cm−3, and there is still a problem that the carrier density is too high for the oxide semiconductor thin film to be applied to a TFT.
- Accordingly, Patent Document 3 proposes a semiconductor device using a polycrystalline oxide semiconductor thin film which contains In and two or more kinds of metal other than In and has an electron carrier density of less than 1×1018 cm−3. It is described that the two or more kinds of metal other than In are the positive divalent metal and the positive trivalent metal in claim 6 of Patent Document 3 and the positive divalent metal is at least one element selected from Zn, Mg, Cu, Ni, Co, Ca, and Sr and the positive trivalent metal is at least one element selected from Ga, Al, B, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu in claim 7 of Patent Document 3.
- However, in Patent Document 3, Examples for the combination of Ga and at least one element selected from Ni, Co, Ca, and Sr are not described. In addition, the hole mobility is as low as less than 10 cm2 V−1 sec−1 in Examples for combinations other than the combination of these. Furthermore, it is not instigated which sintered body structure is preferable for an oxide sintered body to be used in sputter deposition of an oxide semiconductor thin film so as to avoid the occurrence of arcing and nodules. In addition, the sputter deposition is performed by high frequency (RF) sputtering, and it is also not clear whether the sputtering target can be subjected to direct current (DC) sputtering or not.
- Patent Document 1: Japanese Unexamined Patent Application, Publication No. 2010-219538
- Patent Document 2: PCT International Publication No. WO2010/032422
- Patent Document 3: PCT International Publication No. WO2008/117739
- Patent Document 4: PCT International Publication No. WO2003/014409
- Patent Document 5: Japanese Unexamined Patent Application, Publication No. 2012-253372
- An object of the present invention is to provide a sputtering target that allows a crystalline oxide semiconductor thin film to have low carrier density, an oxide sintered body most suitable for obtaining the sputtering target, and an oxide semiconductor thin film that is obtained by using the sputtering target and has low carrier density and high carrier mobility.
- The present inventors have newly found out that an oxide sintered body that has been sintered is composed substantially of an In2O3 phase having a bixbyite-type structure; and a GaInO3 phase having a β-Ga2O3-type structure as a formed phase other than the In2O3 phase, or a GaInO3 phase having a β-Ga2O3-type structure and a (Ga, In)2O3 phase as a formed phase other than the In2O3 phase. And an oxide semiconductor thin film produced using the oxide sintered body has a carrier mobility of 10 cm2 V−1 sec−1 or more when a small amount of one or more positive divalent elements M selected from the group consisting of nickel, cobalt, calcium, strontium, and lead, specifically at a ratio of 0.0001 or more and 0.05 or less in terms of the ratio of M/(In+Ga+M) is contained particularly in an oxide sintered body containing gallium as an oxide at a ratio of 0.08 or more and less than 0.20 in terms of the ratio of gallium to indium, Ga/(In+Ga).
- That is, in the first embodiment of the present invention, the oxide sintered body includes indium, gallium, and a positive divalent element as oxides. The gallium content is 0.08 or more and less than 0.20 in terms of Ga/(In+Ga) atomic ratio. The total content of all the positive divalent elements is 0.0001 or more and 0.05 or less in terms of M/(In+Ga+M) atomic ratio. The positive divalent element is one or more selected from the group consisting of nickel, cobalt, calcium, strontium, and lead. The oxide sintered body is composed of an In2O3 phase having a bixbyite-type structure; and a GaInO3 phase having a β-Ga2O3-type structure as a formed phase other than the In2O3 phase, or a GaInO3 phase having a β-Ga2O3-type structure and a (Ga, In)2O3 phase as a formed phase other than the In2O3 phase. The oxide sintered body is substantially free of a NiGa2O4 phase, a CoGa2O4 phase, a CaGa4O7 phase, a Ca5Ga6O14 phase, a SrGa12O19 phase, a SrGa2O4 phase, a Sr3Ga2O6 phase, and a Ga2PbO4 phase that are a complex oxide composed of the positive divalent element and gallium or a complex oxide phase of these.
- In a second embodiment of the present invention, the total content of all the positive divalent elements is 0.0001 or more and 0.03 or less in terms of M/(In+Ga+M) atomic ratio in the oxide sintered body according to the first embodiment.
- In a third embodiment of the present invention, the gallium content is 0.08 or more and 0.15 or less in terms of Ga/(In+Ga) atomic ratio in the oxide sintered body according to the first or second embodiment.
- In a fourth embodiment of the present invention, the oxide sintered body according to any one of the first to third embodiments is substantially free of positive divalent elements other than the positive divalent elements and positive trivalent to positive hexavalent elements other than indium and gallium.
- In a fifth embodiment of the present invention, the X-ray diffraction peak intensity ratio of the GaInO3 phase having a β-Ga2O3-type structure defined by formula 1 below is in the range of from 2% or more to 75% or less in the oxide sintered body according to any one of the first to fourth embodiments.
-
100×I[GaInO3 phase (111)]/{I[In2O3 phase (400)]+I[GaInO3 phase (111)]}[%] Formula 1 - In a sixth embodiment of the present invention, a sputtering target is obtained by machining the oxide sintered body according to any one of the first to fifth embodiments.
- In a seventh embodiment of the present invention, a crystalline oxide semiconductor thin film is obtained by forming an amorphous film on a substrate by sputtering using the sputtering target according to the sixth embodiment, followed by crystallization of the amorphous film by heating in an oxidizing atmosphere.
- In an eighth embodiment of the present invention, the oxide semiconductor thin film according to the seventh embodiment has a carrier mobility of 10 cm2 V−1 sec−1 or more.
- In a ninth embodiment of the present invention, the oxide semiconductor thin film according to the seventh or eighth embodiment has a carrier density of less than 1.0×1018 cm−3.
- An oxide sintered body of the present invention that contains indium and gallium as oxides and further contains a positive divalent element M so that the M/(In+Ga+M) atomic ratio is 0.0001 or more and 0.05 or less can provide a crystalline oxide semiconductor thin film of the present invention by sputter deposition and subsequent heating, for example, when the oxide sintered body is used as a sputtering target. The crystalline oxide semiconductor thin film has a bixbyite structure. The presence of a predetermined amount of the positive divalent element M provides an effect of reducing carrier density. When the crystalline oxide semiconductor thin film of the present invention is used in TFTs, the on/off ratio of TFTs can be increased. In the present invention, it is possible to stably obtain an oxide semiconductor film having not only a decreased carrier density but also an excellent carrier mobility of 10 cm2 V−1 sec−1 or more by sputter deposition as the oxide sintered body is composed substantially of an In2O3 phase having a bixbyite-type structure; and a GaInO3 phase having a β-Ga2O3-type structure as a formed phase other than the In2O3 phase, or a GaInO3 phase having a β-Ga2O3-type structure and a (Ga, In)2O3 phase as a formed phase other than the In2O3 phase. Therefore, the oxide sintered body, the target, and the oxide semiconductor thin film obtained by using the target in the present invention are industrially very useful.
- An oxide sintered body, a sputtering target, and an oxide thin film obtained by using the target in the present invention will be described below in detail.
- The oxide sintered body of the present invention contains Indium, gallium, and a positive divalent element M. In the oxide sintered body, the gallium content is 0.08 or more and less than 0.20 in terms of Ga/(In+Ga) atomic ratio, the concentration of the positive divalent element M is 0.0001 or more and 0.05 or less in terms of M/(In+Ga+M) atomic ratio, and the divalent element M is one or more elements selected from the group consisting of nickel, cobalt, calcium, strontium, and lead.
- The gallium content, in terms of Ga/(In+Ga) atomic ratio, is 0.08 or more and less than 0.20 and more preferably 0.08 or more and 0.15 or less. Gallium has an effect of reducing the oxygen loss in the crystalline oxide semiconductor thin film of the present invention because gallium has high bonding strength to oxygen. When the gallium content is less than 0.08 in terms of Ga/(In+Ga) atomic ratio, this effect is not sufficiently obtained. When the gallium content is 0.20 or more, the crystallization temperature is too high. Thus, the crystallinity cannot be increased in the temperature range regarded as preferable for semiconductor processing, and the carrier mobility is not high enough as an oxide semiconductor thin film.
- The oxide sintered body of the present invention contains the positive divalent element M in addition to indium and gallium in the composition ranges defined above. The concentration of the positive divalent element M, in terms of M/(In+Ga+M) atomic ratio, is 0.0001 or more and 0.05 or less and preferably 0.0001 or more and 0.03 or less.
- Doping the oxide sintered body of the present invention with the positive divalent element M in this range reduces the carrier density because the positive divalent element M has an effect of neutralizing electrons generated mainly by oxygen defects. When the crystalline oxide semiconductor thin film of the present invention is used in TFTs, the on/off ratio of TFTs can be increased.
- It is preferred that the oxide sintered body of the present invention is substantially free of elements M′, which are positive divalent elements other than the positive divalent element M and positive trivalent to positive hexavalent elements other than indium and gallium. The term “substantially free of” as used herein means that the content of each element M′, in terms of M′/(In+Ga+M′) atomic ratio, is 500 ppm or less, preferably 200 ppm or less, and more preferably 100 ppm or less. Specific examples of the element M′ include positive divalent elements, such as Cu, Mg, and Zn; positive trivalent elements, such as Al, Y, Sc, B, and lanthanoids; positive tetravalent elements, such as Sn, Ge, Ti, Si, Zr, Hf, C, and Ce; positive pentavalent elements, such as Nb and Ta; and positive hexavalent elements, such as W and Mo.
- It is preferred that the oxide sintered body of the present invention is composed of an In2O3 phase having a bixbyite-type structure; and a GaInO3 phase having a β-Ga2O3-type structure as a formed phase other than the In2O3 phase, or a GaInO3 phase having a β-Ga2O3-type structure and a (Ga, In)2O3 phase as a formed phase other than the In2O3 phase. When the oxide sintered body of the present invention is composed only of an In2O3 phase, nodules are generated, for example, as in Comparative Example 11 of Patent Document 4 (WO2003/014409 A) regardless of the presence of the positive divalent element M. On the other hand, a NiGa2O4 phase, a CoGa2O4 phase, a CaGa4O7 phase, a Ca5Ga6O14 phase, a SrGa12O19 phase, a SrGa2O4 phase, a Sr3Ga2O6 phase, and a Ga2PbO4 phase described above or a complex oxide phase of these have a higher electrical resistance value as compared to the In2O3 phase or the GaInO3 phase so they remain after sputter deposition and easily generate nodules. In addition, the oxide semiconductor thin film formed through sputter deposition by using the oxide sintered body in which these phases are generated tends to have an In2O3 phase having lower crystallinity and lower carrier mobility.
- Gallium and the positive divalent element M are dissolved in the In2O3 phase. In addition, gallium makes up the GaInO3 phase or the (Ga, In)2O3 phase. In the case of being dissolved in the In2O3 phase, gallium and the positive divalent element M substitute for indium, which is a trivalent cation, at the lattice positions. It is not preferred that gallium is not dissolved in the In2O3 phase but forms a Ga2O3 phase having a β-Ga2O3-type structure because of unsuccessful sintering or the like. Since the Ga2O3 phase has low conductivity, abnormal discharge arises.
- It is preferred that the oxide sintered body of the present invention includes only a GaInO3 phase having a β-Ga2O3-type structure or a GaInO3 phase having a β-Ga2O3-type structure and a (Ga, In)2O3 phase in a range in which the X-ray diffraction peak intensity ratio defined by formula 1 below is 2% or more and 75% or less other than the In2O3 phase having a bixbyite-type structure.
-
100×I[GaInO3 phase (111)]/{I[In2O3 phase (400)]+I[GaInO3 phase (111)]}[%] Formula 1 - (wherein I [In2O3 phase (400)] represents a (400) peak intensity of the In2O3 phase having a bixbyite-type structure, and I [GaInO3 phase (111)] represents a (111) peak intensity of the complex oxide β-GaInO3 phase having a β-Ga2O3-type structure.)
- The oxide sintered body of the present invention uses an oxide powder consisting of an indium oxide powder and a gallium oxide powder and the oxide powder of a positive divalent element M as raw material powders.
- In the process for producing the oxide sintered body of the present invention, these raw material powders are mixed and then compacted, and the compact is sintered by ordinary-pressure sintering. The formed phases in the structure of the oxide sintered body of the present invention strongly depend on the conditions in each step for producing the oxide sintered body, for example, the particle size of the raw material powders, the mixing conditions, and the sintering conditions.
- The structure of the oxide sintered body of the present invention is preferably composed of an In2O3 phase having a bixbyite-type structure; and a GaInO3 phase having a β-Ga2O3-type structure as a formed phase other than the In2O3 phase, or a GaInO3 phase having a β-Ga2O3-type structure and a (Ga, In)2O3 phase as a formed phase other than the In2O3 phase in a desired ratio. For this, the mean particle size of each raw material powder is preferably 3 μm or less and more preferably 1.5 μm or less. As described above, in addition to the In2O3 phase the oxide sintered body includes the GaInO3 phase having a β-Ga2O3-type structure or both the GaInO3 phase having a β-Ga2O3-type structure and the (Ga, In)2O3 phase. In order to suppress excessive formation of these phases, the mean particle size of the raw material powders is preferably 1.5 μm or less.
- Indium oxide powder is a raw material for ITO (indium tin oxide), and fine indium oxide powder having good sintering properties has been developed along with improvements in ITO. Since indium oxide powder has been continuously used in large quantities as a raw material for ITO, raw material powder having a mean particle size of 0.8 μm or less is available these days.
- However, since the amount of gallium oxide powder or the oxide powder of the positive divalent element M used is still smaller than that of indium oxide powder used, it is difficult to obtain raw material powder having a mean particle size of 1.5 μm or less. Therefore, when only coarse gallium oxide powder is available, the powder needs to be pulverized into particles having a mean particle size of 1.5 μm or less.
- In the process for sintering the oxide sintered body of the present invention, ordinary-pressure sintering is preferably employed. Ordinary-pressure sintering is a simple and industrially advantageous method, and is also an economically preferable means.
- When ordinary-pressure sintering is used, a compact is first produced as described above. Raw material powders are placed in a resin pot and mixed with a binder (for example, PVA) and the like by wet ball milling or the like. In the production of the oxide sintered body of the present invention, the ball mill mixing is preferably performed for 18 hours or longer in order to suppress excessive formation of the GaInO3 phase having a β-Ga2O3-type structure or both the GaInO3 phase having a β-Ga2O3-type structure and the (Ga, In)2O3 phase in addition to the In2O3 phase or not to form a Ga2O3 phase having a β-Ga2O3-type structure. At this time, hard ZrO2 balls may be used as mixing balls. After mixing, the slurry is taken out, filtrated, dried, and granulated. Subsequently, the resultant granulated material is compacted under a pressure of about 9.8 MPa (0.1 ton/cm2) to 294 MPa (3 ton/cm2) by cold isostatic pressing to form a compact.
- The sintering process by ordinary-pressure sintering is preferably preformed in an atmosphere containing oxygen. The volume fraction of oxygen in the atmosphere is preferably over 20%. In particular, when the volume fraction of oxygen is over 20%, the oxide sintered body is further densified. An excessive amount of oxygen in the atmosphere causes the surface of the compact to undergo sintering in advance during the early stage of sintering. Subsequently, sintering proceeds while the inside of the compact is reduced, and a highly dense oxide sintered body is finally obtained.
- In an atmosphere free of oxygen, the surface of the compact does not undergo sintering and as a result, densification of the sintered body does not proceed. If oxygen is absent, indium oxide decomposes particularly at about 900° C. to 1000° C. to form metal indium, which makes it difficult to obtain a desired oxide sintered body.
- The temperature range of ordinary-pressure sintering is preferably 1200° C. or higher and 1550° C. or lower and more preferably from 1350° C. or higher and 1450° C. or lower in an atmosphere obtained by introducing oxygen gas into air in a sintering furnace. The sintering time is preferably 10 to 30 hours, and more preferably 15 to 25 hours.
- When the sintering temperature is in the above range, and the oxide powder consisting of an indium oxide powder and a gallium oxide powder and an oxide powder of the positive divalent element M which are controlled to have a mean particle size of 1.5 μm or less are used as raw material powders, an oxide sintered body that is composed of an In2O3 phase having a bixbyite-type structure; and a GaInO3 phase having a β-Ga2O3-type structure as a formed phase other than the In2O3 phase, or a GaInO3 phase having a β-Ga2O3-type structure and a (Ga, In)2O3 phase as a formed phase other than the In2O3 phase is obtained.
- At a sintering temperature lower than 1200° C., the sintering reaction does not proceed well and the disadvantage is caused that the density of the oxide sintered body is less than 6.4 g/cm3. On the other hand, the formation of the (Ga, In)2O3 phase is significant at a sintering temperature higher than 1550° C. The (Ga, In)2O3 phase causes a decrease in deposition rate since it has a higher electrical resistance value than the GaInO3 phase. At a sintering temperature of 1550° C. or lower, only a small amount of the (Ga, In)2O3 phase is produce, which is acceptable. From this point of view, the sintering temperature is preferably 1200° C. or higher and 1550° C. or lower and more preferably from 1350° C. or higher and 1450° C. or lower.
- The temperature elevation rate until the sintering temperature is reached is preferably in the range of 0.2 to 5° C./min in order to cause debinding without forming cracks in the sintered body. As long as the temperature elevation rate is this range, the temperature may be increased to the sintering temperature in a combination of different temperature elevation rates as desired. During the temperature elevation process, a particular temperature may be maintained for a certain time in order for debinding and sintering to proceed. Particularly in the case of using a lead oxide powder as a raw material powder, it is effective to hold the oxide sintered body at a temperature of 1100° C. or lower for a certain time in order to promote the dissolution of the lead element into the In2O3 phase. The holding time is not particularly limited, but is preferably 1 hour or longer and 10 hours or shorter. After sintering, oxygen introduction is stopped before cooling. The temperature is preferably decreased to 1000° C. at a temperature drop rate in the range of preferably 0.2 to 5° C./min, and particularly 0.2° C./min or more and less than 1° C./min.
- The target of the present invention can be obtained by machining the oxide sintered body to a predetermined size, grinding the surface thereof and bonding the oxide sintered body to a backing plate. The target preferably has a flat shape, but may have a cylindrical shape. When a cylindrical target is used, it is preferred to suppress particle generation due to target rotation.
- In order to be used as a sputtering target, the density of the oxide sintered body of the present invention is preferably 6.4 g/cm3 or more, and it is preferably 6.8 g/cm3 or more when the gallium content is 0.08 or more and less than 0.20 in terms of Ga/(In+Ga) atomic ratio. It is not preferred that the density is less than 6.4 g/cm3 since nodules are generated when being used in mass production.
- The crystalline oxide semiconductor thin film of the present invention is obtained as follows: once forming an amorphous thin film on a substrate by sputtering using the sputtering target; and subjecting the amorphous thin film to heat treatment.
- The sputtering target is formed from the oxide sintered body. The structure of the oxide sintered body, namely, the structure composed basically of an In2O3 phase having a bixbyite-type structure and a GaInO3 phase having a β-Ga2O3-type structure, is important. It is important that the crystallization temperature of the amorphous oxide thin film to be once formed is sufficiently high in order to obtain the crystalline oxide semiconductor thin film according to the present invention, but this is related to the structure of the oxide sintered body. That is, when the oxide sintered body includes not only an In2O3 phase having a bixbyite-type structure but also a GaInO3 phase having a β-Ga2O3-type structure as in the oxide sintered body to be used in the present invention, the oxide thin film obtained from this oxide sintered body through film deposition has a high crystallization temperature, namely, a crystallization temperature of preferably 250° C. or higher, more preferably 300° C. or higher, and even more preferably 350° C. or higher. That is, the oxide thin film is a stable amorphous film. In contrast, when the oxide sintered body includes only an In2O3 phase having a bixbyite-type structure, after the film deposition the oxide thin film has a low crystallization temperature of about 190 to 230° C. and is not completely amorphous in some cases, for example, as disclosed in Patent Document 2 (WO2010/032422 A). This is because microcrystals are already generated after the film deposition in this case and it is difficult to perform patterning by wet etching due to the formation of residue.
- Ordinary sputtering is used in the process for forming the amorphous thin film, but in particular, direct current (DC) sputtering is industrially advantageous because the thermal effects are minimized during film deposition and high-rate deposition is achieved. To form the oxide semiconductor thin film of the present invention by direct current sputtering, a gas mixture of an inert gas and oxygen, particularly argon and oxygen, is preferably used as a sputtering gas. Sputtering is preferably performed in a chamber of a sputtering apparatus at an internal pressure of 0.1 to 1 Pa, particularly 0.2 to 0.8 Pa.
- The substrate is typically a glass substrate and is preferably an alkali-free glass substrate. In addition, any resin sheet and resin film that withstands the above process temperature can be used.
- In the process for forming the amorphous thin film, presputtering can be performed as follows: for example, after evacuation to 1×10−4 Pa or less, introducing a gas mixture of argon and oxygen until the gas pressure reaches 0.2 to 0.5 Pa; and generating a direct current plasma by applying direct current power so that the direct current power with respect to the area of the target, namely, the direct current power density, is in the range of about 1 to 7 W/cm2. It is preferred that, after this presputtering for 5 to 30 minutes, the substrate position be corrected as desired and then sputtering be performed. In sputter deposition, the direct current power applied is increased in the acceptable range in order to increase the deposition rate.
- The crystalline oxide semiconductor thin film of the present invention is obtained by forming the amorphous thin film and crystalizing this through a heat treatment. The condition for a heat treatment is a temperature higher than the crystallization temperature in an oxidizing atmosphere. The oxidizing atmosphere is preferably an atmosphere containing oxygen, ozone, water vapor, or nitrogen oxides. The temperature for heat treatment is preferably 250 to 600° C., more preferably 300 to 550° C., and even more preferably 350 to 500° C. The time for heat treatment, i.e., the time during which the amorphous thin film is held at the heat treatment temperature, is preferably 1 to 120 minutes and more preferably 5 to 60 minutes. The crystallization method involves, for example, once forming an amorphous film at a low temperature, for example, near room temperature or at a substrate temperature of 100 to 300° C., and then crystalizing the oxide thin film through a heat treatment at the crystallization temperature or higher, or heating the substrate to the crystallization temperature of the oxide thin film or higher to form a crystalline oxide thin film. The heating temperature in these two methods is only about 600° C. or lower, and there is no significant difference in treatment temperature as compared with a known semiconductor process described in Patent Document 5 (JP 2012-253372 A), for example.
- The proportion of indium, gallium, and the positive divalent element M in the amorphous thin film and the crystalline oxide semiconductor thin film substantially corresponds to the composition of the oxide sintered body of the present invention. That is, the crystalline oxide semiconductor thin film contains indium and gallium as oxides and further contains the positive divalent element M. The gallium content is 0.08 or more and less than 0.20 in terms of Ga/(In+Ga) atomic ratio. The content of the positive divalent element M is 0.0001 or more and 0.05 or less in terms of M/(In+Ga+M) atomic ratio. The gallium content is more preferably 0.08 or more and 0.15 or less in terms of Ga/(In+Ga) atomic ratio. In addition, the content of the positive divalent element M is more preferably 0.0001 or more and 0.03 or less in terms of M/(In+Ga+M) atomic ratio.
- The crystalline oxide semiconductor thin film of the present invention preferably includes only an In2O3 phase having a bixbyite structure. In the In2O3 phase, gallium is dissolved to substitute for indium, which is a trivalent cation, at the lattice positions, and the positive divalent element M is dissolved to substitute, as in the oxide sintered body. In the oxide semiconductor thin film of the present invention, the carrier density decreases to less than 1.0×1018 cm−3 because doping of the positive divalent element M has an effect of neutralizing carrier electrons generated mainly by oxygen defects. The carrier density is more preferably 3.0×1017 cm−3 or less. On the other hand, the carrier mobility tends to decrease as the carrier density decreases, but the carrier mobility is preferably 10 cm2 V−1 sec−1 or more, more preferably 15 cm2 V−1 sec−1 or more, and particularly preferably 20 cm2 V−1 sec−1 or more.
- The crystalline oxide semiconductor thin film of the present invention is subjected to micromachining, which is required in applications such as TFTs by wet etching or dry etching. It is possible to perform micromachining by wet etching using a weak acid after the formation of an amorphous film when an amorphous film is once formed at a low temperature, and then the oxide thin film is crystallized by being subjected to a heat treatment at a temperature equal to or higher than the crystallization temperature. Most weak acids can be used, but a weak acid composed mainly of oxalic acid is preferably used. For example, commercial products, such as ITO-06N available from Kanto Chemical Co., Inc., can be used. For example, wet etching or dry etching using a strong acid such as an aqueous solution of ferric chloride can be applied when a crystalline oxide thin film is deposited by heating the substrate to a temperature equal to or higher than the crystallization temperature of the oxide thin film, but dry etching is preferred in consideration of a damage to a TFT in the vicinity.
- Although the thickness of the crystalline oxide semiconductor thin film of the present invention is not limited, the thickness is 10 to 500 nm, preferably 20 to 300 nm, and more preferably 30 to 100 nm. When the thickness is less than 10 nm, unfavorable crystallinity is obtained, and as a result, high carrier mobility is not achieved. When the film thickness is more than 500 nm, it is disadvantageous in that a problem associated with productivity arises.
- In addition, the crystalline oxide semiconductor thin film of the present invention has an average transmittance in the visible region (400 to 800 nm) of preferably 80% or more, more preferably 85% or more, and even more preferably 90% or more. When applying the crystalline oxide semiconductor thin film to a transparent TFT, the light extraction efficiency by a liquid crystal element, an organic EL element, and the like as a transparent display device decreases when the average transmittance is less than 80%.
- A more detailed description is provided below by way of Examples of the present invention, but the present invention is not limited by these Examples.
- The composition of the metal elements in the obtained oxide sintered body was determined by ICP emission spectroscopy. The formed phases were identified by a powder method with an X-ray diffractometer (available from Philips) using rejects of the obtained oxide sintered body.
- The composition of the obtained oxide thin film was determined by ICP emission spectrometry. The thickness of the oxide thin film was determined with a surface profilometer (available from KLA-Tencor Corporation). The deposition rate was calculated from the film thickness and the film deposition time. The carrier density and mobility of the oxide thin film were determined with a Hall-effect measurement apparatus (available from TOYO Corporation). The formed phases in the film were identified by X-ray diffraction measurement.
- An indium oxide powder, a gallium oxide powder, and a nickel oxide powder as the positive divalent element M were prepared as raw material powders so that each powder has a mean particle size of 1.5 μm or less. These raw material powders were prepared so as to obtain the Ga/(In+Ga) atomic ratio and the M/(In+Ga+M) atomic ratio of Examples and Comparative Examples shown in Table 1 and Table 2. The raw material powders were placed in a resin pot together with water and mixed by wet ball milling. In this case, hard ZrO2 balls were used, and the mixing time was 18 hours. After mixing, the slurry was taken out, filtered, dried, and granulated. The granulated material was compacted by cold isostatic pressing under a pressure of 3 ton/cm2.
- Next, the compact was sintered as described below. The compact was sintered at a sintering temperature of between 1000 and 1550° C. for 20 hours in an atmosphere obtained by introducing oxygen into air in a sintering furnace at a rate of 5 L/min per 0.1 m3 furnace volume. At this time, the temperature was increased by 1° C./min, oxygen introduction was stopped during cooling after sintering, and the temperature was decreased to 1000° C. by 10° C./min.
- The composition of the obtained oxide sintered body was analyzed by ICP emission spectrometry. As a result, it was confirmed that the proportion of the metal elements was substantially the same as the composition prepared at the time of mixing raw material powders in all Examples.
- Next, the phase identification of the oxide sintered body was performed by X-ray diffraction measurement, as in Table 1 and Table 2, only the diffraction peak attributed to the In2O3 phase having a bixbyite-type structure or only the diffraction peaks attributed to the In2O3 phase having a bixbyite-type structure and the GaInO3 phase having a β-Ga2O3-type structure and the (Ga, In)2O3 phase were confirmed.
- When the oxide sintered body includes a GaInO3 phase having a β-Ga2O3-type structure, the X-ray diffraction peak intensity ratio of the GaInO3 phase having a β-Ga2O3-type structure defined by formula 1 below is shown in Table 1 and Table 2.
-
100×I[GaInO3 phase (111)]/{I[In2O3 phase (400)]+I[GaInO3 phase (111)]}[%] Formula 1 -
TABLE 1 Ga/ Ni/ Sintering Density of GaInO3 (111) (In + Ga) (In + Ga + Ni) temperature sintered body Peak intensity Structure of Atomic ratio Atomic ratio (° C.) (g/cm3) ratio sintered body Comparative 0.05 0.01 1400 7.05 — Only In2O3 Example 1 Comparative 0.08 0 1450 7.00 — Only In2O3 Example 2 Comparative 0.08 0.00001 1450 7.02 — Only In2O3 Example 3 Example 1 0.08 0.0001 1450 7.02 2 In2O3/GaInO3 Example 2 0.08 0.001 1400 7.03 3 In2O3/GaInO3 Example 3 0.08 0.01 1350 7.02 5 In2O3/GaInO3 Example 4 0.08 0.03 1400 6.83 6 In2O3/GaInO3 Example 5 0.08 0.05 1400 6.97 6 In2O3/GaInO3 Comparative 0.08 0.08 1400 6.28 — In2O3/NiGa2O4 Example 4 Example 6 0.10 0.0001 1400 7.01 9 In2O3/GaInO3 Example 7 0.10 0.05 1400 6.86 16 In2O3/GaInO3 Example 8 0.12 0.0001 1400 6.98 15 In2O3/GaInO3 Example 9 0.12 0.03 1200 6.91 22 In2O3/GaInO3 Example 10 0.15 0.0001 1400 6.95 24 In2O3/GaInO3 Example 11 0.15 0.05 1400 6.83 31 In2O3/GaInO3 Comparative 0.15 0.08 1400 6.22 — In2O3/NiGa2O4 Example 5 (the positive divalent element is Ni) -
TABLE 2 Ga/ Ni/ Sintering Density of GaInO3 (111) (In + Ga) (In + Ga + Ni) temperature sintered body Peak intensity Structure of Atomic ratio Atomic ratio (° C.) (g/cm3) ratio sintered body Example 12 0.19 0.0001 1400 6.92 30 In2O3/GaInO3 Example 13 0.19 0.01 1400 6.90 32 In2O3/GaInO3 Example 14 019 0.01 1550 6.83 28 In2O3/GaInO3/ (Ga,In)2O3 Example 15 0.19 0.03 1400 6.87 34 In2O3/GaInO3 Example 16 0.19 0.05 1400 6.84 38 In2O3/GaInO3 Comparative 0.19 0.10 1400 6.20 — In2O3/NiGa2O4/ Example 6 NiInGaO4 Comparative 0.30 0.01 1400 6.71 52 In2O3/GaInO3 Example 7 (the positive divalent element is Ni) - The oxide sintered body was machined to a size of 152 mm in diameter and 5 mm in thickness. The sputtering surface was grinded with a cup grinding wheel so that the maximum height Rz was 3.0 μm or less. The machined oxide sintered body was bonded to an oxygen-free copper backing plate by using metal indium to provide a sputtering target.
