[go: up one dir, main page]

CN102646577A - 沉积铝层的方法 - Google Patents

沉积铝层的方法 Download PDF

Info

Publication number
CN102646577A
CN102646577A CN2012100350538A CN201210035053A CN102646577A CN 102646577 A CN102646577 A CN 102646577A CN 2012100350538 A CN2012100350538 A CN 2012100350538A CN 201210035053 A CN201210035053 A CN 201210035053A CN 102646577 A CN102646577 A CN 102646577A
Authority
CN
China
Prior art keywords
base material
deposition
layer
described method
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100350538A
Other languages
English (en)
Other versions
CN102646577B (zh
Inventor
R·辛德曼
S·伯吉斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPTS Technologies Ltd
Original Assignee
SPTS Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPTS Technologies Ltd filed Critical SPTS Technologies Ltd
Publication of CN102646577A publication Critical patent/CN102646577A/zh
Application granted granted Critical
Publication of CN102646577B publication Critical patent/CN102646577B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种沉积铝层的方法。特别地,本发明涉及在薄基材上沉积铝层或铝膜。本发明包括:将基材放置在支撑体上;将第一铝层沉积到基材上,该基材处于未固定条件;将基材固定到支撑体上,并且沉积与第一层连续的第二铝层,其中第二层比第一层厚,并且在小于22℃的基材温度下沉积第二层。

Description

沉积铝层的方法
技术领域
本发明涉及在薄基材上沉积铝层或铝膜。 
背景技术
在许多应用中,硅晶片需要在其上沉积厚铝层。例如,当由晶片形成的器件包括高功率晶体管时,为了处理这些器件所固有的非常高的电流密度,厚铝层作为接触层可为必要的。 
通常这些器件具有竖直机构,该竖直机构具有包含一个或多个1-20μm厚度的铝层的源极接点。将这些沉积到嵌于全厚度晶片上的半导体器件上(直到例如MOSFET.IGBT Bipolar)。通常在晶片的背面形成漏极接点。然而,因为大部分厚度对于器件性能不是有用的,但是却对浪费功率的串联阻抗做出贡献,所以在沉积漏极接点之前将晶片从通常720μm研磨至<200μm厚。这样的薄晶片非常柔软并且在由各种沉积的层诱发的应力下经受相当大的扭曲或弯曲。已知由于膜和下面的基材的热膨胀错配,在>~20℃的温度下沉积的溅射铝层是拉伸性的。因而8μm的溅射Al膜通常具有~60MPa的应力。下面的表1给出了在各种厚度的晶片中可诱发的弯曲。将看到对于200μm Si晶片可诱发大约~2mm的弯曲。这样的弯曲使晶片难于在随后的步骤中加工。 
表1:对于不同厚度的晶片使用斯托尼方程(Stoney’s Equasion)计算的诱发的晶片弯曲 
  晶片厚度   应力   晶片弯曲
  μm   MPa   μm
  720   60   154
  200   60   1992
  100   60   7669
[0006] 已知通过将晶片固定到冷却的静电卡盘(chuck)在低温下溅射膜可将应力减小到接近零。当在压板上不存在RF偏压时,对于8μm膜应力和压板或卡盘温度之间的关系显示于图1中。还已知通过添加RF偏压可使应力为压缩性的,并且这在图2中说明。 
然而,申请人已经确定低温固定的铝展示了不利的晶粒组织,该晶粒组织包含由相当大的空洞分隔的非常小的柱状晶粒。在图3和4中可清楚地看到这种组织,图3和图4是在两种不同的沉积速率(分别为1.8μm/min和0.6μm/min)下于静电卡盘(ESC)上在~15℃下沉积的8μm铝膜的扫描电子显微图(SEM)。将容易理解,该粗糙和空洞化的晶粒组织可损害器件的电机械性质,这导致器件性能的劣化。因而除了其它缺点以外,还可存在增加的电阻率和减少的器件寿命。 
图5显示了未固定的8μm铝膜的更典型的晶粒组织。将看到存在完全没有空洞的大的扁平六方晶粒。通过在Al沉积发生前立即在单独的模块中预热晶片,尝试将晶粒组织恢复到一定程度。然而,研究表明对于这为有效的晶片的起始温度需为~400℃。这由图6和7中显示的两种过程所说明。将看到,需要将晶片加热到约400℃以基本除去空洞。该温度太高而不能允许下面结构的稳定加工。提高初始晶片温度还导致Al膜的拉伸应力增加,这因此变得更难以通过偏压来补偿。申请人因此确定该方法并不提供对于改善铝晶粒组织和同时维持低应力的问题的实际解决方法。 
图8和9说明了添加RF偏压将膜致密化到一定程度。如图2所示,这使得膜为压缩性的。然而,可看到这并不显著地改善晶粒组织。表面粗糙度和空洞化的问题持续直到很高的偏压。 
申请人确定了沉积这样的铝和铝合金膜的方法,其克服或至少减轻了过量应力和差的晶粒组织的上述问题。 
发明内容
本发明包括在薄基材上沉积铝膜或铝合金的方法,其包括: 
a)将基材放置在支撑体上; 
b)将第一铝层或铝合金层沉积到基材上,该基材处于未固定条件; 
c)将基材固定到支撑体上,并且沉积与第一层连续的第二铝层,其中第二层比第一层厚并且优选在~<22℃或<20℃的基材温度下沉积第二层。 
该方法优选包括在该方法的固定部分期间对支撑体提供RF偏压。RF功率例如可为100瓦-500瓦。 
第一层可为约0.5μm-约2μm厚(优选约1μm)且第二层可为约7μm厚,然而对于一些应用可需要更大的厚度。 
沉积步骤可在不同的支撑体上(例如在不同的沉积应用或模块中)发生,但是优选在同一支撑体上进行沉积步骤,在这种情况下,第二沉积步骤可与第一沉积步骤连续,并且由基材的固定所引发。如果支撑体为静电卡盘,则这是特别容易完成的。 
如已经说明的,基材为“薄”基材并且通常这意味着其厚度小于250μm。基材可为硅晶片。 
铝合金优选为A l(Cu、Si(<5%)。 
尽管上面已限定了本发明,但要理解本发明包括上述或在以下描述中给出的特征的任何发明组合。 
附图说明
本发明可以以各种方式进行,并且现在将通过举例并参考附图描述特定的实施方案,其中: 
图1显示了固定的8μm Al膜(无RF偏压)的应力/压板温度关系图; 
图2显示了固定的和未固定的8μm Al膜的应力/压板RF关系图; 
图3显示了在-15℃下,以1.8μm/min沉积在静电卡盘上的8μm Al膜(无偏压)的SEM图; 
图4显示了在-15℃下,以0.6μm/min沉积在静电卡盘上的8μ m Al膜(无偏压)的SEM图; 
图5显示了以1.8μm/min沉积在标准压板(未固定的)上的8μm Al膜的SEM图,晶片温度~150℃; 
图6显示了在-15℃下,以24kW沉积在静电卡盘上的8μm Al膜的SEM图,起始晶片温度250℃; 
图7显示了在-15℃下,沉积在静电卡盘上的8μm Al膜(无偏压)的SEM图,起始晶片温度400℃; 
图8显示了在-15℃下,以1.8μm/min沉积在静电卡盘上的8μm Al膜(100W偏压)的SEM图; 
图9显示了在-15℃下,以1.8μm/min沉积在静电卡盘上的8μm Al膜(300W偏压)的SEM图; 
图10-12分别显示了根据本发明的实施方案制备的膜的横截面和表面视图, 
其中,图10为用SPTS方法1沉积的8μm Al膜的横截面(未固定的1μm Al+固定的7μm,-15℃,无偏压),图11为用SPTS方法2沉积的8μm Al膜的横截面(未固定的0.5μm Al+固定的7μm,-15℃,无偏压),图12为用SPTS方法沉积的8μm Al膜的横截面(未固定的0.2μm Al+固定的7μm,-15℃,无偏压); 
图13显示了对于1.8μm/min Al沉积的晶片温度与沉积的膜厚度的坐标图; 
图14显示了本发明的一个实施方案(未固定的1μm Al+固定的7μm,-15℃,其中对晶片加偏压,150W)的横截面和表面SEM; 
图15显示了本发明的一个实施方案(未固定的0.5μm Al+固定的7μm,-15℃,无偏压)的横截面和表面SEM; 
图16是对于不同的沉积方法(不同的工艺条件)8μm Al膜反射率与压板偏压的坐标图;和 
图17是说明对于本发明的一个实施方案的应力偏压曲线(对于SPTS方法,未固定的1μm+固定的7μm,-15℃)的坐标图。 
具体实施方式
鉴于现有技术沉积方法所提出的问题,本发明人试图获得甚至在低温下沉积致密、光滑无空洞的具有可调应力的铝膜的方法。一般而 言,他们确定了通过在固定膜之前沉积0.5-2μm厚度的未固定铝籽晶(seed)层以在低ESC压板温度下完成沉积导致可接受的膜。使用该技术,证实了可抑制非常小的柱状晶粒的形成并且改善铝膜的组织,同时保留低的拉伸应力。这在图10-11中说明。薄的未固定铝层充当对于膜其余部分生长的模板,并且抑制了非常小的强的柱状晶粒组织的形成,该晶粒组织在标准固定的低温(<20℃)沉积中是常见的。已经发现:如果将未固定的籽晶层的厚度减小到低于约0.5μm,则可如图12所看到的,柱状晶粒组织开始重构(reassert)自身,并且膜再次变为粗糙和空洞化的,其中籽晶层的厚度为0.2μm Al。 
可在单独的模块或同一模块中沉积籽晶层,而使静电卡盘切断。沉积未固定的籽晶层的压板温度不是组织改变中的驱动因素。这是因为在未固定的沉积情况中,晶片温度可提高到比压板温度高得多的温度,这都是由于等离子热和沉积的潜热所致。图13显示了未固定的全厚度Si晶片在1.8μm/min铝膜沉积下的晶片温度。晶片温度在1μm沉积结束时提高到>200℃,并且在8μm沉积结束时可接近~350℃。如果在同一模块中加工晶片,可由先前的冷却来冷却静电卡盘。 
然而,如果晶片与压板处于良好的热接触(即其被固定),则将通常仅移除由沉积产生的固有的热,并且存在从系统移除热能的主动冷却的一些源。该释放使得发明人能够在与厚铝膜的其余部分相同的低温压板上沉积籽晶层。如从图7可看到的,使用预热站提高初始晶片温度对于获得较好品质是有用的,但是必要的晶片温度通常太高。这也是具有结果成本和时间含义的另一加工步骤。 
使用以上给出的上述基本方法,通过在固定期间施加RF偏压仍然可将应力控制到低至~100MPa(压缩性),并且同时可获得致密的光滑膜。偏压的效果在图14和15中说明。 
膜组织的改善还可通过膜反射率来说明。在图16中将可看到其随着未固定的籽晶层的厚度增加而增加。反射率测量是铝膜的表面粗糙度的指示。将注意到,冷的固定膜固有地很粗糙并且显示与较光滑的未固定的铝膜相比低得多的反射率。 
图17显示了对于使用本发明的方法的一个实施方案(即1μm未固定籽晶层和7μm固定的籽晶层)沉积的8μm Al膜的应力与压板RF的关系。对于具有未固定的籽晶的新方法的可调应力范围与对于标准的、冷的固定的Al膜所获得的是可比的。然而,如前面所讨论的,在整个应力范围内维持较致密的无空洞的晶粒组织使得该方法非常适合用于制造实际的半导体器件。 
本发明因此提供了在低温下以形成光滑、致密、无空洞的膜的方式沉积铝的简单方法,该膜从低拉伸到压缩的应力可调。该方法可在低于0℃的沉积温度下形成。在低至~100MPa(压缩性)的范围内获得应力调节,同时在固定的沉积步骤期间施加RF偏压。在整个应力范围内并且使用低至0.5μm厚度的籽晶层,保留了对于器件制造有利的晶体组织。将理解,无论是否需要应力调节,使用该基本方法的改善的膜的好处是有利的。 

Claims (13)

1.一种在薄基材上沉积铝膜的方法,其包括:
(a)将基材放置在支撑体上;
(b)将第一铝层沉积到基材上,该基材处于未固定条件;
(c)将基材固定到支撑体上,并且沉积与第一层连续的第二铝层,其中第二层比第一层厚,并且在~<22℃的基材温度下沉积第二层。
2.如权利要求1所述的方法,其中在固定期间对支撑体提供RF偏压。
3.如权利要求1所述的方法,其中RF功率为100瓦-500瓦。
4.如在前权利要求中任一项所述的方法,其中第一层为约0.5-2μm厚。
5.如权利要求4所述的方法,其中第二层为约7μm厚。
6.如在前权利要求中任一项所述的方法,其中第一层与第二层的厚度比例为1∶3-1∶15。
7.如在前权利要求中任一项所述的方法,其中沉积步骤在不同的支撑体上发生。
8.如在前权利要求中任一项所述的方法,其中在同一支撑体上进行沉积步骤。
9.如权利要求8所述的方法,其中第二沉积步骤与第一沉积步骤连续,并且由基材的固定所引发。
10.如在前权利要求中任一项所述的方法,其中基材为<250μm厚。
11.如在前权利要求中任一项所述的方法,其中基材为硅晶片。
12.如在前权利要求中任一项所述的方法,其中基材温度为~<20℃。
13.如在前权利要求中任一项所述的方法,其中铝合金为Al(Cu、Si(<5%))。
CN201210035053.8A 2011-02-16 2012-02-16 沉积铝层的方法 Active CN102646577B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1102673.9 2011-02-16
GBGB1102673.9A GB201102673D0 (en) 2011-02-16 2011-02-16 Methods of depositing aluminium layers

Publications (2)

Publication Number Publication Date
CN102646577A true CN102646577A (zh) 2012-08-22
CN102646577B CN102646577B (zh) 2017-03-01

Family

ID=43859478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210035053.8A Active CN102646577B (zh) 2011-02-16 2012-02-16 沉积铝层的方法

Country Status (6)

Country Link
EP (1) EP2489758B1 (zh)
JP (1) JP6317056B2 (zh)
KR (1) KR101948935B1 (zh)
CN (1) CN102646577B (zh)
GB (1) GB201102673D0 (zh)
TW (1) TWI571910B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304510A (zh) * 2014-07-22 2016-02-03 北京北方微电子基地设备工艺研究中心有限责任公司 铝薄膜制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101963659B1 (ko) 2018-08-23 2019-03-29 주식회사 한경희멤브레인 강판과 pvc 시트가 합지된 방수시트 및 그 방수시트를 이용한 방수 시공방법
CN111778478B (zh) * 2020-07-15 2022-09-16 北京北方华创微电子装备有限公司 薄膜沉积方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068444A (zh) * 1991-07-08 1993-01-27 三星电子株式会社 半导体器件及其制造方法
CN1142120A (zh) * 1995-06-30 1997-02-05 现代电子产业株式会社 形成半导体器件金属布线的方法
US20040154748A1 (en) * 2003-02-07 2004-08-12 Paul Rich Electrostatic clamping of thin wafers in plasma processing vacuum chamber
US20090246385A1 (en) * 2008-03-25 2009-10-01 Tegal Corporation Control of crystal orientation and stress in sputter deposited thin films
US7781327B1 (en) * 2001-03-13 2010-08-24 Novellus Systems, Inc. Resputtering process for eliminating dielectric damage

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150335A (ja) * 1987-12-07 1989-06-13 Nec Corp アルミニウム系薄膜配線
US5080455A (en) * 1988-05-17 1992-01-14 William James King Ion beam sputter processing
EP0533254A3 (en) * 1991-09-19 1993-06-23 N.V. Philips' Gloeilampenfabrieken Method of manufacturing a semiconductor device whereby a layer comprising aluminium is deposited on a surface for a semiconductor body
JPH09260645A (ja) * 1996-03-19 1997-10-03 Sanyo Electric Co Ltd 半導体装置
JP3033564B2 (ja) * 1997-10-02 2000-04-17 セイコーエプソン株式会社 半導体装置の製造方法
US6242288B1 (en) * 2000-05-05 2001-06-05 International Rectifier Corp. Anneal-free process for forming weak collector
US6533910B2 (en) * 2000-12-29 2003-03-18 Lam Research Corporation Carbonitride coated component of semiconductor processing equipment and method of manufacturing thereof
US6764940B1 (en) * 2001-03-13 2004-07-20 Novellus Systems, Inc. Method for depositing a diffusion barrier for copper interconnect applications
US7462560B2 (en) * 2005-08-11 2008-12-09 United Microelectronics Corp. Process of physical vapor depositing mirror layer with improved reflectivity
US7378002B2 (en) * 2005-08-23 2008-05-27 Applied Materials, Inc. Aluminum sputtering while biasing wafer
US20080083611A1 (en) * 2006-10-06 2008-04-10 Tegal Corporation High-adhesive backside metallization
JP5428362B2 (ja) * 2009-02-04 2014-02-26 富士電機株式会社 半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068444A (zh) * 1991-07-08 1993-01-27 三星电子株式会社 半导体器件及其制造方法
CN1142120A (zh) * 1995-06-30 1997-02-05 现代电子产业株式会社 形成半导体器件金属布线的方法
US7781327B1 (en) * 2001-03-13 2010-08-24 Novellus Systems, Inc. Resputtering process for eliminating dielectric damage
US20040154748A1 (en) * 2003-02-07 2004-08-12 Paul Rich Electrostatic clamping of thin wafers in plasma processing vacuum chamber
US20090246385A1 (en) * 2008-03-25 2009-10-01 Tegal Corporation Control of crystal orientation and stress in sputter deposited thin films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304510A (zh) * 2014-07-22 2016-02-03 北京北方微电子基地设备工艺研究中心有限责任公司 铝薄膜制备方法
CN105304510B (zh) * 2014-07-22 2018-05-08 北京北方华创微电子装备有限公司 铝薄膜制备方法

Also Published As

Publication number Publication date
TW201237938A (en) 2012-09-16
JP2012167370A (ja) 2012-09-06
EP2489758B1 (en) 2013-06-26
CN102646577B (zh) 2017-03-01
EP2489758A1 (en) 2012-08-22
TWI571910B (zh) 2017-02-21
GB201102673D0 (en) 2011-03-30
JP6317056B2 (ja) 2018-04-25
KR20120094425A (ko) 2012-08-24
KR101948935B1 (ko) 2019-02-15

Similar Documents

Publication Publication Date Title
US10829868B2 (en) Manufacturing method of SiC composite substrate
JP5978548B2 (ja) ダイヤモンド上の窒化ガリウム型ウェーハの製造方法
TWI719051B (zh) SiC複合基板及其製造方法
US10612157B2 (en) Method for manufacturing SiC composite substrate, and method for manufacturing semiconductor substrate
JP5468528B2 (ja) 単結晶ダイヤモンド成長用基材及びその製造方法並びに単結晶ダイヤモンド基板の製造方法
US10431460B2 (en) Method for producing SiC composite substrate
KR102727343B1 (ko) GaN 적층 기판의 제조 방법
KR20210019066A (ko) GaN 적층 기판의 제조 방법
CN113078046B (zh) 一种氮化镓同质衬底及其制备方法
WO2021092862A1 (zh) 半导体衬底及其制造方法、半导体器件
CN102646577A (zh) 沉积铝层的方法
CN111129184A (zh) 一种高效散热半导体衬底及其制备方法
US9670574B2 (en) Methods of depositing aluminium layers
CN116666199A (zh) 一种基于临时载体的SiC/金刚石复合衬底制造方法
JP2020152625A (ja) エピ用化合物複合基板及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant