[go: up one dir, main page]

CN103205248B - 一种粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法 - Google Patents

一种粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法 Download PDF

Info

Publication number
CN103205248B
CN103205248B CN201310148377.7A CN201310148377A CN103205248B CN 103205248 B CN103205248 B CN 103205248B CN 201310148377 A CN201310148377 A CN 201310148377A CN 103205248 B CN103205248 B CN 103205248B
Authority
CN
China
Prior art keywords
fly ash
waste ceramics
manganese ore
powder
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310148377.7A
Other languages
English (en)
Other versions
CN103205248A (zh
Inventor
张胜杰
张林群
王英军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEBI TIANRUI PETROLEUM PROPPANT CO Ltd
Original Assignee
HEBI TIANRUI PETROLEUM PROPPANT CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEBI TIANRUI PETROLEUM PROPPANT CO Ltd filed Critical HEBI TIANRUI PETROLEUM PROPPANT CO Ltd
Priority to CN201310148377.7A priority Critical patent/CN103205248B/zh
Priority to CA2878623A priority patent/CA2878623C/en
Priority to PCT/CN2013/076382 priority patent/WO2014172954A1/zh
Priority to US14/413,351 priority patent/US9611423B2/en
Publication of CN103205248A publication Critical patent/CN103205248A/zh
Application granted granted Critical
Publication of CN103205248B publication Critical patent/CN103205248B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1324Recycled material, e.g. tile dust, stone waste, spent refractory material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1352Fuel ashes, e.g. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种粉煤灰及废陶瓷制石油压裂支撑剂,由以下组分制备而成:40wt%~90wt%的主料,所述主料为粉煤灰和废陶瓷;1wt%~40wt%的辅料,所述辅料为钾长石粉和锰矿粉;主料和辅料之和为100%。本发明采用低成本的粉煤灰和废陶瓷为原料,在较低的温度下制备得到的石油压裂支撑剂视密度小、抗破碎能力强,并且成本低,减少了能源消耗。

Description

一种粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法
技术领域
本发明属于石油压裂支撑剂技术领域,具体涉及一种粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法。
背景技术
在油田油气开采中,为提高油井产量,延长油井高产寿命,开采难动用资源而广泛采用压裂工艺。为防止地下压裂缝的闭合,保留油气通道,保持导流能力,必须使用支撑剂填充裂缝。由于油层深度不同,油质黏度不同,对支撑剂的性能如强度,视密度,粒度大小要求也不相同。压裂支撑剂按照体积密度分为高密高强,中密高强和低密高强三大类,近年来又出现了对支撑剂超低密度的需求。目前市场上压裂支撑剂的常用粒度有16~30目(1180~600μm)、20~40目(850~425μm)、30~50目(600~300μm)、40~60目(425~250μm)目和40~70目(425~212μm)目等多种规格,但是,无论何种品种和规格,石油压裂支撑剂要在具有足够的抗破碎能力前提下,具有较低的视密度,以利于降低压裂成本,保证对压裂缝填充的饱和度,提高油井产量。
目前石油压裂支撑剂生产普遍以高铝矾土为主要原料,辅以一种或几种金属氧化物做矿化剂,如氧化锰、氧化钙、氧化铁、氧化镁、锆英石等。申请号为02112746.8的中国专利公开的压裂支撑剂,主要原料为45wt%~55wt%的熟铝矾土、10wt%~30wt%的高岭土和20wt%~35wt%的宜兴产红泥。将上述原料粉碎、混料、成球、烧结,得到压裂支撑剂。申请号为93111983.9的中国专利公开的压裂支撑剂,主料为70%~90%的熟铝矾土经焙烧和粉碎后,再加入多组分氧化物与软质粘土组成的辅料共磨和加水或有机溶剂混碾,然后经松解、成球、筛分、烧结、抛光和再次筛分,得到压裂支撑剂。申请号为02157202.X的中国专利公开的压裂支撑剂,其制备方法为:90%~94%的高品位生铝矾土,外加6%~10%的氧化锰矿石粉,经1330℃~1350℃高温烧成。申请号为02157202.X的中国专利是目前支撑剂生产创业普遍采用的配方,但是该专利提供的压裂支撑剂依靠特级铝矾土或一级铝矾土和MnO2,含量在50%以上的锰矿石等优质资源在较高的温度下制备而成,因此,制备过程中高能耗,高资源消耗限制了压裂支撑剂的进一步的发展。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法,本发明采用低成本的粉煤灰和废陶瓷为原料,在较低的温度下制备得到的石油压裂支撑剂视密度小、抗破碎能力强,并且成本低,减少了能源消耗。
本发明提供了一种粉煤灰及废陶瓷制石油压裂支撑剂,由以下组分制备而成:
40wt%~90wt%的主料,所述主料为粉煤灰和废陶瓷;
1wt%~40wt%的辅料,所述辅料为钾长石粉和锰矿粉;
主料和辅料之和为100%。
优选的,所述废陶瓷为低铝废陶瓷。
优选的,所述粉煤灰与废陶瓷的质量比为(4~6):(2~3)。
优选的,所述钾长石粉与锰矿粉的质量比为(2~5):1。
优选的,所述锰矿粉中MnO2占所述粉煤灰及废陶瓷制石油压裂支撑剂的0wt%~5wt%。
本发明还提供了一种粉煤灰及废陶瓷制石油压裂支撑剂的制备方法,包括以下步骤:
A)将粉煤灰、废陶瓷、钾长石粉和锰矿粉混合,进行均化细化处理,经过制粒后筛分,得到混合物;
B)将所述混合物烧制,得到粉煤灰及废陶瓷制石油压裂支撑剂。
优选的,所述废陶瓷为低铝废陶瓷。
优选的,所述混合物的粒径为3350~106μm。
优选的,所述步骤A)具体为:
将粉煤灰、废陶瓷,钾长石粉和锰矿粉混合,置于强制混合机中进行均化细化处理后,经过制粒后筛分,得到混合物。
优选的,所述烧制的时间为4~8h。
与现有技术相比,本发明以粉煤灰、废陶瓷、钾长石粉和锰矿粉为原料制备了一种粉煤灰及废陶瓷制石油压裂支撑剂,本发明以成本低的粉煤灰和废陶瓷为原料,在制备过程中,粉煤灰和废陶瓷中的Al2O3生成莫来石,原料中富余的SiO2转化为磷石英等低视密矿物,降低了产品的视密度。利用钾长石粉中的K2O和锰矿粉中的MnO2形成的复合矿化剂,使在高温下混合的原料中形成占原料总体积30%~40%的液相,生成的液相不但表面张力大,浸润性能好,使物料更致密,因此,增大了石油压裂支撑剂的强度。而且该液相在1100℃对原料中的Al2O3和SiO2就具有了很强的溶解能力,当原料中的Al2O3和SiO2溶解到一定浓度时,相互反应生成针状莫来石析晶而出,然后不断溶解和析晶,使莫来石化从固相反应变为液相反应,这就大大加快了反应速度和降低了反应所需的温度。在莫来石液化的同时,由于矿化剂的作用,富余的SiO2转变为双头予状磷石英晶体,使成品具有较高的强度。
结果表明,本发明所提供的粉煤灰及废陶瓷制石油压裂支撑剂的体积密度≤1.50g/cm3,视密度≤2.60g/cm3,在86MPa的闭合压力下,破碎率≤8%。
具体实施方式
本发明提供了一种粉煤灰及废陶瓷制石油压裂支撑剂,由以下组分制备而成:
80wt%~90wt%的主料,所述主料为粉煤灰和废陶瓷;
10wt%~20wt%的辅料,所述辅料钾长石粉和锰矿粉;
主料和辅料之和为100%。
本发明以粉煤灰及废陶瓷作为石油压裂支撑剂的主料,本发明对所述废陶瓷的种类并无特殊限制,优选为低铝废陶瓷,在工业上,低铝废陶瓷和粉煤灰的废弃量较大,成本低,因此,将低铝废陶瓷和粉煤灰合理利用具有节能环保、节约资源的重要意义。其中,粉煤灰和废陶瓷的占原料总量优选为40wt%~90wt%,更优选为50wt%~80wt%,最优选为60wt%~70wt%。其中,所述粉煤灰及废陶瓷的质量比优选为(4~6):(2~3),更优选为(4.5~5.5):(2.2~2.8)。
在本发明中,以钾长石粉和锰矿粉作为石油压裂支撑剂的辅料,其中,钾长石粉与锰矿粉形成复合矿化剂,钾长石粉为主要矿化剂,钾长石粉中的K2O起到矿化作用;所述锰矿粉为辅助矿化剂和染色剂,锰矿粉中的MnO2占所述粉煤灰及废陶瓷制石油压裂支撑剂的0wt%~5wt%,更优选为1wt%~4wt%,最优选为2wt%~3wt%。所述锰矿粉和钾长石粉的添加量占原料总量的质量范围优选为1wt%~40wt%,更优选为10wt%~30wt%,最优选为15wt%~25wt%。其中,所述钾长石粉与锰矿粉的质量比优选为(2~5):1,更优选为(2.5~4.5):1,最优选为(3~4):1。
本发明以钾长石粉中的K2O和锰矿粉中的MnO2形成复合矿化剂,使在高温下混合的原料中形成占原料总体积30%~40%的液相,生成的液相不但表面张力大,浸润性能好,使物料更致密,因此,增大了石油压裂支撑剂的强度。
本发明所提供的石油压裂支撑剂的体积密度≤1.50g/cm3,视密度≤2.60g/cm3。优选的,所述体积密度≤1.40g/cm3,视密度≤2.40g/cm3
本发明还提供了一种粉煤灰及废陶瓷制石油压裂支撑剂的制备方法,包括以下步骤:
A)将粉煤灰、废陶瓷、钾长石粉和锰矿粉混合,进行均化细化处理,经过制粒后筛分,得到混合物;
B)将所述混合物烧制,得到粉煤灰及废陶瓷制石油压裂支撑剂。
本发明首先将粉煤灰、废陶瓷、钾长石粉和锰矿粉混合,进行均化细化处理,对所述均化细化处理的方式并无特殊限制,具体方法为:
将粉煤灰、废陶瓷、钾长石粉和锰矿粉置于强制混合机中进行均化细化处理。本发明将原料进行均化细化处理,使原料粒度分布更加均匀,化学反应更加顺利,并且化学反应进行的更加充分,使得到的石油压裂支撑剂的晶粒更细小,提高了石油压裂支撑剂的强度。
其中,粉煤灰和废陶瓷的占原料总量优选为40wt%~90wt%,更优选为50wt%~80wt%,最优选为60wt%~70wt%。其中,所述粉煤灰及废陶瓷的质量比优选为(4~6):(2~3),更优选为(4.5~5.5):(2.2~2.8)。锰矿粉中的MnO2占所述废粉煤灰及陶瓷制石油压裂支撑剂的0wt%~5wt%。所述锰矿粉和钾长石粉的添加量占原料总量的质量范围优选为1wt%~40wt%,更优选为10wt%~30wt%,最优选为15wt%~25wt%。其中,所述钾长石粉与锰矿粉的质量比优选为(2~5):1,更优选为(2.5~4.5):1,最优选为(3~4):1。
将粉煤灰、废陶瓷、钾长石粉和锰矿粉置于强制混合机中进行均化细化处理后,经过制粒后筛分,得到混合物。本发明对所述制粒的方式并无特殊限制,本领域技术人员熟知的制粒方式即可;本发明对所述筛分的方式并无特殊限制,本领域技术人员熟知的筛分方式即可。其中,筛分后得到的混合物的粒径有不同的规格,优选为3350~106μm,更优选为850~425μm、600~300μm、425~250μm、425~212μm或212~106μm。本发明所使用的废陶瓷优选为低铝废陶瓷。
本发明将所述混合物进行烧制,即可得到粉煤灰及废陶瓷制石油压裂支撑剂。本发明对所述烧制的场所并无特殊限制,优选在回转窑中进行烧制,所述烧制的温度根据回转窑的规格以及所用原料的不同而不同,优选为1100~1200℃,更优选为1110~1150℃,所述烧制的时间优选为4~8h,更优选为5~7h。
烧制结束后得到粉煤灰及废陶瓷制石油压裂支撑剂,所述粉煤灰及废陶瓷制石油压裂支撑剂中化学成分重量比例达到:Al2O3:40%~48%,SiO2:38%~45%,K2O:2%~4%。
本发明以粉煤灰、废陶瓷、钾长石粉和锰矿粉为原料制备了一种粉煤灰及废陶瓷制石油压裂支撑剂,本发明以成本低的粉煤灰和废陶瓷为原料,在制备过程中,粉煤灰和废陶瓷中的Al2O3生成莫来石,原料中富余的SiO2转化为磷石英等低视密矿物,降低了产品的视密度。利用钾长石粉中的K2O和锰矿粉中的MnO2形成的复合矿化剂,使在高温下混合的原料中形成占原料总体积30%~40%的液相,生成的液相不但表面张力大,浸润性能好,使物料更致密,因此,增大了石油压裂支撑剂的强度。而且该液相在1100℃对原料中的Al2O3和SiO2就具有了很强的溶解能力,当原料中的Al2O3和SiO2溶解到一定浓度时,相互反应生成针状莫来石析晶而出,然后不断溶解和析晶,使莫来石化从固相反应变为液相反应,这就大大加快了反应速度和降低了反应所需的温度。在莫来石液化的同时,由于矿化剂的作用,富余的SiO2转变为双头予状磷石英晶体,使成品具有较高的强度。
结果表明,本发明所提供的粉煤灰及废陶瓷制石油压裂支撑剂的体积密度≤1.50g/cm3,视密度≤2.60g/cm3,在86MPa的闭合压力下,破碎率≤8%。
为了进一步理解本发明,下面结合实施例对本发明提供的粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法进行说明,本发明的保护范围不受以下实施例的限制。
实施例1
将60Kg鹤壁万和电厂的除尘废灰,20Kg鹤壁市陶瓷工业园区新中源陶瓷厂的低铝废陶瓷,15Kg钾长石粉和5Kg锰矿粉混合后经强制混合机进行均化细化加工,而后制粒,经筛分取得粒径为900~600μm的混合物,将所述混合物在常压下用2.5米×45米回转窑经1100℃~1150℃烧制4个小时,冷却筛分后即可得到目数为20~40目(850~425μm)的粉煤灰及废陶瓷制石油压裂支撑剂。
测定所述粉煤灰及废陶瓷制石油压裂支撑剂的体积密度为1.42g/cm3,视密度为2.47g/cm3,在86Mpa闭合压力下,破碎率≤8%。
实施例2
将50Kg鹤壁万和电厂的除尘废灰,30Kg鹤壁市陶瓷工业园区金鸡山陶瓷厂的低铝废陶瓷,15Kg钾长石粉和5Kg锰矿粉混合后经强制混合机进行均化细化加工,而后制粒,经筛分取得粒径为900~600μm的混合物,将所述混合物在常压下用2.5米×45米回转窑经1100℃~1150℃烧制4个小时,冷却筛分后即可得到目数为20~40目(850~425μm)的粉煤灰及废陶瓷制石油压裂支撑剂。
测定所述粉煤灰及废陶瓷制石油压裂支撑剂的体积密度为1.45g/cm3,视密度为2.50g/cm3,在86Mpa闭合压力下,破碎率≤8%。
实施例3
将60Kg鹤壁万和电厂的除尘废灰,20Kg鹤壁市陶瓷工业园区新中源陶瓷厂的低铝废陶瓷,15Kg钾长石粉和5Kg锰矿粉混合后经强制混合机进行均化细化加工,而后制粒,经筛分取得粒径为710~425μm的混合物,将所述混合物在常压下用2.5米×45米回转窑经1100℃~1150℃烧制4个小时,冷却筛分后即可得到目数为30~50目(600~300μm)的粉煤灰及废陶瓷制石油压裂支撑剂。
测定所述粉煤灰及废陶瓷制石油压裂支撑剂的体积密度为1.45g/cm3,视密度为2.52g/cm3,在86Mpa闭合压力下,破碎率≤8%。
实施例4
将50Kg鹤壁万和电厂的除尘废灰,30Kg鹤壁市陶瓷工业园区金鸡山陶瓷厂的低铝废陶瓷,15Kg钾长石粉和5Kg锰矿粉混合后经强制混合机进行均化细化加工,而后制粒,经筛分取得粒径为710~425μm的混合物,将所述混合物在常压下用2.5米×45米回转窑经1100℃~1150℃烧制4个小时,冷却筛分后即可得到目数为30~50目(600~300μm)的粉煤灰及废陶瓷制石油压裂支撑剂。
测定所述粉煤灰及废陶瓷制石油压裂支撑剂的体积密度为1.48g/cm3,视密度为2.53g/cm3,在86Mpa闭合压力下,破碎率≤8%。
实施例5
将60Kg鹤壁万和电厂的除尘废灰,20Kg鹤壁市陶瓷工业园区新中源陶瓷厂的低铝废陶瓷,15Kg钾长石粉和5Kg锰矿粉混合后经强制混合机进行均化细化加工,而后制粒,经筛分取得粒径为500~425μm的混合物,将所述混合物在常压下用2.5米×45米回转窑经1100℃~1150℃烧制4个小时,冷却筛分后即可得到目数为40~60目(425~250μm)的粉煤灰及废陶瓷制石油压裂支撑剂。
测定所述粉煤灰及废陶瓷制石油压裂支撑剂的体积密度为1.47g/cm3,视密度为2.53g/cm3,在86Mpa闭合压力下,破碎率≤8%。
实施例6
将50Kg鹤壁万和电厂的除尘废灰,30Kg鹤壁市陶瓷工业园区金鸡山陶瓷厂的低铝废陶瓷,15Kg钾长石粉和5Kg锰矿粉混合后经强制混合机进行均化细化加工,而后制粒,经筛分取得粒径为500~425μm的混合物,将所述混合物在常压下用2.5米×45米回转窑经1100℃~1150℃烧制4个小时,冷却筛分后即可得到目数为40~60目(425~250μm)的粉煤灰及废陶瓷制石油压裂支撑剂。
测定所述粉煤灰及废陶瓷制石油压裂支撑剂的体积密度为1.49g/cm3,视密度为2.55g/cm3,在86Mpa闭合压力下,破碎率≤8%。
实施例7
将60Kg鹤壁万和电厂的除尘废灰,20Kg鹤壁市陶瓷工业园区新中源陶瓷厂的低铝废陶瓷,15Kg钾长石粉和5Kg锰矿粉混合后经强制混合机进行均化细化加工,而后制粒,经筛分取得粒径为500~355μm的混合物,将所述混合物在常压下用2.5米×45米回转窑经1100℃~1150℃烧制4个小时,冷却筛分后即可得到目数为40~70目(425~212μm)的粉煤灰及废陶瓷制石油压裂支撑剂。
测定所述粉煤灰及废陶瓷制石油压裂支撑剂的体积密度为1.49g/cm3,视密度为2.56g/cm3,在86Mpa闭合压力下,破碎率≤8%。
实施例8
将50Kg鹤壁万和电厂的除尘废灰,30Kg鹤壁市陶瓷工业园区金鸡山陶瓷厂的低铝废陶瓷,15Kg钾长石粉和5Kg锰矿粉混合后经强制混合机进行均化细化加工,而后制粒,经筛分取得粒径为500~355μm的混合物,将所述混合物在常压下用2.5米×45米回转窑经1100℃~1150℃烧制4个小时,冷却筛分后即可得到目数为40~70目(425~212μm)的粉煤灰及废陶瓷制石油压裂支撑剂。
测定所述粉煤灰及废陶瓷制石油压裂支撑剂的体积密度为1.49g/cm3,视密度为2.56g/cm3,在86Mpa闭合压力下,破碎率≤8%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种粉煤灰及废陶瓷制石油压裂支撑剂,由以下组分制备而成:
40wt%~90wt%的主料,所述主料为粉煤灰和废陶瓷,所述粉煤灰与废陶瓷的质量比为(4~6):(2~3);
1wt%~40wt%的辅料,所述辅料为钾长石粉和锰矿粉,所述钾长石粉与锰矿粉的质量比为(2~5):1,所述锰矿粉中MnO2占所述粉煤灰及废陶瓷制石油压裂支撑剂的0wt%~5wt%;
主料和辅料之和为100%;
所述粉煤灰及废陶瓷制石油压裂支撑剂的制备方法包括以下步骤:
A)将粉煤灰、废陶瓷、钾长石粉和锰矿粉混合,进行均化细化处理,经过制粒后筛分,得到混合物;
B)将所述混合物烧制,所述烧制的时间为4~8h,得到粉煤灰及废陶瓷制石油压裂支撑剂。
2.一种粉煤灰及废陶瓷制石油压裂支撑剂的制备方法,包括以下步骤:
A)将粉煤灰、废陶瓷、钾长石粉和锰矿粉混合,进行均化细化处理,经过制粒后筛分,得到混合物,所述粉煤灰与废陶瓷的质量比为(4~6):(2~3),所述钾长石粉与锰矿粉的质量比为(2~5):1,所述锰矿粉中MnO2占所述粉煤灰及废陶瓷制石油压裂支撑剂的0wt%~5wt%;
B)将所述混合物烧制,所述烧制的时间为4~8h,得到粉煤灰及废陶瓷制石油压裂支撑剂;
其中,粉煤灰和废陶瓷总含量为40wt%~90wt%,钾长石粉和锰矿粉总含量为1wt%~40wt%,粉煤灰、废陶瓷、钾长石粉和锰矿粉含量之和为100%。
3.根据权利要求2所述的制备方法,其特征在于,所述混合物的粒径为3350~106μm。
4.根据权利要求2所述的制备方法,其特征在于,所述步骤A)具体为:
将粉煤灰、废陶瓷,钾长石粉和锰矿粉混合,置于强制混合机中进行均化细化处理,经过制粒后筛分,得到混合物。
CN201310148377.7A 2013-04-25 2013-04-25 一种粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法 Expired - Fee Related CN103205248B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201310148377.7A CN103205248B (zh) 2013-04-25 2013-04-25 一种粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法
CA2878623A CA2878623C (en) 2013-04-25 2013-05-29 Petroleum fracturing proppant prepared from flyash and waste ceramic, and preparation method thereof
PCT/CN2013/076382 WO2014172954A1 (zh) 2013-04-25 2013-05-29 一种粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法
US14/413,351 US9611423B2 (en) 2013-04-25 2013-05-29 Petroleum fracturing proppant prepared from flyash and waste ceramic, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310148377.7A CN103205248B (zh) 2013-04-25 2013-04-25 一种粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法

Publications (2)

Publication Number Publication Date
CN103205248A CN103205248A (zh) 2013-07-17
CN103205248B true CN103205248B (zh) 2016-04-13

Family

ID=48752657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310148377.7A Expired - Fee Related CN103205248B (zh) 2013-04-25 2013-04-25 一种粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法

Country Status (4)

Country Link
US (1) US9611423B2 (zh)
CN (1) CN103205248B (zh)
CA (1) CA2878623C (zh)
WO (1) WO2014172954A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104263347A (zh) * 2014-09-30 2015-01-07 中国地质大学(武汉) 一种利用粉煤灰制备的低密度覆膜陶粒支撑剂及其制备方法
CN106431349B (zh) * 2016-09-30 2019-01-22 洛阳赛罗帕陶瓷科技有限公司 一种超低密度堇青石质石油压裂支撑剂及其制备方法
CN107365579A (zh) * 2017-07-19 2017-11-21 河南郑耐新材料有限公司 一种粉煤灰制石油压裂支撑剂及其制备方法
US20210363057A1 (en) * 2018-08-04 2021-11-25 Abbas Khan Novel method of producing improved lightweight ceramic sand and uses thereof
CN110257046A (zh) * 2019-07-23 2019-09-20 天津理工大学 一种利用赤泥和油泥砂制备石油压裂支撑剂的方法
CN110590338A (zh) * 2019-09-27 2019-12-20 武汉理工大学 一种利用垃圾焚烧飞灰制备压裂砂的方法
DE102020102489A1 (de) * 2020-01-31 2021-08-05 Ralph Enderle Verfahren zur Herstellung eines rieselfähigen gesinterten Materials und Verwendung von Rotschlamm
CN111484312A (zh) * 2020-04-08 2020-08-04 中机国能电力工程有限公司 一种铸造用陶粒砂及其制备方法
CN112552023A (zh) * 2020-11-27 2021-03-26 南京理工大学 一种铁尾矿烧胀陶粒及其制备方法
CN114015430B (zh) * 2021-11-10 2023-03-17 重庆地质矿产研究院 一种提高页岩储层压裂裂缝支撑效果的支撑剂及方法
CN114214056B (zh) * 2021-12-30 2023-07-25 郑州鑫源防磨耐材有限公司 页岩气开采用压裂支撑剂及其制备方法
CN114956855B (zh) * 2022-07-11 2023-03-17 郑州市新郑梅久实业有限公司 一种环保陶粒生产工艺
CN115536366B (zh) * 2022-10-13 2023-07-25 贵州大学 一种电解锰渣与赤泥协同处理后制备建筑陶瓷砖的方法
CN115819071B (zh) * 2022-12-22 2023-07-21 湖南银和瓷业有限公司 一种工业废料陶瓷泥的再生利用工艺及应用
CN119118624A (zh) * 2023-11-14 2024-12-13 安徽理工大学 一种基于废电瓷的复合材料及其制备方法与应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1085288A (zh) 1993-10-08 1994-04-13 成都无缝钢管公司耐火材料厂 铝矾土高强度支撑剂的制造方法
CN100347405C (zh) 2002-03-10 2007-11-07 宜兴东方石油支撑剂有限公司 一种固体支撑剂及制造方法
CN1304729C (zh) 2002-12-18 2007-03-14 宜兴东方石油支撑剂有限公司 油气井压裂用固体支撑剂
US20060162929A1 (en) 2005-01-26 2006-07-27 Global Synfrac Inc. Lightweight proppant and method of making same
CN100368504C (zh) * 2006-04-05 2008-02-13 渑池县方圆陶粒砂厂 超强度陶粒支撑剂及其制备方法
RU2346971C2 (ru) * 2006-12-27 2009-02-20 Шлюмбергер Текнолоджи Б.В. Проппант, способ его получения и способ его применения
CA2721916A1 (en) * 2008-04-28 2009-11-05 Schlumberger Canada Limited Strong low density ceramics
CN100569897C (zh) * 2008-04-30 2009-12-16 新密市万力实业发展有限公司 一种油气井用压裂支撑剂及其制备方法
CN101575503B (zh) 2009-06-11 2011-08-31 邹平金刚新材料有限公司 一种高强度石油压裂支撑剂及其制备方法
RU2476476C2 (ru) * 2011-06-10 2013-02-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления керамического проппанта и проппант
CN102899015B (zh) * 2012-09-20 2015-09-30 宜兴市腾飞陶粒制造有限公司 一种利用粉煤灰制备的低密度陶粒支撑剂及其制备方法

Also Published As

Publication number Publication date
US20150152319A1 (en) 2015-06-04
WO2014172954A1 (zh) 2014-10-30
US9611423B2 (en) 2017-04-04
CA2878623C (en) 2017-04-18
CN103205248A (zh) 2013-07-17
CA2878623A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
CN103205248B (zh) 一种粉煤灰及废陶瓷制石油压裂支撑剂及其制备方法
CN103194206B (zh) 一种粉煤灰制石油压裂支撑剂及其制备方法
CN103525395B (zh) 陶粒油气压裂支撑剂及其制备方法
RU2383578C2 (ru) Проппант, способ его получения и способ гидравлического разрыва пласта с использованием полученного проппанта
CN100569897C (zh) 一种油气井用压裂支撑剂及其制备方法
CN102786922B (zh) 由高铁铝土矿制备高强度石油压裂支撑剂的方法
CN101787270A (zh) 低密度陶粒支撑剂及其制备方法
CN104263347A (zh) 一种利用粉煤灰制备的低密度覆膜陶粒支撑剂及其制备方法
CN105778886A (zh) 一种低密高强陶粒支撑剂及其制备工艺
CN105906318A (zh) 利用煤矸石制备低密度陶粒支撑剂及其制备方法
CN106431349A (zh) 一种超低密度堇青石质石油压裂支撑剂及其制备方法
CN104194768A (zh) 经济型陶粒油气压裂支撑剂及其制备方法
CN105925257B (zh) 一种低密度陶粒支撑剂及其制备方法
CN106833600B (zh) 一种赤泥基耐酸高强度压裂支撑剂及其制备方法
CN107337440A (zh) 一种陶粒砂石油压裂支撑剂及其制备方法
CN101774800B (zh) 含硬质碳化物的陶瓷颗粒及其制造方法
CN104371703A (zh) 一种以高铝粉煤灰为原料制备石油压裂支撑剂的方法
CN103194207B (zh) 一种废陶瓷制石油压裂支撑剂及其制备方法
CN107266045A (zh) 一种刚玉–莫来石陶粒支撑剂及其制备方法
CN106190093A (zh) 煤层气水力压裂开采中使用的陶粒支撑剂及其制备方法
CN102268248B (zh) 低密度高强度红柱石压裂支撑剂及其生产方法
CN108046756B (zh) 利用钒钛磁铁矿预选抛尾渣制备压裂陶粒支撑剂的方法
CN113969160A (zh) 利用矿山尾矿生产的高强度陶粒支撑剂及其制备方法
CN112225548A (zh) 一种低密度高强度的陶粒支撑剂及其制备方法
CN103172349B (zh) 利用镁矿和铁矿的尾矿制备的支撑剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160413