CN103590084A - Apparatus and method used for quick preparation of nanostructured arrays - Google Patents
Apparatus and method used for quick preparation of nanostructured arrays Download PDFInfo
- Publication number
- CN103590084A CN103590084A CN201210292689.0A CN201210292689A CN103590084A CN 103590084 A CN103590084 A CN 103590084A CN 201210292689 A CN201210292689 A CN 201210292689A CN 103590084 A CN103590084 A CN 103590084A
- Authority
- CN
- China
- Prior art keywords
- nozzle
- metal sheet
- tinsel
- cavity
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title abstract description 11
- 238000003491 array Methods 0.000 title description 25
- 239000002086 nanomaterial Substances 0.000 claims abstract description 46
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 20
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 16
- 230000003647 oxidation Effects 0.000 claims abstract description 15
- 238000001816 cooling Methods 0.000 claims abstract description 11
- 238000005057 refrigeration Methods 0.000 claims abstract description 7
- 238000009736 wetting Methods 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 67
- 239000002184 metal Substances 0.000 abstract description 67
- 239000003792 electrolyte Substances 0.000 abstract description 46
- 238000002048 anodisation reaction Methods 0.000 abstract description 11
- 238000007743 anodising Methods 0.000 abstract description 10
- 238000005507 spraying Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 235000006408 oxalic acid Nutrition 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
本发明公开了一种快速制备纳米结构阵列的装置及方法。该装置包括:夹具,夹持一金属片;喷嘴,设置成与金属片相对,以适于向金属片的表面喷射电解液;马达,与夹具相连接用以驱动夹具相对喷嘴旋转、垂直移动或者水平移动;可变直流电源,该可变直流电源的阳极电连接金属片,可变直流电源的阴极电连接喷嘴;腔体,适于回收喷射到金属片表面的电解液;及制冷装置,与腔体和喷嘴相连接,该制冷装置能够冷却腔体中的电解液并将冷却后的电解液供应给喷嘴。本发明通过将电解液回收并冷却后再次供应给喷嘴,并由喷嘴喷射至金属片的表面进行电化学阳极氧化,因而可以消除因提高电化学阳极氧化电压而产生的热量,使得可以通过提高电化学阳极氧化电压来提高纳米结构阵列的制备速率,此外,该装置也适用于制备大面积纳米结构阵列。
The invention discloses a device and a method for rapidly preparing a nanostructure array. The device includes: a clamp, clamping a metal sheet; a nozzle, arranged opposite to the metal sheet, so as to be suitable for spraying electrolyte solution on the surface of the metal sheet; a motor, connected with the clamp to drive the clamp to rotate relative to the nozzle, move vertically or Horizontal movement; variable DC power supply, the anode of the variable DC power supply is electrically connected to the metal sheet, and the cathode of the variable DC power supply is electrically connected to the nozzle; the cavity is suitable for recovering the electrolyte sprayed on the surface of the metal sheet; and the refrigeration device is connected with the metal sheet. The cavity is connected with the nozzle, and the cooling device can cool the electrolyte in the cavity and supply the cooled electrolyte to the nozzle. In the present invention, the electrolyte is recovered and cooled and supplied to the nozzle again, and sprayed onto the surface of the metal sheet by the nozzle for electrochemical anodization, thereby eliminating the heat generated by increasing the electrochemical anodization voltage, so that the electrolytic anodization can be improved by increasing the electrolytic anodic oxidation voltage. The chemical anodizing voltage is used to increase the preparation rate of the nanostructure array, and in addition, the device is also suitable for preparing a large-area nanostructure array.
Description
技术领域 technical field
本发明涉及纳米结构阵列的制备技术领域,尤其涉及一种快速制备纳米结构阵列的装置及方法。The invention relates to the technical field of preparation of nanostructure arrays, in particular to a device and method for rapidly preparing nanostructure arrays.
背景技术 Background technique
近些年来,纳米技术蓬勃发展,并在不同领域中展现出广阔的应用前景。其中,具有规整性、周期性的纳米结构阵列材料在光子晶体、存储器和光电子器件等领域有着很广泛的应用。周期性的纳米结构阵列通常可由聚焦离子束、模板法和电化学阳极氧化等方法制备得到,其中,电化学阳极氧化方法是一种简易的、低成本的自组装纳米结构阵列制备方法。In recent years, nanotechnology has developed vigorously and has shown broad application prospects in different fields. Among them, regular and periodic nanostructure array materials are widely used in the fields of photonic crystals, memory and optoelectronic devices. Periodic nanostructure arrays can usually be prepared by focused ion beam, template method, and electrochemical anodization. Among them, electrochemical anodization is a simple and low-cost method for preparing self-assembled nanostructure arrays.
由电化学阳极氧化方法制备的纳米结构阵列包括多孔纳米阵列和纳米管阵列。电化学制备的多孔纳米阵列较常见的为多孔阳极氧化铝,阳极氧化铝的制备方法有恒压、恒流或脉冲氧化等形式,在草酸、硫酸或磷酸等电解液中制得。阳极氧化铝的典型制备工艺是在室温条件下,金属铝片在0.3M的草酸溶液中并在40V电压下电化学氧化制得。该制备方法虽然能够得到规整性非常好的氧化铝纳米阵列,但是由于反应速率较低,薄膜生长较慢,限制了其进一步的应用。Nanostructure arrays prepared by electrochemical anodization include porous nanoarrays and nanotube arrays. Porous nano-arrays prepared electrochemically are more commonly porous anodized alumina. The preparation methods of anodized alumina include constant voltage, constant current or pulse oxidation, etc., and are prepared in electrolytes such as oxalic acid, sulfuric acid or phosphoric acid. The typical preparation process of anodized aluminum is to electrochemically oxidize metal aluminum flakes in 0.3M oxalic acid solution at a voltage of 40V at room temperature. Although this preparation method can obtain alumina nano-arrays with very good regularity, its further application is limited due to the low reaction rate and slow film growth.
为了提高薄膜生长速率,在电化学阳极氧化过程中,可以通过提高电极两端的电压或改变电解液的浓度来提高薄膜的生长速率。然而,由于氧化速率增大,反应产生大量的反应热,产生的反应热会导致电解槽中局部电解液的温度迅速升高,如果不及时排除这些热量,生成的薄膜就有被击穿的可能性,同时,电解液的温度升高也会造成生成的薄膜溶解。此外,在较高的电压条件下,电流密度较大(大于20mAcm-2),产生的反应热较多,当金属片尺寸过大时,在电解槽中不宜通过搅拌等方式移除过多的反应热,所以在电解槽中,不能阳极氧化制备大面积的纳米结构阵列。因此,在电解槽中电化学阳极氧化制备纳米结构阵列的方法因其制备的速率较低,又不能制备大面积纳米结构阵列而越来越不能满足纳米技术发展的需要。In order to increase the growth rate of the film, in the process of electrochemical anodic oxidation, the growth rate of the film can be increased by increasing the voltage across the electrodes or changing the concentration of the electrolyte. However, due to the increased oxidation rate, the reaction generates a large amount of reaction heat, which will cause the temperature of the local electrolyte in the electrolytic cell to rise rapidly. If the heat is not removed in time, the formed film may be broken down. At the same time, the temperature rise of the electrolyte will also cause the dissolution of the formed film. In addition, under higher voltage conditions, the current density is higher (greater than 20mAcm -2 ), and more reaction heat is generated. When the size of the metal sheet is too large, it is not appropriate to remove too much by stirring in the electrolytic cell. The reaction is hot, so in the electrolytic cell, it cannot be anodized to prepare large-area nanostructure arrays. Therefore, the method of preparing nanostructure arrays by electrochemical anodization in an electrolytic bath is increasingly unable to meet the needs of the development of nanotechnology because of its low preparation rate and the inability to prepare large-area nanostructure arrays.
发明内容 Contents of the invention
本发明的目的是针对上述背景技术存在的缺陷提供一种能快速制备大面积纳米结构阵列的装置。The purpose of the present invention is to provide a device capable of rapidly preparing large-area nanostructure arrays for the defects of the above-mentioned background technology.
为实现上述目的,本发明提供的一种快速制备纳米结构阵列的装置,包括:一夹具,夹持一金属片;一喷嘴,设置成与所述金属片相对,以适于向所述金属片的表面喷射电解液;一马达,与所述夹具相连接用以驱动所述夹具相对所述喷嘴旋转、垂直移动或者水平移动;一可变直流电源,所述可变直流电源的阳极电连接所述金属片,所述可变直流电源的阴极电连接所述喷嘴;一腔体,适于回收喷射到所述金属片表面的电解液;及一制冷装置,与所述腔体和所述喷嘴相连接,所述制冷装置能够冷却所述腔体中的电解液并将冷却后的电解液供应给所述喷嘴。In order to achieve the above object, the present invention provides a device for rapidly preparing nanostructure arrays, including: a clamp, clamping a metal sheet; a nozzle, arranged to be opposite to the metal sheet, so as to be suitable for spray electrolyte on the surface of the nozzle; a motor connected with the fixture to drive the fixture to rotate, move vertically or horizontally relative to the nozzle; a variable DC power supply, the anode of the variable DC power supply is electrically connected to the The metal sheet, the cathode of the variable DC power supply is electrically connected to the nozzle; a cavity is suitable for recovering the electrolyte sprayed on the surface of the metal sheet; and a refrigeration device is connected with the cavity and the nozzle connected, the cooling device can cool the electrolyte in the cavity and supply the cooled electrolyte to the nozzle.
本发明的又一目的是提供一种使用上述装置快速制备大面积纳米结构阵列的方法,包括如下步骤:Another object of the present invention is to provide a method for rapidly preparing a large-area nanostructure array using the above-mentioned device, comprising the following steps:
将金属片夹持于夹具上;Clamp the metal sheet on the fixture;
利用喷嘴向所述金属片的表面喷射电解液,润湿所述金属片的表面;Spraying an electrolyte solution onto the surface of the metal sheet through a nozzle to wet the surface of the metal sheet;
将喷射到所述金属片表面的电解液回收于腔体中;及recovering the electrolyte sprayed onto the surface of the metal sheet in the cavity; and
由制冷装置冷却所述腔体中的电解液并将冷却后的电解液重新供应至所述喷嘴。The electrolyte in the cavity is cooled by a cooling device and the cooled electrolyte is re-supplied to the nozzle.
综上所述,本发明一种快速制备纳米结构阵列的装置及方法通过将电解液回收并冷却后再次供应给所述喷嘴,并由所述喷嘴喷射至所述金属片的表面进行电化学阳极氧化,由于电解液的循环流动并被冷却,因而可以消除因提高电化学阳极氧化电压而产生的热量,使得可以通过提高电化学阳极氧化电压来提高纳米结构阵列的制备速率,此外,该装置也适用于制备大面积纳米结构阵列。To sum up, the present invention provides a device and method for rapidly preparing nanostructure arrays by recovering and cooling the electrolyte solution and then supplying it to the nozzle again, and spraying it onto the surface of the metal sheet for electrochemical anode Oxidation, due to the circulating flow of the electrolyte and being cooled, the heat generated by increasing the electrochemical anodizing voltage can be eliminated, so that the preparation rate of the nanostructure array can be increased by increasing the electrochemical anodizing voltage. In addition, the device is also It is suitable for preparing large-area nanostructure arrays.
附图说明 Description of drawings
图1为本发明一种快速制备纳米结构阵列的装置的剖面结构示意图。FIG. 1 is a schematic cross-sectional structure diagram of a device for rapidly preparing nanostructure arrays according to the present invention.
图2为本发明电化学阳极氧化装置的剖面结构示意图。Fig. 2 is a schematic cross-sectional structure diagram of the electrochemical anodizing device of the present invention.
图3为在金属片表面的边缘及其侧壁涂上绝缘聚合物后的示意图。Fig. 3 is a schematic diagram after coating the insulating polymer on the edge of the surface of the metal sheet and its sidewall.
图4为图3沿A-A’线的剖视图。Fig. 4 is a sectional view along line A-A' of Fig. 3 .
图5(a)至5(c)示出了制备纳米结构阵列的工艺过程。Figures 5(a) to 5(c) illustrate the process of preparing nanostructure arrays.
图6为本发明一种快速制备纳米结构阵列的方法的流程图。Fig. 6 is a flowchart of a method for rapidly preparing nanostructure arrays in the present invention.
具体实施方式 Detailed ways
为详细说明本发明的技术内容、构造特征、所达成目的及功效,下面将结合实施例并配合图式予以详细说明。In order to describe the technical content, structural features, achieved goals and effects of the present invention in detail, the following will be described in detail in conjunction with the embodiments and accompanying drawings.
请参阅图1至图4,本发明一种快速制备纳米结构阵列的装置包括电化学阳极氧化装置和电解液供应装置。Please refer to FIG. 1 to FIG. 4 , a device for rapidly preparing nanostructure arrays in the present invention includes an electrochemical anodizing device and an electrolyte supply device.
电化学阳极氧化装置包括一夹具101、一喷嘴102、一马达103、一可变直流电源109及一电压控制器(图中未示)。夹具101夹持一大尺寸金属片200,金属片200可以是铝、钛和锡等金属,根据不同需求,可以选用不同金属。喷嘴102设置成与金属片200相对,以适于向金属片200喷射电解液104。马达103与夹具101相连接用以驱动夹具101相对喷嘴102旋转、垂直移动或者水平移动。可变直流电源109的阳极通过夹具101电连接金属片200的背面,可变直流电源109的阴极电连接喷嘴102,在本实施例中,选用了可编程直流电源为电化学阳极氧化提供电源。电压控制器与可变直流电源109相连接并控制可变直流电源109的电压输出,电压控制器控制可变直流电源109输出的电压为10V至300V。接通可变直流电源109并向金属片200喷射电解液104时,喷嘴102、电解液104、金属片200及可变直流电源109形成一电流回路,从而使金属片200氧化。The electrochemical anodizing device includes a
电解液供应装置包括一腔体105、一电解液槽106、一制冷装置107及一流量控制器108。腔体105适于回收喷射到金属片200的电解液104,具体地,在金属片200的电化学阳极氧化过程中,由于马达103驱动夹具101旋转,金属片200上的电解液104被甩离金属片200并落入腔体105。电解液槽106分别与腔体105和喷嘴102连通,腔体105中的电解液104被引入电解液槽106,并经由电解液槽106流入制冷装置107中,制冷装置107将电解液104冷却至目标设定温度,然后冷却后的电解液104被引回到电解液槽106,最后再由电解液槽106重新供应给喷嘴102。在电解液槽106与喷嘴102之间设置有流量控制器108,用于调节电解液104的压力和流量,以将具有一定压力和流量的电解液104供应给喷嘴102,喷嘴102将冷却后的电解液104喷射至金属片200的表面从而氧化金属片200。The electrolyte supply device includes a
下面简要介绍使用上述装置制备纳米结构阵列的工艺过程。首先在进行电化学阳极氧化之前,移动夹具101,使喷嘴102正对着金属片200的中心,喷嘴102向金属片200的表面喷射电解液104,同时马达103驱动夹具101以恒定角速度旋转,由于离心力的作用,喷射至金属片200表面的电解液104向金属片200表面的四周分散,从而将金属片200的表面全部润湿,金属片200的表面覆盖上一层薄电解液层,避免在金属片200的表面出现金属-空气-电解液三相点,因为一旦出现金属-空气-电解液三相点,在电化学阳极氧化时,就会导致金属片200表面的电场分布不均匀而无法生成纳米结构阵列。The following briefly introduces the process of preparing nanostructure arrays using the above-mentioned device. First, before electrochemical anodization, move the
在将金属片200的表面润湿的步骤后且在后续的将喷射到所述金属片表面的电解液回收于腔体中的步骤之前,接通可变直流电源109,在较低的恒定电压下氧化金属片200的表面,并在金属片200的表面形成一层氧化层400,如图5(b)所示。在形成氧化层400的过程中,电化学阳极氧化的电压较低,以制备多孔阳极氧化铝为例,在0.3M的草酸溶液中、温度为0℃,氧化电压小于40V或电流密度小于5mAcm-2及氧化时间为1至2分钟的条件下,可以在铝片的表面形成几百纳米厚的氧化铝层。After the step of wetting the surface of the
喷嘴102继续向金属片200的表面喷射电解液104,同时提高电化学阳极氧化的电压,金属片200的表面进一步快速氧化形成纳米结构阵列500,如图5(c)所示。以在草酸溶液中制备多孔阳极氧化铝为例,将氧化电压提高到70V至130V,此时的电流密度为20mAcm-2至200mAcm-2,金属铝的表面快速氧化形成氧化铝纳米结构阵列。虽然提高电化学阳极氧化的电压会在形成纳米结构阵列500的过程中产生大量的热,然而,由于本装置中的电解液104是循环流动并被冷却,所以产生的热量能够迅速被消除,避免产生的热量对形成的纳米结构阵列500造成破坏。由于离子扩散等因素影响,金属片200表面的氧化反应主要发生在与喷嘴102正对着的区域,因此,金属片200表面的中心区域首先被氧化,然后水平移动夹具101并旋转夹具101使金属片200表面上的其他区域被氧化,进而在金属片200的整个表面形成纳米结构阵列500,因而可以制备大面积纳米结构阵列500。此外,可以根据需要的氧化物的厚度,设定夹具101旋转的角速度或线速度和转速。The
优选的,请参阅图3和图4,金属片200表面的边缘及其侧壁涂有一层绝缘聚合物300。在电化学阳极氧化过程中,由于金属片200边缘断面的存在,当氧化进行到金属片200的边缘时,会导致金属片200上的电流分布不均,而在金属片200表面的边缘及其侧壁涂上一层所述绝缘聚合物300能够很好的解决此问题。Preferably, please refer to FIG. 3 and FIG. 4 , the edge of the surface of the
请参阅图5(a)至5(c)及图6,本发明还提供一种使用上述装置快速制备纳米结构阵列的方法,包括如下步骤:Please refer to Figures 5(a) to 5(c) and Figure 6, the present invention also provides a method for rapidly preparing nanostructure arrays using the above device, including the following steps:
S11:将金属片200夹持于夹具101上;S11: Clamp the
S12:利用喷嘴102向金属片200的表面喷射电解液104,润湿金属片200的表面;S12: using the
S13:将喷射到金属片200表面的电解液104回收于腔体105中;S13: Recover the
S14:由制冷装置107冷却腔体105中的电解液104并将冷却后的电解液104重新供应至喷嘴102。S14 : cooling the
较佳的,润湿金属片200的表面后,先在低电压下氧化金属片200的表面,形成一氧化层400,然后提高电化学阳极氧化电压并继续氧化金属片200的表面,快速形成纳米结构阵列500。Preferably, after wetting the surface of the
由上述可知,本发明一种快速制备纳米结构阵列的装置及方法通过将电解液104回收并冷却后再次供应给喷嘴102,并由喷嘴102喷射至金属片200的表面进行电化学阳极氧化,由于电解液104的循环流动并被冷却,因而可以消除因提高电化学阳极氧化电压而产生的热量,使得可以通过提高电化学阳极氧化电压来提高纳米结构阵列500的制备速率,此外,该装置也适用于制备大面积纳米结构阵列500。As can be seen from the above, a device and method for rapidly preparing nanostructure arrays in the present invention recovers and cools the
综上所述,本发明一种快速制备纳米结构阵列的装置及方法通过上述实施方式及相关图式说明,己具体、详实的揭露了相关技术,使本领域的技术人员可以据以实施。而以上所述实施例只是用来说明本发明,而不是用来限制本发明的,本发明的权利范围,应由本发明的权利要求来界定。至于本文中所述元件数目的改变或等效元件的代替等仍都应属于本发明的权利范围。In summary, a device and method for rapidly preparing nanostructure arrays according to the present invention has disclosed related technologies in detail and in detail through the above-mentioned embodiments and related drawings, so that those skilled in the art can implement them accordingly. The above-mentioned embodiments are only used to illustrate the present invention, rather than to limit the present invention, and the scope of rights of the present invention should be defined by the claims of the present invention. Changes in the number of elements described herein or substitution of equivalent elements should still fall within the scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210292689.0A CN103590084B (en) | 2012-08-16 | 2012-08-16 | A kind of device and method quickly preparing nano-structure array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210292689.0A CN103590084B (en) | 2012-08-16 | 2012-08-16 | A kind of device and method quickly preparing nano-structure array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103590084A true CN103590084A (en) | 2014-02-19 |
CN103590084B CN103590084B (en) | 2018-08-17 |
Family
ID=50080391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210292689.0A Active CN103590084B (en) | 2012-08-16 | 2012-08-16 | A kind of device and method quickly preparing nano-structure array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103590084B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1124304A (en) * | 1994-03-17 | 1996-06-12 | 株式会社半导体能源研究所 | Apparatus and method for anodic sxidation |
CN101459050A (en) * | 2007-12-14 | 2009-06-17 | 盛美半导体设备(上海)有限公司 | Method and apparatus for metallic layer front wafer surface presoaking for electrochemical or chemical deposition |
CN101845653A (en) * | 2010-04-14 | 2010-09-29 | 中国船舶重工集团公司第十二研究所 | Preparation method of micro-arc oxidation film layer under effect of magnetic field |
CN102209803A (en) * | 2009-10-01 | 2011-10-05 | 韩国电气研究院 | High voltage electric field anodizing device |
CN202323073U (en) * | 2011-11-22 | 2012-07-11 | 哈尔滨学院 | Microarc oxidation device |
-
2012
- 2012-08-16 CN CN201210292689.0A patent/CN103590084B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1124304A (en) * | 1994-03-17 | 1996-06-12 | 株式会社半导体能源研究所 | Apparatus and method for anodic sxidation |
CN101459050A (en) * | 2007-12-14 | 2009-06-17 | 盛美半导体设备(上海)有限公司 | Method and apparatus for metallic layer front wafer surface presoaking for electrochemical or chemical deposition |
CN102209803A (en) * | 2009-10-01 | 2011-10-05 | 韩国电气研究院 | High voltage electric field anodizing device |
CN101845653A (en) * | 2010-04-14 | 2010-09-29 | 中国船舶重工集团公司第十二研究所 | Preparation method of micro-arc oxidation film layer under effect of magnetic field |
CN202323073U (en) * | 2011-11-22 | 2012-07-11 | 哈尔滨学院 | Microarc oxidation device |
Also Published As
Publication number | Publication date |
---|---|
CN103590084B (en) | 2018-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6061202B2 (en) | Non-metal coating and production method thereof | |
CN101962792B (en) | Method for preparing pore diameter controllable through hole anodized aluminum oxide film | |
CN101104944A (en) | Preparation method of ordered porous aluminum oxide film | |
CN102953108B (en) | One automatically controls Hard Anodic Oxidation Process | |
Syrek et al. | Effect of electrolyte agitation on anodic titanium dioxide (ATO) growth and its photoelectrochemical properties | |
WO2020105646A1 (en) | Method for producing graphene, and graphene production equipment | |
JP5250700B2 (en) | High electric field anodizing equipment | |
EP3575445B1 (en) | Metallic foil manufacturing method and cathode for manufacturing metallic foil | |
CN103695980A (en) | Preparation method of single-layer micro-arc oxidation ceramic film on surface of aluminum alloy | |
CN103147108A (en) | Anodic aluminum oxide film and preparation method thereof | |
Asgari et al. | A new approach to electropolishing of pure Ti foil in acidic solution at room temperature for the formation of ordered and long TiO2 nanotube arrays | |
WO2022037315A1 (en) | Method and device for laser electrochemical composite deposition using rifling hollow rotating electrode | |
CN111364081B (en) | Preparation method of porous alumina template with gradient change of aperture and thickness | |
CN103938249B (en) | A kind of method preparing the biggest construction unit pellumina | |
US20080087551A1 (en) | Method for anodizing aluminum alloy and power supply for anodizing aluminum alloy | |
CN1548589A (en) | A kind of production technology of nanoporous alumina template | |
CN103590084A (en) | Apparatus and method used for quick preparation of nanostructured arrays | |
CN104928747A (en) | Method for preparing nanotube on surfaced of titanium alloy | |
CN102995097A (en) | Electrolyte solution for surface etching of magnesium alloy and etching method of magnesium alloy surface | |
CN110552038A (en) | super-hydrophobic material and preparation method thereof | |
Lin et al. | Challenges to Fabricate Large Size-Controllable Submicron-Structured Anodic-Aluminum-Oxide Film | |
CN113897662B (en) | Movable device and method for electropolishing TC4 titanium alloy | |
CN105200471B (en) | A kind of method of pulse reverse electrodeposition thick tungsten coating | |
JP2019173164A (en) | Method of manufacturing aluminium foil | |
Kao et al. | Fabrication and wetting characteristics of vertically self-aligned ZnO nanorods formed by anodic aluminum oxide template |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 201203 building 4, No. 1690, Cailun Road, free trade zone, Pudong New Area, Shanghai Patentee after: Shengmei semiconductor equipment (Shanghai) Co., Ltd Address before: 201203 Shanghai Zhangjiang High Tech Park of Pudong New Area Cailun Road No. 4 1690 Patentee before: ACM (SHANGHAI) Inc. |