- The oxide sintered body was produced in the same manner as in the case in which the positive divalent element M was Ni except that cobalt(II) oxide, calcium(II) oxide, strontium(II) oxide, and lead(II) oxide were used as the positive divalent element M, the composition was analyzed, the phases were identified, and the X-ray diffraction peak intensity ratio of the GaInO3 phase having a β-Ga2O3-type structure was thus calculated. The results are shown in Table 3 for the case of using cobalt(II) oxide, Table 4 for the case of using calcium(II) oxide, Table 5 for the case of using lead(II) oxide, and Table 6 for the case of using strontium(II) oxide. Incidentally, in the composition analysis, it was confirmed that the proportion of the metal elements was substantially the same as the composition prepared at the time of mixing raw material powders in all Examples.
-
TABLE 3 Ga/ Co/ Sintering Density of GaInO3 (111) (In + Ga) (In + Ga + Co) temperature sintered body Peak intensity Structure of Atomic ratio Atomic ratio (° C.) (g/cm3) ratio sintered body Comparative 0.08 0.00001 1450 6.99 — Only In2O3 Example 8 Example 17 0.08 0.0001 1450 6.98 3 In2O3/GaInO3 Example 18 0.08 0.01 1400 6.94 5 In2O3/GaInO3 Example 19 0.08 0.03 1400 6.92 6 In2O3/GaInO3 Example 20 0.08 0.05 1400 6.91 6 In2O3/GaInO3 Comparative 0.08 0.08 1400 6.21 — In2O3/CoGa2O4 Example 9 Example 21 0.15 0.0001 1400 6.88 24 In2O3/GaInO3 Example 22 0.15 0.03 1400 6.79 29 In2O3/GaInO3 Example 23 0.19 0.0001 1400 6.85 31 In2O3/GaInO3 Example 24 0.19 0.03 1400 6.75 38 In2O3/GaInO3 Comparative 0.30 0.01 1400 6.67 54 In2O3/GaInO3 Example 10 (the positive divalent element is Co) -
TABLE 4 Ga/ Ca/ Sintering Density of GaInO3 (111) (In + Ga) (In + Ga + Ca) temperature sintered body Peak intensity Structure of Atomic ratio Atomic ratio (° C.) (g/cm3) ratio sintered body Comparative 0.08 0.00001 1450 7.00 — Only In2O3 Example 11 Example 25 0.08 0.0001 1450 6.98 2 In2O3/GaInO3 Example 26 0.08 0.05 1400 6.88 7 In2O3/GaInO3 Comparative 0.08 0.08 1400 6.20 — In2O3/CaGa4O7 Example 12 Example 27 0.19 0.0001 1400 6.84 29 In2O3/GaInO3 Example 28 0.19 0.03 1400 6.70 36 In2O3/GaInO3 Comparative 0.30 0.01 1400 6.65 52 In2O3/GaInO3 Example 13 (the positive divalent element is Ca) -
TABLE 5 Ga/ Sr/ Sintering Density of GaInO3 (111) (In + Ga) (In + Ga + Sr) temperature sintered body Peak intensity Structure of Atomic ratio Atomic ratio (° C.) (g/cm3) ratio sintered body Comparative 0.08 0.00001 1450 7.02 — Only In2O3 Example 14 Example 29 0.08 0.0001 1450 7.01 2 In2O3/GaInO3 Example 30 0.08 0.05 1400 6.85 7 In2O3/GaInO3 Comparative 0.08 0.08 1400 6.18 — In2O3/SrGa2O4 Example 15 Example 31 0.19 0.0001 1400 6.80 29 In2O3/GaInO3 Example 32 0.19 0.03 1400 6.68 37 In2O3/GaInO3 Comparative 0.30 0.01 1400 6.63 51 In2O3/GaInO3 Example 16 (the positive divalent element is Sr) -
TABLE 6 Ga/ Pb/ Sintering Density of GaInO3 (111) (In + Ga) (In + Ga + Pb) temperature sintered body Peak intensity Structure of Atomic ratio Atomic ratio (° C.) (g/cm3) ratio sintered body Comparative 0.08 0.00001 1450 7.03 — Only In2O3 Example 17 Example 33 0.08 0.0001 1450 7.05 2 In2O3/GaInO3 Example 34 0.08 0.05 1400 7.02 4 In2O3/GaInO3 Comparative 0.08 0.08 1400 6.52 — In2O3/Ga2PbO4 Example 18 Example 35 0.19 0.0001 1400 6.87 28 In2O3/GaInO3 Example 36 0.19 0.03 1400 6.85 30 In2O3/GaInO3 Comparative 0.30 0.01 1400 6.71 50 In2O3/GaInO3 Example 19 (the positive divalent element is Pb) - Film deposition by direct current sputtering was performed at room temperature without heating the substrate in Examples 1 to 11, 17 to 22, 25, 26, 29, 30, 33, and 34 and Comparative Examples 1 to 5, 8, 9, 11, 12, 14, 15, 17, and 18 and at a substrate temperature of 200° C. in Examples and Comparative Examples other than Examples and Comparative Examples above by using the sputtering targets of the respective Examples and Comparative Examples and an alkali-free glass substrate (Eagle XG available from Corning). The sputtering target was attached to a cathode of a direct current magnetron sputtering apparatus (available from Tokki Corporation) having a direct current power supply with no arcing control function. At this time, the target-substrate (holder) distance was fixed at 60 mm. After evacuation to 1×10−4 Pa or less, a gas mixture of argon and oxygen was introduced at an appropriate oxygen ratio, which depends on the gallium content in each target. The gas pressure was controlled to 0.6 Pa. A direct current plasma was generated by applying a direct current power of 300 W (1.64 W/cm2). After presputtering for 10 minutes, the substrate was placed directly above the sputtering target, namely, in the stationary opposing position, and an oxide thin film having a thickness of 50 nm was deposited. The composition of the obtained oxide thin film was confirmed to be substantially the same as that of the target. In addition, the oxide thin film was confirmed to be amorphous as a result of the X-ray diffraction measurement. The obtained amorphous oxide thin film was subjected to a heat treatment at 300 to 600° C. for 30 minutes in an oxidizing atmosphere by using an RTA (Rapid Thermal Annealing) apparatus. The oxide thin film after the heat treatment was confirmed to be crystallized from the results of the X-ray diffraction measurement, and In2O3 (111) was the main peak. The Hall-effect measurement was performed on the crystallized oxide semiconductor thin films thus obtained to determine the carrier density and the carrier mobility. The obtained evaluation results are summarized in Table 7 to Table 12.
