[go: up one dir, main page]

CN103460270B - 有源矩阵基板、显示装置和有源矩阵基板的制造方法 - Google Patents

有源矩阵基板、显示装置和有源矩阵基板的制造方法 Download PDF

Info

Publication number
CN103460270B
CN103460270B CN201280015404.7A CN201280015404A CN103460270B CN 103460270 B CN103460270 B CN 103460270B CN 201280015404 A CN201280015404 A CN 201280015404A CN 103460270 B CN103460270 B CN 103460270B
Authority
CN
China
Prior art keywords
layer
electrode
matrix substrate
active matrix
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280015404.7A
Other languages
English (en)
Other versions
CN103460270A (zh
Inventor
美崎克纪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN103460270A publication Critical patent/CN103460270A/zh
Application granted granted Critical
Publication of CN103460270B publication Critical patent/CN103460270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/60Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/6737Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
    • H10D30/6739Conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/01Manufacture or treatment
    • H10D86/021Manufacture or treatment of multiple TFTs
    • H10D86/0251Manufacture or treatment of multiple TFTs characterised by increasing the uniformity of device parameters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/421Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
    • H10D86/423Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer comprising semiconductor materials not belonging to the Group IV, e.g. InGaZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/441Interconnections, e.g. scanning lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/451Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by the compositions or shapes of the interlayer dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/481Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133337Layers preventing ion diffusion, e.g. by ion absorption
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13458Terminal pads
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/13629Multilayer wirings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/501Blocking layers, e.g. against migration of ions

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

有源矩阵基板(1)具有源极电极(32)、漏极电极(33)和含有氧化物半导体的半导体层(31),在栅极电极(12a)之上形成有含有氧化硅的栅极绝缘层(42),在栅极绝缘层(42)之上形成有源极电极(32)、漏极电极(33)和半导体层(31),在栅极绝缘层(42)之上以不覆盖半导体层(31)的方式形成有含有氮化硅的第一保护层(44),在半导体层(31)之上形成有含有氧化硅的第二保护层(46)。第一保护层(44)覆盖信号线(14)和源极连接线(36)。

Description

有源矩阵基板、显示装置和有源矩阵基板的制造方法
技术领域
本发明涉及具有薄膜晶体管的有源矩阵基板和具备该有源矩阵基板的显示装置。
背景技术
有源矩阵型的液晶显示装置、有机EL(Electro Luminescence)显示装置,一般具有:在每个像素中形成有薄膜晶体管(Thin Film Transistor;以下也称为“TFT”)作为开关元件的有源矩阵基板(也称为“TFT基板”);形成有对置电极和彩色滤光片等的对置基板;和设置于TFT基板与对置基板之间的液晶层等的光调制层。
近年来,提出了使用IGZO(InGaZnOX)等的氧化物半导体膜替代非晶硅等的硅半导体来作为TFT的半导体层。将这种TFT称为“氧化物半导体TFT”。氧化物半导体具有比非晶硅高的迁移率,氧化物半导体TFT与非晶硅TFT相比能够以高速进行动作。另外,氧化物半导体膜能够以比多晶硅膜简单的工艺形成,所以具有也易于适用于需要做成大面积的装置的特征。
专利文献1和2中记载了氧化物半导体TFT的例子。
专利文献1的氧化物半导体TFT是具备以氧化锌为主成分的半导体层的氧化物TFT。根据专利文献1,其制造方法包括:在基板上形成以氧化锌为主成分的氧化物半导体薄膜层的工序;在氧化物半导体薄膜层之上形成第一绝缘膜的工序;和在第一绝缘膜之上形成第二绝缘膜的工序,在形成第二绝缘层前,使第一绝缘膜氧化。
专利文献2的氧化物半导体TFT具有:配置于源极电极与漏极电极之间的、以氧化锌(ZnO)为主成分的氧化物半导体薄膜层;和覆盖氧化物半导体薄膜层之上面和侧面的由硅类绝缘膜形成的栅极绝缘膜,栅极绝缘膜包括:覆盖氧化物半导体薄膜层的上表面的第一栅极绝缘膜;和覆盖第一栅极绝缘膜的前表面和氧化物半导体薄膜层的侧面的第二栅极绝缘膜。
现有技术文献
专利文献
专利文献1:日本特开2008-60419号公报
专利文献2:日本特开2007-73561号公报
发明内容
发明要解决的技术问题
参照图19~24说明第一参考例的有源矩阵基板100。
图19是表示有源矩阵基板100中的像素120、信号线端子(也称为“S端子”)160、栅极线端子(也称为“G端子”)170和辅助电容线端子(也称为“Cs端子”)180的结构的俯视图。
有源矩阵基板100具有:矩阵状地配置的多个像素120;相互正交地延伸的多个扫描线112和多个信号线114;以及与多个扫描线112平行地延伸的多个辅助电容线(也称为“Cs端子”)116。
如图19所示,各像素120具备像素电极121和辅助电容部140。在扫描线112与信号线114的交点附近,配置有与像素120对应的TFT130。在信号线114、扫描线112和Cs线116的端部分别配置有S端子160、G端子170和Cs端子180。
图20(a)~(d)是表示TFT130、辅助电容部140、S端子160和G端子170各自的结构的剖视图,分别表示图19中的A-A’剖面、B-B’剖面、C-C’剖面和D-D’剖面。
如图19和图20(a)所示,TFT130具备半导体层131、源极电极132、漏极电极133和栅极电极112a。半导体层131是由IGZO等形成的氧化物半导体层。栅极电极112a是扫描线112的一部分。在栅极电极112a之上形成有栅极绝缘层142,在栅极绝缘层142之上形成有源极电极132、漏极电极133、半导体层131。半导体层131以覆盖源极电极132和漏极电极133各自的一部分的方式形成。另外,在栅极绝缘层142之上形成有将源极电极132与信号线114连接的源极连接线136和将漏极电极133与像素电极121连接的漏极连接线137。
在半导体层131、源极电极132、漏极电极133、源极连接线136和漏极连接线137之上依次层叠有由氧化硅(SiO2)形成的第一保护层144和由氮化硅(SiN)形成的第二保护层146。漏极连接线137通过以贯通第一保护层144和第二保护层146的方式形成的接触孔135与像素电极121连接。源极连接线136和漏极连接线137具有包括下层151、中间层152和上层153的3层构造。下层151、中间层152、和上层153各自例如由Ti(钛)、Al(铝)和MoN(氮化钼)形成。
如图19和图20(b)所示,辅助电容部140包括辅助电容电极116a、形成在辅助电容电极116a之上的栅极绝缘层142、形成在栅极绝缘层142之上的Cs对置电极(辅助电容对置电极)147、形成在Cs对置电极147之上的第一保护层144、层叠在第一保护层144之上的第二保护层146和形成在第二保护层146之上的像素电极121。
Cs对置电极147通过以贯通第一保护层144和第二保护层146的方式形成的接触孔145与像素电极121连接。辅助电容电极116a是Cs线116的一部分。由辅助电容电极116a、Cs对置电极147和被两电极夹着的栅极绝缘层142的部分形成辅助电容。此外,Cs对置电极147与源极连接线136和漏极连接线137相同,具有包括下层151、中间层152和上层153的3层构造。
如图19和图20(c)所示,S端子160包括栅极绝缘层142、配置在栅极绝缘层142之上的信号线114、层叠在信号线114之上的第一保护层144、层叠在第一保护层144之上的第二保护层146和形成在第二保护层146之上的上部配线161。信号线114通过以贯通第一保护层144和第二保护层146的方式形成的接触孔165与上部配线161连接。信号线114与源极连接线136等相同,具有包括下层151、中间层152和上层153的3层构造。
如图19和图20(d)所示,G端子170包括扫描线112、在扫描线112之上依次形成的栅极绝缘层142、第一保护层144、第二保护层146和上部配线171。扫描线112通过以贯通栅极绝缘层142、第一保护层144和第二保护层146的方式形成的接触孔175与上部配线171连接。
接着,参照图21(a)~(d)和图22(e)~(g),说明有源矩阵基板100的制造方法。图21(a)~(d)和图22(e)~(g)表示图19中的TFT130的A-A’剖面、辅助电容部140的B-B’剖面、S端子160的C-C’剖面和G端子170的D-D’剖面的结构。
工序(A):
首先,在基板上利用溅射法等形成金属层。该金属层例如具有Al、Ti和TiN(氮化钛)的3层结构。接着,利用公知的光刻法对金属层进行图案化(第一掩模工序),如图21(a)所示,获得栅极电极112a、辅助电容电极116a和扫描线112。此时,也同时形成这里未图示的Cs线116。在S端子160不残留金属层。
工序(B):
接着,如图21(b)所示,以覆盖栅极电极112a、辅助电容电极116a和扫描线112的方式利用等离子体CVD法将氧化硅层叠在基板上,获得栅极绝缘层142。
工序(C):
接着,在栅极绝缘层142之上层叠ITO(Indium Tin Oxide)等的透明导电材料,利用光刻法进行图案化(第二掩模工序),如图21(c)所示,获得源极电极132和漏极电极133。
工序(D):
接着,在栅极绝缘层142之上通过溅射法以覆盖源极电极132和漏极电极133的方式层叠IGZO等的氧化物半导体材料。然后,利用光刻法对氧化物半导体材料进行图案化(第三掩模工序),如图21(d)所示,获得半导体层131。
工序(E):
接着,利用溅射法在栅极绝缘层142之上以覆盖源极电极132、漏极电极133和半导体层131的方式依次层叠Ti、Al和MoN。然后,利用光刻法对这3层同时进行图案化(第四掩模工序),如图22(e)所示,获得源极连接线136、漏极连接线137、Cs对置电极147和信号线114。这些配线如上所述具有3层结构。
工序(F):
接着,以覆盖各配线的方式层叠氧化硅形成第一保护层144,然后在其上层叠氮化硅,获得第二保护层146。然后,利用光刻法,在漏极连接线137、Cs对置电极147、S端子160中的信号线114和G端子170中的扫描线112之上分别形成接触孔135、145、165和175(第五掩模工序)。在此,漏极连接线137、Cs对置电极147和信号线114的上层153起到阻挡蚀刻的作用,在接触孔135、145和165中,以漏极连接线137、Cs对置电极147和信号线114各自的上层153露出的方式进行蚀刻。另外,在G端子170中,在接触孔175中扫描线112露出。
工序(G):
接着,在第二保护层146之上利用溅射法层叠ITO等的透明导电材料。此时,透明导电材料也层叠于接触孔135、145、165和175内。然后,利用光刻法,进行透明电极材料的图案化,形成像素电极121、上部配线161和上部配线171(第六掩模工序)。
这样,图19和图20所示的有源矩阵基板100完成。
接着,说明第二参考例的有源矩阵基板100。第二参考例的有源矩阵基板100除了不具有第二保护层146之外,基本上具有与第一参考例的有源矩阵基板100相同的结构。所以,对相同的构成要素标注相同的参照附图标记,省略其说明。
第二参考例的有源矩阵基板100的平面结构与图19所示的结构相同,所以省略其说明。
图23(a)~(d)是表示第二参考例的有源矩阵基板100中的TFT130、辅助电容部140、S端子160和G端子170各自的结构的剖视图,分别表示图19中的A-A’剖面、B-B’剖面、C-C’剖面和D-D’剖面。
如图23(a)所示,在TFT130中,在含有氧化硅的第一保护层144之上形成像素电极121,漏极连接线137通过贯通第一保护层144的接触孔135与像素电极121连接。
如图23(b)所示,在辅助电容部140中,在第一保护层144之上形成像素电极121,Cs对置电极147通过贯通第一保护层144的接触孔135与像素电极121连接。
如图23(c)所示,在S端子160中,信号线114通过贯通第一保护层144的接触孔165与上部配线161连接。
如图23(d)所示,G端子170中,扫描线112通过贯通栅极绝缘层142和第一保护层144的接触孔175与上部配线171连接。
接着,参照图24(a)和(b)说明第二参考例的有源矩阵基板100的制造方法。图24(a)和(b)表示图19中的TFT130的A-A’剖面、辅助电容部140的B-B’剖面、S端子160的C-C’剖面和G端子170的D-D’剖面的结构。
首先,经过图21(a)~(d)所示的工序(A)~(D),获得图22(e)所示的层叠构造。接着,在该层叠构造之上层叠氧化硅形成第一保护层144。之后,利用光刻法对第一保护层144进行图案化,漏极连接线137、Cs对置电极147、S端子160的信号线114和G端子170的扫描线112之上分别形成接触孔135、145、165和175(第五掩模工序)。接触孔135、145和165中,以使漏极连接线137、Cs对置电极147和信号线114各自的上层153露出的方式进行蚀刻。另外,在G端子170中,扫描线112在接触孔175中露出。
接着,在第一保护层144之上利用溅射法层叠透明导电材料。此时,透明导电材料也层叠于接触孔135、145、165和175内。然后,利用光刻法进行透明电极材料的图案化,形成像素电极121、上部配线161和上部配线171(第六掩模工序)。
在具有氧化物半导体的有源矩阵基板的制造工序中,在形成氧化物半导体层、形成其上的保护层后,在温度300~350℃左右的高温下进行退火处理。但是,如上述第一参考例那样,在半导体层之上的保护层使用氧化硅和氮化硅的情况下,或者保护层仅使用氮化硅的情况下,在退火时因氮化硅所包含的氢而使半导体层发生还原反应,产生使TFT特性劣化的问题。TFT特性的劣化,具体而言,是来自源极电极和漏极电极的泄露电流的增加、TFT的阈值的降低等。
为了防止该问题,考虑如第二参考例那样,保护层仅使用氧化硅。但是,在该情况下,氧化硅的防湿性不优秀,可能产生其下方的源极连接线、漏极连接线、信号线、Cs对置电极等被腐蚀的问题。
并且,在制造第一参考例和第二参考例的有源矩阵基板100的情况下,需要6次的光刻工序(6个掩模工序),存在制造效率不高且制造成本高的问题。
本发明是鉴于上述而完成的,目的在于提供具备具有高TFT特性的氧化物半导体TFT的有源矩阵基板。本发明的另一目的在于提供具有优良的TFT特性并且源极连接线、漏极连接线、信号线等的耐久性优良的有源矩阵基板。另外,本发明的另一目的在于制造效率高地提供该有源矩阵基板。另外,本发明的又一目的在于提供具有该有源矩阵基板的液晶显示装置、有机EL显示装置等显示装置或电子设备。
解决技术问题的技术方案
本发明的有源矩阵基板具备具有氧化物半导体的薄膜晶体管,上述有源矩阵基板具备:上述薄膜晶体管的栅极电极、源极电极和漏极电极;对上述源极电极供给电压的信号线;供给上述薄膜晶体管的开关信号的扫描线;和与上述源极电极和漏极电极连接的含有氧化物半导体的半导体层,(A)在上述栅极电极之上形成有含有氧化硅的栅极绝缘层,在上述栅极绝缘层之上形成有上述源极电极、上述漏极电极和上述半导体层,在上述栅极绝缘层之上以不覆盖上述半导体层的方式形成有含有氮化硅的第一保护层,在上述半导体层之上形成有含有氧化硅的第二保护层,或者(B)以不覆盖上述半导体层的方式形成有含有氮化硅的第一保护层,在上述半导体层之上形成有含有氧化硅的栅极绝缘层,在上述半导体层的沟道部上方的上述栅极绝缘层之上形成有上述栅极电极,在上述栅极电极之上形成有含有氮化硅的第二保护层。
在某实施方式中,上述有源矩阵基板具有将上述信号线和上述源极电极连接的源极连接线,上述信号线和上述源极连接线形成为与上述第一保护层接触。
在某实施方式中,上述信号线形成于由透明电极材料形成的电极层之上,上述源极电极含有上述透明电极材料,在上述源极电极的一部分之上形成有上述源极连接线。
在某实施方式中,上述有源矩阵基板具备各自包含像素电极的多个像素,上述源极电极、上述漏极电极和上述像素电极由相同的透明电极材料形成在同一层。
在某实施方式中,上述有源矩阵基板具备形成于上述多个像素中的各个像素的辅助电容,上述辅助电容的辅助电容电极以隔着上述栅极绝缘层与上述像素电极相对的方式配置。
在某实施方式中,上述有源矩阵基板具备包含上述信号线的一部分的信号线端子,在上述信号线端子内形成有贯通上述第一保护层和上述第二保护层到达上述信号线的接触孔。
在某实施方式中,上述有源矩阵基板具备包含上述扫描线的一部分的栅极线端子,在上述栅极线端子内形成有至少贯通上述第二保护层到达上述扫描线的接触孔。
本发明的显示装置是具有上述有源矩阵基板的显示装置。
本发明的有源矩阵基板的制造方法是一种有源矩阵基板的制造方法,该有源矩阵基板具备具有氧化物半导体的薄膜晶体管,上述有源矩阵基板的制造方法包括:形成成为上述薄膜晶体管的源极电极和漏极电极的电极层的工序;在上述电极层之上层叠金属层的工序;在上述金属层之上形成含有氮化硅的第一保护层的工序;对上述第一保护层和上述金属层进行图案化,使上述电极层的一部分露出的工序;在上述电极层之上形成含有氧化物半导体的半导体层的工序;和在露出的上述电极层、上述半导体层和残余的上述第一保护层之上形成含有氧化硅的第二保护层或栅极绝缘层的工序。
在某实施方式中,在露出的上述电极层、上述半导体层和残余的上述第一保护层之上形成有含有氧化硅的第二保护层,在形成上述电极层前实施:形成上述薄膜晶体管的栅极电极的工序;和在上述栅极电极之上形成栅极绝缘层的工序。
在某实施方式中,在露出的上述电极层、上述半导体层和残余的上述第一保护层之上形成有含有氧化硅的栅极绝缘层,在形成上述栅极绝缘层后实施:在上述半导体层上方的上述栅极绝缘层之上形成上述薄膜晶体管的栅极电极的工序;和在上述栅极电极之上形成含有氮化硅的第二保护层的工序。
在某实施方式中,由上述金属层形成对上述源极电极供给电压的信号线和将上述信号线与上述源极电极连接的源极连接线。
在某实施方式中,上述电极层含有透明电极材料,由上述电极层形成像素电极。
发明效果
根据本发明,在氧化物半导体层之上形成氧化硅层而不形成氮化硅层,或者在氧化物半导体层之上形成氧化硅层、在其上以隔着栅极电极的方式形成氮化硅层,因此能够提供具备具有优良的TFT特性的氧化物半导体TFT的有源矩阵基板。
根据本发明,在氧化物半导体层之上形成氧化硅层,在信号线、源极连接线等配线之上形成氮化硅层,所以能够提供配线的耐腐蚀性和TFT特性优良的有源矩阵基板。
根据本发明,能够通过更少的掩模工序形成有源矩阵基板,所以能够制造效率高地提供有源矩阵基板。
根据本发明,能够制造效率高地提供使用上述有源矩阵基板的高品质的显示装置。
附图说明
图1是示意性地表示本发明的实施方式的有源矩阵基板1的结构的俯视图。
图2(a)~(d)分别是示意性地表示实施方式1的有源矩阵基板1的TFT30、辅助电容部40、信号线端子60和栅极线端子70的结构的剖视图。
图3(a)~(d)是表示实施方式1的有源矩阵基板1的制造方法的剖视图。
图4(e)~(g)是表示实施方式1的有源矩阵基板1的制造方法的剖视图。
图5(a)~(d)分别是示意性地表示实施方式2的有源矩阵基板1的TFT30、辅助电容部40、信号线端子60和栅极线端子70的结构的剖视图。
图6(a)~(d)是表示实施方式2的有源矩阵基板1的制造方法的剖视图。
图7(e)~(g)是表示实施方式2的有源矩阵基板1的制造方法的剖视图。
图8(a)~(d)分别是示意性地表示实施方式3的有源矩阵基板1的TFT30、辅助电容部40、信号线端子60和栅极线端子70的结构的剖视图。
图9(a)~(d)是表示实施方式3的有源矩阵基板1的制造方法的剖视图。
图10(e)~(g)是表示实施方式3的有源矩阵基板1的制造方法的剖视图。
图11(a)~(d)分别是示意性地表示实施方式4的有源矩阵基板1的TFT30、辅助电容部40、信号线端子60和栅极线端子70的结构的剖视图。
图12(a)~(c)是表示实施方式4的有源矩阵基板1的制造方法的剖视图。
图13(a)~(d)分别是示意性地表示实施方式5的有源矩阵基板1的TFT30、辅助电容部40、信号线端子60和栅极线端子70的结构剖视图。
图14(a)~(d)是表示实施方式5的有源矩阵基板1的制造方法的剖视图。
图15(e)~(g)是表示实施方式5的有源矩阵基板1的制造方法的剖视图。
图16是示意性地表示本发明的液晶显示装置1000的结构的立体图。
图17是示意性地表示液晶显示装置1000的有源矩阵基板1的结构的俯视图。
图18是示意性地表示有源矩阵基板1的显示区域DA的结构的俯视图。
图19是示意性地表示第一参考例和第二参考例的有源矩阵基板100的结构的俯视图。
图20(a)~(d)是示意性地表示第一参考例的有源矩阵基板100中的TFT130、辅助电容部140、S端子160和G端子170的结构的剖视图。
图21(a)~(d)是示意性地表示第一参考例的有源矩阵基板100的制造方法的剖视图。
图22(e)~(g)是示意性地表示第一参考例的有源矩阵基板100的制造方法的剖视图。
图23(a)~(d)是示意性地表示第二参考例的有源矩阵基板100中的TFT130、辅助电容部140、信号线端子160和栅极线端子170的结构的剖视图。
图24(a)和(b)是示意性地表示第二参考例的有源矩阵基板100的制造方法的剖视图。
具体实施方式
以下,参照附图,说明本发明的实施方式的有源矩阵基板。其中,本发明的范围不限于以下的实施方式。本发明的有源矩阵基板是形成有氧化物半导体TFT的TFT基板,除了在后面说明的液晶显示装置的TFT基板之外,广泛地包括有机EL显示装置、电子设备等的TFT基板。
(实施方式1)
参照图1~4,说明本发明的实施方式1的有源矩阵基板1。
图1是表示有源矩阵基板1中的像素20、信号线端子(S端子)60、栅极线端子(G端子)70和辅助电容线端子(Cs端子)80的结构的俯视图。
有源矩阵基板1具备矩阵状地配置的多个像素20、相互正交地延伸的多个扫描线12和多个信号线14、以及与多个扫描线12平行地延伸的多个辅助电容线(Cs线)16。
如图1所示,各像素20具有像素电极21和辅助电容部40。在扫描线12和信号线14的交点附近配置有与像素20对应的TFT30。利用扫描线12供给TFT30的开关信号,利用信号线14经TFT30的源极连接线36对源极电极32供给显示信号。在信号线14、扫描线12、和Cs线16的端部分别配置有S端子60、G端子70和Cs端子80。
图2(a)~(d)是表示TFT30、辅助电容部40、S端子60和G端子70各自的结构的剖视图,分别表示图1中的A-A’剖面、B-B’剖面、C-C’剖面和D-D’剖面。
如图1和图2(a)所示,TFT30具备半导体层31、源极电极32、漏极电极33和栅极电极12a。半导体层31是由IGZO等形成的氧化物半导体层。栅极电极12a是扫描线12的一部分。栅极电极12a和扫描线12例如具有包括依次层叠的Al、Ti、TiN、ITO的4层结构。
在栅极电极12a之上形成含有氧化硅的栅极绝缘层42,在栅极绝缘层42之上形成源极电极32、漏极电极33、半导体层31、像素电极21。半导体层31以覆盖源极电极32和漏极电极33各自的一部分的方式形成,在两电极之间形成TFT30的沟道层。
另外,在栅极绝缘层42之上形成将源极电极32与信号线14连接的源极连接线36。源极连接线36形成于源极电极32的与半导体层31相反一侧的端部之上。源极连接线36具有依次层叠的第一层51、第二层52、第三层53和第四层54的4层构造。第一层51、第二层52、第三层53和第四层54分别例如由MoN、Al、MoN和ITO形成。源极连接线36也可以为使用这些金属或其它金属的单层或多层的结构。
源极电极32、漏极电极33、像素电极21由ITO等透明电极材料形成,形成于同一层。漏极电极33和像素电极21在栅极绝缘层42之上作为一体形成。源极连接线36和信号线14形成于由透明电极材料形成的层之上。
在栅极绝缘层42之上形成由氮化硅形成的第一保护层44和由氧化硅形成的第二保护层46。第一保护层44覆盖源极连接线36,但不覆盖半导体层31、不与源极连接线36重叠的部分的源极电极32、漏极电极33和像素电极21。第二保护层46覆盖第一保护层44、半导体层31、不与源极连接线36重叠的部分的源极电极32、漏极电极33和像素电极21。
如图1和图2(b)所示,辅助电容部40包括辅助电容电极16a、形成在辅助电容电极16a之上的栅极绝缘层42、形成在栅极绝缘层42之上的像素电极21和形成在像素电极21之上的第二保护层46。辅助电容电极16a是Cs线16的一部分。由辅助电容电极16a、像素电极21和被两电极夹着的栅极绝缘层42的部分,形成辅助电容。
如图1和图2(c)所示,S端子60包括栅极绝缘层42、配置在栅极绝缘层42之上的电极层61和信号线14、以覆盖信号线14的方式层叠的第一保护层44、以及层叠在第一保护层44之上的第二保护层46。在信号线14之上形成有贯通第一保护层44和第二保护层46到达信号线14的接触孔65。电极层61是利用与像素电极21相同的材料以相同的工序形成的透明电极层。信号线14形成在电极层61之上,与源极连接线36等同样具有4层构造,该4层构造包括依次层叠的第一层51、第二层52、第三层53和第四层54。形成在第二保护层46之上的未图示的上部配线和信号线14通过接触孔65连接。
如图1和图2(d)所示,G端子70包括扫描线12、在扫描线12之上依次形成的栅极绝缘层42、第一保护层44和第二保护层46。在扫描线12之上形成有贯通栅极绝缘层42、第一保护层44和第二保护层46而到达信号线12的接触孔75。形成在第二保护层46之上的未图示的上部配线和扫描线12通过接触孔75连接。
本实施方式中,在栅极绝缘层42之上以不覆盖半导体层31的方式形成有含有氮化硅的第一保护层44,在半导体层31之上形成有含有氧化硅的第二保护层46。因此,能够防止在形成第二保护层46后,在高温下进行退火处理的情况下的、因氮化硅所含有的氢而使TFT30的特性劣化的问题。另外,信号线14、源极连接线36等配线被氮化硅层覆盖,所以能够防止配线受到腐蚀。
接着,参照图3(a)~(d)和图4(e)~(g),说明有源矩阵基板1的制造方法。图3(a)~(d)和图4(e)~(g)表示图1中的TFT30的A-A’剖面、辅助电容部40的B-B’剖面、S端子60的C-C’剖面和G端子70的D-D’剖面的结构。
工序A1:
首先,利用溅射法等在基板上形成金属层。该金属层例如具有Al、Ti、TiN、ITO的4层结构。接着,利用公知的光刻法对金属层进行图案化(第一掩模工序),如图3(a)所示,获得栅极电极12a、辅助电容电极16a和扫描线12。此时,也同时形成这里未图示的Cs线16。在S端子60不残留金属层。
工序B1:
接着,如图3(b)所示,利用等离子体CVD法以覆盖栅极电极12a、辅助电容电极16a、和扫描线12的方式在基板上层叠氧化硅,获得栅极绝缘层42。
工序C1:
接着,在栅极绝缘层42之上依次层叠ITO、MoN、Al、MoN和ITO。然后,利用光刻法对层叠的金属层进行图案化(第二掩模工序),获得图3(c)所示的金属多层构造19和信号线14。在TFT30中栅极电极12a上的、后来成为TFT30的沟道区域的位置,形成有金属多层构造19的开口39。
工序D1:
接着,在栅极绝缘层42之上,通过等离子体CVD法,以覆盖金属多层构造19和信号线14的方式层叠氮化硅,如图3(d)所示,获得第一保护层44。
工序E1:
接着,利用光刻法有选择地除去第一保护层44,如图4(e)所示,使源极电极32的一部分、漏极电极33和像素电极21露出(第三掩模工序)。此时,利用残余的金属多层构造19形成源极连接线36。
工序F1:
接着,在基板上层叠IGZO等氧化物半导体材料。然后,利用光刻法对氧化物半导体材料进行图案化(第四掩模工序),如图4(f)所示,获得半导体层31。
工序G1:
接着,利用等离子体CVD法等,在像素电极21、源极电极32、漏极电极33、半导体层31和残余的第一保护层44之上层叠氧化硅,获得第二保护层46。然后,利用光刻法对第二保护层46进行图案化,在S端子60的信号线14之上以及G端子70的扫描线12之上分别形成接触孔65和75(第五掩模工序)。在此,信号线14的第四层54起到阻挡蚀刻的作用,在接触孔65中,第四层54露出。另外,在G端子70中,在接触孔75中扫描线12露出。
这样,完成图1和图2所示的有源矩阵基板1。利用该制造工序,仅需要5次的掩模工序,所以制造效率提高。
(实施方式2)
接着,说明本发明的实施方式2的有源矩阵基板1。以下,基本上对与实施方式1的有源矩阵基板1相同的构成要素标注相同的参照附图标记而省略说明,以不同的部分为中心进行说明。实施方式2的有源矩阵基板1的平面结构(俯视结构)与图1所示的平面结构相同,所以省略说明。
图5(a)~(d)是表示实施方式2的有源矩阵基板1中的TFT30、辅助电容部40、S端子60和G端子70各自的结构的剖视图,分别表示图1中的A-A’剖面、B-B’剖面、C-C’截和D-D’剖面。
在TFT30中,如图5(a)所示,在基板上形成像素电极21、漏极电极33和源极电极32,以覆盖源极电极32和漏极电极33各自的一部分的方式形成有半导体层31。在源极电极32的与半导体层31相反一侧的端部之上形成有源极连接线36。
源极连接线36具有3层构造,该3层构造包括依次层叠的第一层51、第二层52和第三层53。第一层51、第二层52和第三层53分别例如由MoN、Al和MoN形成。源极连接线36也可以构成为使用这些金属或其它金属的单层或多层。
以覆盖源极连接线36的方式形成由氮化硅形成的第一保护层44,以覆盖未被源极连接线36覆盖的源极电极32、漏极电极33、像素电极21、半导体层31和第一保护层44的方式形成有栅极绝缘层42。栅极绝缘层42由氧化硅形成。在半导体层31的沟道部上方的栅极绝缘层42之上形成有栅极电极12a。栅极电极12a是扫描线12的一部分。栅极电极12a和扫描线12例如具有Al、Ti、TiN的3层构造。在栅极绝缘层42之上以覆盖栅极电极12a的方式形成有由氮化硅形成的第二保护层46。
如图5(b)所示,辅助电容部40包括像素电极21、形成在像素电极21之上的栅极绝缘层42、形成在栅极绝缘层42之上的辅助电容电极16a和以覆盖辅助电容电极16a的方式形成在栅极绝缘层42之上的第二保护层46。辅助电容电极16a是Cs线16的一部分。由辅助电容电极16a、像素电极21和被两电极夹着的栅极绝缘层42的部分形成辅助电容。
如图5(c)所示,S端子60包括形成在基板上的电极层61、形成在电极层61之上的信号线14、以覆盖信号线14的方式形成的第一保护层44和层叠在第一保护层44之上的第二保护层46。在信号线14之上形成有贯通第一保护层44和第二保护层46而到达信号线14的接触孔65。电极层61是利用与像素电极21相同的材料以相同的工序形成的透明电极层。信号线14与源极连接线36等相同,包括第一层51、第二层52和第三层53。形成在第二保护层46之上的未图示的上部配线和信号线14通过接触孔65连接。
如图5(d)所示,G端子70包括栅极绝缘层42、形成在栅极绝缘层42之上的扫描线12、以覆盖扫描线12的方式形成的第二保护层46。在扫描线12之上形成有贯通第二保护层46到达信号线12的接触孔75。形成在第二保护层46之上的未图示的上部配线和扫描线12通过接触孔75连接。
本实施方式中,含有氮化硅的第一保护层44形成为不覆盖半导体层31,在半导体层31之上形成有含有氧化硅的栅极绝缘层42。含有氮化硅的第二保护层46形成在半导体层31的沟道部上方的栅极电极12a之上。因此,能够防止在形成第二保护层46后,在高温下进行退火处理的情况下的、因氮化硅所包含的氢使TFT30的特性劣化的问题。另外,信号线14、源极连接线36等配线被氮化硅层覆盖,因此能够防止配线受到腐蚀。
接着,参照图6(a)~(d)和图7(e)~(g),说明实施方式2的有源矩阵基板1的制造方法。图6(a)~(d)和图7(e)~(g)表示图1中的TFT30的A-A’剖面、辅助电容部40的B-B’剖面、S端子60的C-C’剖面和G端子70的D-D’剖面的结构。
工序A2:
首先,利用溅射法等在基板上依次层叠ITO、MoN、Al、MoN。接着,利用光刻法对这4个金属层进行图案化(第一掩模工序),如图6(a)所示,获得TFT30和辅助电容部40中的像素电极21、源极电极32、漏极电极33和层叠在这些电极之上的金属多层构造19。另外,在S端子60形成层叠在电极层61和电极层61之上的3层结构的信号线14。
工序B2:
接着,利用溅射法以覆盖上述金属层的方式层叠氮化硅。如图6(b)所示,获得第一保护层44。
工序C2:
接着,利用光刻法有选择地除去第一保护层44和金属多层构造19,如图6(c)所示,使源极电极32的一部分、漏极电极33和像素电极21露出(第二掩模工序)。此时,利用残余的金属多层构造19在TFT30形成源极连接线36。在G端子70不残留第一保护层44。
工序D2:
接着,在基板上层叠IGZO等氧化物半导体材料,利用光刻法进行图案化(第三掩模工序),如图6(d)所示,获得半导体层31。
工序E2:
接着,如图7(e)所示,在像素电极21、源极电极32、漏极电极33、半导体层31和残余的第一保护层44之上层叠氧化硅,获得栅极绝缘层42。在S端子60不层叠栅极绝缘层42。
工序F2:
接着,在基板上利用溅射法层叠金属层。该金属层例如具有Al、Ti、TiN的3层结构。接着,利用光刻法对层叠的金属层进行图案化(第四掩模工序),如图7(f)所示,获得栅极电极12a、辅助电容电极16a和扫描线12。此时,也同时形成这里未图示的Cs线16。在S端子60不残留金属层。
工序G2:
接着,利用等离子体CVD法等,以覆盖栅极电极12a、辅助电容电极16a和扫描线12的方式层叠氮化硅,获得第二保护层46。然后,利用光刻法对第一保护层44和第二保护层46进行图案化,在S端子60的信号线14之上和G端子70的扫描线12之上分别形成接触孔65和75(第五掩模工序)。在此,信号线14的第三层53起到阻挡蚀刻的作用,在接触孔65中,第三层53露出。另外,在G端子70中,在接触孔75中扫描线12露出。
这样,完成图1和图5所示的有源矩阵基板1。根据该制造工序,仅需要5次掩模工序,所以制造效率提高。
(实施方式3)
接着,说明本发明的实施方式3的有源矩阵基板1。以下,基本上对与实施方式1的有源矩阵基板1相同的构成要素标注相同的参照符号省略其说明,以不同的部分为中心进行说明。实施方式3的有源矩阵基板1的平面结构与图1所示的平面结构相同,所以省略其说明。
图8(a)~(d)是表示实施方式3的有源矩阵基板1中的TFT30、辅助电容部40、S端子60和G端子70各自的结构的剖视图,分别表示图1中的A-A’剖面、B-B’剖面、C-C’剖面和D-D’剖面。
如图8(a)所示,TFT30具备半导体层31、源极电极32、漏极电极33和栅极电极12a。栅极电极12a是扫描线12的一部分。栅极电极12a和扫描线12例如具有5层结构,该5层结构包含依次层叠的ITO、Ti、Al、Ti和TiN。设由ITO、Ti、Al、Ti、和TiN形成的层分别为第一层91、第二层92、第三层93、第四层94和第五层95。
在栅极电极12a之上形成由氧化硅形成的栅极绝缘层42,在栅极绝缘层42之上形成源极电极32、漏极电极33、半导体层31、像素电极21。半导体层31形成为覆盖源极电极32和漏极电极33各自的一部分,在两电极之间形成有TFT30的沟道层。源极电极32的与半导体层31相反一侧的端部之上形成有源极连接线36。源极连接线36具有依次层叠的第一层51、第二层52和第三层53的3层构造。第一层51、第二层52和第三层53各自例如由MoN、Al、MoN形成。
在栅极绝缘层42之上形成由氮化硅形成的第一保护层44和由氧化硅形成的第二保护层46。第一保护层44覆盖源极连接线36,但不覆盖半导体层31、不与源极连接线36重叠的部分的源极电极32、漏极电极33和像素电极21。第二保护层46覆盖第一保护层44、半导体层31、不与源极连接线36重叠的部分的源极电极32、漏极电极33和像素电极21。
如图8(b)所示,辅助电容部40包括辅助电容电极16a、形成在辅助电容电极16a之上的栅极绝缘层42、形成在栅极绝缘层42之上的像素电极21和形成在像素电极21之上的第二保护层46。辅助电容电极16a是Cs线16的一部分。由辅助电容电极16a、像素电极21和被两电极夹着的栅极绝缘层42的部分,形成辅助电容。
如图8(c)所示,S端子60包括栅极绝缘层42、配置在栅极绝缘层42之上的电极层61和信号线14、以覆盖信号线14的方式层叠的第一保护层44、以及层叠在第一保护层44之上的第二保护层46。电极层61是利用与像素电极21相同的材料以相同的工序形成的透明电极层。信号线14形成在电极层61之上,与源极连接线36等相同,包括第一层51、第二层52和第三层53。
在电极层61之上形成有贯通信号线14、第一保护层44和第二保护层46到达电极层61的接触孔65。接触孔65的侧面被第二保护层46覆盖。形成在第二保护层46之上的未图示的上部配线和电极层61通过接触孔65连接。
如图8(d)所示,G端子70包括扫描线12、在扫描线12之上依次形成的栅极绝缘层42、第一保护层44和第二保护层46。扫描线12的第一层91之上形成有贯通其以外的扫描线12的金属层、栅极绝缘层42、第一保护层44和第二保护层46而到达第一层91的接触孔75。接触孔75的侧面被第二保护层46覆盖。形成在第二保护层46之上的未图示的上部配线和第一层91通过接触孔75连接。
本实施方式中,在栅极绝缘层42之上以不覆盖半导体层31的方式形成含有氮化硅的第一保护层44,在半导体层31之上形成含有氧化硅的第二保护层46。因此,能够防止在形成第二保护层46后,在高温下进行退火处理的情况下的、因氮化硅所包含的氢使TFT30的特性劣化的问题。另外,信号线14、源极连接线36等配线被氮化硅层覆盖,所以能够防止配线受到腐蚀。
接着,参照图9(a)~(d)和图10(e)~(g),说明实施方式3的有源矩阵基板1的制造方法。图9(a)~(d)和图10(e)~(g)表示图1中的TFT30的A-A’剖面、辅助电容部40的B-B’剖面、S端子60的C-C’剖面和G端子70的D-D’剖面的结构。
工序A3:
首先,在基板上利用溅射法等依次层叠第一层91、第二层92、第三层93、第四层94和第五层95。接着,利用光刻法对金属层进行图案化(第一掩模工序),如图9(a)所示,获得栅极电极12a、辅助电容电极16a和扫描线12。此时,也同时形成这里未图示的Cs线16。在S端子60不残留金属层。
工序B3:
接着,如图9(b)所示,以覆盖栅极电极12a、辅助电容电极16a和扫描线12的方式通过等离子体CVD法在基板上层叠氧化硅,获得栅极绝缘层42。
工序C3:
接着,在栅极绝缘层42之上依次层叠ITO、MoN、Al和MoN。然后,利用光刻法对层叠的金属层进行图案化(第二掩模工序),如图9(c)所示,获得TFT30和辅助电容部40中的像素电极21、源极电极32、漏极电极33和层叠在这些电极之上的3层结构的金属多层构造19。另外,在S端子60形成有层叠在电极层61和电极层61之上的3层结构的信号线14。在TFT30的栅极电极12a上的、后来成为TFT30的沟道区域的位置,形成有金属多层构造19的开口39。
工序D3:
接着,通过等离子体CVD法,以覆盖金属多层构造19和信号线14的方式层叠氮化硅,如图9(d)所示,获得第一保护层44。
工序E3:
接着,利用光刻法有选择地除去第一保护层44、金属多层构造19和信号线14,如图10(e)所示,使源极电极32的一部分、漏极电极33和像素电极21露出(第三掩模工序)。此时,利用残余的金属多层构造19形成源极连接线36。此时,S端子60中形成贯通第一保护层44和信号线14的接触孔65,电极层61从中露出。另外,在G端子70中形成贯通第一保护层44、栅极绝缘层42和扫描线12的第二层~第五层(92~95)的接触孔75,扫描线12的第一层91从中露出。
工序F3:
接着,在基板上层叠IGZO等氧化物半导体材料,利用光刻法进行图案化(第四掩模工序),如图10(f)所示,获得半导体层31。
工序G3:
接着,利用等离子体CVD法等层叠氧化硅,获得第二保护层46。然后,利用光刻法对第二保护层46进行图案化,在S端子60的接触孔65中,使电极层61露出,并且在G端子70的接触孔75中,使扫描线12的第一层91露出(第五掩模工序)。
这样,完成实施方式3的有源矩阵基板1。根据该制造工序,仅需要5次掩模工序,因此制造效率提高。
(实施方式4)
接着,说明本发明的实施方式4的有源矩阵基板1。以下,基本上对与实施方式1和3的有源矩阵基板1相同的构成要素标注相同的参照符号省略其说明,以不同的部分为中心进行说明。实施方式4的有源矩阵基板1的平面结构与图1所示的平面结构相同,所以省略其说明。
图11(a)~(d)是表示实施方式4的有源矩阵基板1中的TFT30、辅助电容部40、S端子60和G端子70各自的结构的剖视图,分别表示图1中的A-A’剖面、B-B’剖面、C-C’剖面和D-D’剖面。
TFT30和辅助电容部40的结构与图11(a)和(b)所示的实施方式3相同,所以省略说明。
如图11(c)所示,S端子60包括栅极绝缘层42、配置在栅极绝缘层42之上的电极层61和信号线14、以覆盖信号线14的方式层叠的第一保护层44以及层叠在第一保护层44之上的第二保护层46。
在电极层61之上形成有贯通信号线14、第一保护层44和第二保护层46到达电极层61的接触孔65。形成在第二保护层46之上的未图示的上部配线和电极层61通过接触孔65连接。
如图11(d)所示,G端子70包括扫描线12、在扫描线12之上依次形成的栅极绝缘层42、第一保护层44和第二保护层46。在扫描线12的第一层91之上形成有贯通扫描线12的第二层~第五层(92~95)、栅极绝缘层42、第一保护层44和第二保护层46到达第一层91的接触孔75。形成在第二保护层46之上的未图示的上部配线和第一层91通过接触孔75连接。
本实施方式中,在栅极绝缘层42之上以不覆盖半导体层31的方式形成含有氮化硅的第一保护层44,在半导体层31之上形成含有氧化硅的第二保护层46。因此,能够防止在形成第二保护层46后,在高温下进行退火处理的情况下的、因氮化硅所包含的氢使TFT30的特性劣化的问题。另外,信号线14、源极连接线36等配线被氮化硅层覆盖,所以能够防止配线受到腐蚀。
接着,参照图12(a)~(c),说明实施方式4的有源矩阵基板1的制造方法。图12(a)~(c)表示图1中的TFT30的A-A’剖面、辅助电容部40的B-B’剖面、S端子60的C-C’剖面和G端子70的D-D’剖面的结构。
工序A4:
首先,在实施实施方式3中说明了的工序A3~D3后,利用光刻法有选择地除去第一保护层44和金属多层构造19,如图12(a)所示,使源极电极32的一部分、漏极电极33和像素电极21露出(第三掩模工序)。此时,利用残余的金属多层构造19形成源极连接线36。此时,在S端子60和G端子70中,第一保护层44不被除去。
工序B4:
接着,在基板上层叠IGZO等氧化物半导体材料,利用光刻法进行图案化(第四掩模工序),如图12(b)所示,获得半导体层31。
工序C4:
接着,利用等离子体CVD法等层叠氧化硅,获得第二保护层46。之后,利用光刻法对第二保护层46进行图案化,形成S端子60中的接触孔65和G端子70中的接触孔75(第五掩模工序)。
这样,完成实施方式4的有源矩阵基板1。根据该制造工序,仅需要5次的掩模工序,因此制造效率提高。
(实施方式5)
接着,说明本发明的实施方式5的有源矩阵基板1。以下,基本上对与实施方式1和2的有源矩阵基板1相同的构成要素标注相同的参照符号省略其说明,以不同的部分为中心进行说明。实施方式5的有源矩阵基板1的平面结构与图1所示的平面结构相同,所以省略其说明。
图13(a)~(d)是表示实施方式5的有源矩阵基板1中的TFT30、辅助电容部40、S端子60和G端子70各自的结构的剖视图,分别表示图1中的A-A’剖面、B-B’剖面、C-C’剖面和D-D’剖面。
TFT30、辅助电容部40和G端子70的结构,如图13(a)、(b)和(d)所示,与实施方式2相同,所以省略说明。
如图13(c)所示,S端子60包括形成在基板上的电极层61、形成在电极层61之上的信号线14、形成在信号线14之上的第一保护层44、层叠在第一保护层44之上的栅极绝缘层42和层叠在栅极绝缘层42之上的第二保护层46。在电极层61之上形成贯通信号线14、第一保护层44、栅极绝缘层42和第二保护层46的接触孔65。接触孔65的侧面被第二保护层46覆盖。形成在第二保护层46之上的未图示的上部配线和电极层61通过接触孔65连接。
本实施方式中,含有氮化硅的第一保护层44以不覆盖半导体层31的方式形成,在半导体层31之上形成有含有氧化硅的栅极绝缘层42。含有氮化硅的第二保护层46形成在半导体层31的沟道部上方的栅极电极12a之上。因此,能够防止在形成第二保护层46后,在高温下进行退火处理的情况下的、因氮化硅所包含的氢使TFT30的特性劣化的问题。另外,信号线14、源极连接线36等配线被氮化硅层覆盖,所以能够防止配线受到腐蚀。
接着,参照图14(a)~(d)和图15(e)~(g),说明实施方式5的有源矩阵基板1的制造方法。图14(a)~(d)和图15(e)~(g)表示图1中的TFT30的A-A’剖面、辅助电容部40的B-B’剖面、S端子60的C-C’剖面和G端子70的D-D’剖面的结构。
工序A5:
实施与在实施方式2中说明了的工序A2相同的工序,如图14(a)所示,获得TFT30和辅助电容部40中的像素电极21、源极电极32、漏极电极33和层叠在这些电极之上的金属多层构造19。另外,在S端子60形成有层叠在电极层61和电极层61之上的3层结构的信号线14。
工序B5:
接着,实施与在实施方式2中说明了的工序B2相同的工序,如图14(b)所示,形成第一保护层44。
工序C5:
接着,利用光刻法有选择地除去第一保护层44、金属多层构造19和信号线14,如图14(c)所示,使源极电极32的一部分、漏极电极33和像素电极21露出(第二掩模工序)。此时,在TFT30由残余的金属多层构造19形成源极连接线36。S端子60中,在电极层61之上形成信号线14和第一保护层44的开口,电极层61从中露出。在G端子70不残留第一保护层44。
工序D5:
接着,在基板上层叠氧化物半导体材料,利用光刻法进行图案化(第三掩模工序),如图14(d)所示,获得半导体层31。
工序E5:
接着,如图15(e)所示,在基板上层叠氧化硅,获得栅极绝缘层42。
工序F5:
接着,在基板上利用溅射法层叠金属层。该金属层例如具有Al、Ti、TiN的3层结构。接着,利用光刻法对层叠的金属层进行图案化(第四掩模工序),如图15(f)所示,获得栅极电极12a、辅助电容电极16a和扫描线12。此时,也同时形成这里未图示的Cs线16。在S端子60不残留金属层。
工序G5:
接着,利用等离子体CVD法等,以覆盖栅极电极12a、辅助电容电极16a和扫描线12的方式层叠氮化硅,获得第二保护层46。然后,利用光刻法对第二保护层46进行图案化,在S端子60的电极层61之上和G端子70的扫描线12之上分别形成接触孔65和75(第五掩模工序)。在接触孔65中,电极层61露出,在接触孔75中,扫描线12露出。
这样,完成实施方式5的有源矩阵基板1。根据制造工序,仅需要5次的掩模工序,因此制造效率提高。
(实施方式6)
图16是示意性地表示本发明的实施方式6的液晶显示装置1000的结构的立体图。
如图16所示,液晶显示装置1000具备:夹着液晶层相互相对的有源矩阵基板(TFT基板)1和对置基板200;配置于有源矩阵基板1和对置基板200各自的外侧的偏光板210和220;和朝向有源矩阵基板1出射显示用的光的背光源单元230。有源矩阵基板1能够使用实施方式1~5的有源矩阵基板1。在有源矩阵基板1配置有驱动多个扫描线的扫描线驱动电路240和驱动多个信号线的信号线驱动电路250。扫描线驱动电路240和信号线驱动电路250与配置于有源矩阵基板1的内部或外部的控制电路260连接。根据基于控制电路260的控制,从扫描线驱动电路240对多个扫描线供给切换TFT的导通-断开的扫描信号,从信号线驱动电路250对多个信号线供给显示信号(对像素电极施加的电压)。
对置基板200具备彩色滤光片和共用电极。彩色滤光片在进行3原色显示的情况下,分别包括与像素对应配置的R(红)滤光片、G(绿)滤光片和B(蓝)滤光片。共用电极以夹着液晶层覆盖多个像素电极的方式形成。使两电极之间的液晶分子根据施加于共用电极与各像素电极之间的电位差按像素取向,从而进行显示。
图17是示意性地表示有源矩阵基板1的结构的俯视图,图18是示意性地表示有源矩阵基板1的显示区域DA的结构的俯视图。
如图17所示,有源矩阵基板1具有显示部DA和位于显示部DA的外侧的周边部FA。在周边部FA以COG(Chip on Glass)方式配置有扫描线驱动电路240、信号线驱动电路250、电压供给电路等电子元件。周边部FA中的TFT、二极管等电子元件能够以与显示部DA的TFT相同的制造工序形成。另外,周边部FA的外端部附近配置有用于安装FPC(Flexible PrintedCircuits)等的外部元件的端子300。并且,在周边部FA形成有将上部配线和下部配线电连接的端子400。端子400包含图1所示的S端子60、G端子70和Cs端子80。
如图18所示,在显示部DA矩阵状地配置有多个像素20,多个扫描线12和多个信号线14以相互正交的方式配置。在多个扫描线12与多个信号线14的每个交点的附近,TFT30按像素20形成。扫描线12的一部分构成TFT30的栅极电极。各像素20配置有与TFT30的漏极电极电连接的例如像素电极21。另外,相邻的两个扫描线12之间,Cs线16与扫描线12平行地延伸。各像素20内形成有Cs部40。
工业上的可利用性
本发明适合用于具有氧化物半导体TFT的有源矩阵基板和具备该有源矩阵基板的液晶显示装置、有机EL显示装置等显示装置。
附图标记说明
1、100 有源矩阵基板
12、112 扫描线
12a、112a 栅极电极
14、114 信号线
16、116 辅助电容线(Cs线)
16a、116a 辅助电容电极
19 金属多层构造
20、120 像素
21、121 像素电极
30、130 TFT
31、131 半导体层
32、132 源极电极
33、133 漏极电极
36、136 源极连接线
40、140 辅助电容部
42、142 栅极绝缘层
44、144 第一保护层
46、146 第二保护层
51 第一层
52 第二层
53 第三层
54 第四层
60、160 信号线端子(S端子)
61 电极层
65、75、135、145、165、175 接触孔
39、66 开口
70、170 栅极线端子(G端子)
80、180 辅助电容线端子(Cs端子)
137 漏极连接线
147 Cs对置电极
151 下层
152 中间层
153 上层
161、171 上部配线
200 对置基板
210、220 偏光板
230 背光源单元
240 扫描线驱动电路
250 信号线驱动电路
260 控制电路
300、400 端子
1000 液晶显示装置

Claims (14)

1.一种有源矩阵基板,其具备具有氧化物半导体的薄膜晶体管,所述有源矩阵基板的特征在于,具备:
所述薄膜晶体管的栅极电极、源极电极和漏极电极;
对所述源极电极供给电压的信号线;
供给所述薄膜晶体管的开关信号的扫描线;和
与所述源极电极和漏极电极连接的含有氧化物半导体的半导体层,
(A)在所述栅极电极之上形成有含有氧化硅的栅极绝缘层,
在所述栅极绝缘层之上形成有所述源极电极、所述漏极电极和所述半导体层,
在所述栅极绝缘层之上以不覆盖所述半导体层的方式形成有含有氮化硅的第一保护层,
在所述半导体层之上形成有含有氧化硅的第二保护层,
或者
(B)以不覆盖所述半导体层的方式形成有含有氮化硅的第一保护层,
在所述半导体层之上形成有含有氧化硅的栅极绝缘层,
在所述半导体层的沟道部上方的所述栅极绝缘层之上形成有所述栅极电极,
在所述栅极电极之上形成有含有氮化硅的第二保护层。
2.如权利要求1所述的有源矩阵基板,其特征在于:
具有将所述信号线和所述源极电极连接的源极连接线,
所述信号线和所述源极连接线形成为与所述第一保护层接触。
3.如权利要求2所述的有源矩阵基板,其特征在于:
所述信号线形成于由透明电极材料形成的电极层之上,
所述源极电极含有所述透明电极材料,
在所述源极电极的一部分之上形成有所述源极连接线。
4.如权利要求1至3中任一项所述的有源矩阵基板,其特征在于:
具备各自包含像素电极的多个像素,
所述源极电极、所述漏极电极和所述像素电极由相同的透明电极材料形成在同一层。
5.如权利要求4所述的有源矩阵基板,其特征在于:
具备形成于所述多个像素中的各个像素的辅助电容,
所述辅助电容的辅助电容电极以隔着所述栅极绝缘层与所述像素电极相对的方式配置。
6.如权利要求1至3中任一项所述的有源矩阵基板,其特征在于:
具备包含所述信号线的一部分的信号线端子,
在所述信号线端子内形成有贯通所述第一保护层和所述第二保护层到达所述信号线的接触孔。
7.如权利要求1至3中任一项所述的有源矩阵基板,其特征在于:
具备包含所述扫描线的一部分的栅极线端子,
在所述栅极线端子内形成有至少贯通所述第二保护层到达所述扫描线的接触孔。
8.如权利要求1至3中任一项所述的有源矩阵基板,其特征在于:
所述氧化物半导体是InGaZnOX
9.一种显示装置,其特征在于:
具有权利要求1至8中任一项所述的有源矩阵基板。
10.一种有源矩阵基板的制造方法,该有源矩阵基板具备具有氧化物半导体的薄膜晶体管,所述有源矩阵基板的制造方法的特征在于,包括:
形成成为所述薄膜晶体管的源极电极和漏极电极的电极层的工序;
在所述电极层之上层叠金属层的工序;
在所述金属层之上形成含有氮化硅的第一保护层的工序;
对所述第一保护层和所述金属层进行图案化,使所述电极层的一部分露出的工序;
在所述电极层的露出的部分的一部分之上形成含有氧化物半导体的半导体层的工序;和
在所述形成含有氧化物半导体的半导体层的工序之后露出的所述电极层、所述半导体层和残余的所述第一保护层之上形成含有氧化硅的第二保护层的工序,
在形成所述电极层前实施:形成所述薄膜晶体管的栅极电极的工序;和在所述栅极电极之上形成栅极绝缘层的工序。
11.一种有源矩阵基板的制造方法,该有源矩阵基板具备具有氧化物半导体的薄膜晶体管,所述有源矩阵基板的制造方法的特征在于,包括:
形成成为所述薄膜晶体管的源极电极和漏极电极的电极层的工序;
在所述电极层之上层叠金属层的工序;
在所述金属层之上形成含有氮化硅的第一保护层的工序;
对所述第一保护层和所述金属层进行图案化,使所述电极层的一部分露出的工序;
在所述电极层的露出的部分的一部分之上形成含有氧化物半导体的半导体层的工序;和
在所述形成含有氧化物半导体的半导体层的工序之后露出的所述电极层、所述半导体层和残余的所述第一保护层之上形成含有氧化硅的栅极绝缘层的工序,
在形成所述栅极绝缘层后实施:在所述半导体层上方的所述栅极绝缘层之上形成所述薄膜晶体管的栅极电极的工序;和在所述栅极电极之上形成含有氮化硅的第二保护层的工序。
12.如权利要求10或11所述的有源矩阵基板的制造方法,其特征在于:
在所述电极层的露出的部分的一部分之上形成含有氧化物半导体的半导体层的工序,是在所述电极层的所述露出的部分的一部分的上表面和侧面上形成所述半导体层的工序。
13.如权利要求10或11所述的有源矩阵基板的制造方法,其特征在于:
由所述金属层形成对所述源极电极供给电压的信号线和将所述信号线与所述源极电极连接的源极连接线。
14.如权利要求10或11所述的有源矩阵基板的制造方法,其特征在于:
所述电极层含有透明电极材料,由所述电极层形成像素电极。
CN201280015404.7A 2011-03-30 2012-03-22 有源矩阵基板、显示装置和有源矩阵基板的制造方法 Active CN103460270B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011-074033 2011-03-30
JP2011074033 2011-03-30
PCT/JP2012/057325 WO2012133103A1 (ja) 2011-03-30 2012-03-22 アクティブマトリクス基板、表示装置、およびアクティブマトリクス基板の製造方法

Publications (2)

Publication Number Publication Date
CN103460270A CN103460270A (zh) 2013-12-18
CN103460270B true CN103460270B (zh) 2016-09-07

Family

ID=46930831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280015404.7A Active CN103460270B (zh) 2011-03-30 2012-03-22 有源矩阵基板、显示装置和有源矩阵基板的制造方法

Country Status (7)

Country Link
US (1) US9379143B2 (zh)
EP (1) EP2693420B1 (zh)
JP (1) JP5253686B2 (zh)
KR (1) KR101345047B1 (zh)
CN (1) CN103460270B (zh)
TW (1) TWI406420B (zh)
WO (1) WO2012133103A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080930A1 (ja) * 2012-11-21 2014-05-30 シャープ株式会社 液晶表示装置
WO2016154284A1 (en) 2015-03-24 2016-09-29 Corning Incorporated Laser cutting and processing of display glass compositions
CN107636841B (zh) * 2015-06-05 2020-10-09 夏普株式会社 有源矩阵基板及其制造方法和使用有源矩阵基板的显示装置
JP6569901B2 (ja) * 2015-08-28 2019-09-04 ラピスセミコンダクタ株式会社 半導体装置及び半導体装置の製造方法
KR102600620B1 (ko) * 2016-05-16 2023-11-09 삼성디스플레이 주식회사 디스플레이 장치 및 이의 제조 방법
WO2018021154A1 (ja) * 2016-07-27 2018-02-01 シャープ株式会社 走査アンテナおよび走査アンテナの駆動方法ならびに液晶デバイス
CN109599363B (zh) * 2018-11-28 2020-09-04 南京中电熊猫液晶显示科技有限公司 一种阵列基板及其制造方法
KR20220065949A (ko) 2020-11-13 2022-05-23 삼성디스플레이 주식회사 표시 장치
CN113192973A (zh) * 2021-04-02 2021-07-30 Tcl华星光电技术有限公司 阵列基板及微型发光二极管显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399504A (zh) * 2001-07-25 2003-02-26 Lg.菲利浦Lcd株式会社 简化制造工艺的有源矩阵有机电致发光器件及其制造方法
JP2009099953A (ja) * 2007-09-26 2009-05-07 Canon Inc 電界効果型トランジスタの製造方法
CN101859798A (zh) * 2009-03-30 2010-10-13 株式会社半导体能源研究所 半导体装置以及其制造方法
JP2011049543A (ja) * 2009-07-27 2011-03-10 Kobe Steel Ltd 配線構造およびその製造方法、並びに配線構造を備えた表示装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399470B1 (en) * 2000-10-05 2002-06-04 Oki Electronic Industry Co., Ltd. Method for forming contact holes on conductors having a protective layer using selective etching
KR20020038482A (ko) * 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP2003050405A (ja) * 2000-11-15 2003-02-21 Matsushita Electric Ind Co Ltd 薄膜トランジスタアレイ、その製造方法およびそれを用いた表示パネル
JP4381691B2 (ja) * 2002-03-28 2009-12-09 シャープ株式会社 液晶表示装置用基板及びそれを備えた液晶表示装置及びその製造方法
KR101189271B1 (ko) * 2005-07-12 2012-10-09 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
JP2007073561A (ja) 2005-09-02 2007-03-22 Kochi Prefecture Sangyo Shinko Center 薄膜トランジスタ
JP5128792B2 (ja) 2006-08-31 2013-01-23 財団法人高知県産業振興センター 薄膜トランジスタの製法
JP2009099887A (ja) * 2007-10-19 2009-05-07 Hitachi Displays Ltd 表示装置
KR101270174B1 (ko) * 2007-12-03 2013-05-31 삼성전자주식회사 산화물 반도체 박막 트랜지스터의 제조방법
KR101533391B1 (ko) * 2008-08-06 2015-07-02 삼성디스플레이 주식회사 박막 트랜지스터 기판과 그 제조 방법
KR101681483B1 (ko) * 2008-09-12 2016-12-02 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조 방법
TWI654689B (zh) * 2008-12-26 2019-03-21 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
US8461582B2 (en) * 2009-03-05 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20100224878A1 (en) * 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101073301B1 (ko) 2009-07-15 2011-10-12 삼성모바일디스플레이주식회사 유기 전계발광 표시장치 및 그 제조방법
JP2011049542A (ja) 2009-07-27 2011-03-10 Kobe Steel Ltd 配線構造およびその製造方法、並びに配線構造を備えた表示装置
KR20220031135A (ko) * 2009-09-16 2022-03-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
CN102652330B (zh) * 2009-12-09 2014-09-17 夏普株式会社 半导体装置及其制造方法
KR101600879B1 (ko) * 2010-03-16 2016-03-09 삼성디스플레이 주식회사 박막트랜지스터, 그 제조방법 및 박막트랜지스터를 이용한 표시기판

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399504A (zh) * 2001-07-25 2003-02-26 Lg.菲利浦Lcd株式会社 简化制造工艺的有源矩阵有机电致发光器件及其制造方法
JP2009099953A (ja) * 2007-09-26 2009-05-07 Canon Inc 電界効果型トランジスタの製造方法
CN101859798A (zh) * 2009-03-30 2010-10-13 株式会社半导体能源研究所 半导体装置以及其制造方法
JP2011049543A (ja) * 2009-07-27 2011-03-10 Kobe Steel Ltd 配線構造およびその製造方法、並びに配線構造を備えた表示装置

Also Published As

Publication number Publication date
JP5253686B2 (ja) 2013-07-31
EP2693420B1 (en) 2019-05-08
KR101345047B1 (ko) 2013-12-26
KR20130106448A (ko) 2013-09-27
US20140042439A1 (en) 2014-02-13
EP2693420A1 (en) 2014-02-05
US9379143B2 (en) 2016-06-28
TWI406420B (zh) 2013-08-21
EP2693420A4 (en) 2014-10-08
CN103460270A (zh) 2013-12-18
JPWO2012133103A1 (ja) 2014-07-28
WO2012133103A1 (ja) 2012-10-04
TW201304149A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
CN103460270B (zh) 有源矩阵基板、显示装置和有源矩阵基板的制造方法
US11239288B2 (en) Organic light emitting display and method of fabricating the same
US10541282B2 (en) Organic light emitting display having touch sensors and method of fabricating the same, and display device
TWI546865B (zh) 半導體裝置、顯示裝置、及半導體裝置與顯示裝置之製造方法
CN103201843B (zh) 半导体装置、显示装置以及半导体装置和显示装置的制造方法
EP2814074B1 (en) Flexible display device and method for manufacturing the same
CN102652330B (zh) 半导体装置及其制造方法
US8957418B2 (en) Semiconductor device and display apparatus
TWI532190B (zh) 半導體裝置、顯示面板、及半導體裝置之製造方法
KR102178471B1 (ko) 대면적 투명 유기발광 다이오드 표시장치
JP6196015B2 (ja) Tft基板及びその製造方法
CN110890386B (zh) 薄膜晶体管基板、液晶显示装置及有机电致发光显示装置
JP2019095507A (ja) 表示装置
WO2017014252A1 (ja) タッチパネル付き表示装置及びタッチパネル付き表示装置の製造方法
CN106662785A (zh) 有源矩阵基板、液晶面板以及有源矩阵基板的制造方法
JP6605146B2 (ja) タッチパネル付き表示装置
CN104380474B (zh) 半导体装置及其制造方法
CN110890385A (zh) 薄膜晶体管基板、液晶显示装置及有机电致发光显示装置
JP2009158871A (ja) 表示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant