CN102955428A - 基于lpv模型的满足设定点跟踪与扰动抑制性能的pi控制方法 - Google Patents
基于lpv模型的满足设定点跟踪与扰动抑制性能的pi控制方法 Download PDFInfo
- Publication number
- CN102955428A CN102955428A CN2012104583679A CN201210458367A CN102955428A CN 102955428 A CN102955428 A CN 102955428A CN 2012104583679 A CN2012104583679 A CN 2012104583679A CN 201210458367 A CN201210458367 A CN 201210458367A CN 102955428 A CN102955428 A CN 102955428A
- Authority
- CN
- China
- Prior art keywords
- gain
- parameter
- switching
- previous
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000002093 peripheral effect Effects 0.000 title 1
- 230000008569 process Effects 0.000 claims abstract description 25
- 230000001629 suppression Effects 0.000 claims abstract description 23
- 230000004044 response Effects 0.000 claims abstract description 21
- 230000003044 adaptive effect Effects 0.000 claims abstract description 17
- 238000012546 transfer Methods 0.000 claims description 15
- 238000013461 design Methods 0.000 claims description 7
- 230000007246 mechanism Effects 0.000 claims description 4
- 238000005312 nonlinear dynamic Methods 0.000 claims description 4
- 238000013178 mathematical model Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
Images
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明一种基于LPV模型的满足设定点跟踪与扰动抑制性能的PI控制方法,在设定点跟踪变化过程中,首先采用一套满足其性能指标的前项PI增益并结合PI参数自适应控制器;其次,在定点动态响应过程中完成前项增益参数的平滑切换,尽可能缩短切换过程及减小非线性影响,以保证切换造成的非线性引起尽可能小的超调和尽可能快的响应速度;切换后的前项增益与PI参数自适应控制器的结合满足扰动抑制的性能指标,参数切换过程不影响系统的干扰抑制性能。
Description
技术领域
本发明涉及一种基于LPV(Linear Parameter Varying)模型的满足设定点跟踪与扰动抑制性能的PI控制方法。
背景技术
PID(proportional integrator differential)控制方法以其调整过程简单、有效而被广泛应用于工业过程控制中。工业过程控制期望达成的目标主要有两个,一个是实现快速、无超调的设定点跟踪任务,另一个是确保干扰抑制性能。因此在保证跟踪控制性能指标的同时,良好抑制扰动成为PID控制过程的重要问题。
当前的PID控制的设计法研究中有些提出了解决跟踪控制性能,但是没有探讨扰动抑制问题;有些提出了加强干扰抑制性能的PID控制方法及并行结构设计,有些提出了具有干扰抑制和设定点跟踪性能均衡考虑的IMC-PID控制法,然而研究对象均为单一模型;也有提出了具有鲁棒性的PID控制方法,并提出了PID控制器切换过程,并用于解决非线性模型在多个操作点线性化的多个控制器切换问题,在设定点跟踪问题上进行了仿真验证,然而没有探讨扰动抑制性能,且控制器切换易导致响应过程抖动。
这些研究均取得了良好的控制效果,而大多数工业过程,对于工作域内在不同工作点上过程增益、时间常数及延长时间有很大变化时,单一线性模型不能很好地反映其过程特性。因此探讨非单一模型系统的控制方法是不可或缺的,同时探讨其设定点跟踪和干扰抑制问题亦是非常重要的,并引入了控制器参数的切换问题。
发明内容
本发明的目的在于提供一种能同时满足系统设定点跟踪与扰动抑制性能的基于LPV模型的PI控制方法,能有效地运用于工业过程控制中。
本发明一种基于LPV模型的满足设定点跟踪与扰动抑制性能的PI控制方法,具体包括如下步骤:
步骤1、将非线性动态模型的被控对象描述成基于FOPDT的线性参数变动的数学模型形式:
K(i)=amim+am-1im-1+...+a1i+a0
tc(i)=bnin+bn-1in-1+...+b1i+b0
其中,τ(i)=clil+cl-1il-1+...+c1i+c0
式中:imin≤i≤max,其中i为调度变量,K(i)为增益,tc(i)为时间常数,τ(i)为延迟时间,a、b、c表示各多项式系数,m、n、l为各多项式的最高阶次;
步骤2、设计扰动抑制的PI参数自适应控制器,使得闭环系统的传递函数与设计的参考模型匹配;
设计的参考模型为sM(s)=s/(1+Ls+α2(Ls)2+α3(Ls)3...),L为脉冲响应的立起时间,α2,α3体现了响应的形状,s为复变量;
被控对象公式(1)的纯滞后环节经一阶Pade近似得传递函数:
将其代入公式(1),分子分母化为多项式形式得传递函数:
其中,
从扰动到输出的传递函数:
其中,控制器的传递函数
将公式(3)代入公式(4)得到与参考模型形式相同的扰动模型,并与给定的参考模型匹配,推导出PID的自适应控制器如下:
其中,
步骤3、设置前项PI增益,并定义其为{k_Kp,k_Ki},以扰动抑制性能为主定义的前项PI增益定义为{kd_Kp,kd_Ki},此时该增益不影响步骤2设计的PI参数自适应值,故kd_Kp,kd_Ki均为1;以满足设定点响应性能指标为主的前项PI增益定义为{ks_Kp,ks_Ki},设定时在设计的kd_Kp,kd_Ki基准上减小或增大若干参数来选取合适的{ks_Kp,ks_Ki},使其满足设定点性能指标;
步骤4、设置前项增益参数切换机制,在定点动态响应过程中完成前项增益参数的平滑切换,具体切换过程如下:
步骤5、在设定点跟踪变化过程中,控制系统中设定点U没有发生变化时,采用步骤2设计的PI参数自适应控制器结合步骤3设计的{kd_Kp,kd_Ki};控制系统中一旦设定点U发生变化时,采用步骤2设计的PI参数自适应控制器结合步骤3设计的前项PI增益{ks_Kp,ks_Ki},并在阶跃响应过程中按照步骤4完成前项增益切换,在响应达到平稳时前项增益又恢复至步骤3设计的{kd_Kp,kd_Ki},从而同时确保设定点跟踪与扰动抑制的性能。
本发明针对非线性的具有LPV模型的动态系统进行控制系统设计,除采用自适应调节机制外,还设计了特有的前项PI增益,通过平滑切换前项PI增益,使得控制过程同时具有设定点跟踪和干扰抑制的能力。
附图说明
图1为本发明的控制系统框图;
以下结合附图和具体实施例对本发明作进一步详述。
具体实施方式
如图1所示为本发明的控制系统框图,其中,{Kp(i),Ki(i)}为扰动抑制的PI参数自适应控制器,{k_Kp,k_Ki }为前项PI增益对,ΔU表示设定点变化。
本发明一种基于LPV模型的满足设定点跟踪与扰动抑制性能的PI控制方法,具体包括如下步骤:
步骤1、将非线性动态模型的被控对象描述成基于FOPDT的线性参数变动的数学模型形式:
K(i)=amim+am-1im-1+...+a1i+a0
tc(i)=bnin+bn-1in-1+...+b1i+b0
其中,τ(i)=clil+cl-1il-1+...+c1i+c0
式中:imin≤i≤imax,其中i为调度变量,K(i)为增益,tc(i)为时间常数,τ(i)为延迟时间,a、b、c表示各多项式系数,m、n、l为各多项式的最高阶次;
步骤2、设计扰动抑制的PI参数自适应控制器,使得闭环系统的传递函数与设计的参考模型匹配;设计的参考模型为sM(s)=s/(1+Ls+α2(Ls)2+α3(Ls)3...),L为脉冲响应的立起时间,α2,α3体现了响应的形状,s为复变量;
被控对象公式(1)的纯滞后环节经一阶Pade近似得传递函数:
将其代入公式(1),分子分母化为多项式形式得传递函数:
其中,
从扰动到输出的传递函数:
其中,控制器的传递函数 将公式(3)代入公式(4)得到与参考模型形式相同的扰动模型,并与给定的参考模型匹配,推导出PID的自适应控制器如下:
其中,
步骤3、设置前项PI增益,并定义其为{k_Kp,k_Ki},以扰动抑制性能为主定义的前项PI增益定义为{kd_Kp,kd_Ki},此时该增益不影响步骤2设计的PI参数自适应值,故kd_Kp,kd_Ki均为1;以满足设定点响应性能指标为主的前项PI增益定义为{ks_Kp,ks_Ki},利用经验法对其进行设定,通常是在设计的kd_Kp,kd_Ki基准上减小或增大若干参数来选取合适的{ks_Kp,ks_Ki},使其满足设定点性能指标;
步骤4、设置前项增益参数切换机制,在定点动态响应过程中完成前项增益参数的平滑切换,具体切换过程如下:
其中,t0为参数切换开始时刻;t为系统时刻;Δt为参数切换所需时间,其取值在引起可忽略非线性扰动的情况下尽量小;
步骤5、如图1所示,在设定点跟踪变化过程中,控制系统中设定点U没有发生变化时,采用步骤2设计的PI参数自适应控制器结合步骤3设计的{kd_Kp,kd_Ki},此时系统的扰动抑制性能得以保证;控制系统中一旦设定点U发生变化时,采用步骤2设计的PI参数自适应控制器结合步骤3设计的前项PI增益{ks_Kp,ks_Ki},并在阶跃响应过程中按照步骤4完成前项增益切换,在响应达到平稳时前项增益又恢复至步骤3设计的{kd_Kp,kf_Ki},从而同时确保设定点跟踪与扰动抑制的性能。
本发明在设定点跟踪变化过程中,首先采用一套满足其性能指标的前项PI增益并结合PI参数自适应控制器;其次,在定点动态响应过程中完成前项增益参数的平滑切换,尽可能缩短切换过程及减小非线性影响,以保证切换造成的非线性引起尽可能小的超调和尽可能快的响应速度;切换后的前项增益与PI参数自适应控制器的结合满足扰动抑制的性能指标,参数切换过程不影响系统的干扰抑制性能。
以上所述,仅是本发明较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
Claims (1)
1.一种基于LPV模型的满足设定点跟踪与扰动抑制性能的PI控制方法,其特征在于具体包括如下步骤:
步骤1、将非线性动态模型的被控对象描述成基于FOPDT的线性参数变动的数学模型形式:
K(i)=amim+am-1im-1+...+a1i+a0
tc(i)=bnin+bn-1in-1+...+b1i+b0
其中,τ(i)=clil+cl-1il-1+...+c1i+c0
式中:imin≤i≤imax,其中i为调度变量,K(i)为增益,tc(i)为时间常数,τ(i)为延迟时间,a、b、c表示各多项式系数,m、n、l为各多项式的最高阶次;
步骤2、设计扰动抑制的PI参数自适应控制器,使得闭环系统的传递函数与设计的参考模型匹配;
设计的参考模型为sM(s)=s/(1+Ls+α2(Ls)2+α3(Ls)3...),L为脉冲响应的立起时间,α2,α3体现了响应的形状,s为复变量;
被控对象公式(1)的纯滞后环节经一阶Pade近似得传递函数:
将其代入公式(1),分子分母化为多项式形式得传递函数:
从扰动到输出的传递函数:
将公式(3)代入公式(4)得到与参考模型形式相同的扰动模型,并与给定的参考模型匹配,推导出PID的自适应控制器如下:
步骤3、设置前项PI增益,并定义其为{k_Kp,k_Ki},以扰动抑制性能为主定义的前项PI增益定义为{kd_Kp,kd_Ki},此时该增益不影响步骤2设计的PI参数自适应值,故kd_Kp,kd_Ki均为1;以满足设定点响应性能指标为主的前项PI增益定义为{ks_Kp,ks_Ki},设定时在设计的kd_Kp,kd_Ki基准上减小或增大若干参数来选取合适的{ks_Kp,ks_Ki},使其满足设定点性能指标;
步骤4、设置前项增益参数切换机制,在定点动态响应过程中完成前项增益参数的平滑切换,具体切换过程如下:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210458367.9A CN102955428B (zh) | 2012-11-14 | 2012-11-14 | 基于lpv模型的满足设定点跟踪与扰动抑制性能的pi控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210458367.9A CN102955428B (zh) | 2012-11-14 | 2012-11-14 | 基于lpv模型的满足设定点跟踪与扰动抑制性能的pi控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102955428A true CN102955428A (zh) | 2013-03-06 |
CN102955428B CN102955428B (zh) | 2015-12-09 |
Family
ID=47764360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210458367.9A Expired - Fee Related CN102955428B (zh) | 2012-11-14 | 2012-11-14 | 基于lpv模型的满足设定点跟踪与扰动抑制性能的pi控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102955428B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104991566A (zh) * | 2015-07-07 | 2015-10-21 | 北京航天自动控制研究所 | 一种用于高超声速飞行器的参数不确定性lpv系统建模方法 |
CN105814499A (zh) * | 2013-06-14 | 2016-07-27 | 华莱士·E·拉里莫尔 | 用于监测和控制具有可变结构或可变运行条件的动态机器的动态模型认证方法和系统 |
CN109992004A (zh) * | 2019-05-08 | 2019-07-09 | 哈尔滨理工大学 | 一种lpv系统异步切换状态反馈控制器设计方法 |
CN109991849A (zh) * | 2019-04-03 | 2019-07-09 | 哈尔滨理工大学 | 一种时滞lpv系统有记忆h∞输出反馈控制器设计方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007263318A (ja) * | 2006-03-29 | 2007-10-11 | Fujitsu Ten Ltd | 車両のフェールセーフ制御装置 |
WO2009026673A1 (en) * | 2007-08-28 | 2009-03-05 | Husky Injection Molding Systems Ltd. | Closed loop control for an injection unit |
CN101922704A (zh) * | 2010-09-19 | 2010-12-22 | 重庆赛迪工业炉有限公司 | 一种汽包水位控制系统 |
CN102269125A (zh) * | 2011-07-06 | 2011-12-07 | 东南大学 | 风力发电机额定风速以上鲁棒变桨控制器设计方法 |
CN102678452A (zh) * | 2012-05-22 | 2012-09-19 | 江南大学 | 基于lpv变增益的风力机被动容错控制方法 |
-
2012
- 2012-11-14 CN CN201210458367.9A patent/CN102955428B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007263318A (ja) * | 2006-03-29 | 2007-10-11 | Fujitsu Ten Ltd | 車両のフェールセーフ制御装置 |
WO2009026673A1 (en) * | 2007-08-28 | 2009-03-05 | Husky Injection Molding Systems Ltd. | Closed loop control for an injection unit |
CN101922704A (zh) * | 2010-09-19 | 2010-12-22 | 重庆赛迪工业炉有限公司 | 一种汽包水位控制系统 |
CN102269125A (zh) * | 2011-07-06 | 2011-12-07 | 东南大学 | 风力发电机额定风速以上鲁棒变桨控制器设计方法 |
CN102678452A (zh) * | 2012-05-22 | 2012-09-19 | 江南大学 | 基于lpv变增益的风力机被动容错控制方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105814499A (zh) * | 2013-06-14 | 2016-07-27 | 华莱士·E·拉里莫尔 | 用于监测和控制具有可变结构或可变运行条件的动态机器的动态模型认证方法和系统 |
US10417353B2 (en) | 2013-06-14 | 2019-09-17 | Wallace LARIMORE | Method and system of dynamic model identification for monitoring and control of dynamic machines with variable structure or variable operation conditions |
CN105814499B (zh) * | 2013-06-14 | 2021-04-02 | 华莱士·E·拉里莫尔 | 用于监测和控制具有可变结构或可变运行条件的动态机器的动态模型认证方法和系统 |
US10996643B2 (en) | 2013-06-14 | 2021-05-04 | Adaptics, Inc. | Method and system of dynamic model identification for monitoring and control of dynamic machines with variable structure or variable operation conditions |
CN104991566A (zh) * | 2015-07-07 | 2015-10-21 | 北京航天自动控制研究所 | 一种用于高超声速飞行器的参数不确定性lpv系统建模方法 |
CN104991566B (zh) * | 2015-07-07 | 2016-06-08 | 北京航天自动控制研究所 | 一种用于高超声速飞行器的参数不确定性lpv系统建模方法 |
CN109991849A (zh) * | 2019-04-03 | 2019-07-09 | 哈尔滨理工大学 | 一种时滞lpv系统有记忆h∞输出反馈控制器设计方法 |
CN109992004A (zh) * | 2019-05-08 | 2019-07-09 | 哈尔滨理工大学 | 一种lpv系统异步切换状态反馈控制器设计方法 |
CN109992004B (zh) * | 2019-05-08 | 2022-04-22 | 哈尔滨理工大学 | 一种lpv系统异步切换状态反馈控制器设计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102955428B (zh) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108958042B (zh) | 基于两种趋近律的滑模控制方法 | |
CN107168071B (zh) | 一种基于干扰观测器的非线性系统自抗扰控制方法 | |
CN104698846B (zh) | 一种机械臂伺服系统的指定性能反演控制方法 | |
CN104391444B (zh) | 一种基于离散系统改进单神经元的pid整定方法 | |
CN103227623B (zh) | 可变步长的lms自适应滤波算法及滤波器 | |
CN105045093B (zh) | 基于最大灵敏度指标的稳定分数阶pid参数优化方法 | |
CN103309234B (zh) | 一种基于正交配置优化的间歇反应釜控制系统 | |
CN108958041B (zh) | 一种基于双曲正割吸引律的离散双周期重复控制方法 | |
CN103324093B (zh) | 一种多模型自适应控制系统及其控制方法 | |
CN104638999B (zh) | 基于分段神经网络摩擦模型的双电机伺服系统控制方法 | |
CN113960923B (zh) | 基于离散扩展状态观测器的无模型自适应滑模控制方法 | |
CN102955428A (zh) | 基于lpv模型的满足设定点跟踪与扰动抑制性能的pi控制方法 | |
CN109298636B (zh) | 一种改进的积分滑模控制方法 | |
CN103529706A (zh) | 一种误差以固定时间收敛的控制方法 | |
CN114035436B (zh) | 一种基于饱和自适应律的反步控制方法、存储介质及设备 | |
CN110875599A (zh) | 一种电网频率振荡的控制方法及系统 | |
CN104730920A (zh) | 一种神经网络自适应动态面控制器结构与设计方法 | |
CN112904726A (zh) | 一种基于误差重构权重更新的神经网络反步控制方法 | |
CN108919652A (zh) | 一种自适应抗扰整形控制方法与系统 | |
CN108762088A (zh) | 一种迟滞非线性伺服电机系统滑模控制方法 | |
CN104834218A (zh) | 一种平行单级双倒立摆的动态面控制器结构及设计方法 | |
CN105892297A (zh) | 一种自适应分数阶动态滑模控制算法 | |
CN102323750B (zh) | 嵌入式非线性脉冲协同控制器 | |
CN104698850A (zh) | 一种改进的电机位置伺服系统的自适应鲁棒控制方法 | |
CN107065541A (zh) | 一种焦化炉炉膛压力系统模糊网络优化pid‑pfc控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151209 |