-
TABLE 7 Heat Ga/ Ni/ Sintering treatment Film Crystal Carrier Carrier (In + Ga) (In + Ga + Ni) temperature temperature thickness structure density mobility Atomic ratio Atomic ratio (° C.) (° C.) (nm) of thin film (×1017 cm−3) (cm2/V · s) Comparative 0.05 0.01 1400 300 50 Only In2O3 11 22.2 Example 1 Comparative 0.08 0 1450 300 50 Only In2O3 14 24.5 Example 2 Comparative 0.08 0.00001 1450 300 50 Only In2O3 12 23.9 Example 3 Example 1 0.08 0.0001 1450 300 50 Only In2O3 9.4 23.7 Example 2 0.08 0.001 1400 325 50 Only In2O3 4.9 22.7 Example 3 0.08 0.01 1350 325 50 Only In2O3 2.9 22.0 Example 4 0.08 0.03 1400 325 50 Only In2O3 0.9 18.5 Example 5 0.08 0.05 1400 325 50 Only In2O3 0.18 14.4 Comparative 0.08 0.08 1400 325 50 Only In2O3 0.031 9.4 Example 4 Example 6 0.10 0.0001 1400 325 50 Only In2O3 3.3 21.8 Example 7 0.10 0.05 1400 325 50 Only In2O3 0.13 13.8 Example 8 0.12 0.0001 1400 350 50 Only In2O3 2.6 21.0 Example 9 0.12 0.03 1200 350 50 Only In2O3 0.75 18.1 Example 10 0.15 0.0001 1400 375 50 Only In2O3 1.9 20.4 Example 11 0.15 0.05 1400 375 50 Only In2O3 0.11 13.1 Comparative 0.15 0.08 1400 375 50 Only In2O3 0.011 8.7 Example 5 (the positive divalent element is Ni) -
TABLE 8 Heat Ga/ Ni/ Sintering treatment Film Crystal Carrier Carrier (In + Ga) (In + Ga + Ni) temperature temperature thickness structure density mobility Atomic ratio Atomic ratio (° C.) (° C.) (nm) of thin film (×1017 cm−3) (cm2/V · s) Example 12 0.19 0.0001 1400 350 50 Only In2O3 1.4 19.1 Example 13 0.19 0.01 1400 350 50 Only In2O3 1.0 17.3 Example 14 0.19 0.01 1550 350 50 Only In2O3 0.84 15.7 Example 15 0.19 0.03 1400 350 50 Only In2O3 0.51 16.8 Example 16 0.19 0.05 1400 350 50 Only In2O3 0.17 14.1 Comparative 0.19 0.10 1400 350 50 Only In2O3 0.071 6.4 Example 6 Comparative 0.30 0.01 1400 550 50 Only In2O3 0.033 4.3 Example 7 (the positive divalent element is Ni) -
TABLE 9 Heat Ga/ Co/ Sintering treatment Film Crystal Carrier Carrier (In + Ga) (In + Ga + Co) temperature temperature thickness structure density mobility Atomic ratio Atomic ratio (° C.) (° C.) (nm) of thin film (×1017 cm−3) (cm2/V · s) Comparative 0.08 0.00001 1450 300 50 Only In2O3 14 24.5 Example 8 Example 17 0.08 0.0001 1450 300 50 Only In2O3 9.6 23.2 Example 18 0.08 0.01 1400 325 50 Only In2O3 3.0 21.4 Example 19 0.08 0.03 1400 325 50 Only In2O3 0.92 17.7 Example 20 0.08 0.05 1400 325 50 Only In2O3 0.26 14.1 Comparative 0.08 0.08 1400 325 50 Only In2O3 0.022 9.1 Example 9 Example 21 0.15 0.0001 1400 375 50 Only In2O3 2.2 20.6 Example 22 0.15 0.03 1400 375 50 Only In2O3 0.36 16.0 Example 23 0.19 0.0001 1400 350 50 Only In2O3 1.8 19.0 Example 24 0.19 0.03 1400 350 50 Only In2O3 0.66 16.1 Comparative 0.30 0.01 1400 550 50 Only In2O3 0.029 3.8 Example 10 (the positive divalent element is Co) -
TABLE 10 Heat Ga/ Ca/ Sintering treatment Film Crystal Carrier Carrier (In + Ga) (In + Ga + Ca) temperature temperature thickness structure density mobility Atomic ratio Atomic ratio (° C.) (° C.) (nm) of thin film (×1017 cm−3) (cm2/V · s) Comparative 0.08 0.00001 1450 300 50 Only In2O3 13 23.0 Example 11 Example 25 0.08 0.0001 1450 300 50 Only In2O3 9.4 22.9 Example 26 0.08 0.05 1400 325 50 Only In2O3 0.34 13.9 Comparative 0.08 0.08 1400 325 50 Only In2O3 0.032 8.4 Example 12 Example 27 0.19 0.0001 1400 350 50 Only In2O3 1.8 18.7 Example 28 0.19 0.03 1400 350 50 Only In2O3 0.70 15.9 Comparative 0.30 0.01 1400 550 50 Only In2O3 0.035 4.6 Example 13 (the positive divalent element is Ca) -
TABLE 11 Heat Ga/ Sr/ Sintering treatment Film Crystal Carrier Carrier (In + Ga) (In + Ga + Sr) temperature temperature thickness structure density mobility Atomic ratio Atomic ratio (° C.) (° C.) (nm) of thin film (×1017 cm−3) (cm2/V · s) Comparative 0.08 0.00001 1450 300 50 Only In2O3 12 23.2 Example 14 Example 29 0.08 0.0001 1450 300 50 Only In2O3 9.1 23.0 Example 30 0.08 0.05 1400 325 50 Only In2O3 0.40 13.4 Comparative 0.08 0.08 1400 325 50 Only In2O3 0.041 8.4 Example 15 Example 31 0.19 0.0001 1400 350 50 Only In2O3 1.7 18.4 Example 32 0.19 0.03 1400 350 50 Only In2O3 0.68 16.1 Comparative 030 0.01 1400 550 50 Only In2O3 0.037 4.9 Example 16 (the positive divalent element is Sr) -
TABLE 12 Heat Ga/ Pb/ Sintering treatment Film Crystal Carrier Carrier (In + Ga) (In + Ga + Pb) temperature temperature thickness structure density mobility Atomic ratio Atomic ratio (° C.) (° C.) (nm) of thin film (×1017 cm−3) (cm2/V · s) Comparative 0.08 0.00001 1450 300 50 Only In2O3 11 23.6 Example 17 Example 33 0.08 0.0001 1450 300 50 Only In2O3 9.2 23.7 Example 34 0.08 0.05 1400 325 50 Only In2O3 0.24 14.7 Comparative 0.08 0.08 1400 325 50 Only In2O3 0.041 9.7 Example 18 Example 35 0.19 0.0001 1400 350 50 Only In2O3 2.0 19.1 Example 36 0.19 0.03 1400 350 50 Only In2O3 0.73 16.4 Comparative 0.30 0.01 1400 550 50 Only In2O3 0.039 5.6 Example 19 (the positive divalent element is Pb) - The evaluation on nodule generation was carried out by mass production-simulated sputter deposition for sputtering targets of Examples 3, 13, 18, 26, 30, and 34 and Comparative Examples 1, 4, 7, 9, 12, 15, and 18. A load-lock-system pass-type magnetron sputtering device equipped with a direct current power source without an arcing suppression function (available from ULVAC Technologies, Inc.) was used as the sputtering device. A square target having a height of 5 inches and a width of 15 inches was used as the target. The sputtering chamber for the evaluation of sputter deposition was evacuated to 7×10−5 Pa or less, a mixed gas of argon and oxygen was then introduced into the chamber so that a suitable oxygen ratio was obtained in accordance with the gallium amount in each target, and the gas pressure was adjusted to 0.6 Pa. The reason for selecting the sputtering gas having such conditions is because it is not possible to carry out fair evaluation when the degree of vacuum in the sputtering chamber exceeds 1×10−4 Pa and the moisture pressure in the chamber is high or hydrogen gas is doped. As it is well known in ITO and the like, the crystallization temperature of the film increases when H+ derived from moisture or hydrogen gas is incorporated into the film, and the film adhering to the target non-erosion portion is likely to be amorphous. As a result, the film stress decreases and thus the film is less likely to peel off the non-erosion portion and nodules are less likely to be generated. The direct current power was set to 2500 W (direct current power density: 5.17 W/cm2) by taking the fact into account that the direct current power density employed in mass production is generally about 3 to 6 W/cm2. As the evaluation on nodule generation, the target surface was observed after the continuous sputtering discharge of 50 kWh and the presence or absence of nodule generation was evaluated.
- As shown in Table 1 to Table 6, in the case of Examples 1 to 36 in which the gallium content is 0.08 or more and less than 0.20 in terms of Ga/(In+Ga) atomic ratio and the content of the positive divalent element M is 0.0001 or more and 0.05 or less in terms of M/(In+Ga+M) atomic ratio, the oxide sintered bodies are composed of an In2O3 phase having a bixbyite-type structure; and a GaInO3 phase having a β-Ga2O3-type structure as a formed phase other than the In2O3 phase, or a GaInO3 phase having a β-Ga2O3-type structure and a (Ga, In)2O3 phase as a formed phase other than the In2O3 phase.
- In contrast, the oxide sintered body of Comparative Example 1 in which the gallium content is less than 0.08 in terms of Ga/(In+Ga) atomic ratio and the oxide sintered bodies of Comparative Examples 2, 3, 8, 11, 14, and 17 in which the content of the positive divalent element M is less than 0.0001 in terms of M/(In+Ga+M) atomic ratio are an oxide sintered body composed only of an In2O3 phase having a bixbyite-type structure. That is, the oxide sintered body of the present invention which is composed of an In2O3 phase having a bixbyite-type structure; and a GaInO3 phase having a β-Ga2O3-type structure as a formed phase other than the In2O3 phase, or a GaInO3 phase having a β-Ga2O3-type structure and a (Ga, In)2O3 phase as a formed phase other than the In2O3 phase is not obtained. In addition, in the oxide sintered bodies of Comparative Examples 4, 5, 6, 9, 12, 15, and 18, the generated phase other than the In2O3 phase having a bixbyite-type structure includes a NiGa2O4 phase, a CoGa2O4 phase, a CaGa4O7 phase, a Ca5Ga6O14 phase, a SrGa12O19 phase, a SrGa2O4 phase, a Sr3Ga2O6 phase, and a Ga2PbO4 phase that are a complex oxide composed of the positive divalent element M and gallium or a complex oxide phase of these since the content of the positive divalent element M exceeds 0.05 in terms of M/(In+Ga+M) atomic ratio, and thus the intended oxide sintered body of the present invention is not obtained.
- In addition, in the evaluation on nodule generation of Examples 3, 13, 18, 26, 30, and 34 and Comparative Examples 1, 4, 7, 9, 12, 15, and 18, the generation of nodules is not observed on the targets of Examples 3, 13, 18, 26, 30, and 34, which are the oxide sintered body of the present invention. On the other hand, the generation of a great number of nodules is observed on the targets of Comparative Examples 1, 4, 7, 9, 12, 15, and 18. In Comparative Example 1, it is considered that this is because the structure of the sintered body is composed only of an In2O3 phase having a bixbyite-type structure although the density of the sintered body is high. In Comparative Examples 4, 7, 9, 12, 15, and 18, the fact that the density of the sintered body is low and a NiGa2O4 phase, a CoGa2O4 phase, a CaGa4O7 phase, a Ca5Ga6O14 phase, a SrGa12O19 phase, a SrGa2O4 phase, a Sr3Ga2O6 phase, and a Ga2PbO4 phase that are a complex oxide composed of the positive divalent element M and gallium and have a higher electrical resistance so as to easily remain after sputter deposition or a complex oxide phase of these are included in the sintered bodies is considered as the factor. Therefore, arcing often occurred during sputtering discharge.
- In addition, according to Table 7 to Table 12, it can be seen that the oxide semiconductor thin films of Examples in which the gallium content is controlled to 0.08 or more and less than 0.20 in terms of Ga/(In+Ga) atomic ratio and the content of the positive divalent element M is controlled to 0.0001 or more and 0.05 or less in terms of M/(In+Ga+M) atomic ratio are all composed only of an In2O3 phase having a bixbyite-type structure. In addition, it can be seen that the oxide semiconductor thin films of Examples have a carrier density of less than 1.0×1018 cm−3 and a carrier mobility of 10 cm2 V−1 sec−1 or more.
- Among them, the oxide semiconductor thin films of Examples 1 to 4, 6, 8 to 10, and 17 to 19, 21, 22, 25, 29, and 33 in which the gallium content is 0.08 or more and 0.15 or less in terms of Ga/(In+Ga) atomic ratio and the content of the positive divalent element M is 0.0001 or more and 0.03 or less in terms of M/(In+Ga+M) atomic ratio exhibit excellent properties so that the carrier mobility thereof is 15 cm2 V−1 sec−1 or more.
- In contrast, the oxide semiconductor thin films of Comparative Examples 1 to 3, 8, 11, 14, and 17 are an oxide semiconductor thin film composed only of an In2O3 phase having a bixbyite-type structure, but it is not suitable for the active layer of TFTs since the carrier density thereof exceeds 1.0×1018 cm−3. In addition, in the oxide semiconductor thin films of Comparative Examples 4, 5, 6, 9, 12, 15, an 18, the content of the positive divalent element M exceeds 0.05 in terms of M/(In+Ga+M) atomic ratio and the carrier mobility is less than 10 cm2 V−1 sec−1, and thus the intended oxide semiconductor thin film of the present invention is not obtained.
Claims (9)
1. An oxide sintered body comprising indium, gallium, and a positive divalent element as oxides, wherein
the gallium content is 0.08 or more and less than 0.20 in terms of Ga/(In+Ga) atomic ratio,
the total content of all the positive divalent elements is 0.0001 or more and 0.05 or less in terms of M/(In+Ga+M) atomic ratio,
the positive divalent element is one or more selected from the group consisting of nickel, cobalt, calcium, strontium, and lead,
the oxide sintered body includes;
an In2O3 phase having a bixbyite-type structure;
and a GaInO3 phase having a β-Ga2O3-type structure as a formed phase other than the In2O3 phase, or a GaInO3 phase having a β-Ga2O3-type structure and a (Ga, In)2O3 phase as a formed phase other than the In2O3 phase;
and the oxide sintered body is substantially free of a NiGa2O4 phase, a CoGa2O4 phase, a CaGa4O7 phase, a Ca5Ga6O14 phase, a SrGa12O19 phase, a SrGa2O4 phase, a Sr3Ga2O6 phase, and a Ga2PbO4 phase, which are a complex oxide composed of the positive divalent element and gallium or a complex oxide phase of these.
2. The oxide sintered body according to claim 1 , wherein the total content of all the positive divalent elements is 0.0001 or more and 0.03 or less in terms of M/(In+Ga+M) atomic ratio.
3. The oxide sintered body according to claim 1 , wherein the gallium content is 0.08 or more and 0.15 or less in terms of Ga/(In+Ga) atomic ratio.
4. The oxide sintered body according to claim 1 , wherein the oxide sintered body is substantially free of positive divalent elements other than the positive divalent element and positive trivalent to positive hexavalent elements other than indium and gallium.
5. The oxide sintered body according to claim 1 , wherein an X-ray diffraction peak intensity ratio of a GaInO3 phase having a β-Ga2O3-type structure defined by formula 1 below is in a range of 2% or more and 75% or less.
100×I[GaInO3 phase (111)]/{I[In2O3 phase (400)]+I[GaInO3 phase (111)]}[%] Formula 1
100×I[GaInO3 phase (111)]/{I[In2O3 phase (400)]+I[GaInO3 phase (111)]}[%] Formula 1
(in Formula 1, I [In2O3 phase (400)] represents a (400) peak intensity of the In2O3 phase having a bixbyite-type structure, and I [GaInO3 phase (111)] represents a (111) peak intensity of the β-GaInO3 phase that is a composite oxide having a β-Ga2O3-type structure.)
6. A sputtering target obtained by machining the oxide sintered body according to claim 1 .
7. A crystalline oxide semiconductor thin film obtained by forming an amorphous film on a substrate by sputtering using the sputtering target according to claim 6 , followed by crystallization of the amorphous film by a heat treatment in an oxidizing atmosphere.
8. A crystalline oxide semiconductor thin film according to claim 7 , wherein a carrier mobility is 10 cm2 V−1 sec−1 or more.
9. The crystalline oxide semiconductor thin film according to claim 7 , wherein a carrier density is less than 1.0×1018 cm−3.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-131838 | 2014-06-26 | ||
JP2014131838 | 2014-06-26 | ||
PCT/JP2015/068163 WO2015199122A1 (en) | 2014-06-26 | 2015-06-24 | Oxide sintered compact, sputtering target, and oxide semiconductor thin film obtained using same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170137324A1 true US20170137324A1 (en) | 2017-05-18 |
Family
ID=54938200
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/319,578 Expired - Fee Related US10000842B2 (en) | 2014-06-26 | 2015-06-24 | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target |
US15/319,569 Abandoned US20170137324A1 (en) | 2014-06-26 | 2015-06-24 | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/319,578 Expired - Fee Related US10000842B2 (en) | 2014-06-26 | 2015-06-24 | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target |
Country Status (6)
Country | Link |
---|---|
US (2) | US10000842B2 (en) |
JP (2) | JP6424892B2 (en) |
KR (2) | KR20170024579A (en) |
CN (2) | CN106414366A (en) |
TW (2) | TWI550145B (en) |
WO (2) | WO2015199121A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170024579A (en) * | 2014-06-26 | 2017-03-07 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Oxide sintered compact, sputtering target, and oxide semiconductor thin film obtained using same |
TWI702294B (en) * | 2018-07-31 | 2020-08-21 | 日商田中貴金屬工業股份有限公司 | Sputtering target for magnetic recording media |
CN112512974B (en) * | 2018-08-01 | 2022-12-23 | 出光兴产株式会社 | Compound (I) |
CN109433273B (en) * | 2018-12-18 | 2021-08-24 | 辽宁大学 | A kind of photocatalyst NiGa2O4/AQ/MoO3 and its preparation method and application |
JP6830089B2 (en) * | 2018-12-26 | 2021-02-17 | Jx金属株式会社 | Sputtering target member, manufacturing method of sputtering target member, sputtering target, manufacturing method of sputtering film, manufacturing method of film body, manufacturing method of laminated structure, manufacturing method of organic EL device |
CN110767745A (en) * | 2019-09-18 | 2020-02-07 | 华南理工大学 | Compound Metal Oxide Semiconductors and Thin Film Transistors and Their Applications |
CN110797395A (en) * | 2019-09-18 | 2020-02-14 | 华南理工大学 | Doped metal oxide semiconductors and thin film transistors and their applications |
CN110937648B (en) | 2019-12-25 | 2021-03-30 | 浙江工业大学 | Process and device for continuously treating high-concentration organic wastewater |
WO2022030455A1 (en) * | 2020-08-05 | 2022-02-10 | 三井金属鉱業株式会社 | Sputtering target material and oxide semiconductor |
JP7364824B1 (en) * | 2022-01-31 | 2023-10-18 | 三井金属鉱業株式会社 | Field effect transistor and its manufacturing method, and sputtering target material for field effect transistor manufacturing |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2278041B1 (en) | 2001-08-02 | 2012-05-23 | Idemitsu Kosan Co., Ltd. | Sputtering target and transparent conductive film obtainable by the target |
JP4351036B2 (en) * | 2003-12-15 | 2009-10-28 | 日鉱金属株式会社 | Sputtering target |
CN102867855B (en) | 2004-03-12 | 2015-07-15 | 独立行政法人科学技术振兴机构 | Amorphous oxide and thin film transistor |
JP4816116B2 (en) * | 2006-02-08 | 2011-11-16 | 住友金属鉱山株式会社 | Oxide sintered body for sputtering target, oxide film obtained using the same, and transparent substrate including the same |
JP4779798B2 (en) * | 2006-05-11 | 2011-09-28 | 住友金属鉱山株式会社 | Oxide sintered body, target, and transparent conductive film obtained using the same |
JP5466939B2 (en) | 2007-03-23 | 2014-04-09 | 出光興産株式会社 | Semiconductor device, polycrystalline semiconductor thin film, method for manufacturing polycrystalline semiconductor thin film, field effect transistor, and method for manufacturing field effect transistor |
US8748879B2 (en) | 2007-05-08 | 2014-06-10 | Idemitsu Kosan Co., Ltd. | Semiconductor device, thin film transistor and a method for producing the same |
KR101627491B1 (en) * | 2007-07-06 | 2016-06-07 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Oxide sinter, process for producing the same, target, and transparent conductive film and transparent conductive substrate both obtained from the target |
KR100922756B1 (en) * | 2008-02-13 | 2009-10-21 | 삼성모바일디스플레이주식회사 | Electrode, manufacturing method thereof, electronic device having same |
US8222667B2 (en) * | 2008-03-06 | 2012-07-17 | Sumitomo Metal Mining Co., Ltd | Semiconductor light-emitting element, method for manufacturing the semiconductor light-emitting element and lamp that uses the semiconductor light-emitting element |
KR101346472B1 (en) * | 2008-06-06 | 2014-01-02 | 이데미쓰 고산 가부시키가이샤 | Sputtering target for oxide thin film and process for producing the sputtering target |
CN102159517B (en) | 2008-09-19 | 2014-08-06 | 出光兴产株式会社 | Oxide sintered body and sputtering target |
JP5442234B2 (en) * | 2008-10-24 | 2014-03-12 | 株式会社半導体エネルギー研究所 | Semiconductor device and display device |
JP2010165922A (en) * | 2009-01-16 | 2010-07-29 | Idemitsu Kosan Co Ltd | Field effect transistor, method for manufacturing field effect transistor and method for manufacturing semiconductor element |
EP3217435A1 (en) | 2009-09-16 | 2017-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Transistor and display device |
US20130140502A1 (en) * | 2010-02-06 | 2013-06-06 | Idemitsu Kosan Co.,Ltd | Sputtering target |
JP5414632B2 (en) * | 2010-06-30 | 2014-02-12 | 出光興産株式会社 | Sputtering target |
JP2012144410A (en) * | 2011-01-14 | 2012-08-02 | Kobelco Kaken:Kk | Oxide sintered compact, and sputtering target |
US8927986B2 (en) * | 2012-09-28 | 2015-01-06 | Industrial Technology Research Institute | P-type metal oxide semiconductor |
JP5907086B2 (en) * | 2013-02-06 | 2016-04-20 | 住友金属鉱山株式会社 | Indium oxide-based oxide sintered body and method for producing the same |
KR20170024579A (en) * | 2014-06-26 | 2017-03-07 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Oxide sintered compact, sputtering target, and oxide semiconductor thin film obtained using same |
-
2015
- 2015-06-24 KR KR1020167032885A patent/KR20170024579A/en not_active Withdrawn
- 2015-06-24 US US15/319,578 patent/US10000842B2/en not_active Expired - Fee Related
- 2015-06-24 JP JP2016529623A patent/JP6424892B2/en not_active Expired - Fee Related
- 2015-06-24 JP JP2016529624A patent/JP6424893B2/en not_active Expired - Fee Related
- 2015-06-24 TW TW104120446A patent/TWI550145B/en not_active IP Right Cessation
- 2015-06-24 KR KR1020167032887A patent/KR20170023801A/en not_active Withdrawn
- 2015-06-24 US US15/319,569 patent/US20170137324A1/en not_active Abandoned
- 2015-06-24 CN CN201580029806.6A patent/CN106414366A/en active Pending
- 2015-06-24 CN CN201580029802.8A patent/CN106458759A/en active Pending
- 2015-06-24 WO PCT/JP2015/068159 patent/WO2015199121A1/en active Application Filing
- 2015-06-24 WO PCT/JP2015/068163 patent/WO2015199122A1/en active Application Filing
- 2015-06-24 TW TW104120448A patent/TWI552976B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CN106414366A (en) | 2017-02-15 |
KR20170023801A (en) | 2017-03-06 |
CN106458759A (en) | 2017-02-22 |
WO2015199121A1 (en) | 2015-12-30 |
TW201608066A (en) | 2016-03-01 |
TW201605761A (en) | 2016-02-16 |
WO2015199122A1 (en) | 2015-12-30 |
US10000842B2 (en) | 2018-06-19 |
US20170130329A1 (en) | 2017-05-11 |
JP6424892B2 (en) | 2018-11-21 |
JPWO2015199122A1 (en) | 2017-06-01 |
KR20170024579A (en) | 2017-03-07 |
TWI552976B (en) | 2016-10-11 |
JP6424893B2 (en) | 2018-11-21 |
TWI550145B (en) | 2016-09-21 |
JPWO2015199121A1 (en) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10000842B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
US9941415B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
US10128108B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
US20170077243A1 (en) | Sintered oxide, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
US9670578B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
US9732004B2 (en) | Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target | |
TWI622568B (en) | Oxide sintered body and sputtering target | |
TWI547573B (en) | Oxide sintered body, target for sputtering, and oxide semiconductor film obtained using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUMITOMO METAL MINING CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAKAYAMA, TOKUYUKI;NISHIMURA, EIICHIRO;MATSUMURA, FUMIHIKO;AND OTHERS;REEL/FRAME:040779/0102 Effective date: 20161209 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |