CN102544365A - Resistance random access memory and manufacturing method thereof - Google Patents
Resistance random access memory and manufacturing method thereof Download PDFInfo
- Publication number
- CN102544365A CN102544365A CN2012100168126A CN201210016812A CN102544365A CN 102544365 A CN102544365 A CN 102544365A CN 2012100168126 A CN2012100168126 A CN 2012100168126A CN 201210016812 A CN201210016812 A CN 201210016812A CN 102544365 A CN102544365 A CN 102544365A
- Authority
- CN
- China
- Prior art keywords
- resistive
- substrate
- electrode
- layer
- needle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 239000004020 conductor Substances 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- 238000000206 photolithography Methods 0.000 claims description 12
- 238000005240 physical vapour deposition Methods 0.000 claims description 12
- 238000000231 atomic layer deposition Methods 0.000 claims description 10
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 4
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- 229910003455 mixed metal oxide Inorganic materials 0.000 claims description 3
- 238000005498 polishing Methods 0.000 claims description 3
- 230000005684 electric field Effects 0.000 abstract description 4
- 238000009826 distribution Methods 0.000 abstract description 3
- 239000012141 concentrate Substances 0.000 abstract description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- -1 organic acid compound Chemical class 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Semiconductor Memories (AREA)
Abstract
本发明是一种阻变存储器及其制造方法,该阻变存储器包括多个阻变存储单元;每个阻变存储单元包括衬底(101)、在衬底(101)上依次沉积的底电极(102)、阻变层(103)和具有针尖状突出部(1041)的上电极(104)。本发明使用具有刻蚀成针尖状的突出部的上电极来使电场集中在电极尖端附近,从而使导电通道在针尖附近产生,并使得导电通道的通断位置相对固定,这样可以降低阻变存储器的工作电压并提高其高低阻值分布的一致性。
The invention relates to a resistive memory and a manufacturing method thereof. The resistive memory includes a plurality of resistive memory cells; each resistive memory cell includes a substrate (101), and bottom electrodes sequentially deposited on the substrate (101) (102), a resistive variable layer (103) and an upper electrode (104) having a needle-like protrusion (1041). The present invention uses an upper electrode with a protrusion etched into a needle point to concentrate the electric field near the electrode tip, so that the conductive channel is generated near the needle tip, and the on-off position of the conductive channel is relatively fixed, which can reduce the resistance of the resistive memory. The operating voltage and improve the consistency of its high and low resistance distribution.
Description
技术领域 technical field
本发明属于半导体集成电路及其制造技术领域,具体涉及一种阻变存储器及其制造方法。The invention belongs to the technical field of semiconductor integrated circuits and its manufacture, and in particular relates to a resistive variable memory and its manufacturing method.
背景技术 Background technique
所谓的“阻变存储器(RRAM)”,是一种利用电阻变化实现高速度(<5ns)、低操作电压(<1V)工作,并具有高存储密度、易于集成等优点的新型非挥发性存储器。RRAM器件一般具有电极-绝缘体-电极的结构,即在两层电极之间加入一层具有阻变特性的介质薄膜材料,这些阻变材料一般是过渡金属氧化物,常见的有NiO,TiO2,HfO2,ZrO2,WO3,Ta2O5等等。RRAM器件的工作方式是利用外加电压控制阻变材料的电阻值在高低电阻态之间转换,以实现数据的写入和擦除。The so-called "resistive variable memory (RRAM)" is a new type of non-volatile memory that uses resistance changes to achieve high speed (<5ns), low operating voltage (<1V) operation, and has the advantages of high storage density and easy integration. . RRAM devices generally have an electrode-insulator-electrode structure, that is, a layer of dielectric film material with resistive properties is added between two layers of electrodes. These resistive materials are generally transition metal oxides, and common ones include NiO, TiO 2 , HfO 2 , ZrO 2 , WO 3 , Ta 2 O 5 and so on. The working mode of the RRAM device is to use an external voltage to control the resistance value of the resistive material to switch between high and low resistance states, so as to realize data writing and erasing.
传统的阻变存储器结果是典型的三明治结构:在平行电容板加入一层阻变材料层。这样阻变层中导电通道的形成会比较随机。The result of the traditional resistive variable memory is a typical sandwich structure: adding a layer of resistive variable material to the parallel capacitor plate. In this way, the formation of conductive channels in the resistive variable layer will be relatively random.
根据物理原理,电场会在导体的尖端集中。而阻变存储器的特性主要由电场控制的导电通道决定。当使用针尖电极时可以更好地控制阻变存储器的特性。According to physical principles, the electric field will be concentrated at the tip of the conductor. The characteristics of the RRAM are mainly determined by the conductive channel controlled by the electric field. The characteristics of the RRAM can be better controlled when needle-tip electrodes are used.
发明内容 Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
本发明的目的是提供一种阻变存储器及其制造方法,使得导电通道的通断位置相对固定,降低阻变存储器的工作电压并提高其高低阻值分布的一致性。The object of the present invention is to provide a resistive variable memory and its manufacturing method, so that the on-off position of the conductive channel is relatively fixed, the working voltage of the resistive variable memory is reduced, and the consistency of its high and low resistance value distribution is improved.
(二)技术方案(2) Technical solution
为了解决上述技术问题,本发明提供一种阻变存储器,包括多个阻变存储单元;每个阻变存储单元包括衬底、在衬底上依次沉积的底电极、阻变层和具有针尖状突出部的上电极。In order to solve the above technical problems, the present invention provides a resistive memory, which includes a plurality of resistive memory cells; each resistive memory cell includes a substrate, a bottom electrode sequentially deposited on the substrate, a resistive layer, and a pinpoint The upper electrode of the protrusion.
优选地,所述衬底为但不限于:硅衬底、玻璃衬底或柔性衬底。Preferably, the substrate is but not limited to: a silicon substrate, a glass substrate or a flexible substrate.
优选地,所述底电极为但不限于:铂、钛、铜、铝、氮化钛、镍、钨或掺杂硅。Preferably, the bottom electrode is but not limited to: platinum, titanium, copper, aluminum, titanium nitride, nickel, tungsten or doped silicon.
优选地,所述上电极为但不限于:铂、钛、铜、铝、氮化钛、镍、钨或掺杂硅。Preferably, the upper electrode is but not limited to: platinum, titanium, copper, aluminum, titanium nitride, nickel, tungsten or doped silicon.
优选地,所述阻变层为但不限于:氧化铪、氧化钛、氧化锆、氧化锌、氧化钨或氧化钽或他们的组合。Preferably, the resistive switch layer is, but not limited to: hafnium oxide, titanium oxide, zirconium oxide, zinc oxide, tungsten oxide or tantalum oxide or combinations thereof.
优选地,所述阻变层的厚度为1nm-1000nm。Preferably, the thickness of the resistive layer is 1 nm-1000 nm.
本发明还提供一种阻变存储器制造方法,包括步骤:The present invention also provides a method for manufacturing a resistive variable memory, comprising the steps of:
S1:在衬底上使用沉积方法淀积导电材料,并进行光刻和刻蚀形成底电极;S1: Deposit a conductive material on the substrate using a deposition method, and perform photolithography and etching to form a bottom electrode;
S2:在未被底电极覆盖的衬底上和底电极上,用沉积方法直接淀积金属氧化物介质或淀积金属并在氧气中退火形成一层或多层混合的金属氧化物材料,并进行平坦化处理,形成阻变层;S2: On the substrate not covered by the bottom electrode and on the bottom electrode, directly deposit a metal oxide dielectric or deposit metal by a deposition method and anneal in oxygen to form one or more layers of mixed metal oxide materials, and Perform planarization treatment to form a resistive layer;
S3:在阻变层上使用光刻和各向异性刻蚀工艺形成针尖状的凹槽;S3: using photolithography and anisotropic etching process to form needle-shaped grooves on the resistive layer;
S4:在所述凹槽中使用沉积方法淀积导电材料,然后打磨金属电极,形成针尖状的电极;S4: using a deposition method to deposit a conductive material in the groove, and then polishing the metal electrode to form a needle-shaped electrode;
S5:在阻变层上和所述针尖状的电极上使用沉积方法淀积导电材料并进行光刻和刻蚀形成上电极。S5: Deposit a conductive material on the resistive variable layer and the needle-shaped electrode by using a deposition method, and perform photolithography and etching to form an upper electrode.
优选地,所述沉积方法包括物理气相沉积(PVD)、化学气相沉积(CVD)和原子层沉积(ALD)。Preferably, the deposition method includes physical vapor deposition (PVD), chemical vapor deposition (CVD) and atomic layer deposition (ALD).
优选地,所述针尖状的凹槽包括锥形凹槽。Preferably, the needle point-shaped groove comprises a tapered groove.
优选地,所述阻变层的厚度为1nm-1000nm。Preferably, the thickness of the resistive layer is 1 nm-1000 nm.
(三)有益效果(3) Beneficial effects
本发明使用具有刻蚀成针尖状的突出部的上电极来使电场集中在电极尖端附近,从而使导电通道在针尖附近产生,并使得导电通道的通断位置相对固定,这样可以降低阻变存储器的工作电压并提高其高低阻值分布的一致性。The present invention uses an upper electrode with a needle-shaped protrusion to concentrate the electric field near the tip of the electrode, so that the conductive channel is generated near the needle tip, and the on-off position of the conductive channel is relatively fixed, which can reduce the resistance of the resistive memory. The operating voltage and improve the consistency of its high and low resistance distribution.
附图说明 Description of drawings
图1为本发明中的阻变存储单元结构示意图;Fig. 1 is a schematic structural diagram of a resistive memory cell in the present invention;
图2为本发明阻变存储器结构截面示意图;2 is a schematic cross-sectional view of the resistive memory structure of the present invention;
图3为本发明阻变存储器制造方法的流程图;Fig. 3 is a flow chart of the manufacturing method of the resistive variable memory of the present invention;
图4为本发明阻变存储器制造方法中形成底电极和阻变层的截面图;4 is a cross-sectional view of forming a bottom electrode and a resistive switch layer in the method for manufacturing a resistive variable memory according to the present invention;
图5为本发明阻变存储器制造方法中刻蚀阻变层和形成上电极的截面图。5 is a cross-sectional view of etching a resistive layer and forming an upper electrode in the manufacturing method of a resistive memory according to the present invention.
具体实施方式 Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不是限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples serve to illustrate the present invention, but do not limit the scope of the present invention.
如图1-2所示,本发明所述的阻变存储器,包括多个阻变存储单元;每个阻变存储单元包括衬底101、在衬底101上依次沉积的底电极102、阻变层103和具有针尖状突出部1041的上电极104。As shown in Figures 1-2, the resistive memory according to the present invention includes a plurality of resistive memory cells; each resistive memory cell includes a
所述衬底101优选地为硅衬底,也可以是玻璃或一些柔性衬底。所述底电极102和上电极104为铂、钛、铜、铝、氮化钛、镍、钨、掺杂硅等导电材料。所述阻变层103可以为氧化铪、氧化钛、氧化锆、氧化锌、氧化钨、氧化钽等金属氧化物材料或他们的组合、厚度可以为1nm-1000nm。The
如图3所示,本发明所述的阻变存储器制造方法,包括步骤:S1:在衬底上使用沉积方法淀积导电材料,并进行光刻和刻蚀形成底电极;S2:在未被底电极覆盖的衬底上和底电极上,用沉积方法直接淀积金属氧化物介质或淀积金属并在氧气中退火形成一层或多层混合的金属氧化物材料,并进行平坦化处理,形成阻变层;S3:在阻变层上使用光刻和各向异性刻蚀工艺形成针尖状的凹槽;S4:在所述凹槽中使用沉积方法淀积导电材料,然后打磨金属电极,形成针尖状的电极;S5:在阻变层上和所述针尖状的电极上使用沉积方法淀积导电材料并进行光刻和刻蚀形成上电极。As shown in FIG. 3 , the manufacturing method of the resistive variable memory according to the present invention includes the steps: S1: using a deposition method to deposit a conductive material on the substrate, and performing photolithography and etching to form a bottom electrode; S2: On the substrate covered by the bottom electrode and on the bottom electrode, deposit a metal oxide medium directly or deposit metal and anneal in oxygen to form one or more layers of mixed metal oxide materials, and perform planarization treatment. Forming a resistive variable layer; S3: using photolithography and anisotropic etching process to form needle-shaped grooves on the resistive variable layer; S4: using a deposition method to deposit conductive materials in the grooves, and then polishing metal electrodes, Forming a needle-shaped electrode; S5: Depositing a conductive material on the resistive layer and the needle-shaped electrode using a deposition method, and performing photolithography and etching to form an upper electrode.
所述阻变存储器的制作方法的一具体实施例如图4-5所示,包括以下步骤:A specific embodiment of the manufacturing method of the resistive memory is shown in Figure 4-5, including the following steps:
参照图4,阻变存储器单元一般在硅片衬底1上形成。Referring to FIG. 4 , resistive memory cells are generally formed on a silicon substrate 1 .
在硅片衬底1上,使用物理气相沉积(PVD)、化学气相沉积(CVD)或原子层沉积(ALD)淀积铂、钛、铜、铝、氮化钛、镍、钨、掺杂硅等导电材料,并进行光刻和刻蚀形成截面如图4所示的底电极2。On the silicon wafer substrate 1, use physical vapor deposition (PVD), chemical vapor deposition (CVD) or atomic layer deposition (ALD) to deposit platinum, titanium, copper, aluminum, titanium nitride, nickel, tungsten, doped silicon and other conductive materials, and perform photolithography and etching to form the
在未被底电极覆盖的硅片衬底1上和底电极2上,用物理气相沉积(PVD)、化学气相沉积(CVD)或原子层沉积(ALD)直接淀积金属氧化物介质或淀积金属并在氧气中退火(退火温度可以从200摄氏度到1500摄氏度,具体温度和材料有关)形成一层或多层混合的氧化铪、氧化钛、氧化锆、氧化锌、氧化钨、氧化钽等金属氧化物材料,厚度可以为1-1000nm,并进行平坦化处理,形成阻变层3。On the silicon wafer substrate 1 not covered by the bottom electrode and on the
参照图5,在阻变层3上使用光刻和各向异性刻蚀工艺形成如图所示锥形凹槽4,光刻出小孔图形后,使用刻蚀剂可以是硝酸、有机酸化合物的湿法刻蚀或等离子体刻蚀等方法对阻变层进行刻蚀,刻蚀时间和反应速率及阻变层厚度相关。Referring to Fig. 5, use photolithography and anisotropic etching process on the resistive layer 3 to form a
在阻变层3上,使用物理气相沉积(PVD)、化学气相沉积(CVD)或原子层沉积(ALD)淀积铂、钛、铜、铝、氮化钛、镍、钨、掺杂硅等导电材料,然后使用大马士革工艺(CMP)打磨金属电极,形成如图所示的针尖电极4。On the resistive layer 3, platinum, titanium, copper, aluminum, titanium nitride, nickel, tungsten, doped silicon, etc. are deposited using physical vapor deposition (PVD), chemical vapor deposition (CVD) or atomic layer deposition (ALD). conductive material, and then use the damascene process (CMP) to polish the metal electrode to form the
在阻变层3上和针尖电极4上使用物理气相沉积(PVD)淀积钛、铜、铝、等导电材料并进行光刻和刻蚀形成截面如图所示的具有针尖电极4的上电极5。Physical vapor deposition (PVD) is used to deposit conductive materials such as titanium, copper, aluminum, etc. on the resistive layer 3 and the
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and replacements can also be made, these improvements and replacements It should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100168126A CN102544365A (en) | 2012-01-18 | 2012-01-18 | Resistance random access memory and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100168126A CN102544365A (en) | 2012-01-18 | 2012-01-18 | Resistance random access memory and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102544365A true CN102544365A (en) | 2012-07-04 |
Family
ID=46350770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100168126A Pending CN102544365A (en) | 2012-01-18 | 2012-01-18 | Resistance random access memory and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102544365A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103579498A (en) * | 2012-08-02 | 2014-02-12 | 旺宏电子股份有限公司 | Switching device, operating method thereof, and memory array |
CN103928610A (en) * | 2014-04-01 | 2014-07-16 | 清华大学 | Floating gate type resistive memory cell structure and operation method thereof |
CN105390612A (en) * | 2015-12-03 | 2016-03-09 | 中国科学院半导体研究所 | Preparation method for phase change memory based on tapered substrate |
CN106057647A (en) * | 2016-07-07 | 2016-10-26 | 浙江水晶光电科技股份有限公司 | Sapphire processing method |
CN111146341A (en) * | 2020-01-02 | 2020-05-12 | 集美大学 | Preparation method of resistive random access memory with space limitation effect |
CN111223987A (en) * | 2020-03-06 | 2020-06-02 | 厦门半导体工业技术研发有限公司 | Resistive random access memory and method for manufacturing resistive random access memory |
CN111564556A (en) * | 2020-05-22 | 2020-08-21 | 北京大学 | Pyramid-shaped resistive random access memory and preparation method thereof |
CN112018235A (en) * | 2020-07-24 | 2020-12-01 | 厦门半导体工业技术研发有限公司 | Semiconductor device and method for manufacturing semiconductor device |
CN113088912A (en) * | 2021-04-05 | 2021-07-09 | 大连理工大学 | Silicon-doped magnetron sputtering process for improving reliability of TaOx-based resistive random access memory |
CN113659074A (en) * | 2021-07-13 | 2021-11-16 | 桂林电子科技大学 | Resistive random access memory with planar cross array structure and preparation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101488555A (en) * | 2009-02-10 | 2009-07-22 | 中国科学院上海微系统与信息技术研究所 | Manufacturing method for low power consumption phase changing memory |
US7671355B2 (en) * | 2008-03-24 | 2010-03-02 | United Microelectronics Corp. | Method of fabricating a phase change memory and phase change memory |
US7867814B2 (en) * | 2006-01-18 | 2011-01-11 | Fujitsu Limited | Resistance memory element and method of manufacturing the same |
-
2012
- 2012-01-18 CN CN2012100168126A patent/CN102544365A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7867814B2 (en) * | 2006-01-18 | 2011-01-11 | Fujitsu Limited | Resistance memory element and method of manufacturing the same |
US7671355B2 (en) * | 2008-03-24 | 2010-03-02 | United Microelectronics Corp. | Method of fabricating a phase change memory and phase change memory |
CN101488555A (en) * | 2009-02-10 | 2009-07-22 | 中国科学院上海微系统与信息技术研究所 | Manufacturing method for low power consumption phase changing memory |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103579498A (en) * | 2012-08-02 | 2014-02-12 | 旺宏电子股份有限公司 | Switching device, operating method thereof, and memory array |
CN103928610A (en) * | 2014-04-01 | 2014-07-16 | 清华大学 | Floating gate type resistive memory cell structure and operation method thereof |
CN103928610B (en) * | 2014-04-01 | 2016-08-10 | 清华大学 | Floating gate type resistive memory cell structure and operation method thereof |
CN105390612A (en) * | 2015-12-03 | 2016-03-09 | 中国科学院半导体研究所 | Preparation method for phase change memory based on tapered substrate |
CN106057647A (en) * | 2016-07-07 | 2016-10-26 | 浙江水晶光电科技股份有限公司 | Sapphire processing method |
CN111146341A (en) * | 2020-01-02 | 2020-05-12 | 集美大学 | Preparation method of resistive random access memory with space limitation effect |
CN111223987A (en) * | 2020-03-06 | 2020-06-02 | 厦门半导体工业技术研发有限公司 | Resistive random access memory and method for manufacturing resistive random access memory |
CN111564556A (en) * | 2020-05-22 | 2020-08-21 | 北京大学 | Pyramid-shaped resistive random access memory and preparation method thereof |
CN112018235A (en) * | 2020-07-24 | 2020-12-01 | 厦门半导体工业技术研发有限公司 | Semiconductor device and method for manufacturing semiconductor device |
CN112018235B (en) * | 2020-07-24 | 2024-06-25 | 厦门半导体工业技术研发有限公司 | Semiconductor device and method for manufacturing semiconductor device |
CN113088912A (en) * | 2021-04-05 | 2021-07-09 | 大连理工大学 | Silicon-doped magnetron sputtering process for improving reliability of TaOx-based resistive random access memory |
CN113088912B (en) * | 2021-04-05 | 2021-12-07 | 大连理工大学 | Silicon-doped magnetron sputtering process for improving reliability of TaOx-based resistive random access memory |
CN113659074A (en) * | 2021-07-13 | 2021-11-16 | 桂林电子科技大学 | Resistive random access memory with planar cross array structure and preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102544365A (en) | Resistance random access memory and manufacturing method thereof | |
US9099178B2 (en) | Resistive random access memory with electric-field strengthened layer and manufacturing method thereof | |
JP4763858B2 (en) | Manufacturing method of semiconductor memory | |
CN101878530B (en) | Nonvolatile storage element and nonvolatile storage device using same | |
CN102683583B (en) | Unipolar resistive random access memory and manufacturing method thereof | |
JP5390715B2 (en) | Nonvolatile memory element and manufacturing method thereof | |
CN107068860B (en) | Resistive memory and its preparation method | |
TW201314982A (en) | Resistance change nonvolatile memory device, semiconductor device, and method of operating resistance change nonvolatile memory device | |
TW201143081A (en) | Memory element and memory device | |
CN104733612B (en) | A kind of resistance-variable storing device and preparation method thereof | |
CN101159309A (en) | A Realization Method of Low Power Consumption Resistive Memory | |
CN101562229B (en) | A resistive memory | |
CN103035840A (en) | Resistive random access memory and preparation method thereof | |
CN103151459B (en) | Hafnium-oxynitride-based low-power consumption resistive random access memory and preparation method for same | |
CN106611815A (en) | Resistive random access memory device | |
CN102005536A (en) | Improved NiO-based resistive random access memory (RRAM) and manufacturing method thereof | |
JP2014082477A (en) | Nonvolatile storage element and method for manufacturing the same | |
CN102623631A (en) | Resistive random access memory unit, memory and preparation method | |
CN102280577A (en) | Single-pole resistance-change device, single-pole resistance-change random access memory unit and preparation method for single-pole resistance-change device | |
CN109888093A (en) | A kind of bipolar threshold gate and preparation method thereof | |
CN104518083B (en) | A kind of memory element of resistive random access memory (RRAM) and preparation method thereof | |
JP2014103326A (en) | Nonvolatile memory element and manufacturing method thereof | |
CN113140675B (en) | PN junction storage device based on ferroelectric doping | |
CN102623638B (en) | Resistance random access memory and preparation method thereof | |
CN106299108B (en) | Resistance-variable storing device and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120704 |