CN102891083B - A method for preparing a room temperature single-electron transistor - Google Patents
A method for preparing a room temperature single-electron transistor Download PDFInfo
- Publication number
- CN102891083B CN102891083B CN201110205684.5A CN201110205684A CN102891083B CN 102891083 B CN102891083 B CN 102891083B CN 201110205684 A CN201110205684 A CN 201110205684A CN 102891083 B CN102891083 B CN 102891083B
- Authority
- CN
- China
- Prior art keywords
- drain
- source
- electron
- layer
- electron beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000004888 barrier function Effects 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 238000000231 atomic layer deposition Methods 0.000 claims abstract description 19
- 238000000151 deposition Methods 0.000 claims abstract description 11
- 230000008021 deposition Effects 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims description 51
- 238000010894 electron beam technology Methods 0.000 claims description 16
- 238000002360 preparation method Methods 0.000 claims description 13
- 238000005566 electron beam evaporation Methods 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims description 6
- 238000001459 lithography Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000007654 immersion Methods 0.000 claims description 4
- 238000000233 ultraviolet lithography Methods 0.000 claims description 4
- 238000003491 array Methods 0.000 claims description 2
- 239000003292 glue Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 claims description 2
- 239000011241 protective layer Substances 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 230000005641 tunneling Effects 0.000 abstract description 4
- 238000005036 potential barrier Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 11
- 238000000313 electron-beam-induced deposition Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- -1 electrode Substances 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000004832 voltammetry Methods 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
技术领域 technical field
本发明涉及纳米电子器件技术领域,特别涉及一种采用原子层沉积和电子束诱导沉积技术制备室温单电子晶体管的方法。 The invention relates to the technical field of nanometer electronic devices, in particular to a method for preparing room-temperature single-electron transistors by using atomic layer deposition and electron beam induced deposition techniques.
背景技术 Background technique
以金属氧化物半导体场效应晶体管器件为主流的集成电路的特征尺寸已发展到纳米量级,应用受到限制,进一步研发新的纳米尺寸的电子逻辑器件成为发展需求。单电子晶体管具有尺寸小、功耗低、可大规模集成等优点,具有广泛的应用前景,可用于计算机、传感器、探测器等各类应用领域。典型的单电子晶体管由源极、漏极、栅极和库仑岛组成,是基于库仑阻塞效应和单电子隧穿效应的纳米电子器件。 The characteristic size of the integrated circuit with metal oxide semiconductor field effect transistor devices as the mainstream has been developed to the nanometer level, and the application is limited. Further research and development of new nanometer-sized electronic logic devices has become a development demand. Single-electron transistors have the advantages of small size, low power consumption, and large-scale integration. They have broad application prospects and can be used in various applications such as computers, sensors, and detectors. A typical single-electron transistor consists of a source, a drain, a gate, and a Coulomb island, and is a nanoelectronic device based on the Coulomb blocking effect and the single-electron tunneling effect.
1987年,贝尔实验室的Fulton等人采用掩膜技术制备了尺寸约30 nm的铝量子点为库仑岛,在1.7 K的超低温下观察到了单电子现象。1989年,MIT的Scott-Thomas等采用X射线光刻的方法,在硅反型层上用狭缝电极做了一个窄的电子通道,宽约30 nm、长为1至10 µm,在400 mK下发现通道的电导随电极电压呈现周期性的振荡。采用微电子工艺,很多研究小组制备了低温及室温下工作的单电子晶体管。同时,人们也开展了自下而上的单电子晶体管制备研究。1995年,Chen等制备了尺寸2至3 nm的AuPd纳米粒子,以此构建的单电子晶体管在77 K温度下表现出显著的库仑阻塞效应,甚至在室温下也可以观察到非线性的伏安特性。1996年,Klein等采用尺寸约5.8 nm的Au纳米粒子和CdSe纳米粒子,在温度77 K下观察到了清晰的库仑台阶曲线。此后,很多研究小组利用自下而上的途径来制备单电子晶体管,在室温下观察到了单电子现象。 In 1987, Fulton et al. of Bell Labs used mask technology to prepare aluminum quantum dots with a size of about 30 nm as Coulomb islands, and observed single-electron phenomena at an ultra-low temperature of 1.7 K. In 1989, Scott-Thomas of MIT used X-ray lithography to make a narrow electron channel with a slit electrode on the silicon inversion layer, with a width of about 30 nm and a length of 1 to 10 µm, at 400 mK It is found that the conductance of the channel exhibits periodic oscillations with the electrode voltage. Using microelectronics processes, many research groups have fabricated single-electron transistors that operate at low temperatures and at room temperature. At the same time, people have also carried out bottom-up research on the preparation of single-electron transistors. In 1995, Chen et al. prepared AuPd nanoparticles with a size of 2 to 3 nm, and the single-electron transistor constructed with this showed a significant Coulomb blocking effect at a temperature of 77 K, and nonlinear voltammetry could be observed even at room temperature. characteristic. In 1996, Klein et al. used Au nanoparticles and CdSe nanoparticles with a size of about 5.8 nm, and observed a clear Coulomb step curve at a temperature of 77 K. Since then, many research groups have used the bottom-up approach to prepare single-electron transistors, and observed single-electron phenomena at room temperature.
然而现有单电子晶体管制备普遍存在三个关键技术问题:小尺寸库仑岛的可控制备;库仑岛的可控定位组装;库仑岛与电极之间隧穿势垒大小的精确控制。这关系到器件的工作温度及其性能的一致性。因此,研究人员长久以来一直渴望发展一种可以精确控制库仑岛尺寸及定位,并控制库仑岛与电极之间势垒大小的制备方法,以大幅推动单电子晶体管的制备和应用。 However, there are three key technical problems in the preparation of existing single-electron transistors: the controllable preparation of small-sized Coulomb islands; the controllable positioning and assembly of Coulomb islands; and the precise control of the size of the tunneling barrier between Coulomb islands and electrodes. This is related to the operating temperature of the device and the consistency of its performance. Therefore, researchers have long been eager to develop a preparation method that can precisely control the size and location of Coulomb islands, and control the size of the barrier between Coulomb islands and electrodes, so as to greatly promote the preparation and application of single-electron transistors.
发明内容 Contents of the invention
本发明所要解决的技术问题是:解决上述现有技术存在的问题,而提出一种制备室温单电子晶体管的方法,精确控制势垒层厚度,精确控制库仑岛的组装定位,显著降低单电子晶体管制备难度,改善批量制备单电子晶体管性能的一致性。 The technical problem to be solved by the present invention is: to solve the problems existing in the above-mentioned prior art, and propose a method for preparing room temperature single-electron transistors, accurately control the thickness of the barrier layer, precisely control the assembly positioning of Coulomb islands, and significantly reduce the single-electron transistor The difficulty of preparation improves the consistency of the performance of single-electron transistors prepared in batches.
本发明采用的技术方案是:室温单电子晶体管,以源极、漏极、栅极、势垒层和库仑岛为基本结构,覆盖层、库仑岛、势垒层、电极、衬底和基底由上到下依次层叠;源极和漏极之上、或者源极、漏极和栅极之上的势垒层利用原子层沉积系统来制备,用于形成电极与库仑岛之间电子隧穿的势垒;库仑岛利用电子/离子双束系统的电子束诱导沉积来制备,其尺寸、数量和排布具有可控性。 The technical scheme adopted in the present invention is: room temperature single-electron transistor, with source, drain, gate, barrier layer and Coulomb island as the basic structure, cover layer, Coulomb island, barrier layer, electrode, substrate and base are composed of Stacked sequentially from top to bottom; the barrier layer on the source and drain, or on the source, drain and gate, is prepared using an atomic layer deposition system to form a barrier for electron tunneling between the electrode and the Coulomb island. Potential barriers; Coulomb islands are prepared by electron beam-induced deposition of electron/ion dual-beam systems, and their size, quantity and arrangement are controllable.
上述技术方案中,所述衬底由氧化Si基片制备而成,源极、漏极、栅极、势垒层和库仑岛集成设置在SiO2衬底上,库仑岛设在源极和漏极之间、势垒层上,并完全独立于源极、漏极和栅极;库仑岛可为多个,排列方式任意组合,栅极用于调控库仑岛能级。 In the above technical solution, the substrate is prepared from an oxidized Si substrate, and the source, drain, gate, barrier layer and Coulomb island are integrated on the SiO2 substrate, and the Coulomb island is arranged on the source and drain. Between the electrodes, on the barrier layer, and completely independent of the source, drain and gate; there can be multiple Coulomb islands, arranged in any combination, and the gate is used to regulate the Coulomb island energy level.
上述技术方案中,室温单电子晶体管的制备过程如下:首先通过电子束直写,在衬底上制备出源极、漏极和栅极,然后利用普通光刻技术制备出分别与源极、漏极和栅极相连的微米级的引线电极,然后利用原子层沉积,在源极和漏极之上形成势垒层,再利用电子束诱导沉积在源极和漏极之间以及势垒层之上制备库仑岛。 In the above technical solution, the preparation process of the room temperature single electron transistor is as follows: first, the source, drain and gate are prepared on the substrate by electron beam direct writing, and then the source, drain and A micron-scale lead electrode connected to the gate electrode, and then use atomic layer deposition to form a barrier layer on the source and drain electrodes, and then use electron beams to induce deposition between the source electrode and the drain electrode and between the barrier layers Prepared on Coulomb Island.
上述技术方案中,所述衬底为通过热氧化Si片形成的200至500 nm厚的SiO2绝缘层,位于Si基底之上。 In the above technical solution, the substrate is a SiO 2 insulating layer with a thickness of 200 to 500 nm formed by thermally oxidizing a Si sheet, and is located on the Si substrate.
上述技术方案中,所述源极、漏极和栅极采用电子束曝光和电子束蒸发镀膜技术制备,采用Ti为金属粘附层,厚度为2至5 nm,采用Au为沉积材料,厚度为3至25 nm。 In the above technical solution, the source, drain and grid are prepared by electron beam exposure and electron beam evaporation coating technology, using Ti as the metal adhesion layer with a thickness of 2 to 5 nm, and using Au as the deposition material with a thickness of 3 to 25 nm.
上述技术方案中,所述源极和漏极之间具有5至15 nm的距离。 In the above technical solution, the distance between the source and the drain is 5 to 15 nm.
上述技术方案中,所述栅极与源极和漏极的间距,具有1至5倍于源漏间距的距离。 In the above technical solution, the distance between the gate, the source and the drain is 1 to 5 times the distance between the source and the drain.
上述技术方案中,所述势垒层采用原子层沉积技术,沉积在源极和漏极之上,其厚度为2至5 nm,厚度精确可控。 In the above technical solution, the barrier layer is deposited on the source electrode and the drain electrode by atomic layer deposition technology, and its thickness is 2 to 5 nm, and the thickness is precisely controllable.
上述技术方案中,所述势垒层选用Al2O3或SiO2等材料。 In the above technical solution, the barrier layer is made of materials such as Al 2 O 3 or SiO 2 .
上述技术方案中,所述库仑岛采用电子束诱导沉积技术,沉积在源极和漏极之间,势垒层之上,库仑岛直径为5至15 nm。 In the above technical solution, the Coulomb island is deposited between the source electrode and the drain electrode and above the barrier layer by electron beam induced deposition technology, and the diameter of the Coulomb island is 5 to 15 nm.
上述技术方案中,所述库仑岛在源极和漏极之间、势垒层之上沉积的尺寸、数量和排列方式可以精确控制。 In the above technical solution, the size, number and arrangement of the Coulomb islands deposited between the source and the drain and on the barrier layer can be precisely controlled.
上述技术方案中,所述库仑岛选用Cu、Au、Al或W等沉积材料。 In the above technical solution, Cu, Au, Al or W and other deposition materials are selected for the Coulomb island.
上述技术方案中,所述覆盖层采用原子层沉积、热蒸发或溅射沉积于源极、漏极、栅极和库仑岛之上。 In the above technical solution, the covering layer is deposited on the source electrode, the drain electrode, the gate electrode and the Coulomb island by atomic layer deposition, thermal evaporation or sputtering.
上述技术方案中,所述覆盖层选用Al2O3或SiO2等材料,厚度为10至100 nm。 In the above technical solution, the covering layer is made of materials such as Al 2 O 3 or SiO 2 , with a thickness of 10 to 100 nm.
本发明所采用的电子束曝光系统、紫外光刻系统、电子束蒸发镀膜系统、原子层沉积系统为公知的成熟工艺技术,所采用的电子/离子双束系统的电子束诱导沉积也为通用的公知的成熟工艺技术。 The electron beam exposure system, ultraviolet lithography system, electron beam evaporation coating system, and atomic layer deposition system used in the present invention are well-known mature technology, and the electron beam induced deposition of the electron/ion dual beam system adopted is also general Well-known mature technology.
具体使用请见“具体实施方式”中的步骤(2)~步骤(9)。 For specific usage, please refer to step (2) to step (9) in "Specific Implementation Modes".
本发明的电子束曝光系统采用日本电子的JBX5500ZA电子束曝光机;本发明的紫外光刻系统采用德国SUSS MicroTec公司的SUSS MA/BA6光刻机;本发明的电子束蒸发镀膜系统采用日本ULVAC公司的高真空蒸发镀膜系统ei-5z。 The electron beam exposure system of the present invention adopts the JBX5500ZA electron beam exposure machine of Japan Electronics; the ultraviolet lithography system of the present invention adopts the SUSS MA/BA6 lithography machine of SUSS MicroTec Company of Germany; the electron beam evaporation coating system of the present invention adopts Japan ULVAC Company The high vacuum evaporation coating system ei-5z.
本发明的原子层沉积系统采用芬兰倍耐克(Beneq)提供的用于科研和工业应用的原子层沉积(ALD)设备。本发明采用的原子层沉积方法将半导体基底设置在原子层沉积室内,使第一前驱气体流向所述室内的基底,从而有效地在基底上形成第一单分子层,在原子层沉积室内,在表面微波等离子条件下,使与第一前驱气体组成不同的第二前驱气体流向室内的第一单分子层,同所述第一单分子层反应,并在所述基底上形成第二单分子层,第二单分子层与第一单分子层的组成不同,第二单分子层包括第一单分子层和所述第二前驱气体的成分,以及连续重复第一、第二前驱气体的流动,而有效地在基底上形成大量具有第二单分子层组成的材料。 The atomic layer deposition system of the present invention adopts the atomic layer deposition (ALD) equipment provided by Beneq of Finland for scientific research and industrial application. In the atomic layer deposition method adopted in the present invention, the semiconductor substrate is placed in the atomic layer deposition chamber, and the first precursor gas flows to the substrate in the chamber, thereby effectively forming the first monomolecular layer on the substrate. In the atomic layer deposition chamber, the Under surface microwave plasma conditions, a second precursor gas having a composition different from that of the first precursor gas flows to the first monomolecular layer in the chamber, reacts with the first monomolecular layer, and forms a second monomolecular layer on the substrate , the composition of the second monomolecular layer is different from that of the first monomolecular layer, the second monomolecular layer includes the composition of the first monomolecular layer and the second precursor gas, and continuously repeats the flow of the first and second precursor gas, Instead, a substantial amount of material having the second monolayer composition is formed on the substrate.
本发明的电子束诱导沉积采用美国FEI的Helios NanoLab双束系统完成,该双束系统将分辨率极高的电子扫描显微镜与高性能离子束整合在一起,该公司供应电子和离子束显微镜以及纳米级应用设备。 The electron beam induced deposition of the present invention is completed by the Helios NanoLab dual-beam system of FEI in the United States. The dual-beam system integrates a high-resolution electron scanning microscope with a high-performance ion beam. The company supplies electron and ion beam microscopes and nano level application equipment.
本发明采用电子束诱导沉积制备库仑岛,在FEI Helios NanoLab双束系统内,放置已层叠的势垒层、电极、衬底和基底,在预定电子束电压、电流、沉积速率下,进行电子束诱导沉积,在势垒层上以及源极、漏极之间制备库仑岛。 The present invention uses electron beam induced deposition to prepare Coulomb islands. In the FEI Helios NanoLab dual-beam system, the laminated barrier layer, electrode, substrate and base are placed, and the electron beam is carried out under predetermined electron beam voltage, current and deposition rate. Induced deposition to prepare Coulomb islands on the barrier layer and between the source and drain.
与现有技术相比,本发明的有益效果在于:本发明采用原子层沉积能精确控制库仑岛与电极间势垒的大小,利用电子束诱导沉积能精确控制库仑岛沉积的尺寸、位置和排布方式。本发明解决了单电子晶体管制备过程中,势垒大小和库仑岛定位组装不可控的问题,显著降低了单电子晶体管制备的难度,改善批量制备单电子晶体管性能的一致性。 Compared with the prior art, the beneficial effect of the present invention is that: the present invention can precisely control the size of the barrier between the Coulomb island and the electrode by using the atomic layer deposition, and can precisely control the size, position and arrangement of the Coulomb island deposition by using the electron beam induced deposition. Cloth way. The invention solves the problem of uncontrollable potential barrier size and Coulomb island positioning and assembly in the preparation process of the single electron transistor, significantly reduces the difficulty of preparation of the single electron transistor, and improves the consistency of performance of the single electron transistor prepared in batches.
附图说明 Description of drawings
图1为本发明具体实施方式中一种室温单电子晶体管的三维示意图; Fig. 1 is a three-dimensional schematic diagram of a room temperature single electron transistor in a specific embodiment of the present invention;
图2为图1所示室温单电子晶体管的剖面结构示意图; Fig. 2 is a schematic cross-sectional structure diagram of a room temperature single-electron transistor shown in Fig. 1;
图3为图1所示室温单电子晶体管的源、漏和栅极三电极的扫描电镜图; Fig. 3 is the scanning electron micrograph of the source, drain and gate three electrodes of room temperature single electron transistor shown in Fig. 1;
图4为图1所示室温单电子晶体管的源、漏和栅极与外部联系的微电极光学显微照片。 Fig. 4 is an optical micrograph of the source, drain and gate of the room-temperature single-electron transistor shown in Fig. 1 and the external connection.
附图标记说明: Explanation of reference signs:
1—栅极,2—源极,3—基底,4—库仑岛,5—势垒层,6—漏极,7—衬底,8—覆盖层,9—与源极相连的引线台,10—与漏极相连的引线台,11—与栅极相连的引线台。 1—gate, 2—source, 3—base, 4—coulomb island, 5—barrier layer, 6—drain, 7—substrate, 8—covering layer, 9—leading platform connected to source, 10—the lead platform connected to the drain, 11—the lead platform connected to the gate.
具体实施方式 detailed description
参见附图,本发明通过原子层沉积技术对势垒层厚度进行精确控制,并利用电子束诱导沉积技术对库仑岛定位进行精确控制,制备出室温单电子晶体管。 Referring to the accompanying drawings, the present invention precisely controls the thickness of the barrier layer through the atomic layer deposition technology, and uses the electron beam induced deposition technology to precisely control the positioning of the Coulomb island, and prepares a room-temperature single-electron transistor.
如图1~2所示,该室温单电子晶体管主要由源极、漏极、栅极、势垒层和库仑岛组成,集成设置在SiO2衬底上,该衬底由热氧化Si基片制备而成。前述库仑岛在源极和漏极之间、势垒层之上,并完全独立于源极、漏极和栅极。同时,前述库仑岛可为多个,排列方式可任意组合。前述单电子晶体管的栅极用于调控库仑岛能级。 As shown in Figures 1 and 2, the room temperature single-electron transistor is mainly composed of source, drain, gate, barrier layer and Coulomb island, which are integrated on the SiO 2 substrate, which is made of thermally oxidized Si substrate Prepared. The aforementioned Coulomb island is between the source and drain, above the barrier layer, and is completely independent of the source, drain and gate. At the same time, the aforementioned Coulomb islands can be multiple, and the arrangements can be combined arbitrarily. The gate of the aforementioned single-electron transistor is used to regulate the Coulomb island energy level.
该室温单电子晶体管的制备过程如下:首先通过电子束直写,在衬底7上制备出源极2、漏极6和栅极1,然后利用原子层沉积,在源极2和漏极6之上形成势垒层5,然后利用电子束诱导沉积在源极2和漏极6之间,势垒层5之上,制备库仑岛4。 The preparation process of the room temperature single-electron transistor is as follows: first, the source 2, the drain 6 and the gate 1 are prepared on the substrate 7 by electron beam direct writing, and then the source 2 and the drain 6 are prepared by atomic layer deposition. A barrier layer 5 is formed on it, and then Coulomb island 4 is prepared between the source electrode 2 and the drain electrode 6 and on the barrier layer 5 by electron beam induced deposition.
更进一步的讲,本发明的制作工艺包括如下具体步骤: Further speaking, the manufacturing process of the present invention includes the following specific steps:
(1)清洗Si基片,然后在氧化炉中1000°C条件下氧化2小时,制备SiO2绝缘层,作为衬底; (1) Clean the Si substrate, and then oxidize it in an oxidation furnace at 1000°C for 2 hours to prepare a SiO 2 insulating layer as a substrate;
(2)采用电子束直写、电子束蒸发、金属剥离等技术完成纳米尺寸的源极、漏极和栅极的制备(如图3所示),电极最小线宽为25 nm; (2) Nano-sized source, drain and gate are prepared by electron beam direct writing, electron beam evaporation, metal lift-off and other technologies (as shown in Figure 3), and the minimum line width of the electrode is 25 nm;
(3)通过紫外光刻、电子束蒸发、金属剥离等技术制备出分别与源极、漏极和栅极联通的微米级导线和引线台(如图4所示),用于将器件过渡到宏观电路,该电极最小线宽为2 μm; (3) Micron-scale wires and lead tables (as shown in Figure 4) respectively connected to the source, drain and gate are prepared by ultraviolet lithography, electron beam evaporation, metal lift-off and other technologies, which are used to transition the device to For macroscopic circuits, the minimum line width of the electrode is 2 μm;
(4)在样品上涂覆一层AZ5214光刻胶,前烘后,使用紫外光刻机进行G线曝光,再利用浸没法显影,形成以源极、漏极和栅极的连接部为中心、大小为2×2 μm的掩膜图形; (4) Coat a layer of AZ5214 photoresist on the sample, and after pre-baking, use a UV lithography machine to perform G-line exposure, and then use the immersion method to develop to form a connecting part centered on the source, drain and gate , a mask pattern with a size of 2×2 μm;
(5)使用原子层沉积系统在源极和漏极之上制备势垒层,基片温度控制在80 °C左右,势垒层沉积的厚度约2 nm; (5) A barrier layer was prepared on the source and drain using an atomic layer deposition system, the substrate temperature was controlled at about 80 °C, and the thickness of the barrier layer deposition was about 2 nm;
(6)利用丙酮进行湿法去胶; (6) Use acetone for wet degumming;
(7)使用双束系统,利用扫描电子显微镜精确调整样品位置,然后通过电子束诱导辅助沉积,在源极和漏极之间,势垒层之上制备库仑岛或库仑岛阵列,扫描电镜放大倍数25W×,电子束电压30kV,束流70pA; (7) Using a dual-beam system, use a scanning electron microscope to precisely adjust the sample position, and then use electron beam-induced assisted deposition to prepare Coulomb islands or Coulomb island arrays between the source and drain electrodes and above the barrier layer, and the scanning electron microscope is magnified Multiple 25W×, electron beam voltage 30kV, beam current 70pA;
(8)在样品上涂覆一层AZ5214光刻胶,前烘后,使用紫外光刻机进行G线曝光,再利用浸没法显影,在用于引线封装的Pad以外的区域,形成以库仑岛为中心、大小为2×2 μm的掩膜图形; (8) Coat a layer of AZ5214 photoresist on the sample, and after pre-baking, use a UV lithography machine for G-line exposure, and then use the immersion method to develop, and form a Coulomb island in the area other than the Pad used for lead packaging A mask pattern with a center and a size of 2×2 μm;
(9)通过电子束蒸发等技术在源极、漏极、栅极和库仑岛之上制备100 nm厚度的SiO2覆盖层; (9) Prepare a 100 nm thick SiO 2 capping layer on the source, drain, gate and Coulomb island by electron beam evaporation and other techniques;
(10)利用丙酮进行湿法去胶; (10) Use acetone for wet degumming;
(11)在样品上涂覆一层AZ5214光刻胶,作为划片过程中的保护层; (11) Coat a layer of AZ5214 photoresist on the sample as a protective layer during the scribing process;
(12)使用砂轮划片机,将做好器件结构的晶圆切割成小块,然后清洗、去胶; (12) Use a grinding wheel dicing machine to cut the wafer with the device structure into small pieces, then clean and remove the glue;
(13)使用引线机进行金丝球焊,将器件封装在管座上,完成该室温单电子晶体管的制备。 (13) Use a wire machine to perform gold wire ball bonding, and package the device on the tube base to complete the preparation of the room temperature single-electron transistor.
综上所述,本发明通过采用原子层沉积和电子束诱导沉积等技术,解决了精确控制库仑岛与电极间势垒大小以及库仑岛组装定位的问题,从而为高效、批量制备室温单电子晶体管提供了一种新的方法。 In summary, the present invention solves the problem of precisely controlling the size of the barrier between the Coulomb island and the electrode and the assembly and positioning of the Coulomb island by using technologies such as atomic layer deposition and electron beam induced deposition, thereby providing a high-efficiency, batch-fabricated room temperature single-electron transistor A new method is provided.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110205684.5A CN102891083B (en) | 2011-07-22 | 2011-07-22 | A method for preparing a room temperature single-electron transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110205684.5A CN102891083B (en) | 2011-07-22 | 2011-07-22 | A method for preparing a room temperature single-electron transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102891083A CN102891083A (en) | 2013-01-23 |
CN102891083B true CN102891083B (en) | 2016-10-19 |
Family
ID=47534548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110205684.5A Expired - Fee Related CN102891083B (en) | 2011-07-22 | 2011-07-22 | A method for preparing a room temperature single-electron transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102891083B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105502276B (en) * | 2016-01-06 | 2017-03-22 | 中国科学院物理研究所 | Method for preparing test electrodes on microparticles |
CN106935501B (en) * | 2016-10-19 | 2023-08-22 | 中国人民解放军国防科学技术大学 | A method for preparing single-electron transistors by assembling gold particles with polystyrene microsphere template |
CN106383163B (en) * | 2016-10-19 | 2023-10-17 | 中国人民解放军国防科学技术大学 | Ionization type gas sensor based on single-electron transistor and preparation method thereof |
CN109894162B (en) * | 2019-03-11 | 2021-06-11 | 太原理工大学 | A PEDOT-based: micro-fluidic chip of PSS electrochemical transistor and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1189921A (en) * | 1996-03-26 | 1998-08-05 | 三星电子株式会社 | Tunnel effect device and manufacturing method thereof |
US7122413B2 (en) * | 2003-12-19 | 2006-10-17 | Texas Instruments Incorporated | Method to manufacture silicon quantum islands and single-electron devices |
CN101226879A (en) * | 2007-01-18 | 2008-07-23 | 中国科学院化学研究所 | A kind of preparation method of nano gap electrode |
CN101752389A (en) * | 2009-10-16 | 2010-06-23 | 中国科学院上海技术物理研究所 | Al2O3/AlN/GaN/AlN MOS-HEMT device and manufacturing method thereof |
-
2011
- 2011-07-22 CN CN201110205684.5A patent/CN102891083B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1189921A (en) * | 1996-03-26 | 1998-08-05 | 三星电子株式会社 | Tunnel effect device and manufacturing method thereof |
US7122413B2 (en) * | 2003-12-19 | 2006-10-17 | Texas Instruments Incorporated | Method to manufacture silicon quantum islands and single-electron devices |
CN101226879A (en) * | 2007-01-18 | 2008-07-23 | 中国科学院化学研究所 | A kind of preparation method of nano gap electrode |
CN101752389A (en) * | 2009-10-16 | 2010-06-23 | 中国科学院上海技术物理研究所 | Al2O3/AlN/GaN/AlN MOS-HEMT device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102891083A (en) | 2013-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101252148B (en) | Nonvolatile memory electronic device and its manufacture method | |
CN102214586B (en) | A kind of preparation method of silicon nanowire field effect transistor | |
CN102891083B (en) | A method for preparing a room temperature single-electron transistor | |
JP2008205272A (en) | Graphene transistor and manufacturing method thereof | |
US8372752B1 (en) | Method for fabricating ultra-fine nanowire | |
CN102110777B (en) | Organic floating gate field effect transistor and preparation method thereof | |
CN104979402B (en) | Carbon nanotubes three-dimensional FinFET and preparation method thereof | |
CN103531623A (en) | Semiconductor nano-structure based transistor device and preparation method thereof | |
JP6917644B2 (en) | Energy Filtered Cold Electronic Devices and Methods | |
CN101478003B (en) | Single electron transistor based on ordered mesoporous and preparation method thereof | |
CN106653854A (en) | Ultra-short channel transistor and manufacture method thereof | |
CN103531466B (en) | A kind of preparation method of island dynamic formula single-electronic transistor | |
CN102280480B (en) | Dual-grid channel conducting type adjustable single-wall carbon nano tube field effect transistor and preparation process thereof | |
CN103107065B (en) | A kind of preparation method of the nano-wire devices based on nano thread ordered arrangement | |
CN101359684B (en) | Silicon based single electron transistor of wrap gate control construction and manufacturing method thereof | |
CN100492664C (en) | A method for fabricating SOI-based top-gate single-electron transistors | |
CN105914148A (en) | Preparation method of graphene field effect transistor and formed graphene field effect transistor | |
CN116940130A (en) | Carbon nano tube field effect transistor with top gate structure and preparation method thereof | |
CN105551968B (en) | Field-effect transistor with directional/disordered composite single-wall carbon nanotube as channel and method for making the same | |
CN104993051B (en) | A kind of preparation method of metallic membrane array/organic semiconductor composite conducting channel thin-film transistor | |
TW200522152A (en) | Nano-electronic devices using discrete exposure method | |
CN103490007B (en) | A kind of Spin Valve based on graphene nanobelt and preparation method thereof | |
CN202127020U (en) | Double-gate channel conduction type adjustable single walled carbon nano tube field effect transistor | |
CN100533768C (en) | A method for fabricating a silicon-based side-gate single-electron transistor | |
CN102169837B (en) | Preparation method of single electron transistor at room temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161019 Termination date: 20210722 |
|
CF01 | Termination of patent right due to non-payment of annual fee |