CN102611897A - Method and system for carrying out vision perception high-fidelity transformation on color digital image - Google Patents
Method and system for carrying out vision perception high-fidelity transformation on color digital image Download PDFInfo
- Publication number
- CN102611897A CN102611897A CN2012100535248A CN201210053524A CN102611897A CN 102611897 A CN102611897 A CN 102611897A CN 2012100535248 A CN2012100535248 A CN 2012100535248A CN 201210053524 A CN201210053524 A CN 201210053524A CN 102611897 A CN102611897 A CN 102611897A
- Authority
- CN
- China
- Prior art keywords
- color
- value
- saturation
- max
- brightness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000009466 transformation Effects 0.000 title claims abstract description 21
- 230000008447 perception Effects 0.000 title description 3
- 230000004438 eyesight Effects 0.000 title description 2
- 239000003086 colorant Substances 0.000 claims abstract description 100
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 34
- 239000011159 matrix material Substances 0.000 claims description 22
- 238000013507 mapping Methods 0.000 claims description 16
- 230000007704 transition Effects 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 230000003595 spectral effect Effects 0.000 claims description 10
- 238000010561 standard procedure Methods 0.000 claims description 10
- 230000033228 biological regulation Effects 0.000 claims description 8
- 238000010606 normalization Methods 0.000 claims description 7
- 230000004456 color vision Effects 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 108091035707 Consensus sequence Proteins 0.000 claims 2
- 230000008034 disappearance Effects 0.000 claims 2
- 238000012512 characterization method Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 118
- 230000016776 visual perception Effects 0.000 abstract description 86
- 230000000694 effects Effects 0.000 abstract description 6
- 230000008859 change Effects 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000009499 grossing Methods 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 3
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 241000238097 Callinectes sapidus Species 0.000 description 1
- 108010014173 Factor X Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 235000005811 Viola adunca Nutrition 0.000 description 1
- 240000009038 Viola odorata Species 0.000 description 1
- 235000013487 Viola odorata Nutrition 0.000 description 1
- 235000002254 Viola papilionacea Nutrition 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- SWGJCIMEBVHMTA-UHFFFAOYSA-K trisodium;6-oxido-4-sulfo-5-[(4-sulfonatonaphthalen-1-yl)diazenyl]naphthalene-2-sulfonate Chemical compound [Na+].[Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=C(S([O-])(=O)=O)C2=C1 SWGJCIMEBVHMTA-UHFFFAOYSA-K 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/64—Circuits for processing colour signals
- H04N9/67—Circuits for processing colour signals for matrixing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/64—Circuits for processing colour signals
- H04N9/68—Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Color Image Communication Systems (AREA)
- Image Processing (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
本发明涉及数字图像处理领域,具体地涉及对彩色数字图像进行视觉感知高保真变换的方法及系统。所述方法包括步骤:(1)获得彩色数字图像像素颜色R、G和B数值在CIELAB空间的L、C和h;(2)像素颜色归并进入色相位面和亮度序列;(3)完成像素颜色饱和度C的扩展;(4)将图像像素颜色参数和经步骤(3)扩展后得到的饱和度CLN数值计算为R、G和B值。根据本发明的FECr算法在红、绿和蓝三原色构成的图像颜色空间边界没有改变的条件下,计算图像中视觉较敏感的颜色使之增加相对较多的可见光颜色视觉感知特性,计算视觉感知相对较不敏感的颜色增加较少或维持不变,这种非线性调整方法可以使观看图像得到相对显著接近在可见光颜色空间观看实际景物的效果。
The invention relates to the field of digital image processing, in particular to a method and system for visually perceiving high-fidelity transformation of color digital images. The method comprises the steps of: (1) obtaining the L, C and h of the color digital image pixel color R, G and B values in CIELAB space; (2) merging the pixel color into the hue phase plane and brightness sequence; (3) completing the pixel The expansion of the color saturation C; (4) calculating the image pixel color parameters and the saturation C LN values obtained after the expansion in step (3) as R, G and B values. According to the FECr algorithm of the present invention, under the condition that the image color space boundary composed of red, green and blue primary colors does not change, the visually sensitive color in the calculation image is increased to increase relatively more visible light color visual perception characteristics, and the calculation visual perception is relatively large. The less sensitive color increases less or remains unchanged. This non-linear adjustment method can make the viewed image relatively significantly closer to the effect of viewing the actual scene in the visible light color space.
Description
技术领域 technical field
本发明涉及数字图像处理领域,具体地涉及对彩色数字图像进行视觉感知高保真变换的方法及系统。The invention relates to the field of digital image processing, in particular to a method and system for visually perceiving high-fidelity transformation of color digital images.
背景技术 Background technique
在电子设备中使用红、绿和蓝三原色的数字量采集或显示彩色图像已经有数十年了。尽管其三原色是以使显示图像尽可能忠实于真实景物为目标选择的,但是由于材料、技术和成本等制约,到目前为止观看三原色显示的彩色图像与观看真实景物相比仍有很大差距,其中包括颜色不够饱满,光线感不够鲜明等。The use of digital quantities of the primary colors red, green and blue has been used in electronic devices to capture or display color images for decades. Although the three primary colors are selected to make the display image as faithful as possible to the real scene, due to material, technology and cost constraints, there is still a big gap between viewing the color image displayed by the three primary colors and viewing the real scene so far. These include that the color is not full enough, the light is not bright enough, and so on.
以ICC(International ColorConsortium国际色彩联盟)规范为代表的颜色管理系统,典型使用gamma(灰度系数)指数调整红、绿和蓝三原色数字量以达到增强图像的目的。用户发现,应用gamma指数后虽然可以使图像颜色看起来显得饱满,但是光线感却显得更差,颜色色调也会出现偏差。任何人使用CIE(International Commissionon Lumination国际照明委员会)推荐的色度学方法,都可以定量计算使用gamma指数前后颜色视觉感知分量的变动数量,证明结果与以上实际看到的变化一致。The color management system represented by the ICC (International Color Consortium International Color Consortium) specification typically uses the gamma (gamma factor) index to adjust the digital quantities of the three primary colors of red, green and blue to achieve the purpose of image enhancement. Users found that although the gamma index can make the color of the image look fuller, the sense of light will be worse, and the color tone will also deviate. Anyone using the chromaticity method recommended by CIE (International Commission on Lumination) can quantitatively calculate the number of changes in color visual perception components before and after using the gamma index, and prove that the results are consistent with the changes actually seen above.
经过20多年的发展,CIE推荐的CAM(Color Appearance Model颜色外观模型)现已成为国际推荐标准,在颜色复制领域发挥着重要作用。但是,无论是CIECAM97s还是CIECAM02模型,主要研究和预测的都是外界条件的变化,如基准白色值及亮度值变化等对颜色观察效果的定量影响,模型并未包括人眼视觉感知的空间及时间特性,也没有包括图像的空域及时域特性。目前的CAM应用于数字图像处理是把每一个像素看做相互独立的颜色,因此以其指导的数字图像的复现和复制还不能满足视觉感知真实性高质量的需要。近期相关业界提出构建iCAM(image ColorAppearance Model图像色貌模型),要求模型能够处理视觉感知和彩色图像的空间及时间特性。目前iCAM模型还处于研究的初级阶段,CIE也还未对其进行详细讨论和完整推荐。After more than 20 years of development, the CAM (Color Appearance Model) recommended by CIE has become an international recommended standard and plays an important role in the field of color reproduction. However, whether it is the CIECAM97s or CIECAM02 model, the main research and prediction is the change of external conditions, such as the quantitative impact of the reference white value and brightness value changes on the color observation effect, the model does not include the space and time of human visual perception characteristics, and does not include the spatial and temporal domain characteristics of the image. The current application of CAM to digital image processing regards each pixel as an independent color, so the reproduction and reproduction of digital images guided by it cannot meet the high-quality needs of visual perception authenticity. Recently, related industries have proposed to build iCAM (image Color Appearance Model image color appearance model), which requires the model to be able to deal with visual perception and the spatial and temporal characteristics of color images. At present, the iCAM model is still in the initial stage of research, and CIE has not yet discussed it in detail and fully recommended it.
人眼可见光颜色视觉感知空间特性的量化描述至今未能全部完成,主要原因在于视觉感知颜色量化所需基础数据的不完整性。CIE于1931年推荐CIE1931RGB系统,其所描述的标准色度观察者光谱三刺激值,有史以来首次量化了人类的颜色视觉感知,并因此奠定了现代色度学的基础。但是,这一系统某些固有特性未能在其后的色度学理论研究和技术应用中得以完善。CIE1931RGB系统中光谱三刺激值代表使用红、绿和蓝三原色对等能光谱中各种单色光的匹配数量,由其匹配函数计算的光谱轨迹坐标见图1。图中马蹄形曲线表示光谱轨迹,曲线及下部直线所包括的面积中的颜色曾在很长时间中被误以为包括人类所能看到的全部颜色。三角形内面积表示红、绿和蓝三原色全正值匹配的颜色范围。含有三原色负值的颜色应在三角形以外及曲线以内的面积中。颜色负值的本质为使用红、绿和蓝三原色匹配光谱颜色所存在的差值。负值颜色的物理意义为该非负颜色的相反色,即与该非负颜色相加得到无彩色颜色的颜色即为其相反色。匹配函数存在负值的事实说明,若准确匹配光谱色,需在红、绿和蓝三原色基础上增加以上相反色。The quantitative description of the spatial characteristics of human visual perception of visible light color has not been fully completed so far, mainly due to the incompleteness of the basic data required for the quantification of visual perception of color. CIE recommended the CIE1931RGB system in 1931. The standard chromaticity observer spectral tristimulus value described by it quantified human color visual perception for the first time in history, and thus laid the foundation for modern colorimetry. However, some inherent characteristics of this system failed to be perfected in the subsequent theoretical research and technical application of colorimetry. In the CIE1931RGB system, the spectral tristimulus value represents the matching quantity of various monochromatic lights in the equal energy spectrum using the red, green and blue primary colors. The coordinates of the spectral trajectory calculated by its matching function are shown in Figure 1. The horseshoe-shaped curve in the figure represents the spectral locus, and the colors in the area covered by the curve and the lower straight line have been mistaken for a long time to include all the colors that humans can see. The area inside the triangle represents the color range where all positive values of the red, green and blue primary colors match. Colors with negative values of the primary colors should be in the area outside the triangle and inside the curve. The essence of color negative is to use the red, green and blue primary colors to match the difference between spectral colors. The physical meaning of a negative color is the opposite color of the non-negative color, that is, the color that is added to the non-negative color to obtain an achromatic color is its opposite color. The fact that there is a negative value in the matching function shows that to match the spectral colors accurately, the above-mentioned opposite colors need to be added to the three primary colors of red, green and blue.
因为以双单色及以上多光谱色同时显示的颜色是人类可见颜色的常态,由上推测,CIE1931RGB匹配函数并未包括由红和蓝原色正值组合以及含有绿原色负值的可见光颜色,这部分色相区间的颜色包括蓝紫色、紫色和紫红色,约占人类视觉感知颜色数量的近三分之一,其中应有少部分颜色色品坐标在以上图1的直线以下。如果以可见光颜色视觉感知特性为目标进行颜色高保真仿真复现和复制的研究和应用,这部分匹配函数不应缺少。作为现代色度学基石的配色函数,在CIELAB视觉感知均匀空间中,还无法表现可见光颜色视觉感知空间分布的完整边界,致使人类视觉感知的可见光空间特性的量化描述至今未能全部完成。Because the colors displayed at the same time with double monochrome and above multi-spectral colors are normal for human visible colors, it is speculated from the above that the CIE1931RGB matching function does not include the combination of red and blue primary colors with positive values and the visible light colors with negative values of green primary colors. The colors in some hue intervals include blue-violet, purple and purple-red, which account for nearly one-third of the number of colors perceived by human vision, and a small number of colors should have chromaticity coordinates below the straight line in Figure 1 above. If the research and application of high-fidelity color simulation reproduction and reproduction are carried out with the visual perception characteristics of visible light as the goal, this part of the matching function should not be missing. The color matching function, which is the cornerstone of modern chromaticity, cannot express the complete boundary of the spatial distribution of visible light color visual perception space in CIELAB visual perception uniform space, so that the quantitative description of the visible light spatial characteristics of human visual perception has not been fully completed so far.
发明内容 Contents of the invention
本发明的目的是为彩色数字图像提供进行高保真视觉感知变换的方法。根据本发明的技术方案,通过提供计算可见光颜色的视觉感知空间以及相关分量当量的方法,实现对彩色数字图像视觉感知分量比对可见光颜色视觉感知空间特性进行优化扩展及映射计算,完成图像的高保真视觉感知变换。The purpose of the invention is to provide a method for performing high-fidelity visual perception transformation for color digital images. According to the technical solution of the present invention, by providing a method for calculating the visual perception space of visible light color and the equivalent of related components, the optimization expansion and mapping calculation of the visual perception component ratio of color digital images to the visual perception space characteristics of visible light color are realized, and the high-resolution image is completed. True visual perception transformation.
本发明的再一目的是提供对彩色数字图像进行高保真视觉感知变换的系统。Another object of the present invention is to provide a system for high-fidelity visual perception transformation of color digital images.
本发明的方法以及系统属于“史诗颜色一TM”,(FirstEposColorTM),简称“诗色一TM”,(FECrTM),主要是为显著增强图像高保真感知而调整其每一像素颜色的视觉感知饱和度值,调整量取决于该颜色对应的可见光颜色视觉感知空间色相位面当量颜色边界上亮度序列的饱和度值及颜色自身饱和度值。结果,图像每一像素颜色在增加了视觉感知饱和度的同时维持视觉感知色相和亮度不变,且增加的饱和度幅度,更有利于高保真增强图像视觉感知效果。The method and system of the present invention belong to "Epic Color TM ", (FirstEposColor TM ), referred to as "Poetry Color TM ", (FECr TM ), mainly to adjust the visual perception of each pixel color in order to significantly enhance the high-fidelity perception of images. Perceptual saturation value, the adjustment amount depends on the saturation value of the brightness sequence on the equivalent color boundary of the visible light color visual perception space hue phase plane corresponding to the color and the saturation value of the color itself. As a result, the color of each pixel of the image increases the visual perception saturation while maintaining the same visual perception hue and brightness, and the increased saturation range is more conducive to high-fidelity enhancement of the visual perception effect of the image.
典型彩色数字图像是可见光颜色空间中的真实景物在成像平面的二维投影,因此,图像复现和复制的理想效果应是尽可能接近对真实景物的感知,谓之高保真复现和复制。所以,根据本发明的算法(FECr)包括对可见光颜色空间的视觉感知进行量化表述。根据本发明的方法,对图像固有颜色的视觉感知饱和度相对以上表述的可见光空间特性计算扩展及映射,以图像得到总体相对最多的可见光空间特性为目标计算每一像素增加的饱和度值。A typical color digital image is a two-dimensional projection of the real scene in the visible light color space on the imaging plane. Therefore, the ideal effect of image reproduction and reproduction should be as close as possible to the perception of the real scene, which is called high-fidelity reproduction and reproduction. Therefore, the algorithm (FECr) according to the invention includes a quantitative representation of the visual perception in the visible light color space. According to the method of the present invention, the visual perception saturation of the inherent color of the image is extended and mapped relative to the above-mentioned visible light spatial characteristics, and the saturation value of each pixel is calculated with the goal of obtaining the overall relatively largest visible light spatial characteristics of the image.
典型电子设备和彩色图像颜色视觉感知空间远小于可见光颜色视觉感知空间,因此,如果直接以可见光颜色空间边界为目标调整图像颜色饱和度,在一些色相位面中,将会造成象素颜色饱和度的增量差异悬殊,致使图像劣化。所以,根据本发明的FECr算法在完整描述可见光颜色视觉感知空间的基础上,兼顾设备及图像颜色视觉感知空间饱和度非线性扩展的实际能力,计算出优化的可见光颜色视觉感知空间色相位面颜色当量边界,并以心理物理学方法获取应用效果的统计数据进行校正。因此,根据本发明的方法是获得彩色数字图像高保真复现和复制的有效方法。The color visual perception space of typical electronic devices and color images is much smaller than the visual color perception space of visible light. Therefore, if the image color saturation is adjusted directly with the boundary of the visible light color space as the target, in some hue planes, the pixel color saturation will be caused. The difference in increments is very large, resulting in image degradation. Therefore, according to the FECr algorithm of the present invention, on the basis of a complete description of the visible light color visual perception space, taking into account the actual ability of the device and the nonlinear expansion of the image color visual perception space saturation, the optimized visible light color visual perception space hue phase plane color is calculated Equivalent boundaries, and corrected by psychophysical methods to obtain statistical data of applied effects. Therefore, the method according to the invention is an effective method for obtaining high-fidelity reproduction and reproduction of color digital images.
本发明的方法和系统可用于摄影、摄像、电影、电视、视频游戏等自然景物成像或由计算机生成的由红、绿和蓝三原色合成颜色的任何图像以及相关成像设备。The method and system of the present invention can be used for natural scene imaging such as photography, videography, film, television, video games, or any image synthesized by red, green and blue primary colors generated by a computer, and related imaging equipment.
根据本发明的方法,对彩色数字图像进行视觉感知高保真变换包括以下步骤:According to the method of the present invention, carrying out visual perception high-fidelity transformation to the color digital image comprises the following steps:
(1)获得彩色数字图像像素颜色R、G和B数值在CIELAB空间的L、C和h数值,其中,h为色相角,L为亮度、C为饱和度;(1) Obtain the L, C and h values of the color digital image pixel color R, G and B values in the CIELAB space, wherein, h is the hue angle, L is the brightness, and C is the saturation;
(2)像素颜色归并进入色相位面和亮度序列,(2) The pixel color is merged into the hue plane and brightness sequence,
以色相角h值归并进入相应基准色相位面,以亮度L值归并进入相应亮度序列;Merge into the corresponding reference hue phase plane with the hue angle h value, merge into the corresponding brightness sequence with the brightness L value;
(3)完成像素颜色饱和度C的扩展,(3) Complete the expansion of pixel color saturation C,
(3-1)确定像素颜色饱和度映射拐点CgL:(3-1) Determine pixel color saturation mapping inflection point C gL :
CgL=CmaxL1×XS1 C gL =C maxL1 ×X S1
其中,CmaxL1为设备颜色视觉感知空间中像素颜色归并入色相位面的亮度序列最大饱和度值,XS1为设置的比例系数,典型数值范围0.65-0.95;Among them, C maxL1 is the maximum saturation value of the brightness sequence in which the pixel color is merged into the hue phase plane in the device's color visual perception space, and X S1 is the set proportional coefficient, with a typical value range of 0.65-0.95;
(3-2)计算该亮度序列的饱和度扩展比例BIL:(3-2) Calculate the saturation expansion ratio BI L of the brightness sequence:
BIL=CmaxLd/CmaxL1 BI L =C maxLd /C maxL1
其中,CmaxLd为可见光颜色视觉感知空间中像素颜色相同色相位面颜色当量边界上相同亮度序列的饱和度值;Among them, C maxLd is the saturation value of the same brightness sequence on the color equivalent boundary of the pixel color with the same hue phase plane in the visible light color visual perception space;
(3-3)饱和度扩展比例BIL特性化调控计算,包括:(3-3) Saturation expansion ratio BI L characteristic control calculation, including:
(3-3-1)设置饱和度扩展比例调控系数BIKx,数值范围0.00-1,(3-3-1) Set the saturation expansion ratio control coefficient BI Kx , the value range is 0.00-1,
BILY=BIL×BIKx BI LY = BI L × BI Kx
其中,BIKx允许设置多个分别用于指定条件,BILY为调控后饱和度扩展比例,Among them, BI Kx allows multiple settings to be used for specified conditions, BI LY is the saturation expansion ratio after regulation,
(3-3-2)设置色相位面区间成对边界HDx和HGx,数值范围0°-359°,HDx和HGx允许设置多对分别用于指定条件,(3-3-2) Set the paired boundaries HDx and H Gx of the hue plane interval, the value range is 0°-359°, HDx and H Gx allow multiple pairs to be used for the specified conditions respectively,
颜色h≥HDx和h≤HGx,BILY=BIL×BIK2 Color h≥H Dx and h≤H Gx , BI LY =BI L ×BI K2
其余颜色,BILY=BIL×BIK1 For other colors, BI LY = BI L × BI K1
边界内侧色相位面过渡区设置数值范围0-20,The value range of the hue phase plane transition area inside the boundary is set to 0-20,
(3-3-3)设置饱和度比例阈值CGx,数值范围0.00-1,CGx允许设置多个分别用于指定条件,(3-3-3) Set the saturation ratio threshold C Gx , the value range is 0.00-1, C Gx allows multiple settings for specified conditions,
CGx值以下颜色,BILY=BIL×BIK2 C Gx value below the color, BI LY = BI L × BI K2
CGx值以上颜色,BILY=BIL×BIK1 C Gx value above the color, BI LY = BI L × BI K1
CGx值高端一侧过渡区设置数值范围0.00-0.2,C Gx value high-end side transition area setting value range 0.00-0.2,
(3-4)计算像素颜色饱和度CL扩展后CLN:(3-4) Calculate the pixel color saturation C L after expansion C LN :
CLN=CL×BILY,C LN =C L ×BI LY ,
如CLN大于CgL则计算其映射:If C LN is greater than C gL , calculate its mapping:
CLN=CgL+(CLN-CgL)/(CmaxLd-CgL)×(CmaxL1-CgL);C LN =C gL +(C LN -C gL )/(C maxLd -C gL )×(C maxL1 -C gL );
(4)将图像像素颜色亮度L、色相角h和经步骤(3)扩展后得到的饱和度CLN数值计算为规范R、G和B值。(4) Calculate the image pixel color brightness L, hue angle h, and saturation C LN values obtained after step (3) expansion as standard R, G, and B values.
根据本发明的方法,步骤(1)为获得彩色数字图像像素颜色R、G和B数值在CIELAB空间的L、C和h数值,其中,h为色相角,L为亮度、C为饱和度,可以通过本领域现有的已知方法实现,优选地,根据本发明的具体实施方案,首先执行调用设备视觉感知颜色空间色相位面颜色边界计算模块的步骤,获得必要的3×3矩阵系数。According to the method of the present invention, step (1) is to obtain the L, C and h values of the color digital image pixel colors R, G and B values in CIELAB space, wherein, h is the hue angle, L is brightness, C is saturation, It can be realized by existing known methods in the art. Preferably, according to the specific embodiment of the present invention, the step of invoking the device visual perception color space hue phase plane color boundary calculation module is first performed to obtain the necessary 3×3 matrix coefficients.
根据本发明的对彩色数字图像进行视觉感知高保真变换的系统包括:According to the present invention, the system for visual perception and high-fidelity transformation of color digital images includes:
(1)显示彩色数字图像的设备的颜色视觉感知空间色相位面颜色边界计算模块,包括:(1) The color visual perception space hue phase plane color boundary calculation module of the equipment displaying color digital images, including:
(1-1)设备颜色空间的红、绿和蓝三原色值变换为CIELAB空间L、C和h值计算单元,(1-1) The red, green and blue primary color values of the equipment color space are transformed into CIELAB space L, C and h value calculation units,
(1-2)设备颜色视觉感知空间色相位面颜色边界提取单元,(1-2) Device color visual perception space hue phase plane color boundary extraction unit,
以色相h值四舍五入归并设备颜色进入相应基准色相位面,以L值四舍五入归并进入相应亮度序列,提取色相位面各亮度序列的颜色最大饱和度值CmaxL1,作为该色相位面的颜色边界计算基础数值,The device color is rounded and merged with the hue h value into the corresponding reference hue phase plane, rounded and merged with the L value into the corresponding brightness sequence, and the maximum color saturation value C maxL1 of each brightness sequence of the hue phase plane is extracted as the color boundary calculation of the hue phase plane base value,
(1-3)色相位面颜色边界CmaxL1平滑单元,(1-3) Hue phase plane color boundary C maxL1 smoothing unit,
选择色相位面中最大饱和度值Cmaxh1具有的亮度LCmaxh1到最低亮度L=0的亮度序列区间所对应的颜色边界CmaxL1,以标准线性插值算法计算平滑边界,弥补CmaxL1非平滑递减或填补缺失。计算得到的颜色边界以及由亮度LCmaxh1到L=100的亮度序列区间对应的颜色边界,表示该色相位面的应用颜色边界CmaxL1;Select the color boundary C maxL1 corresponding to the brightness sequence interval from the brightness L Cmaxh1 of the maximum saturation value C maxh1 in the hue phase plane to the lowest brightness L=0, calculate the smooth boundary with a standard linear interpolation algorithm, and make up for the non-smooth decrease or decrease of C maxL1 Fill in the missing. The calculated color boundary and the color boundary corresponding to the luminance sequence interval from luminance L Cmaxh1 to L=100 represent the applied color boundary C maxL1 of the hue phase plane;
(2)可见光颜色视觉感知空间色相位面颜色当量边界CmaxLd计算模块;(2) C maxLd calculation module of the color equivalent boundary C maxLd of the color phase plane of the visible light color visual perception space;
(3)彩色数字图像像素颜色模式正向转换以及归并色相位面和亮度序列模块,包括:(3) Forward conversion of color digital image pixel color mode and merging of hue phase plane and brightness sequence module, including:
(3-1)将彩色数字图像像素颜色RGB值转换为CIELAB空间的L、C和h值的计算单元,其中,h为色相角,L为亮度、C为饱和度,(3-1) The calculation unit that converts color digital image pixel color RGB value into L, C and h value of CIELAB space, wherein, h is hue angle, L is brightness, C is saturation,
(3-2)像素颜色色相位面和亮度序列归并单元,(3-2) pixel color hue phase plane and brightness sequence merging unit,
将图像颜色空间划分为360个基准色相位面,以色相h值四舍五入归并进入相应基准色相位面,将色相位面中亮度L范围划分为101个基准序列,以亮度L值四舍五入归并进入相应亮度序列;Divide the image color space into 360 reference color phase planes, round off the hue h value and enter the corresponding reference color phase plane, divide the brightness L range in the hue phase plane into 101 reference sequences, round up and merge into the corresponding brightness according to the brightness L value sequence;
(4)图像像素颜色饱和度值扩展模块,包括:(4) image pixel color saturation value expansion module, including:
(4-1)像素颜色饱和度扩展比例BIL计算单元:(4-1) Pixel color saturation expansion ratio BI L calculation unit:
BIL=CmaxLd/CmaxL1 BI L =C maxLd /C maxL1
其中,CmaxLd为像素所在亮度序列在可见光色相位面颜色当量边界上的饱和度值,CmaxL1为像素所在亮度序列在设备色相位面颜色边界上的饱和度值,Among them, C maxLd is the saturation value of the brightness sequence of the pixel on the color equivalent boundary of the visible light hue phase plane, and C maxL1 is the saturation value of the brightness sequence of the pixel on the color boundary of the device hue phase plane,
(4-2)饱和度扩展比例BIL特性化调控计算单元,包括:(4-2) Saturation expansion ratio BI L characteristic regulation calculation unit, including:
(4-2-1)设置饱和度扩展比例调控系数BIKx,数值范围0.00-1,(4-2-1) Set the saturation expansion ratio control coefficient BI Kx , the value range is 0.00-1,
BILY=BIL×BIKx BI LY = BI L × BI Kx
其中,BIKx允许设置多个,分别用于指定条件,BILY为调控后饱和度扩展比例,Among them, BI Kx allows multiple settings, which are used to specify conditions respectively, and BI LY is the saturation expansion ratio after regulation,
(4-2-2)设置色相位面区间成对边界HDx和HGx,数值范围0°-359°,HDx和HGx允许设置多对分别用于指定条件:(4-2-2) Set the paired boundaries HDx and H Gx of the hue phase interval, the value range is 0°-359°, HDx and H Gx allow multiple pairs to be used for the specified conditions:
颜色h≥HDx和h≤HGx,BILY=BIL×BIK2 Color h≥H Dx and h≤H Gx , BI LY =BI L ×BI K2
其余颜色,BILY=BIL×BIK1 For other colors, BI LY = BI L × BI K1
边界内侧色相位面过渡区设置数值范围0-20,The value range of the hue phase plane transition area inside the boundary is set to 0-20,
(4-2-3)设置饱和度比例阈值CGx,数值范围0.00-1,CGx允许设置多个分别用于指定条件:(4-2-3) Set the saturation ratio threshold C Gx , the value range is 0.00-1, and C Gx allows multiple settings to be used for the specified conditions:
CGx值以下颜色,BILY=BIL×BIK2 C Gx value below the color, BI LY = BI L × BI K2
CGx值以上颜色,BILY=BIL×BIK1 C Gx value above the color, BI LY = BI L × BI K1
CGx值高端一侧过渡区设置数值范围0.00-0.2,C Gx value high-end side transition area setting value range 0.00-0.2,
(4-3)饱和度映射拐点CgL计算单元:(4-3) Saturation mapping inflection point C gL calculation unit:
CgL=CmaxL1×XS1 C gL =C maxL1 ×X S1
设置比例系数XS1数值范围0.65-0.95,Set the scale factor X S1 value range 0.65-0.95,
(4-4)像素颜色饱和度CL扩展到CLN计算单元:(4-4) The pixel color saturation C L is extended to the C LN calculation unit:
CLN=CL×BILY,C LN =C L ×BI LY ,
判断,如果CLN大于CgL则计算映射:Judgment, if C LN is greater than C gL then calculate the mapping:
CLN=CgL+(CLN-CgL)/(CmaxLd-CgL)×(CmaxL1-CgL);C LN =C gL +(C LN -C gL )/(C maxLd -C gL )×(C maxL1 -C gL );
(5)图像像素颜色模式逆向变换及规范化模块:(5) Image pixel color mode inverse transformation and normalization module:
所述计算包括将图像像素颜色的L、h和经模块(4)扩展得到的饱和度CLN数值计算为规范R、G和B值。The calculation includes calculating the L, h of the image pixel color and the saturation C LN value obtained by the expansion of the module (4) as normative R, G and B values.
根据本发明的优选实施方案,所述系统还包括可见光颜色视觉感知空间色相位面颜色最大饱和度计算模块。According to a preferred embodiment of the present invention, the system further includes a module for calculating the maximum color saturation of the visible light color visual perception space hue phase plane.
作为本发明的优选技术方案,设备视觉感知颜色空间色相位面颜色边界数据库先经由本发明的系统中的设备视觉感知颜色空间色相位面颜色边界计算模块运算完成,计算包括:As a preferred technical solution of the present invention, the device visual perception color space hue phase plane color boundary database is first calculated by the device visual perception color space hue phase plane color boundary calculation module in the system of the present invention, and the calculation includes:
(1-1)设备颜色空间的红、绿和蓝三原色值变换为CIELAB空间L、C和h值的计算,由设备颜色空间的红、绿和蓝三原色值变换为CIELAB空间L、C和h值计算单元执行:(1-1) The red, green and blue primary color values of the device color space are transformed into the calculation of CIELAB space L, C and h values, and the red, green and blue primary color values of the device color space are transformed into CIELAB space L, C and h The value computation unit executes:
使用设备标称的白场和红、绿和蓝三原色相应参数,应用CIE推荐的标准算法,将设备的红、绿和蓝三原色合成的全部颜色,转换为CIEXYZ三刺激值及CIELAB空间L、C和h值,其中包括:Using the equipment's nominal white field and corresponding parameters of red, green and blue primary colors, and applying the standard algorithm recommended by CIE, convert all the colors synthesized by the equipment's red, green and blue primary colors into CIEXYZ tristimulus values and CIELAB space L, C and h values, including:
应用标称sRGB空间RGB三原色色品参数和D65白场参数计算得到RGB三原色最大饱和度的亮度值:The luminance value of the maximum saturation of the RGB three primary colors is calculated by applying the nominal sRGB space RGB three primary color chromaticity parameters and the D65 white point parameter:
Yr,max=0.2126 Yg,max=0.7152 Yb,max=0.0722Y r, max = 0.2126 Y g, max = 0.7152 Y b, max = 0.0722
应用以上计算得到3×3矩阵系数:Apply the above calculation to get the 3×3 matrix coefficients:
非标设备需计算白场和红、绿和蓝三原色最大饱和度时的CIEXYZ三刺激值:For non-standard equipment, it is necessary to calculate the CIEXYZ tristimulus value at the white point and the maximum saturation of the three primary colors of red, green and blue:
使用标准分光光度仪,按照常规规范测量设备白场三刺激值Xw’、Yw’和Zw’,计算白场归一化系数K1:Using a standard spectrophotometer, measure the white field tristimulus values X w ', Y w ', and Z w ' of the equipment according to conventional specifications, and calculate the white field normalization coefficient K 1 :
K1=100/Yw’K 1 =100/Y w '
计算设备白场的CIEXYZ三刺激值:Calculate the CIEXYZ tristimulus value for the white field of the device:
Xw=Xw’×K1 Yw=Yw’×K1 Zw=Zw’×K1 X w =X w '×K 1 Y w =Y w '×K 1 Z w =Z w '×K 1
使用标准分光光度仪,按照常规规范分别测量设备红、绿和蓝三原色最大饱和度条件下的三刺激值,Xr’、Yr’和Zr’,Xg’、Yg’和Zg’,Xb’、Yb’和Zb’。分别计算三原色的CIEXYZ三刺激值:Using a standard spectrophotometer, measure the tristimulus values under the condition of maximum saturation of red, green and blue primary colors, X r ', Y r ' and Z r ', X g ', Y g ' and Z g respectively according to conventional specifications ', Xb ', Yb ' and Zb '. Calculate the CIEXYZ tristimulus values of the three primary colors separately:
Xr,max=Xr’×K1,Yr,max=Yr’×K1,Zr,max=Zr’×K1 X r,max =X r '×K 1 , Y r,max =Y r '×K 1 , Z r,max =Z r '×K 1
Xg,max=Xg’×K1,Yg,max=Yg’×K1,Zg,max=Zg’×K1 X g,max =X g '×K 1 , Y g,max =Y g '×K 1 , Z g,max =Z g '×K 1
Xb,max=Xb’×K1,Yb,max=Yb’×K1,Zb,max=Zb’×K1 X b,max =X b '×K 1 , Y b,max =Y b '×K 1 , Z b,max =Z b '×K 1
用以上计算得到的三原色CIEXYZ三刺激值,替代以上所述标准方法中的3×3矩阵系数,以计算得到的白场CIEXYZ三刺激值替代以上所述设备标称白场CIEXYZ三刺激值,计算CIELAB空间L、C和h数值。Use the CIEXYZ tristimulus values of the three primary colors calculated above to replace the 3×3 matrix coefficients in the above-mentioned standard method, and use the calculated white field CIEXYZ tristimulus values to replace the nominal white field CIEXYZ tristimulus values of the above-mentioned equipment, and calculate CIELAB space L, C and h values.
(1-2)设备视觉感知颜色空间色相位面颜色边界计算,由设备颜色视觉感知空间色相位面颜色边界提取单元执行:(1-2) The calculation of the color boundary of the hue phase plane in the visual perception color space of the device is performed by the color boundary extraction unit of the hue phase plane in the visual perception space of the device:
以0-359整数表示基准色相位面,以色相h值四舍五入归并设备颜色进入相应基准色相位面,并以0-100整数表示基准亮度序列,以L值四舍五入归并进入相应亮度序列,提取色相位面各亮度序列中颜色最大饱和度值CmaxL1,作为该色相位面的颜色边界计算基础;Integers from 0 to 359 represent the reference hue plane, and the hue h value is rounded and merged into the corresponding reference hue phase plane, and an integer from 0 to 100 is used to represent the reference brightness sequence, and the L value is rounded and merged into the corresponding brightness sequence to extract the color phase The maximum color saturation value C maxL1 in each brightness sequence of the plane is used as the basis for calculating the color boundary of the hue phase plane;
(1-3)色相位面颜色边界平滑计算,由色相位面颜色边界CmaxL1平滑单元执行:(1-3) The smoothing calculation of the color boundary of the hue phase plane is performed by the color boundary C maxL1 smoothing unit of the hue phase plane:
提取色相位面中最大饱和度值Cmaxh1具有的亮度LCmaxh1到最低亮度L=0的亮度序列区间所对应的颜色边界,以标准线性插值算法计算平滑边界,弥补原亮度序列的最大饱和度CmaxL1非平滑递减或填补缺失。计算得到的颜色边界CmaxL1以及由亮度LCmaxh1到L=100的亮度序列区间对应的颜色边界CmaxL1,表示该色相位面的应用颜色边界。Extract the color boundary corresponding to the luminance sequence interval from the maximum saturation value C maxh1 in the hue phase plane to the minimum luminance L=0, and calculate the smooth boundary with a standard linear interpolation algorithm to compensate for the maximum saturation C of the original luminance sequence maxL1 non-smooth decrease or missing filling. The calculated color boundary C maxL1 and the color boundary C maxL1 corresponding to the luminance sequence interval from the luminance L Cmaxh1 to L=100 represent the applied color boundary of the hue phase plane.
将以上计算结果存储为数据库,数据以首序色相位面次序亮度序列排序,共36360行。The above calculation results are stored as a database, and the data is sorted by the first sequence of hue, phase, plane, brightness, and a total of 36360 rows.
根据本发明的具体实施方案,随步骤(1)后执行步骤(2):调用可见光的视觉感知颜色空间色相位面颜色当量边界数据库。According to a specific embodiment of the present invention, step (2) is performed after step (1): calling the visual perception color space hue phase plane color equivalent boundary database of visible light.
作为本发明的另一优选技术方案,可见光颜色视觉感知空间色相位面颜色当量边界数据库先经由本发明的系统中的可见光颜色视觉感知空间色相位面颜色最大饱和度计算模块以及可见光颜色视觉感知空间色相位面颜色当量边界计算模块运算完成,计算包括:As another preferred technical solution of the present invention, the visible light color visual perception space hue phase plane color equivalent boundary database first passes through the visible light color visual perception space hue phase plane color maximum saturation calculation module in the system of the present invention and the visible light color visual perception space The calculation module of the color equivalent boundary calculation module of the hue phase plane is completed, and the calculation includes:
(2-1)可见光颜色视觉感知空间色相位面颜色最大饱和度计算,由可见光颜色视觉感知空间色相位面颜色最大饱和度计算模块执行:(2-1) The calculation of the maximum color saturation of the hue phase plane in the visible light color visual perception space is performed by the maximum saturation calculation module of the hue phase plane color in the visible light color visual perception space:
(2-1-1)色相位面38°-317°计算,由色相位面38°-317°计算单元执行:(2-1-1) The calculation of the hue phase plane 38°-317° is performed by the calculation unit of the hue phase plane 38°-317°:
以CIE 1931XYZ标准色度观察者光谱三刺激值中波长380nm至780nm间隔5nm的x、y和z数值,以及计算设备颜色空间应用的白场CIEXYZ三刺激值,以CIE推荐的方法计算L、C和h数值,并以h值四舍五入归并色相位面,取用38°到317°色相间隔内色相位面的L和C数值,线性插值计算其中的空白色相位面的L和C值,以L和C值作为可见光颜色视觉感知空间相应色相位面的最大饱和度Cmaxh2及其亮度LCmach2。Use the x, y and z values of the wavelength 380nm to 780nm interval 5nm in the CIE 1931XYZ standard chromaticity observer spectral tristimulus value, and the white field CIEXYZ tristimulus value of the computer color space application, and calculate L and C with the method recommended by CIE and the value of h, and round and combine the hue phase plane with the h value, take the L and C values of the hue phase plane within the hue interval of 38° to 317°, and linearly interpolate the L and C values of the blank white phase plane, and use L The sum C value is used as the maximum saturation C maxh2 and the brightness L Cmach2 of the corresponding hue phase plane in the visible light color visual perception space.
(2-1-2)色相位面0°-37°及318°-359°计算,由色相位面0°-37°及318°-359°计算单元执行:(2-1-2) The calculation of the hue phase plane 0°-37° and 318°-359° is performed by the calculation unit of the hue phase plane 0°-37° and 318°-359°:
以CIERGB颜色空间红、绿和蓝三原色标准参数以及计算设备颜色空间应用的白场CIEXYZ三刺激值,计算全部红、绿和蓝三原色合成颜色的L、C和h参数,其中包括:Calculate the L, C, and h parameters of all red, green, and blue primary color synthetic colors based on the standard parameters of the red, green, and blue primary colors in the CIERGB color space and the CIEXYZ tristimulus value of the white field applied in the computing device color space, including:
以标称CIERGB空间RGB三原色色品参数以及D65白场参数应用上述步骤(1)中相同方法计算得到3×3矩阵系数:Apply the same method in the above step (1) to calculate the 3×3 matrix coefficients with the nominal CIERGB space RGB three primary color chromaticity parameters and D65 white field parameters:
Xr,max=0.4108 Yr,max=0.1481 Zr,max=0X r, max = 0.4108 Y r, max = 0.1481 Z r, max = 0
Xg,max=0.3210 Yg,max=0.8401 Zg,max=0.0105X g, max = 0.3210 Y g, max = 0.8401 Z g, max = 0.0105
Xb,max=0.2185 Yb,max=0.0118 Zb,max=1.0783X b, max = 0.2185 Y b, max = 0.0118 Z b, max = 1.0783
在归并的色相位面中,选用0°到37°和318°到359°色相位面,并提取其中最大饱和度Cmaxh2及其亮度LCmach2数值。Among the merged hue planes, the hue planes from 0° to 37° and 318° to 359° are selected, and the values of the maximum saturation C maxh2 and the brightness L Cmach2 are extracted.
(2-2)可见光颜色视觉感知空间色相位面颜色当量边界计算,由可见光颜色视觉感知空间色相位面颜色当量边界CmaxLd计算模块执行:(2-2) The calculation of the color equivalent boundary of the hue phase plane in the visible light color visual perception space is performed by the C maxLd calculation module of the color equivalent boundary C maxLd of the hue phase plane in the visible light color visual perception space:
(2-2-1)可见光颜色视觉感知空间与设备颜色视觉感知空间色相位面最大饱和度比值及优化计算,由可见光颜色视觉感知空间与设备颜色视觉感知空间色相位面最大饱和度比值及优化计算单元执行:(2-2-1) The maximum saturation ratio and optimization calculation of the hue phase surface between the visible light color visual perception space and the device color visual perception space, and the maximum saturation ratio and optimization of the hue phase surface between the visible light color visual perception space and the device color visual perception space The computing unit executes:
分别选择0°到359°色相位面,计算可见光颜色空间Cmaxh2与设备颜色空间Cmaxh1的比例值Bmaxh:Select the 0° to 359° hue phase plane respectively, and calculate the ratio value B maxh of the visible light color space C maxh2 to the device color space C maxh1 :
Bmaxh=Cmaxh2/Cmaxh1 B maxh = C maxh2 /C maxh1
设置比例系数FX1和当量系数FX2,其中,FX1数值范围2.50-6.00,FX2数值范围1.50-2.50,计算Bmaxh的规范化当量比例Bmaxd:Set the proportional coefficient F X1 and the equivalent coefficient F X2 , wherein, the value range of F X1 is 2.50-6.00, and the value range of F X2 is 1.50-2.50, and the normalized equivalent ratio B maxd of B maxh is calculated:
Bmaxh值大于FX1的色相位面的规范化计算:The normalized calculation of the hue plane whose B maxh value is greater than F X1 :
Bmaxd=(Bmaxh-FX1)/(比例区间最大比例值-FX1)×0.1+FX2 B maxd =(B maxh -F X1 )/(maximum ratio value of the ratio interval-F X1 )×0.1+F X2
Bmaxh值小于等于FX1大于(FX1-1)的色相位面的规范化计算:The normalized calculation of the hue phase plane whose B maxh value is less than or equal to F X1 and greater than (F X1 -1):
Bmaxd=(Bmaxh-(FX1-1))/(比例区间最大比例值-(FX1-1))×0.05+(FX2-0.05)B maxd =(B maxh -(F X1 -1))/(maximum ratio value of the ratio interval-(F X1 -1))×0.05+(F X2 -0.05)
Bmaxh值小于等于(FX1-1)大于(FX1-1.5)的色相位面的规范化计算:The normalized calculation of the hue plane whose B maxh value is less than or equal to (F X1 -1) and greater than (F X1 -1.5):
Bmaxd=(Bmaxh-(FX1-1.5))/(比例区间最大比例值-(FX1-1.5))×0.05+(FX2-0.1)B maxd =(B maxh -(F X1 -1.5))/(maximum ratio value of the ratio interval-(F X1 -1.5))×0.05+(F X2 -0.1)
Bmaxh值小于等于(FX1-1.5)大于(FX1-2)的色相位面的规范化计算:The normalized calculation of the hue phase plane whose B maxh value is less than or equal to (F X1 -1.5) and greater than (F X1 -2):
Bmaxd=(Bmaxh-(FX1-2))/(比例区间最大比例值-(FX1-2))×0.1+(FX2-0.2)B maxd =(B maxh -(F X1 -2))/(maximum ratio value of the ratio interval-(F X1 -2))×0.1+(F X2 -0.2)
Bmaxh值小于等于(FX1-2)大于(FX1-2.5)的色相位面的规范化计算:The normalized calculation of the hue plane whose B maxh value is less than or equal to (F X1 -2) and greater than (F X1 -2.5):
Bmaxd=(Bmaxh-(FX1-2.5))/(比例区间最大比例值-(FX1-2.5))×0.05+(FX2-0.25)B maxd =(B maxh -(F X1 -2.5))/(maximum ratio value of the ratio interval-(F X1 -2.5))×0.05+(F X2 -0.25)
Bmaxh值等于(FX1-2.5)及以下的色相位面的规范化计算:The normalized calculation of the hue plane whose B maxh value is equal to (F X1 -2.5) and below:
Bmaxd=Bmaxh/比例区间最大比例值×0.05+(FX2-0.3)B maxd =B maxh / the maximum ratio value of the ratio interval×0.05+(F X2 -0.3)
(2-2-2)可见光颜色空间色相位面最大饱和度当量及颜色边界计算,由可见光颜色空间色相位面最大饱和度当量Cmaxhd及颜色当量边界CmaxLd计算单元执行:(2-2-2) The calculation of the maximum saturation equivalent of the hue phase plane of the visible light color space and the color boundary is performed by the calculation unit of the maximum saturation equivalent C maxhd of the hue phase plane of the visible light color space and the color equivalent boundary C maxLd :
色相位面最大饱和度当量Cmaxhd计算:Calculation of the maximum saturation equivalent C maxhd of the hue plane:
Cmaxhd=Cmaxh1×Bmaxd C maxhd = C maxh1 × B maxd
色相位面颜色当量边界计算:Calculation of the color equivalent boundary of the hue plane:
在横坐标为饱和度C、纵坐标为亮度L的笛卡尔坐标平面,以Cmaxh2和LCmaxh2值,标点Dmaxh2,在Dmaxh2到L=100点连线上标示Cmaxhd,其纵坐标值四舍五入的亮度序列值记为LCmaxhd,其坐标点记为Dmaxhd;On the Cartesian coordinate plane where the abscissa is the saturation C and the ordinate is the brightness L, use the values of C maxh2 and L Cmaxh2 to punctuate D maxh2 , and mark C maxhd on the line connecting D maxh2 to L=100, and its ordinate value The rounded brightness sequence value is recorded as L Cmaxhd , and its coordinate point is recorded as D maxhd ;
在坐标平面标示相同色相位面的设备颜色边界,再标示Dmaxhd到L=0点连线,计算其亮度区间中相应亮度序列的最大饱和度值平滑递减的前提下包容设备颜色边界所需的饱和度值Cmaxhd,此部分值及Dmaxhd到L=100点连线上饱和度值Cmaxhd,构成可见光色相位面颜色的当量边界。将以上计算结果存储为数据库,数据以首序色相位面次序亮度序列排序,共36360行。Mark the device color boundary of the same hue phase plane on the coordinate plane, and then mark the line connecting D maxhd to L=0, and calculate the maximum saturation value of the corresponding luminance sequence in its luminance range, which is smoothly decreasing. The saturation value C maxhd , this part of the value and the saturation value C maxhd on the line from D maxhd to L=100 constitute the equivalent boundary of the color of the visible light hue phase plane. The above calculation results are stored as a database, and the data is sorted by the first sequence of hue, phase, plane, brightness, and a total of 36360 rows.
根据本发明的具体实施方式,步骤(3)为彩色数字图像的红、绿和蓝三原色值转换为CIELAB空间L、C和h值并归并入相应色相位面及亮度序列。调用本发明的系统中的彩色数字图像像素颜色模式正向转换以及归并色相位面和亮度序列模块计算:According to a specific embodiment of the present invention, step (3) is that the red, green and blue primary color values of the color digital image are converted into CIELAB space L, C and h values and merged into the corresponding hue phase plane and brightness sequence. Call the forward conversion of the color digital image pixel color mode in the system of the present invention and merge the hue phase plane and brightness sequence module calculation:
(3-1)将彩色数字图像像素颜色RGB值转换为CIELAB空间的L、C和h值的计算,由彩色数字图像像素颜色RGB值转换为CIELAB空间的L、C和h值的计算单元执行:(3-1) The calculation of converting the RGB value of the color digital image pixel color to the L, C and h values of CIELAB space is performed by the calculation unit that converts the pixel color RGB value of the color digital image into the L, C and h value of CIELAB space :
使用显示图像的设备标称或图像本身嵌入的白场和红、绿和蓝三原色相应参数,应用CIE推荐的标准算法,将图像像素的红、绿和蓝三原色合成的颜色,转换为CIEXYZ三刺激值及CIELAB空间L、C和h值,其中包括:Using the nominal image display device or the corresponding parameters of the white field and red, green and blue primary colors embedded in the image itself, the standard algorithm recommended by CIE is used to convert the color synthesized by the red, green and blue primary colors of the image pixels into CIEXYZ tristimulus values and CIELAB space L, C and h values, including:
应用标称sRGB空间RGB三原色色品以及D65白场参数,计算得到RGB三原色最大饱和度的亮度值:Apply the nominal sRGB space RGB primary color chromaticity and D65 white field parameters to calculate the brightness value of the maximum saturation of the RGB primary colors:
Yr,max=0.2126 Yg,max=0.7152 Yb,max=0.0722Y r, max = 0.2126 Y g, max = 0.7152 Y b, max = 0.0722
应用以上值计算得到3×3矩阵系数:Applying the above values calculates the 3×3 matrix coefficients:
非标设备上显示图像须计算设备白场和红、绿和蓝三原色最大饱和度的CIEXYZ三刺激值:To display an image on a non-standard device, it is necessary to calculate the CIEXYZ tristimulus value of the white point of the device and the maximum saturation of the three primary colors of red, green and blue:
使用标准分光光度仪,按照常规规范测量设备白场三刺激值Xw’、Yw’和Zw’,计算白场归一化系数K1:Using a standard spectrophotometer, measure the white field tristimulus values X w ', Y w ', and Z w ' of the equipment according to conventional specifications, and calculate the white field normalization coefficient K 1 :
K1=100/Yw’K 1 =100/Y w '
计算设备白场的CIEXYZ三刺激值:Calculate the CIEXYZ tristimulus value for the white field of the device:
Xw=Xw’×K1,Yw=Yw’×K1,Zw=Zw’×K1 X w =X w '×K 1 , Y w =Y w '×K 1 , Z w =Z w '×K 1
使用标准分光光度仪,按照常规规范分别测量设备红、绿和蓝三原色最大饱和度条件下的三刺激值,Xr’、Yr’和Zr’,Xg’、Yg’和Zg’,Xb’、Yb’和Zb’分别计算三原色的CIEXYZ三刺激值:Using a standard spectrophotometer, measure the tristimulus values under the condition of maximum saturation of red, green and blue primary colors, X r ', Y r ' and Z r ', X g ', Y g ' and Z g respectively according to conventional specifications ', X b ', Y b ' and Z b ' respectively calculate the CIEXYZ tristimulus values of the three primary colors:
Xr,max=Xr’×K1,Yr,max=Yr’×K1,Zr,max=Zr’×K1 X r,max =X r '×K 1 , Y r,max =Y r '×K 1 , Z r,max =Z r '×K 1
Xg,max=Xg’×K1,Yg,max=Yg’×K1,Zg,max=Zg’×K1 X g,max =X g '×K 1 , Y g,max =Y g '×K 1 , Z g,max =Z g '×K 1
Xb,max=Xb’×K1,Yb,max=Yb’×K1,Zb,max=Zb’×K1 X b,max =X b '×K 1 , Y b,max =Y b '×K 1 , Z b,max =Z b '×K 1
用以上计算得到的三原色CIEXYZ三刺激值,替代以上所述标准方法中的3×3矩阵系数,以计算得到的白场CIEXYZ三刺激值替代以上所述设备标称白场CIEXYZ三刺激值,计算CIELAB空间L、C和h数值。Use the CIEXYZ tristimulus values of the three primary colors calculated above to replace the 3×3 matrix coefficients in the above-mentioned standard method, and use the calculated white field CIEXYZ tristimulus values to replace the nominal white field CIEXYZ tristimulus values of the above-mentioned equipment, and calculate CIELAB space L, C and h values.
(3-2)像素颜色色相位面和亮度序列归并计算,由像素颜色色相位面和亮度序列归并单元执行:(3-2) The merging calculation of the pixel color hue phase plane and the luminance sequence is performed by the pixel color hue phase plane and the luminance sequence merging unit:
将图像颜色空间划分为0-359共360个基准色相位面,以图像像素颜色色相h值四舍五入归并入相应基准色相位面,将色相位面中亮度L范围划分为0-100共101个基准序列,以颜色亮度L值四舍五入归并入相应亮度序列,使像素颜色参数可用整数色相h,整数亮度L和含有四位小数的饱和度C表示,达成饱和度扩展的计算条件之一。Divide the image color space into a total of 360 reference color phase planes from 0 to 359, round up and merge them into the corresponding reference color phase planes based on the h value of the image pixel color hue, and divide the brightness L range in the hue phase plane into 101 reference planes from 0 to 100 in total Sequence, the value of color brightness L is rounded and merged into the corresponding brightness sequence, so that the pixel color parameters can be represented by integer hue h, integer brightness L and saturation C with four decimal places, which is one of the calculation conditions for saturation expansion.
根据本发明的具体实施方式,步骤(4)为计算图像像素颜色饱和度扩展。调用本发明的系统中的图像像素颜色饱和度值扩展模块,计算包括:According to a specific embodiment of the present invention, step (4) is to calculate the image pixel color saturation extension. Call the image pixel color saturation value expansion module in the system of the present invention, and calculate and comprise:
(4-1)计算像素颜色饱和度映射拐点CgL,由饱和度映射拐点CgL计算单元执行:(4-1) Calculate the pixel color saturation mapping inflection point C gL , which is executed by the saturation mapping inflection point C gL calculation unit:
CgL=CmaxL1*XS1 C gL =C maxL1 *X S1
CmaxL1为以像素色相位面和亮度序列整数值在设备视觉感知颜色空间色相位面数据库检索调用的最大饱和度值,XS1为根据需要设置的拐点函数,数值范围0.65-0.95,典型为0.8-0.9;C maxL1 is the maximum saturation value retrieved and called from the hue phase plane database of the device's visual perception color space with the integer value of the pixel hue phase plane and brightness sequence. X S1 is the inflection point function set according to the needs, and the value range is 0.65-0.95, typically 0.8 -0.9;
(4-2)计算像素颜色饱和度扩展比例BIL,由像素颜色饱和度扩展比例BIL计算单元执行:(4-2) Calculate the pixel color saturation expansion ratio BI L , which is executed by the pixel color saturation expansion ratio BI L calculation unit:
BIL=CmaxLd/CmaxL1 BI L =C maxLd /C maxL1
CmaxLd为以像素色相位面和亮度序列整数值在可见光视觉感知颜色空间色相位面颜色当量边界数据库检索调用的当量饱和度值;C maxLd is the equivalent saturation value retrieved and called from the hue phase plane color equivalent boundary database of the visible light visual perception color space with the integer value of the pixel hue phase plane and brightness sequence;
允许调用本发明的系统中的多种饱和度扩展比例调控子模块:It is allowed to call multiple saturation expansion ratio control submodules in the system of the present invention:
(4-2-1)设置饱和度扩展比例调控的子模块:(4-2-1) Set the sub-module of saturation expansion ratio control:
所述计算包括设置多个饱和度扩展比例调控系数BIKx,数值范围0.00-1,以BILY=BIKx×BIL作为像素实际应用的饱和度扩展比例,典型,人物图像BIK2典型为0.10-0.40,风景图像BIK1典型为0.40-0.90;The calculation includes setting a plurality of saturation expansion ratio adjustment coefficients BI Kx , with a value range of 0.00-1, taking BI LY = BI Kx × BI L as the saturation expansion ratio for actual pixel application, typically, the BI K2 of a character image is typically 0.10 -0.40, landscape image BI K1 is typically 0.40-0.90;
(4-2-2)设置色相位面区间边界的子模块:(4-2-2) Set the sub-module of the boundary of the hue plane interval:
所述计算包括设置多组色相位面区间,色相区间边界HDx和HGx,数值范围0°-359°,对指定色相区间内颜色使用与区间外不同的饱和度扩展比例BILY,人物图像典型色相区间HD1=340°和HG1=100°,此色相区间内,BILY=BIK2×BIL;此色相区间以外,BILY=BIK1×BIL。在色相区间边界内侧设过渡色相间隔,控制指定色相区间内外饱和度扩展比例平滑改变,过渡区数值范围0-20;The calculation includes setting multiple sets of hue plane intervals, hue interval boundaries H Dx and H Gx , the value range is 0°-359°, using a different saturation expansion ratio BI LY for colors in the specified hue interval than those outside the interval, and character images Typical hue intervals HD1 = 340° and H G1 = 100°, within this hue interval, BI LY =BI K2 ×BI L ; outside this hue interval, BI LY =BI K1 ×BI L . Set a transitional hue interval inside the boundary of the hue interval to control the smooth change of the saturation expansion ratio inside and outside the specified hue interval. The value range of the transition area is 0-20;
(4-2-3)设置饱和度比例阈值的子模块:(4-2-3) Set the sub-module of the saturation ratio threshold:
所述计算包括设置饱和度比例值作为阈值CGx,数值范围0.00-1,阈值作为同一亮度序列中颜色使用不同饱和度扩展比例的饱和度比值分界,典型,人物图像设置CGx典型为0.50-0.75,阈值以下颜色,BILY=BIK2×BIL,阈值以上颜色,BILY=BIK1×BIL。阈值以上一侧设过渡区,调控饱和度扩展比例平滑改变,过渡区数值范围0.00-0.2;The calculation includes setting the saturation ratio value as the threshold value C Gx , the numerical range is 0.00-1, and the threshold value is used as the saturation ratio boundary of colors using different saturation expansion ratios in the same brightness sequence. Typically, the character image setting C Gx is typically 0.50- 0.75, the color below the threshold, BI LY =BI K2 ×BI L , the color above the threshold, BI LY =BI K1 ×BI L . A transition zone is set on the side above the threshold to control the saturation expansion ratio to change smoothly, and the value range of the transition zone is 0.00-0.2;
(4-3)计算像素颜色饱和度CL扩展,由像素颜色饱和度CL扩展到CLN计算单元执行:(4-3) Calculation of pixel color saturation CL extension, from pixel color saturation CL expansion to C LN calculation unit execution:
CLN=CL*BILY,C LN =C L *BI LY ,
BILY受到上述三种饱和度扩展比例调控设置的调控,计算结果CLN如果大于CgL则计算映射:BI LY is regulated by the above three saturation expansion ratio control settings. If the calculation result C LN is greater than C gL , the mapping is calculated:
CLN=CgL+(CLN-CgL)/(CmaxLd-CgL)*(CmaxL1-CgL)C LN =C gL +(C LN -C gL )/(C maxLd -C gL )*(C maxL1 -C gL )
根据本发明的具体实施方式,步骤(5)为将图像像素颜色L、h、和饱和度CLN数值计算为规范R、G和B值。根据本发明的优选技术方案,调用本发明的系统中的图像像素颜色模式逆向变换及规范化模块,计算包括:According to a specific embodiment of the present invention, step (5) is to calculate the values of image pixel colors L, h, and saturation C LN as normative R, G, and B values. According to the preferred technical solution of the present invention, calling the image pixel color mode inverse transformation and standardization module in the system of the present invention, the calculation includes:
使用CIE推荐的标准方法,以图像像素颜色计算得到且未改变的的亮度L、色相角h值以及经计算扩展后得到的CLN值计算为设备的红、绿和蓝三原色值。此算法为以上步骤(3)的逆运算,由像素颜色CIELAB参数计算CIEXYZ三刺激值所需白场CIEXYZ三刺激值与正向计算相同,由像素颜色CIEXYZ三刺激值计算RGB值所需3×3矩阵系数由以上步骤(3)所用矩阵3×3系数求逆获得:Using the standard method recommended by CIE, the calculated and unchanged luminance L, hue angle h value, and C LN value obtained after calculation and expansion are calculated as the red, green and blue primary color values of the device. This algorithm is the inverse operation of the above step (3). The white field CIEXYZ tristimulus value required to calculate the CIEXYZ tristimulus value from the pixel color CIELAB parameter is the same as the forward calculation, and 3× is required to calculate the RGB value from the pixel color CIEXYZ tristimulus value. The 3 matrix coefficients are obtained by inverting the
分别对计算得到的R、G和B值取整,并对大于255的数值规范化为255,对小于0的数值规范化为0。The calculated R, G, and B values are respectively rounded, and values greater than 255 are normalized to 255, and values less than 0 are normalized to 0.
典型由红、绿和蓝三原色合成颜色的数字图像,以风景图像为例,根据本发明的FECr算法调整每一像素颜色的视觉感知饱和度参数后,与图像原始饱和度数值比较,可以看到FECr算法调整后颜色饱和度值增加幅度平均约为52%,图像约50%的像素饱和度增加了70%,30%的像素增加70-30%,10%的像素增加30-10%,10%的像素增加10-0%。调整前后的像素颜色饱和度值相对其所归并的色相位面亮度序列最大饱和度值的比例之间的关系,表现出饱和度实际增量的非线性。A typical digital image composed of three primary colors of red, green and blue, taking a landscape image as an example, after adjusting the visual perception saturation parameter of each pixel color according to the FECr algorithm of the present invention, compared with the original saturation value of the image, it can be seen that After the FECr algorithm is adjusted, the color saturation value increases by an average of about 52%, and the saturation of about 50% of the pixels in the image increases by 70%, 30% of the pixels increases by 70-30%, 10% of the pixels increases by 30-10%, 10% % pixels increased by 10-0%. The relationship between the ratio of the pixel color saturation value before and after adjustment to the maximum saturation value of the merged hue phase brightness sequence shows the non-linearity of the actual increment of saturation.
根据本发明的FECr算法,在显示图像的设备颜色空间边界没有扩大的条件下,计算图像中视觉较敏感的颜色使之增加相对较多的可见光颜色视觉感知特性,计算相对较不敏感的颜色增加较少或维持不变,这种非线性增强方法可以使观看图像得到相对显著接近在可见光颜色空间观看实际景物的效果。According to the FECr algorithm of the present invention, under the condition that the color space boundary of the device displaying the image is not expanded, the more visually sensitive colors in the image are calculated to increase the visual perception characteristics of relatively more visible light colors, and the relatively less sensitive colors are calculated to increase less or remain unchanged, this non-linear enhancement method can make viewing images relatively significantly closer to viewing the actual scene in the visible light color space.
附图说明 Description of drawings
图1以CIE1931XYZ系统光谱三刺激值计算和在CIE xyY空间xy坐标平面标示的等能光谱轨迹,横坐标x,纵坐标y。Figure 1 is the isoenergetic spectrum trajectory calculated by the spectral tristimulus values of the CIE1931XYZ system and marked on the xy coordinate plane of the CIE xyY space, the abscissa is x, and the ordinate is y.
图2-1根据本发明的具体实施例的对彩色数字图像进行视觉感知高保真变换的方法的流程图,说明了设备颜色视觉感知空间色相位面颜色边界计算流程;Fig. 2-1 is a flowchart of a method for visually perceptual high-fidelity transformation of a color digital image according to a specific embodiment of the present invention, illustrating the calculation process of the color boundary of the device's visual perception space, hue phase plane;
图2-2根据本发明的具体实施例的对彩色数字图像进行视觉感知高保真变换的方法的流程图,说明了可见光颜色视觉感知空间色相位面颜色当量边界计算流程;Fig. 2-2 is a flow chart of a method for visually perceptual high-fidelity transformation of a color digital image according to a specific embodiment of the present invention, illustrating the calculation process of the color equivalent boundary of the visible light color visually perceptual space hue phase plane;
图2-3根据本发明的具体实施例的对彩色数字图像进行视觉感知高保真变换的方法的流程图,说明了彩色数字图像像素颜色高保真视觉感知变换计算流程。2-3 are flow charts of a method for performing high-fidelity visual perception transformation on a color digital image according to a specific embodiment of the present invention, illustrating the high-fidelity visual perception transformation calculation process of the pixel color of a color digital image.
图3图中红圈显示非标设备颜色视觉感知空间示例色相位面全部归并颜色坐标,中部灰线表示归并亮度序列算法,下部灰线表示以线性插值纠正相应亮度序列最大饱和度CmaxL1的非平滑递减及弥补缺失计算结果,横坐标饱和度C,纵坐标亮度L。The red circle in Figure 3 shows an example of the color visual perception space of non-standard equipment. The color coordinates of the hue and phase planes are all merged. The gray line in the middle represents the algorithm for merging brightness sequences . Smoothly decrease and make up for missing calculation results, saturation C on the abscissa, brightness L on the ordinate.
图4显示颜色视觉感知空间色相位面的相关颜色边界,横坐标饱和度C,纵坐标亮度L,例举h=110°色相位面,其中,蓝点表示设备最大饱和度Cmaxh1,蓝线表示颜色边界CmaxL1,黑圈红点表示可见光颜色最大饱和度当量Cmaxhd,黑虚线表示当量颜色边界CmaxLd,红点表示可见光颜色最大饱和度Cmaxh2,红线表其示意边界。Figure 4 shows the relevant color boundaries of the hue phase plane in the color visual perception space, the abscissa is saturation C, and the ordinate is lightness L, for example h=110° hue phase plane, where the blue point represents the maximum saturation C maxh1 of the device, and the blue line Indicates the color boundary C maxL1 , the red dot in the black circle indicates the maximum saturation equivalent of visible light color C maxhd , the black dotted line indicates the equivalent color boundary C maxLd , the red dot indicates the maximum saturation C maxh2 of visible light color, and the red line indicates its schematic boundary.
图5显示计算像素颜色视觉感知饱和度扩展算法,图中CL点表示像素颜色坐标,CgL点表示饱和度映射拐点,红线表示颜色归并的亮度序列,其余与图4相同。Figure 5 shows the algorithm for calculating the saturation extension of pixel color visual perception. In the figure, the C L point represents the pixel color coordinate, the C gL point represents the saturation mapping inflection point, and the red line represents the luminance sequence of color merging, and the rest are the same as in Fig. 4 .
图6和图7显示经本发明的方法处理前和处理后的图像,彩色图像的右边为原图,左边为FECr算法计算饱和度C扩展后图像。Figure 6 and Figure 7 show the images before and after processing by the method of the present invention, the right side of the color image is the original image, and the left side is the image after the FECr algorithm calculates the saturation C and expands.
图8-1使用FECr算法计算机程序的典型系统流程。Figure 8-1 Typical system flow using the FECr algorithm computer program.
图8-2使用FECr算法IP的电视机典型系统流程。Figure 8-2 Typical system flow of TV using FECr algorithm IP.
图8-3使用FECr算法ASIC的电视机典型系统流程。Figure 8-3 Typical system flow of TV using FECr algorithm ASIC.
图8-4使用FECr算法ASIC的电子设备典型系统流程。Figure 8-4 Typical system flow of electronic equipment using FECr algorithm ASIC.
具体实施方式 Detailed ways
实施例1Example 1
实施本发明的彩色数字图像像素颜色视觉感知高保真变换流程。Implement the high-fidelity conversion process of color digital image pixel color visual perception of the present invention.
(1)计算设备颜色视觉感知空间色相位面颜色边界数据库。(1) Computing the device color visual perception space hue phase plane color boundary database.
数据库经由本发明的系统中的设备颜色视觉感知空间色相位面颜色边界计算模块运算完成,计算包括:The database is completed through the calculation module of the device color visual perception space hue phase plane color boundary calculation module in the system of the present invention, and the calculation includes:
(1-1)将设备颜色空间的红、绿和蓝三原色值变换为CIELAB空间L、C和h值的计算,由设备颜色空间红、绿和蓝三原色值变换为CIELAB空间L、C和h值计算单元执行:(1-1) Transform the red, green and blue primary color values of the device color space into the calculation of CIELAB space L, C and h values, and transform the red, green and blue primary color values of the device color space into CIELAB space L, C and h The value computation unit executes:
具有图像显示功能的电子设备典型为sRGB颜色空间和D65白场,sRGB空间RGB三原色色品查阅:Electronic equipment with image display function is typically sRGB color space and D65 white field, sRGB space RGB three primary color chromaticity check:
xr,max=0.64 yr,max=0.33,xg,max=0.30 yg,max=0.60,xb,max=0.15 yb,max=0.06x r, max = 0.64 y r, max = 0.33, x g, max = 0.30 y g, max = 0.60, x b, max = 0.15 y b, max = 0.06
D65白场CIEXYZ三刺激值查阅:D65 white field CIEXYZ tristimulus value lookup:
Xw=0.950456 Yw=1 Zw=1.089058X w =0.950456 Y w =1 Z w =1.089058
由以上参数计算颜色变换所需3×3矩阵系数:Calculate the 3×3 matrix coefficients required for color transformation from the above parameters:
利用设备白场三原色的RGB值和CIEXYZ三刺激值以及正向变换公式:Use the RGB values of the three primary colors of the device's white field and the CIEXYZ tristimulus values and the forward transformation formula:
将3×3矩阵系数表示为三原色色品值与亮度值的乘积形式:Express the 3×3 matrix coefficients as the product of the chromaticity value of the three primary colors and the brightness value:
由以上方程计算得到RGB三原色最大饱和度的亮度值:The brightness value of the maximum saturation of the RGB three primary colors is calculated by the above equation:
Yr,max=0.2126 Yg,max=0.7152 Yb,max=0.0722Y r, max = 0.2126 Y g, max = 0.7152 Y b, max = 0.0722
应用以上值计算得到矩阵3×3系数:Apply the above values to calculate the
应用以上矩阵系数计算设备颜色RGB值到CIEXYZ空间X、Y和Z值的变换,再应用D65白场三刺激值计算颜色XYZ值到CIELAB空间L、C和h值变换。Apply the above matrix coefficients to calculate the conversion of the device color RGB values to CIEXYZ space X, Y and Z values, and then apply the D65 white field tristimulus value to calculate the conversion of color XYZ values to CIELAB space L, C and h values.
典型设备由红、绿和蓝三原色每种8位合成颜色,即23×8共16777216种颜色标量,依次由以上计算完成变换。A typical device is composed of 8 bits of each of the three primary colors of red, green and blue, that is, 2 3 × 8, a total of 16777216 color scalars, which are transformed by the above calculations in turn.
非标设备计算白场和红、绿和蓝三原色最大饱和度时的CIEXYZ三刺激值:Non-standard equipment calculates the CIEXYZ tristimulus value of the white point and the maximum saturation of the three primary colors of red, green and blue:
使用标准分光光度仪,按照常规规范测量设备白场三刺激值Xw’、Yw’和Zw’,计算白场归一化系数K1:Using a standard spectrophotometer, measure the white field tristimulus values X w ', Y w ', and Z w ' of the equipment according to conventional specifications, and calculate the white field normalization coefficient K 1 :
K1=100/Yw’K 1 =100/Y w '
计算设备白场的CIEXYZ三刺激值:Calculate the CIEXYZ tristimulus value for the white field of the device:
Xw=Xw’×K1,Yw=Yw’×K1,Zw=Zw’×K1 X w =X w '×K 1 , Y w =Y w '×K 1 , Z w =Z w '×K 1
使用标准分光光度仪,按照常规规范分别测量设备红、绿和蓝三原色最大饱和度条件下的三刺激值,Xr’、Yr’和Zr’,Xg’、Yg’和Zg’,Xb’、Yb’和Zb’,再分别计算三原色的CIEXYZ三刺激值:Using a standard spectrophotometer, measure the tristimulus values under the condition of maximum saturation of red, green and blue primary colors, X r ', Y r ' and Z r ', X g ', Y g ' and Z g respectively according to conventional specifications ', X b ', Y b ' and Z b ', and then calculate the CIEXYZ tristimulus values of the three primary colors:
Xr,max=Xr’×K1,Yr,max=Yr’×K1,Zr,max=Zr’×K1 X r,max =X r '×K 1 , Y r,max =Y r '×K 1 , Z r,max =Z r '×K 1
Xg,max=Xg’×K1,Yg,max=Yg’×K1,Zg,max=Zg’×K1 X g,max =X g '×K 1 , Y g,max =Y g '×K 1 , Z g,max =Z g '×K 1
Xb,max=Xb’×K1,Yb,max=Yb’×K1,Zb,max=Zb’×K1 X b,max =X b '×K 1 , Y b,max =Y b '×K 1 , Z b,max =Z b '×K 1
用以上计算得到的三原色最大饱和度时CIEXYZ三刺激值,替代以上所述标准方法中的3×3矩阵系数,以计算得到的白场CIEXYZ三刺激值替代以上所述设备标称白场CIEXYZ三刺激值,应用以上所述标准方法,依次将共16777216种颜色的R、G和B数值变换为CIELAB空间L、C和h数值。Use the above-calculated CIEXYZ tristimulus values at the maximum saturation of the three primary colors to replace the 3×3 matrix coefficients in the above-mentioned standard method, and use the calculated white-field CIEXYZ tri-stimulus values to replace the above-mentioned equipment nominal white-field CIEXYZ three Stimulus values, using the standard method described above, sequentially transform the R, G, and B values of a total of 16,777,216 colors into CIELAB space L, C, and h values.
(1-2)设备颜色视觉感知空间色相位面颜色边界的计算,由设备颜色视觉感知空间色相位面颜色边界提取单元执行。(1-2) The calculation of the color boundary of the hue phase plane in the device color visual perception space is performed by the color boundary extraction unit of the hue phase plane in the device color visual perception space.
以0-359整数表示基准色相位面,以色相h值四舍五入归并设备颜色进入相应基准色相位面,以0-100整数表示基准亮度序列,以L值四舍五入归并颜色进入相应亮度序列。提取色相位面各亮度序列中最大饱和度值CmaxL1,作为该色相位面的颜色边界计算基础。Integers from 0 to 359 are used to represent the reference hue plane, the hue h value is used to round up and merge the device colors into the corresponding reference hue phase plane, integers from 0 to 100 are used to represent the reference brightness sequence, and the L value is used to round and merge the colors into the corresponding brightness sequence. The maximum saturation value C maxL1 in each brightness sequence of the hue phase plane is extracted as the basis for calculating the color boundary of the hue phase plane.
(1-3)色相位面颜色边界平滑计算,由色相位面颜色边界CmaxL1平滑单元执行:(1-3) The smoothing calculation of the color boundary of the hue phase plane is performed by the color boundary C maxL1 smoothing unit of the hue phase plane:
提取色相位面中最大饱和度值Cmaxh1具有的亮度LCmaxh1到最低亮度L=0的亮度序列区间所对应的颜色边界,以标准线性插值算法计算平滑边界,修整原亮度序列的最大饱和度CmaxL1非平滑递减或填补缺失。计算得到的此部分颜色边界CmaxL1连同由亮度LCmaxh1到L=100的亮度序列区间对应的颜色边界CmaxL1,表示该色相位面的最终应用颜色边界。Extract the color boundary corresponding to the brightness sequence range from the brightness L Cmaxh1 to the lowest brightness L=0 of the maximum saturation value C maxh1 in the hue phase plane, calculate the smooth boundary with a standard linear interpolation algorithm, and trim the maximum saturation C of the original brightness sequence maxL1 non-smooth decrement or missing filling. The calculated color boundary C maxL1 of this part, together with the color boundary C maxL1 corresponding to the luminance sequence interval from luminance L Cmaxh1 to L=100, represent the final applied color boundary of the hue phase plane.
以上算法中所称的平滑,即颜色亮度序列由高到低排列,其饱和度CmaxL1小于以上序列且大于以下所有序列。饱和度小于计算值则用计算值,大于计算值则不变。The so-called smoothness in the above algorithm means that the color brightness sequence is arranged from high to low, and its saturation C maxL1 is smaller than the above sequence and greater than all the following sequences. If the saturation is less than the calculated value, the calculated value is used, and if it is greater than the calculated value, it remains unchanged.
将以上计算结果存储为数据库。数据按照首序色相位面h次序亮度序列L排序,共36360行。以上步骤(1)计算流程如图2-1所示。Store the above calculation results as a database. The data is sorted according to the first order of hue phase plane h order of brightness order L, a total of 36360 lines. The calculation process of the above step (1) is shown in Figure 2-1.
(2)计算可见光颜色视觉感知空间色相位面颜色当量边界数据库。(2) Calculate the color equivalent boundary database of the hue phase plane color visual perception space of visible light color.
可见光颜色视觉感知空间色相位面颜色当量边界数据库经由本发明的系统中的可见光颜色视觉感知空间色相位面颜色最大饱和度计算模块以及可见光颜色视觉感知空间色相位面颜色当量边界计算模块运算完成,计算包括:The visible light color visual perception space hue phase plane color equivalent boundary database is completed through the calculation module of the visible light color visual perception space hue phase plane color maximum saturation calculation module and the visible light color visual perception space hue phase plane color equivalent boundary calculation module in the system of the present invention, Calculations include:
(2-1)可见光颜色视觉感知空间色相位面颜色最大饱和度计算,(2-1) Calculation of the maximum color saturation of the color phase plane in the visible light color visual perception space,
(2-1-1)色相位面38°-317°计算,由色相位面38°-317°计算单元执行:(2-1-1) The calculation of the hue phase plane 38°-317° is performed by the calculation unit of the hue phase plane 38°-317°:
以CIE 1931XYZ标准色度观察者光谱三刺激值中波长380nm至780nm间隔5nm的x、y和z数值,以及D65白场CIEXYZ三刺激值,以CIE推荐的方法计算CIELAB空间L、C和h数值,并以h值四舍五入归并色相位面,取用38°到317°色相间隔内色相位面的L和C数值,并线性插值计算其中的空白色相位面的L和C值,以L和C值作为可见光颜色视觉感知空间相应色相位面的最大饱和度Cmaxh2及其亮度LCmach2。Calculate the values of L, C and h in CIELAB space with the method recommended by CIE by using the x, y and z values of the wavelength 380nm to 780nm interval of 5nm in the CIE 1931XYZ standard chromaticity observer spectral tristimulus value, and the D65 white field CIEXYZ tristimulus value , and the hue plane is rounded and merged with the h value, and the L and C values of the hue phase plane within the hue interval of 38° to 317° are taken, and the L and C values of the blank white phase plane are calculated linearly, and the L and C values are used The value is taken as the maximum saturation C maxh2 and its brightness L Cmach2 of the corresponding hue phase plane in the visible light color visual perception space.
(2-1-2)色相位面0°-37°及318°-359°计算,由色相位面0°-37°及318°-359°计算单元执行:(2-1-2) The calculation of the hue phase plane 0°-37° and 318°-359° is performed by the calculation unit of the hue phase plane 0°-37° and 318°-359°:
应用CIERGB空间RGB三原色色品参数:Apply CIERGB space RGB primary color chromaticity parameters:
xr,max=0.735 Yr,max=0.265,xg,max=0.274 Yg,max=0.717,xb,max=0.167 Yb,max=0.009x r, max = 0.735 Y r, max = 0.265, x g, max = 0.274 Y g, max = 0.717, x b, max = 0.167 Y b, max = 0.009
以及D65白场参数,以步骤(1)中相同方法计算得到3×3矩阵系数:As well as the D65 white field parameters, the 3×3 matrix coefficients are obtained by calculating the same method in step (1):
Xr,max=0.4108 Yr,max=0.1481 Zr,max=0X r, max = 0.4108 Y r, max = 0.1481 Z r, max = 0
Xg,max=0.3210 Yg,max=0.8401 Zg,max=0.0105X g, max = 0.3210 Y g, max = 0.8401 Z g, max = 0.0105
Xb,max=0.2185 Yb,max=0.0118 Zb,max=1.0783X b, max = 0.2185 Y b, max = 0.0118 Z b, max = 1.0783
以上述矩阵系数以及D65白场CIEXYZ三刺激值,计算CIERGB空间红、绿和蓝三原色合成的全部颜色的L、C和h参数,在归并的色相位面中,选用0°到37°和318°到359°色相位面,并提取其中最大饱和度Cmaxh2及其亮度LCmach2数值。Calculate the L, C and h parameters of all colors synthesized by the three primary colors of red, green and blue in CIERGB space with the above matrix coefficients and D65 white field CIEXYZ tristimulus value. In the merged hue plane, select 0° to 37° and 318 ° to 359° hue phase plane, and extract the maximum saturation C maxh2 and its brightness L Cmach2 value.
(2-2)可见光颜色视觉感知空间色相位面颜色当量边界计算,由可见光颜色视觉感知空间色相位面颜色当量边界CmaxLd计算模块执行:(2-2) The calculation of the color equivalent boundary of the hue phase plane in the visible light color visual perception space is performed by the C maxLd calculation module of the color equivalent boundary C maxLd of the hue phase plane in the visible light color visual perception space:
(2-2-1)可见光颜色视觉感知空间与设备颜色视觉感知空间色相位面最大饱和度比值及优化计算,由可见光颜色视觉感知空间与设备颜色视觉感知空间色相位面最大饱和度比值及优化计算单元执行:(2-2-1) The maximum saturation ratio and optimization calculation of the hue phase surface between the visible light color visual perception space and the device color visual perception space, and the maximum saturation ratio and optimization of the hue phase surface between the visible light color visual perception space and the device color visual perception space The computing unit executes:
选择0°到359°色相位面,分别计算可见光颜色空间Cmaxh2与设备颜色空间Cmaxh1的比例值Bmaxh:Select the 0° to 359° hue phase plane, and calculate the ratio value B maxh of the visible light color space C maxh2 and the device color space C maxh1 respectively:
Bmaxh=Cmaxh2/Cmaxh1 B maxh = C maxh2 /C maxh1
检查发现Bmaxh最大接近5,应用发现设备sRGB颜色空间不宜直接应用比例值Bmaxh扩展颜色饱和度。The inspection found that the maximum value of B maxh was close to 5, and the application found that the sRGB color space of the device should not be directly applied to the proportional value B maxh to expand the color saturation.
设置比例系数FX1和当量系数FX2,其中FX1数值为4.5,FX2数值为1.9,计算Bmaxh的规范化当量值Bmaxd:Set the proportional coefficient F X1 and the equivalent coefficient F X2 , where the value of F X1 is 4.5, and the value of F X2 is 1.9, and the normalized equivalent value B maxd of B maxh is calculated:
Bmaxh值大于FX1的色相位面的规范化计算:The normalized calculation of the hue plane whose B maxh value is greater than F X1 :
Bmaxd=(Bmaxh-FX1)/(比例区间最大比例值-FX1)*0.1+FX2 B maxd =(B maxh -F X1 )/(maximum ratio value of the ratio interval-F X1 )*0.1+F X2
Bmaxh值小于等于FX1大于(FX1-1)的色相位面的规范化计算:The normalized calculation of the hue phase plane whose B maxh value is less than or equal to F X1 and greater than (F X1 -1):
Bmaxd=(Bmaxh-(FX1-1))/(比例区间最大比例值-(FX1-1))*0.05+(FX2-0.05)B maxd =(B maxh -(F X1 -1))/(maximum ratio value of the ratio interval-(F X1 -1))*0.05+(F X2 -0.05)
Bmaxh值小于等于(FX1-1)大于(FX1-1.5)的色相位面的规范化计算:The normalized calculation of the hue plane whose B maxh value is less than or equal to (F X1 -1) and greater than (F X1 -1.5):
Bmaxd=(Bmaxh-(FX1-1.5))/(比例区间最大比例值-(FX1-1.5))*0.05+(FX2-0.1)B maxd =(B maxh -(F X1 -1.5))/(maximum ratio value of the ratio interval-(F X1 -1.5))*0.05+(F X2 -0.1)
Bmaxh值小于等于(FX1-1.5)大于(FX1-2)的色相位面的规范化计算:The normalized calculation of the hue phase plane whose B maxh value is less than or equal to (F X1 -1.5) and greater than (F X1 -2):
Bmaxd=(Bmaxh-(FX1-2))/(比例区间最大比例值-(FX1-2))*0.1+(FX2-0.2)B maxd =(B maxh -(F X1 -2))/(maximum ratio value of the ratio interval-(F X1 -2))*0.1+(F X2 -0.2)
Bmaxh值小于等于(FX1-2)大于(FX1-2.5)的色相位面的规范化计算:The normalized calculation of the hue plane whose B maxh value is less than or equal to (F X1 -2) and greater than (F X1 -2.5):
Bmaxd=(Bmaxh-(FX1-2.5))/(比例区间最大比例值-(FX1-2.5))*0.05+(FX2-0.25)B maxd =(B maxh -(F X1 -2.5))/(maximum ratio value of the ratio interval-(F X1 -2.5))*0.05+(F X2 -0.25)
Bmaxh值等于(FX1-2.5)及以下的色相位面的规范化计算:The normalized calculation of the hue plane whose B maxh value is equal to (F X1 -2.5) and below:
Bmaxd=Bmaxh/比例区间最大比例值*0.05+(FX2-0.3)B maxd = B maxh / maximum ratio value of the ratio interval * 0.05+(F X2 -0.3)
(2-2-2)可见光颜色视觉感知空间色相位面最大饱和度当量及颜色当量边界计算,由可见光颜色视觉感知空间色相位面最大饱和度当量Cmaxhd及颜色当量边界CmaxLd计算单元执行:(2-2-2) The calculation of the maximum saturation equivalent of the hue phase plane and the color equivalent boundary in the visible light color visual perception space is performed by the calculation unit of the maximum saturation equivalent C maxhd of the hue phase plane of the visible light color visual perception space and the color equivalent boundary C maxLd :
色相位面最大饱和度当量Cmaxhd计算:Calculation of the maximum saturation equivalent C maxhd of the hue plane:
Cmaxhd=Cmaxh1×Bmaxd C maxhd = C maxh1 × B maxd
色相位面颜色当量边界计算:Calculation of the color equivalent boundary of the hue plane:
在横坐标为饱和度C和纵坐标为亮度L的笛卡尔坐标平面,以Cmaxh2和LCmaxh2值标点Dmaxh2,在Dmaxh2到L=100点连线上标示Cmaxhd,其纵坐标值四舍五入的亮度序列值记为LCmaxhd,其坐标点记为Dmaxhd。On the Cartesian coordinate plane where the abscissa is saturation C and the ordinate is lightness L, punctuate D maxh2 with C maxh2 and L Cmaxh2 values, and mark C maxhd on the line connecting D maxh2 to L=100, and its ordinate value is rounded The luminance sequence value of is recorded as L Cmaxhd , and its coordinate point is recorded as D maxhd .
在该坐标平面标示相同色相位面的设备颜色边界,再标示Dmaxhd到L=0点连线,计算其亮度区间中相应亮度序列的最大饱和度值平滑递减的前提下包容设备颜色边界所需的饱和度值CmaxLd,此部分值及Dmaxhd到L=100点连线上饱和度值CmaxLd,构成可见光色相位面颜色的当量边界。On the coordinate plane, mark the device color boundary of the same hue phase plane, and then mark the line connecting D maxhd to L=0, and calculate the maximum saturation value of the corresponding brightness sequence in the brightness interval to smoothly decrease to accommodate the device color boundary. The saturation value C maxLd of , this part of the value and the saturation value C maxLd on the line from D maxhd to L=100 constitute the equivalent boundary of the color of the visible light hue phase plane.
以上所称包容设备颜色边界所需的饱和度的算法,以设备颜色边界上拐点亮度序列的最大饱和度值增加2-3%。For the above-mentioned algorithm to accommodate the saturation required by the device color boundary, the maximum saturation value of the inflection point brightness sequence on the device color boundary is increased by 2-3%.
将以上计算结果存储为数据库,与以上设备颜色数据库格式及排序相同。The above calculation results are stored as a database, which has the same format and sorting as the above device color database.
(2-3)可见光颜色当量空间与设备颜色空间色相位面最大饱和度比例计算:(2-3) Calculation of the maximum saturation ratio between the visible light color equivalent space and the device color space hue phase plane:
从以上两数据库分别检索色相位面最大饱和度Cmaxh1和Cmaxhd计算二者比例,建立数据库,以色相位面h排序,数据360行。以上步骤(2)计算流程如图2-2所示。Retrieve the maximum saturation C maxh1 and C maxhd of the hue plane from the above two databases to calculate the ratio of the two, establish the database, sort by the hue plane h, and the data is 360 lines. The calculation process of the above step (2) is shown in Figure 2-2.
(3)完成彩色数字图像的红、绿和蓝三原色值转换为CIELAB空间L、C和h值并归并入相应色相位面及亮度序列,由彩色数字图像像素颜色模式正向转换以及归并色相位面和亮度序列模块执行。(3) Complete the conversion of the red, green and blue primary color values of the color digital image into CIELAB space L, C and h values and merge them into the corresponding hue phase plane and brightness sequence, and forward conversion and merge color phase of the pixel color mode of the color digital image facet and brightness sequence modules are executed.
计算包括:Calculations include:
(3-1)彩色数字图像像素颜色RGB值转换为CIELAB空间的L、C和h值的计算,由彩色数字图像像素颜色RGB值转换为CIELAB空间的L、C和h值的计算单元执行:(3-1) The calculation of the conversion of color digital image pixel color RGB value into the L, C and h value of CIELAB space is carried out by the calculation unit that the color digital image pixel color RGB value is converted into CIELAB space L, C and h value:
使用显示图像的设备标称或图像本身嵌入的白场和红、绿和蓝三原色相应参数,应用CIE推荐的标准算法,将图像像素的红、绿和蓝三原色表示的颜色转换为CIEXYZ三刺激值及CIELAB空间L、C和h值,算法程序及相关参数与步骤(1)相同。Using the nominal value of the device displaying the image or the corresponding parameters of the white point and the three primary colors of red, green and blue embedded in the image itself, apply the standard algorithm recommended by CIE to convert the color represented by the three primary colors of red, green and blue of the image pixel into the CIEXYZ tristimulus value And CIELAB space L, C and h values, the algorithm program and related parameters are the same as step (1).
非标设备上显示图像需测量计算设备白场和红、绿和蓝三原色最大饱和度时的CIEXYZ三刺激值,算法程序及相关参数与步骤(1)相同。To display an image on a non-standard device, it is necessary to measure and calculate the CIEXYZ tristimulus value at the white point of the device and the maximum saturation of the three primary colors of red, green and blue. The algorithm program and related parameters are the same as in step (1).
(3-2)像素颜色色相位面和亮度序列归并计算,由像素颜色色相位面和亮度序列归并单元执行:(3-2) The merging calculation of the pixel color hue phase plane and the luminance sequence is performed by the pixel color hue phase plane and the luminance sequence merging unit:
将图像颜色空间划分为0-359共360个基准色相位面,以色相h值四舍五入归并进入相应基准色相位面,将色相位面中亮度L范围划分为0-100共101个基准序列,以亮度L值四舍五入归并进入相应亮度序列,使像素颜色参数可用整数色相h,整数亮度L和含有四位小数的饱和度C表示,创建饱和度扩展的计算条件之一。Divide the image color space into a total of 360 reference color phase planes from 0 to 359, round off the hue h value and enter the corresponding reference color phase plane, divide the brightness L range in the hue phase plane into 101 reference sequences from 0 to 100, and use The brightness L value is rounded and merged into the corresponding brightness sequence, so that the pixel color parameter can be represented by integer hue h, integer brightness L and saturation C with four decimal places, creating one of the calculation conditions for saturation expansion.
(4)计算像素颜色饱和度扩展,由图像像素颜色饱和度值扩展模块执行。(4) Calculate pixel color saturation expansion, which is executed by the image pixel color saturation value expansion module.
计算包括:Calculations include:
(4-1)计算像素颜色饱和度映射拐点CgL,由饱和度映射拐点CgL计算单元执行:(4-1) Calculate the pixel color saturation mapping inflection point C gL , which is executed by the saturation mapping inflection point C gL calculation unit:
CgL=CmaxL1*XS1 C gL =C maxL1 *X S1
设置拐点函数XS1为0.85;Set the inflection point function X S1 to 0.85;
(4-2)计算像素颜色饱和度扩展比例BIL,由像素颜色饱和度扩展比例BIL计算单元执行:(4-2) Calculate the pixel color saturation expansion ratio BI L , which is executed by the pixel color saturation expansion ratio BI L calculation unit:
BIL=CmaxLd/CmaxL1 BI L =C maxLd /C maxL1
调用本发明的系统中的多种饱和度扩展比例调控子模块:Call multiple saturation expansion ratio control submodules in the system of the present invention:
(4-2-1)设置饱和度扩展比例调控系数:(4-2-1) Set the saturation expansion ratio control coefficient:
所述计算包括设置多个饱和度扩展比例调控系数BIKx,数值范围0.00-1,以BILY=BIKx×BIL作为像素实际应用的饱和度扩展比例。The calculation includes setting a plurality of saturation expansion ratio adjustment coefficients BI Kx , with a value range of 0.00-1, and taking BI LY =BI Kx ×BI L as the saturation expansion ratio actually applied to the pixel.
典型,BIK1=0.75用于景物为主要内容的图像,BIK2=0.15用于人物为主要内容的图像。Typically, BI K1 =0.75 is used for images in which scenery is the main content, and BI K2 =0.15 is used for images in which people are the main content.
(4-2-2)设置指定色相位面区间边界:(4-2-2) Set the boundary of the specified hue plane interval:
所述计算包括设置多对指定色相位面区间边界HDx和HGx,数值范围0°-359°。典型,人物图像设置HD1=340°和HG1=100°,色相角h≤HG1或h≥HD1的色相位面颜色应用BILY=BIK2×BIL,其余颜色应用BILY=BIK1×BIL。设置色相区间边界内侧过渡色相间隔数值为10。The calculation includes setting multiple pairs of specified hue plane interval boundaries HDx and H Gx , with a value range of 0°-359°. Typically, the character image is set to H D1 =340° and H G1 =100°, and the hue angle h≤H G1 or h≥H D1 is applied to the hue plane color BI LY =BI K2 ×BI L , and the remaining colors are applied to BI LY =BI K1 ×BI L . Set the transition hue interval value inside the boundary of the hue interval to 10.
(4-2-3)设置饱和度比例阈值:(4-2-3) Set the saturation ratio threshold:
所述计算包括设置多个饱和度比例阈值CGx,数值范围0.00-1。典型,人物图像CG1=0.6,对以上指定h≤HG1或h≥HD1色相区间颜色,饱和度比例低于阈值,BILY=BIK2×BIL,饱和度比例高于阈值,BILY=BIK1×BIL。阈值以上一侧设过渡区,设置过渡区范围0.1。The calculation includes setting a plurality of saturation ratio thresholds C Gx with a value range of 0.00-1. Typically, the character image C G1 =0.6, for the above-specified h≤H G1 or h≥H D1 hue interval color, the saturation ratio is lower than the threshold, BI LY =BI K2 ×BI L , the saturation ratio is higher than the threshold, BI LY =BI K1 ×BI L . A transition zone is set on the side above the threshold, and the range of the transition zone is set to 0.1.
(4-3)计算像素颜色饱和度CL扩展,由像素颜色饱和度CL扩展到CLN计算单元执行:(4-3) Calculation of pixel color saturation CL extension, from pixel color saturation CL expansion to C LN calculation unit execution:
CLN=CL*BILY,C LN = C L *BI LY ,
判断,如果CLN大于CgL须计算映射:Judgment, if C LN is greater than C gL , the mapping must be calculated:
CLN=CgL+(CLN-CgL)/(CmaxLd-CgL)*(CmaxL1-CgL)C LN =C gL +(C LN -C gL )/(C maxLd -C gL )*(C maxL1 -C gL )
(5)将图像像素颜色L、h、和饱和度CLN数值计算为R、G和B值。(5) Calculate the image pixel color L, h, and saturation C LN values as R, G, and B values.
调用图像像素颜色模式逆向变换及规范化模块,计算包括:Call the inverse transformation and normalization module of the image pixel color mode, and the calculation includes:
使用CIE推荐的标准方法,以图像像素颜色正向变换得到且保持不变的L、h值以及经计算扩展后得到的CLN值计算为图像的红、绿和蓝三原色值。此算法为以上步骤(3)计算的逆运算,由像素颜色CIELAB空间参数计算CIEXYZ三刺激值所需白场同样为D65,由像素颜色CIEXYZ三刺激值计算RGB值所需3×3矩阵系数由以上步骤(3)所用矩阵3×3系数求逆获得:Using the standard method recommended by CIE, the red, green and blue primary color values of the image are calculated from the L and h values obtained by the forward transformation of the image pixel color and the C LN value obtained after calculation and expansion. This algorithm is the inverse calculation of the above step (3). The white field required to calculate the CIEXYZ tristimulus value from the pixel color CIELAB space parameter is also D65, and the 3×3 matrix coefficient required to calculate the RGB value from the pixel color CIEXYZ tristimulus value is given by The inversion of the
对计算得到的R、G和B值分别取整,并对大于255的数值规范化为255,小于0的数值规范化为0。以上步骤(3)(4)(5)计算流程如图2-3所示。The calculated R, G, and B values were rounded to integers, and the values greater than 255 were normalized to 255, and the values less than 0 were normalized to 0. The calculation process of the above steps (3) (4) (5) is shown in Figure 2-3.
图像全部像素依次执行上述彩色数字图像的FECr算法流程完成所述计算,图像就完成了视觉感知高保真变换。All the pixels of the image sequentially execute the above-mentioned FECr algorithm flow of the color digital image to complete the calculation, and the image has completed the high-fidelity transformation of visual perception.
实施例2使用本发明的FECr算法的典型系统Embodiment 2 uses the typical system of FECr algorithm of the present invention
11、以计算机硬盘HD作为提交FECr算法的典型载体,同样功能的载体还包括CD、DVD、U盘等,以及经授权由网络调用FECr算法。FECr算法以程序方式由计算机CPU+GPU调用,在RAM中运行。彩色数字图像存储在计算机硬盘中由FECr算法程序调用,经FECr算法处理后再储存回硬盘中。图像数据可以拷贝在CD、DVD、U盘等载体和另外硬盘中,也可以通过网络传输至指定位置。11. The computer hard disk HD is used as a typical carrier for submitting the FECr algorithm. The carrier with the same function also includes CD, DVD, U disk, etc., and the FECr algorithm is called by the network with authorization. The FECr algorithm is called by the computer CPU+GPU in a program mode and runs in RAM. Color digital images are stored in the computer hard disk and called by the FECr algorithm program, and then stored back to the hard disk after being processed by the FECr algorithm. Image data can be copied in CD, DVD, U disk and other carriers and another hard disk, and can also be transmitted to a designated location through the network.
FECr算法程序可以处理单帧图像和帧序列图像。单帧图像格式可是.GIF、.bmp等未压缩格式,也可是.jpg等压缩格式。帧序列图像格式可是通用.MOV、.AVI等,也可使用专用I/O处理相关格式文件。实时观看FECr算法变换图像效果的显示器数量可以按需配置。系统如图8-1所示。The FECr algorithm program can process single frame images and frame sequence images. The format of the single frame image may be an uncompressed format such as .GIF, .bmp, or a compressed format such as .jpg. The frame sequence image format can be common .MOV, .AVI, etc., and special I/O can also be used to process related format files. The number of monitors for real-time viewing of the image effect transformed by the FECr algorithm can be configured as required. The system is shown in Figure 8-1.
1.2、以电视机主芯片作为FECr算法IP的典型应用,IP中gamma校正模块使用的R、G和B各色阶查找表可根据电视机主芯片中特殊gamma设置进行调整。系统如图8-2所示。1.2. The TV main chip is used as a typical application of the FECr algorithm IP. The R, G and B color scale lookup tables used by the gamma correction module in the IP can be adjusted according to the special gamma settings in the TV main chip. The system is shown in Figure 8-2.
1.3、以电视机作为FECr算法ASIC的典型应用,设置与电视机匹配的I/O获取视频图像颜色RGB数据。系统如图8-3所示。1.3. The TV is used as a typical application of the FECr algorithm ASIC, and the I/O matching the TV is set to obtain the color RGB data of the video image. The system is shown in Figure 8-3.
1.4、应用FECr算法ASIC的设备还包括笔记本电脑、平板电脑、手机、游戏机、LCD显示器、计算机显卡等,系统如图8-4所示。1.4. Devices that apply the FECr algorithm ASIC also include notebook computers, tablet computers, mobile phones, game consoles, LCD monitors, computer graphics cards, etc. The system is shown in Figure 8-4.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210053524.8A CN102611897B (en) | 2012-03-04 | 2012-03-04 | Method and system for carrying out vision perception high-fidelity transformation on color digital image |
PCT/CN2012/074265 WO2013131311A1 (en) | 2012-03-04 | 2012-04-18 | Method and system for carrying out vision perception high-fidelity transformation on color digital image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210053524.8A CN102611897B (en) | 2012-03-04 | 2012-03-04 | Method and system for carrying out vision perception high-fidelity transformation on color digital image |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102611897A true CN102611897A (en) | 2012-07-25 |
CN102611897B CN102611897B (en) | 2015-01-07 |
Family
ID=46529018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210053524.8A Expired - Fee Related CN102611897B (en) | 2012-03-04 | 2012-03-04 | Method and system for carrying out vision perception high-fidelity transformation on color digital image |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102611897B (en) |
WO (1) | WO2013131311A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103106669A (en) * | 2013-01-02 | 2013-05-15 | 北京工业大学 | Tongue image environment adaptive color reproduction method of traditional Chinese medicine |
CN105812674A (en) * | 2014-12-29 | 2016-07-27 | 浙江大华技术股份有限公司 | Signal lamp color correction method, monitoring method, and device thereof |
CN107211076A (en) * | 2015-01-19 | 2017-09-26 | 杜比实验室特许公司 | The display management of high dynamic range video |
CN107787443A (en) * | 2015-05-01 | 2018-03-09 | 菲力尔系统公司 | Enhancing palette system and method for infrared imaging |
WO2018049754A1 (en) * | 2016-09-19 | 2018-03-22 | 深圳Tcl数字技术有限公司 | Color gamut maintaining system and method |
CN109102473A (en) * | 2018-07-23 | 2018-12-28 | 浙江智彩科技有限公司 | A method of improving color digital image quality |
CN109119046A (en) * | 2018-09-10 | 2019-01-01 | 深圳市华星光电技术有限公司 | The regulating system and adjusting method of gray-scale intensity, memory |
CN109461417A (en) * | 2018-12-11 | 2019-03-12 | 惠科股份有限公司 | Driving method and driving system of display panel and display device |
WO2019119791A1 (en) * | 2017-12-20 | 2019-06-27 | 惠科股份有限公司 | Driving method and driving apparatus for display apparatus |
CN110324476A (en) * | 2019-07-01 | 2019-10-11 | 北京印刷学院 | A kind of characterizing method of Mobile phone screen color generation property |
CN110715794A (en) * | 2018-07-12 | 2020-01-21 | 夏普株式会社 | Characteristic evaluation system for evaluating characteristics of display device |
CN110827280A (en) * | 2020-01-09 | 2020-02-21 | 莱克电气股份有限公司 | Glue detection method and device based on machine vision and glue detection equipment |
WO2021063135A1 (en) * | 2019-09-30 | 2021-04-08 | 深圳Tcl新技术有限公司 | Saturation enhancement method and device, and computer readable storage medium |
CN112911366A (en) * | 2019-12-03 | 2021-06-04 | 海信视像科技股份有限公司 | Saturation adjusting method and device and display equipment |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016101951A1 (en) | 2014-12-25 | 2016-06-30 | Andersen Colour Research | Three dimensional, hue-plane preserving and differentiable quasi-linear transformation method for color correction |
CN112037160B (en) * | 2020-08-31 | 2024-03-01 | 维沃移动通信有限公司 | Image processing method, device and equipment |
CN113763489B (en) * | 2021-08-11 | 2023-07-07 | 同济大学 | Ocean water body color simulation method |
CN113917988A (en) * | 2021-09-30 | 2022-01-11 | 江苏泰扬金属制品有限公司 | Cloud service system for environment maintenance |
CN115116051A (en) * | 2022-05-31 | 2022-09-27 | 宁波微萌种业有限公司 | Method and system for investigating cruciferous vegetable color |
CN115314693B (en) * | 2022-10-11 | 2023-02-10 | 长春希达电子技术有限公司 | Color edge weakening method, data processing module, transmission system and control system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006059282A2 (en) * | 2004-12-01 | 2006-06-08 | Koninklijke Philips Electronics N.V. | Method of electronic color image saturation processing |
WO2011028626A2 (en) * | 2009-09-01 | 2011-03-10 | Entertainment Experience Llc | Method for producing a color image and imaging device employing same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101083775A (en) * | 2006-05-29 | 2007-12-05 | 帆宣系统科技股份有限公司 | Method and device for adjusting image saturation |
CN101742339A (en) * | 2010-01-14 | 2010-06-16 | 中山大学 | A Method of Color Image Enhancement |
-
2012
- 2012-03-04 CN CN201210053524.8A patent/CN102611897B/en not_active Expired - Fee Related
- 2012-04-18 WO PCT/CN2012/074265 patent/WO2013131311A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006059282A2 (en) * | 2004-12-01 | 2006-06-08 | Koninklijke Philips Electronics N.V. | Method of electronic color image saturation processing |
WO2006059282A3 (en) * | 2004-12-01 | 2006-08-31 | Koninkl Philips Electronics Nv | Method of electronic color image saturation processing |
WO2011028626A2 (en) * | 2009-09-01 | 2011-03-10 | Entertainment Experience Llc | Method for producing a color image and imaging device employing same |
Non-Patent Citations (1)
Title |
---|
陈婧,唐万有,王学美: "多项式回归法在印刷品质量检测中的研究", 《包装工程》 * |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103106669A (en) * | 2013-01-02 | 2013-05-15 | 北京工业大学 | Tongue image environment adaptive color reproduction method of traditional Chinese medicine |
CN103106669B (en) * | 2013-01-02 | 2015-10-28 | 北京工业大学 | Chinese medicine tongue picture is as environmental suitability color reproduction method |
CN105812674A (en) * | 2014-12-29 | 2016-07-27 | 浙江大华技术股份有限公司 | Signal lamp color correction method, monitoring method, and device thereof |
US9961237B2 (en) | 2015-01-19 | 2018-05-01 | Dolby Laboratories Licensing Corporation | Display management for high dynamic range video |
CN107211076B (en) * | 2015-01-19 | 2018-10-30 | 杜比实验室特许公司 | The method, apparatus and storage medium of display management for high dynamic range video |
CN107211076A (en) * | 2015-01-19 | 2017-09-26 | 杜比实验室特许公司 | The display management of high dynamic range video |
CN107787443A (en) * | 2015-05-01 | 2018-03-09 | 菲力尔系统公司 | Enhancing palette system and method for infrared imaging |
US10571338B2 (en) | 2015-05-01 | 2020-02-25 | Flir Systems, Inc. | Enhanced color palette systems and methods for infrared imaging |
WO2018049754A1 (en) * | 2016-09-19 | 2018-03-22 | 深圳Tcl数字技术有限公司 | Color gamut maintaining system and method |
US10554862B2 (en) | 2016-09-19 | 2020-02-04 | Shenzhen Tcl Digital Technology Ltd. | System and method for retaining color gamut |
WO2019119791A1 (en) * | 2017-12-20 | 2019-06-27 | 惠科股份有限公司 | Driving method and driving apparatus for display apparatus |
CN110715794A (en) * | 2018-07-12 | 2020-01-21 | 夏普株式会社 | Characteristic evaluation system for evaluating characteristics of display device |
CN109102473A (en) * | 2018-07-23 | 2018-12-28 | 浙江智彩科技有限公司 | A method of improving color digital image quality |
CN109102473B (en) * | 2018-07-23 | 2022-01-18 | 浙江智彩科技有限公司 | Method for improving color digital image quality |
CN109119046A (en) * | 2018-09-10 | 2019-01-01 | 深圳市华星光电技术有限公司 | The regulating system and adjusting method of gray-scale intensity, memory |
CN109461417A (en) * | 2018-12-11 | 2019-03-12 | 惠科股份有限公司 | Driving method and driving system of display panel and display device |
CN110324476A (en) * | 2019-07-01 | 2019-10-11 | 北京印刷学院 | A kind of characterizing method of Mobile phone screen color generation property |
WO2021063135A1 (en) * | 2019-09-30 | 2021-04-08 | 深圳Tcl新技术有限公司 | Saturation enhancement method and device, and computer readable storage medium |
US12260519B2 (en) | 2019-09-30 | 2025-03-25 | Shenzhen Tcl New Technology Co., Ltd. | Saturation enhancement method and device, and computer readable storage medium |
CN112911366A (en) * | 2019-12-03 | 2021-06-04 | 海信视像科技股份有限公司 | Saturation adjusting method and device and display equipment |
CN112911366B (en) * | 2019-12-03 | 2023-10-27 | 海信视像科技股份有限公司 | Saturation adjustment method and device and display equipment |
CN110827280A (en) * | 2020-01-09 | 2020-02-21 | 莱克电气股份有限公司 | Glue detection method and device based on machine vision and glue detection equipment |
Also Published As
Publication number | Publication date |
---|---|
CN102611897B (en) | 2015-01-07 |
WO2013131311A1 (en) | 2013-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102611897B (en) | Method and system for carrying out vision perception high-fidelity transformation on color digital image | |
CN109937444B (en) | Display device | |
JP5481021B2 (en) | Heterogeneous color gamut mapping method and apparatus | |
JP4241902B2 (en) | Color image display device and color conversion device | |
CN101953148B (en) | Method for processing color image, color processing device and color processing program | |
CN102063888B (en) | Method and device for managing colors | |
CN110691227B (en) | Video signal processing method and device | |
EP2487892A1 (en) | Method and apparatus for brightness-controlling image conversion | |
WO2010131500A1 (en) | Image processing device and image processing method | |
US9449375B2 (en) | Image processing apparatus, image processing method, program, and recording medium | |
JP4950846B2 (en) | Color image display device and color conversion device | |
Poynton et al. | Perceptual uniformity in digital image representation and display | |
US8861850B2 (en) | Digital image color correction | |
KR20100061389A (en) | Color gamut expansion method and display device | |
CN101304467B (en) | Color processing apparatus and method | |
WO2022120799A1 (en) | Image processing method and apparatus, electronic device, and storage medium | |
EP1895781B1 (en) | Method of and apparatus for adjusting colour saturation | |
JP2007324665A (en) | Image correction apparatus and video display apparatus | |
JP2011188319A (en) | Color correction method and color correction device | |
CN106657945B (en) | A kind of gamma correction implementation method of non-linear piecewise | |
JP5041538B2 (en) | System and method for adjusting color image quality | |
Wen | Color management for future video Systems | |
CN118573825A (en) | Color gamut mapping method and device | |
CN119495273A (en) | Color adjustment method and device for color electronic paper image, terminal equipment and computer readable storage medium | |
Son et al. | Color correction of projected image on color-screen for mobile beam-projector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: HOU KEJIE Free format text: FORMER OWNER: BEIJING JIATAI INFORMATION INDUSTRY TECHNOLOGY CO., LTD. Effective date: 20130226 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20130226 Address after: 100071, building 4, building 5, No. 901 Feng Feng pipeline, Beijing, Fengtai District Applicant after: Hou Kejie Address before: 100071, building 4, building 5, No. 901 Feng Feng pipeline, Beijing, Fengtai District Applicant before: Beijing Jiatai Xinye Technology Co.,Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150107 |