[go: up one dir, main page]

CN103579498A - Switching device, operating method thereof, and memory array - Google Patents

Switching device, operating method thereof, and memory array Download PDF

Info

Publication number
CN103579498A
CN103579498A CN201210272482.7A CN201210272482A CN103579498A CN 103579498 A CN103579498 A CN 103579498A CN 201210272482 A CN201210272482 A CN 201210272482A CN 103579498 A CN103579498 A CN 103579498A
Authority
CN
China
Prior art keywords
solid electrolyte
electrolyte layer
switching
switching device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210272482.7A
Other languages
Chinese (zh)
Inventor
简维志
李峰旻
李明修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Priority to CN201210272482.7A priority Critical patent/CN103579498A/en
Publication of CN103579498A publication Critical patent/CN103579498A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

The invention discloses a switching device, an operation method thereof and a memory array. The switching device comprises a first solid electrolyte layer, a second solid electrolyte layer and a switching layer, wherein the switching layer is adjacent to the position between the first solid electrolyte layer and the second solid electrolyte layer. The switching device can control the on-off state of the memory devices in the memory array, thereby avoiding leakage current.

Description

切换装置及其操作方法与存储器阵列Switching device, operating method thereof, and memory array

技术领域 technical field

本发明是有关于切换装置及其操作方法,特别是有关于具有切换装置的存储器阵列及其操作方法。The present invention relates to switching devices and operating methods thereof, and more particularly to memory arrays with switching devices and operating methods thereof.

背景技术 Background technique

随着半导体技术的进步,电子元件的微缩能力不断提高,使得电子产品能够在维持固定大小,甚至更小的体积之下,能够拥有更多的功能。而随着信息的处理量愈来愈高,对于大容量、小体积的存储器需求也日益殷切。With the advancement of semiconductor technology, the miniaturization capability of electronic components has been continuously improved, enabling electronic products to have more functions while maintaining a fixed size or even a smaller volume. As the amount of information processed is getting higher and higher, the demand for large-capacity and small-volume memory is also increasing.

目前的可擦写存储器是以晶体管结构配合存储单元作信息的储存,但是此种存储器架构随着制造技术的进步,可微缩性(scalability)已经达到一个瓶颈。因此先进的存储器架构不断的被提出,例如相变化随机存取存储器(phase change random access memory,PCRAM)、磁性随机存取存储器(magnetic random access memory,MRAM)、电阻式随机存取存储器(resistiverandom access memory,RRAM)。其中RRAM具有读写速度快、非破坏性读取、对于极端温度的耐受性强,并可与现有CMOS(complementary metaloxide semiconductor,CMOS)工艺整合等优点,被视为具有能够取代现今所有储存媒体潜力的新兴存储器技术。The current rewritable memory uses a transistor structure to cooperate with memory cells to store information, but with the progress of manufacturing technology, the scalability of this memory architecture has reached a bottleneck. Therefore, advanced memory architectures are constantly being proposed, such as phase change random access memory (phase change random access memory, PCRAM), magnetic random access memory (magnetic random access memory, MRAM), resistive random access memory (resistive random access memory) memory, RRAM). Among them, RRAM has the advantages of fast read and write speed, non-destructive reading, strong tolerance to extreme temperature, and can be integrated with the existing CMOS (complementary metal oxide semiconductor, CMOS) process. Media Potential of Emerging Memory Technologies.

然而,目前存储器阵列在操作上仍有漏电流等的问题。However, current memory arrays still have problems such as leakage current in operation.

发明内容 Contents of the invention

本发明是有关于一种切换装置及其操作方法与存储器阵列,切换装置能用以控制存储器阵列中的存储装置的开关状态,能避免漏电流。The invention relates to a switching device, its operation method and memory array. The switching device can be used to control the switching state of the storage devices in the memory array, and can avoid leakage current.

本发明提供了一种切换装置,切换装置包括第一固态电解质层、第二固态电解质层与切换层,切换层邻接于第一固态电解质层与第二固态电解质层之间。The present invention provides a switching device. The switching device includes a first solid electrolyte layer, a second solid electrolyte layer and a switching layer, and the switching layer is adjacent to the first solid electrolyte layer and the second solid electrolyte layer.

本发明还提供了一种存储器阵列,存储器阵列包括多个存储单元;存储单元各包括切换装置与存储装置;切换装置包括第一固态电解质层、第二固态电解质层与切换层;切换层邻接于第一固态电解质层与第二固态电解质层之间;存储装置具有多个接触端;第一固态电解质层与第二固态电解质层其中之一被电性连接于存储装置的接触端至少之一。The present invention also provides a memory array, the memory array includes a plurality of storage units; each storage unit includes a switching device and a storage device; the switching device includes a first solid electrolyte layer, a second solid electrolyte layer and a switching layer; the switching layer is adjacent to Between the first solid electrolyte layer and the second solid electrolyte layer; the storage device has multiple contact terminals; one of the first solid electrolyte layer and the second solid electrolyte layer is electrically connected to at least one of the contact terminals of the storage device.

本发明还提供了一种切换装置的操作方法,该切换装置包括第一固态电解质层、第二固态电解质层与切换层,切换层邻接于第一固态电解质层与第二固态电解质层之间;操作方法包括以下步骤:施加第一偏压至切换装置,以使切换层的性质从电性阻断转变成电性导通;施加不同于第一偏压的第二偏压至切换装置,以使切换层的性质从电性导通转变成电性阻断。The present invention also provides an operation method of a switching device, the switching device includes a first solid electrolyte layer, a second solid electrolyte layer and a switching layer, and the switching layer is adjacent to between the first solid electrolyte layer and the second solid electrolyte layer; The operation method includes the following steps: applying a first bias voltage to the switching device to change the property of the switching layer from electrical blocking to electrical conducting; applying a second bias voltage different from the first bias voltage to the switching device to Change the properties of the switching layer from electrically conducting to electrically blocking.

下文特举较佳实施例,并配合所附图式,作详细说明如下:The preferred embodiments are specifically cited below, and in conjunction with the attached drawings, the detailed description is as follows:

附图说明 Description of drawings

图1绘示根据一实施例的切换装置的剖面图。FIG. 1 is a cross-sectional view of a switching device according to an embodiment.

图2A绘示根据一实施例的切换装置的剖面图。FIG. 2A is a cross-sectional view of a switching device according to an embodiment.

图2B绘示根据一实施例的切换装置的剖面图。FIG. 2B is a cross-sectional view of a switching device according to an embodiment.

图3A绘示根据一实施例的切换装置的剖面图。FIG. 3A is a cross-sectional view of a switching device according to an embodiment.

图3B绘示根据一实施例的切换装置的剖面图。FIG. 3B is a cross-sectional view of a switching device according to an embodiment.

图4绘示根据一实施例的存储器阵列的示意图。FIG. 4 is a schematic diagram of a memory array according to an embodiment.

图5绘示根据一实施例的存储器阵列的示意图。FIG. 5 is a schematic diagram of a memory array according to an embodiment.

图6绘示根据一实施例的存储器结构的剖面图。FIG. 6 illustrates a cross-sectional view of a memory structure according to an embodiment.

图7绘示根据一实施例的存储器结构的剖面图。FIG. 7 illustrates a cross-sectional view of a memory structure according to an embodiment.

【主要元件符号说明】[Description of main component symbols]

102、202~切换装置;104~第一固态电解质层;106~第二固态电解质层;108~切换层;110~导电桥;112~存储单元;114、214、314~存储装置;116~第一接触端;第二接触端;120~电流开关;222、322~第一电极;224、324~第二电极;226~介电层;328~第一次电极层;330~第二次电极层;332~第三次电极层;334~第四次电极层;336~第五次电极层;338~突出部;BL~位线;WL~字线。102, 202~switching device; 104~first solid electrolyte layer; 106~second solid electrolyte layer; 108~switching layer; 110~conductive bridge; 112~storage unit; 114, 214, 314~storage device; 116~the first A contact end; second contact end; 120~current switch; 222, 322~first electrode; 224, 324~second electrode; 226~dielectric layer; 328~first electrode layer; 330~second electrode layer; 332~third electrode layer; 334~fourth electrode layer; 336~fifth electrode layer; 338~protrusion; BL~bit line; WL~word line.

具体实施方式 Detailed ways

图1绘示根据一实施例的切换装置102的剖面图。切换装置102包括第一固态电解质层104、第二固态电解质层106与切换层108。切换层108邻接于第一固态电解质层104与第二固态电解质层106之间,并分开第一固态电解质层104与第二固态电解质层106。第一固态电解质层104与第二固态电解质层106的材质可分别包括含有金属材料的硫属(chalcogenide)化物,例如含有铜或银的硫属化物。于一实施例中,第一固态电解质层104与第二固态电解质层106的材质可分别为碲铜(Te-Cu)合金。然本发明并不限于此,于其他实施例中,第一固态电解质层104与第二固态电解质层106可分别包括碲银(Te-Ag)合金、或其他合适的材料。切换层108的材质可包括介电质,例如氧化硅、氮化硅、氮氧化硅、或其他合适的介电材料。FIG. 1 shows a cross-sectional view of a switching device 102 according to an embodiment. The switching device 102 includes a first solid electrolyte layer 104 , a second solid electrolyte layer 106 and a switching layer 108 . The switching layer 108 is adjacent to the first solid electrolyte layer 104 and the second solid electrolyte layer 106 and separates the first solid electrolyte layer 104 from the second solid electrolyte layer 106 . The material of the first solid electrolyte layer 104 and the second solid electrolyte layer 106 may respectively include chalcogenides containing metal materials, such as chalcogenides containing copper or silver. In one embodiment, the materials of the first solid electrolyte layer 104 and the second solid electrolyte layer 106 may be tellurium copper (Te—Cu) alloy respectively. However, the present invention is not limited thereto. In other embodiments, the first solid electrolyte layer 104 and the second solid electrolyte layer 106 may respectively include tellurium silver (Te—Ag) alloy, or other suitable materials. The material of the switching layer 108 may include a dielectric, such as silicon oxide, silicon nitride, silicon oxynitride, or other suitable dielectric materials.

切换装置102可利用自对准工艺来制造,不需要使用额外的掩模,因此制造成本低。The switching device 102 can be manufactured by using a self-alignment process without using an additional mask, so the manufacturing cost is low.

请参照图1,切换装置102在未施加任何偏压的状况之下,由介电材料形成的切换层108是具有电性阻断的性质。于实施例中,切换装置102被用作电流开关。Referring to FIG. 1 , when the switching device 102 is not applied with any bias voltage, the switching layer 108 formed of a dielectric material has the property of electrically blocking. In an embodiment, the switching device 102 is used as a current switch.

图2A与图2B绘示根据一实施例的切换装置102的操作方法。如图2A所示,于一实施例中,是施加正的切换偏压(电场)(例如实质上大于0V)至切换装置102,例如使切换装置102的第一固态电解质层104接地,并施加正的电压至切换装置102的第二固态电解质层106,以使得第二固态电解质层106中的带正电的金属离子移动至切换层108中,并累积在第一固态电解质层104与第二固态电解质层106之间而形成邻接的导电桥110,藉此使切换层108具有电性导通的特性,换句话说,电流能通过切换层108中的导电桥110流通在第一固态电解质层104与第二固态电解质层106之间。于一实施例中,用以使切换层108转变成电性导通的正的切换偏压。在第一固态电解质层104与第二固态电解质层106为碲铜(Te-Cu)合金的示范例中,能移动的金属离子为铜离子。2A and 2B illustrate the operation method of the switching device 102 according to an embodiment. As shown in FIG. 2A, in one embodiment, a positive switching bias (electric field) (for example, substantially greater than 0V) is applied to the switching device 102, for example, grounding the first solid electrolyte layer 104 of the switching device 102, and applying A positive voltage is applied to the second solid electrolyte layer 106 of the switching device 102, so that the positively charged metal ions in the second solid electrolyte layer 106 move to the switching layer 108 and accumulate in the first solid electrolyte layer 104 and the second solid electrolyte layer 104. An adjacent conductive bridge 110 is formed between the solid electrolyte layers 106, so that the switching layer 108 has the characteristics of electrical conduction, in other words, the current can flow through the conductive bridge 110 in the switching layer 108 in the first solid electrolyte layer 104 and the second solid electrolyte layer 106. In one embodiment, a positive switching bias is used to turn the switching layer 108 into electrical conduction. In an example where the first solid electrolyte layer 104 and the second solid electrolyte layer 106 are Te-Cu alloys, the movable metal ions are copper ions.

如图2B所示,于一实施例中,在移除使切换层108转变成电性导通的正的切换偏压,例如不提供电压至第一固态电解质层104与第二固态电解质层106,或者使第一固态电解质层104与第二固态电解质层106之间的电场为零(例如实质上等于0V)之后,导电桥110中靠近第一固态电解质层104与第二固态电解质层106的金属离子会被吸引移动至第一固态电解质层104与第二固态电解质层106中,而自动地断裂于第一固态电解质层104与第二固态电解质层106,因此切换层108的性质转变成电性阻断,换句话说,电流无法流通在第一固态电解质层104与第二固态电解质层106之间。As shown in FIG. 2B , in one embodiment, after removing the positive switching bias voltage that turns the switching layer 108 into electrical conduction, for example, no voltage is provided to the first solid electrolyte layer 104 and the second solid electrolyte layer 106 , or after making the electric field between the first solid electrolyte layer 104 and the second solid electrolyte layer 106 zero (for example, substantially equal to 0V), in the conductive bridge 110 close to the first solid electrolyte layer 104 and the second solid electrolyte layer 106 The metal ions will be attracted to move into the first solid electrolyte layer 104 and the second solid electrolyte layer 106, and automatically break in the first solid electrolyte layer 104 and the second solid electrolyte layer 106, so the properties of the switching layer 108 are converted into electrical In other words, current cannot flow between the first solid electrolyte layer 104 and the second solid electrolyte layer 106 .

图3A与图3B绘示根据一实施例的切换装置102的操作方法。如图3A所示,于一实施例中,是施加负的切换偏压(电场)(例如实质上小于0V)至切换装置102,例如使切换装置102的第一固态电解质层104接地,并施加负的电压至切换装置102的第二固态电解质层106,以使得第一固态电解质层104中的带正电的金属离子移动至切换层108中,并累积在第一固态电解质层104与第二固态电解质层106之间而形成邻接的导电桥110,藉此使切换层108具有电性导通的特性,换句话说,电流能通过切换层108中的导电桥110流通在第一固态电解质层104与第二固态电解质层106之间。于一实施例中,用以使切换层108转变成电性导通的负的切换偏压。在第一固态电解质层104与第二固态电解质层106为碲铜(Te-Cu)合金的示范例中,能移动的金属离子为铜离子。3A and 3B illustrate the operation method of the switching device 102 according to an embodiment. As shown in FIG. 3A, in one embodiment, a negative switching bias (electric field) (for example, substantially less than 0V) is applied to the switching device 102, such as grounding the first solid electrolyte layer 104 of the switching device 102, and applying A negative voltage is applied to the second solid electrolyte layer 106 of the switching device 102, so that the positively charged metal ions in the first solid electrolyte layer 104 move to the switching layer 108 and accumulate in the first solid electrolyte layer 104 and the second solid electrolyte layer 104. An adjacent conductive bridge 110 is formed between the solid electrolyte layers 106, so that the switching layer 108 has the characteristics of electrical conduction, in other words, the current can flow through the conductive bridge 110 in the switching layer 108 in the first solid electrolyte layer 104 and the second solid electrolyte layer 106. In one embodiment, a negative switching bias is used to turn the switching layer 108 into electrical conduction. In an example where the first solid electrolyte layer 104 and the second solid electrolyte layer 106 are Te-Cu alloys, the movable metal ions are copper ions.

如图3B所示,于一实施例中,在移除使切换层108转变成电性导通的负的切换偏压,例如不提供电压至第一固态电解质层104与第二固态电解质层106,或者使第一固态电解质层104与第二固态电解质层106之间的电场为零(例如实质上等于0V)之后,导电桥110中靠近第一固态电解质层104与第二固态电解质层106的金属离子会被吸引移动至第一固态电解质层104与第二固态电解质层106中,而自动地断裂于第一固态电解质层104与第二固态电解质层106,因此切换层108的性质转变成电性阻断,换句话说,电流无法流通在第一固态电解质层104与第二固态电解质层106之间。As shown in FIG. 3B , in one embodiment, after removing the negative switching bias voltage that turns the switching layer 108 into electrical conduction, for example, no voltage is provided to the first solid electrolyte layer 104 and the second solid electrolyte layer 106 , or after making the electric field between the first solid electrolyte layer 104 and the second solid electrolyte layer 106 zero (for example, substantially equal to 0V), in the conductive bridge 110 close to the first solid electrolyte layer 104 and the second solid electrolyte layer 106 The metal ions will be attracted to move into the first solid electrolyte layer 104 and the second solid electrolyte layer 106, and automatically break in the first solid electrolyte layer 104 and the second solid electrolyte layer 106, so the properties of the switching layer 108 are converted into electrical In other words, current cannot flow between the first solid electrolyte layer 104 and the second solid electrolyte layer 106 .

切换装置102可电性连接至存储装置(未显示),以控制开关存储装置。举例来说,切换装置102是电性串联存储装置。于一实施例中,半导体装置的操作方法包括编程、擦除与读取存储装置。在进行编程、擦除与读取的过程中,可利用切换装置102开启选择的存储装置,同时关闭未选择的存储装置以避免漏电流的途径。The switching device 102 is electrically connected to a storage device (not shown) to control switching of the storage device. For example, the switching device 102 is an electrical series memory device. In one embodiment, the method for operating a semiconductor device includes programming, erasing and reading a memory device. During the process of programming, erasing and reading, the switching device 102 can be used to turn on the selected memory device and turn off the unselected memory device at the same time to avoid leakage current.

于一实施例中,是提供正的编程偏压Vp至存储装置,正的编程偏压Vp在电性连接至存储装置的切换装置102中造成正的切换偏压Vs,使得切换层108具有电性导通的性质,如图2A所示。然后,可移除正的编程偏压Vp,使得切换装置102的切换层108具有电性阻断的性质,如图2B所示,同时,存储装置被维持在编程状态。接着,可提供正的读取偏压Vr以读取存储装置的编程状态,其中正的读取偏压Vr会在电性连接至存储装置的切换装置102中造成正的切换偏压Vs,使得切换层108具有电性导通的性质,如图2A所示。于实施例中,编程偏压Vp、切换偏压Vs与读取偏压Vr的关系可以下式表示:In one embodiment, a positive programming bias Vp is provided to the storage device, and the positive programming bias Vp causes a positive switching bias Vs in the switching device 102 electrically connected to the storage device, so that the switching layer 108 has an electrical The nature of sexual conduction, as shown in Figure 2A. Then, the positive programming bias Vp can be removed, so that the switching layer 108 of the switching device 102 has an electrical blocking property, as shown in FIG. 2B , while the memory device is maintained in a programmed state. Then, a positive read bias voltage Vr can be provided to read the programmed state of the memory device, wherein the positive read bias voltage Vr will cause a positive switching bias voltage Vs in the switching device 102 electrically connected to the memory device, so that The switching layer 108 is electrically conductive, as shown in FIG. 2A . In an embodiment, the relationship between the programming bias Vp, the switching bias Vs and the reading bias Vr can be represented by the following formula:

2*Vs>Vp>Vr>Vs2*Vs>Vp>Vr>Vs

于一实施例中,是提供负的擦除偏压Ve至存储装置,负的擦除偏压Ve在电性连接至存储装置的切换装置102中造成负的切换偏压Vs,使得切换层108具有电性导通的性质,如图3A所示。然后,可移除负的擦除偏压Ve,使得切换装置102的切换层108具有电性阻断的性质,如图3B所示,同时,存储装置被维持在擦除状态。接着,可提供正的读取偏压Vr以读取存储装置的擦除状态,其中正的读取偏压Vr会在电性连接至存储装置的切换装置102中造成正的切换偏压Vs,使得切换层108具有电性导通的性质,如图2A所示。于实施例中,擦除偏压Ve、切换偏压Vs与读取偏压Vr的关系可以下式表示:In one embodiment, a negative erasing bias Ve is provided to the storage device, and the negative erasing bias Ve causes a negative switching bias Vs in the switching device 102 electrically connected to the storage device, so that the switching layer 108 It has the property of electrical conduction, as shown in Fig. 3A. Then, the negative erase bias Ve can be removed, so that the switching layer 108 of the switching device 102 has an electrical blocking property, as shown in FIG. 3B , and meanwhile, the storage device is maintained in an erased state. Next, a positive read bias voltage Vr can be provided to read the erased state of the storage device, wherein the positive read bias voltage Vr will cause a positive switching bias voltage Vs in the switching device 102 electrically connected to the storage device, The switching layer 108 has the property of electrical conduction, as shown in FIG. 2A . In an embodiment, the relationship between the erasing bias Ve, the switching bias Vs, and the reading bias Vr can be represented by the following formula:

2*|Vs|>|Ve|>Vr>|Vs|2*|Vs|>|Ve|>Vr>|Vs|

图4绘示根据一实施例的存储器阵列的示意图。存储器阵列为交叉点阵列(cross-point array)装置。存储器阵列包括多个存储单元112。存储单元112各包括切换装置102与存储装置114。切换装置102可与存储装置114电性串联。切换装置102可类似于图1所示的切换装置102。请参照图4,于一实施例中,存储装置114是具有相对的第一接触端116与第二接触端118。举例来说,存储装置114的第一接触端116可电性连接至切换装置102的第二固态电解质层106(图1),存储装置114的第二接触端118可电性连接至位线BL,切换装置102的第一固态电解质层104(图1)可电性连接至字线WL。于实施例中,切换装置102是用以控制开关存储装置114,并可以如图5所示的电流开关120所表示。FIG. 4 is a schematic diagram of a memory array according to an embodiment. The memory array is a cross-point array device. The memory array includes a plurality of memory cells 112 . The storage units 112 each include a switching device 102 and a storage device 114 . The switching device 102 can be electrically connected in series with the storage device 114 . The switching device 102 may be similar to the switching device 102 shown in FIG. 1 . Referring to FIG. 4 , in one embodiment, the storage device 114 has a first contact end 116 and a second contact end 118 opposite to each other. For example, the first contact terminal 116 of the storage device 114 can be electrically connected to the second solid electrolyte layer 106 ( FIG. 1 ) of the switching device 102 , and the second contact terminal 118 of the storage device 114 can be electrically connected to the bit line BL. , the first solid electrolyte layer 104 ( FIG. 1 ) of the switching device 102 can be electrically connected to the word line WL. In an embodiment, the switch device 102 is used to control the switch storage device 114 and can be represented by a current switch 120 as shown in FIG. 5 .

图6绘示根据一实施例的存储器结构的剖面图。存储器结构包括位于第一电极222与第二电极224之间的切换装置202与存储装置214。不同层的切换装置202与存储装置214是通过介电层226互相分开。切换装置202可类似于图1所示的切换装置102。第一电极222与第二电极224可包括金属例如钨、氮化钛等等。举例来说,第一电极222为上电极,第二电极224为下电极。于一实施例中,存储装置214包括电阻式存储器,包括氧化钨(WOx)。举例来说,存储器结构可具有侧壁结构,例如单一侧壁的存储装置214。FIG. 6 illustrates a cross-sectional view of a memory structure according to an embodiment. The memory structure includes a switching device 202 and a memory device 214 located between a first electrode 222 and a second electrode 224 . The switching device 202 and the storage device 214 of different layers are separated from each other by a dielectric layer 226 . The switching device 202 may be similar to the switching device 102 shown in FIG. 1 . The first electrode 222 and the second electrode 224 may include metals such as tungsten, titanium nitride and the like. For example, the first electrode 222 is an upper electrode, and the second electrode 224 is a lower electrode. In one embodiment, memory device 214 includes resistive memory, including tungsten oxide (WOx). For example, the memory structure may have a sidewall structure, such as the memory device 214 with a single sidewall.

图7绘示根据一实施例的存储器结构的剖面图。图7所示的存储器结构与图6所示的存储器结构的差异在于,第一电极322包括第一次电极层328与第二次电极层330。第二次电极层330位于第一次电极层328与切换装置202之间。第二电极324包括第三次电极层332、第四次电极层334与第五次电极层336。第四次电极层334位于第三次电极层332与第五次电极层336之间。第一次电极层328与第二次电极层330可使用不同的材料。于一实施例中,举例来说,第一次电极层328包括钨,第二次电极层330包括氮化钛。第三次电极层332、第四次电极层334与第五次电极层336可使用不同的材料。于一实施例中,举例来说,第四次电极层334包括钨,第三次电极层332与第五次电极层336包括氮化钛。存储装置314可具有突出部338介于第三次电极层332、第四次电极层334与第五次电极层336之间。FIG. 7 illustrates a cross-sectional view of a memory structure according to an embodiment. The difference between the memory structure shown in FIG. 7 and the memory structure shown in FIG. 6 is that the first electrode 322 includes a first electrode layer 328 and a second electrode layer 330 . The second sub-electrode layer 330 is located between the first electrode layer 328 and the switching device 202 . The second electrode 324 includes a third sub-electrode layer 332 , a fourth sub-electrode layer 334 and a fifth sub-electrode layer 336 . The fourth sub-electrode layer 334 is located between the third sub-electrode layer 332 and the fifth sub-electrode layer 336 . Different materials can be used for the first electrode layer 328 and the second electrode layer 330 . In one embodiment, for example, the first electrode layer 328 includes tungsten, and the second electrode layer 330 includes titanium nitride. Different materials can be used for the third sub-electrode layer 332 , the fourth sub-electrode layer 334 and the fifth sub-electrode layer 336 . In one embodiment, for example, the fourth sub-electrode layer 334 includes tungsten, and the third sub-electrode layer 332 and the fifth sub-electrode layer 336 include titanium nitride. The memory device 314 may have a protrusion 338 interposed between the third sub-electrode layer 332 , the fourth sub-electrode layer 334 and the fifth sub-electrode layer 336 .

实施例中的切换装置可应用至可变电阻式存储器(ReRAM)、可编程金属化单元(Programmable Metallization Cell;PMC)ReRAM、相变存储器(Phase Change Memory;PCM)、磁性随机存取存储器(MagnetoresistiveRandom Access Memory;MRAM)例如自旋转移力矩磁性随机存取存储器(Spin Transfer Torque Magnetoresistive Random Access Memory;STT-MRAM)。实施例中的切换装置可用以实现三维(three dimensional)ReRAM。使用切换装置可简单地与双极(bipolar)ReRAM整合。切换装置可适用于交叉点阵列(cross-point array)装置。The switching device in the embodiment can be applied to variable resistance memory (ReRAM), programmable metallization cell (Programmable Metallization Cell; PMC) ReRAM, phase change memory (Phase Change Memory; PCM), magnetic random access memory (MagnetoresistiveRandom) Access Memory; MRAM) such as spin transfer torque magnetic random access memory (Spin Transfer Torque Magnetoresistive Random Access Memory; STT-MRAM). The switching device in the embodiment can be used to implement three dimensional ReRAM. Simple integration with bipolar ReRAM using switching devices. The switching device may be suitable for a cross-point array device.

虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟悉此项技艺者,在不脱离本发明的精神和范围内,当可做些许更动与润饰,因此本发明的保护范围当视随附的权利要求范围所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with this art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, this The scope of protection of the invention should be defined by the appended claims.

Claims (10)

1.一种切换装置,包括:1. A switching device, comprising: 一第一固态电解质层;a first solid electrolyte layer; 一第二固态电解质层;以及a second solid electrolyte layer; and 一切换层,邻接于该第一固态电解质层与该第二固态电解质层之间。A switching layer is adjacent to the first solid electrolyte layer and the second solid electrolyte layer. 2.根据权利要求1所述的切换装置,其中该第一固态电解质层与该第二固态电解质层的材质分别包括含有金属材料的硫属(chalcogenide)化物,该切换层包括氧化硅、氮化硅或氮氧化硅。2. The switching device according to claim 1, wherein the materials of the first solid electrolyte layer and the second solid electrolyte layer respectively include chalcogenide (chalcogenide) containing metal materials, and the switching layer includes silicon oxide, nitride silicon or silicon oxynitride. 3.根据权利要求1所述的切换装置,其中该第一固态电解质层与该第二固态电解质层是通过该切换层互相分开。3. The switching device according to claim 1, wherein the first solid electrolyte layer and the second solid electrolyte layer are separated from each other by the switching layer. 4.一种存储器阵列,包括多个存储单元,其中该多个存储单元各包括:4. A memory array comprising a plurality of memory cells, wherein each of the plurality of memory cells comprises: 如权利要求1至3其中之一所述的切换装置;以及A switching device as claimed in any one of claims 1 to 3; and 一存储装置,具有多个接触端,其中该第一固态电解质层与该第二固态电解质层其中之一被电性连接于该存储装置的该多个接触端至少之一。A storage device has a plurality of contact terminals, wherein one of the first solid electrolyte layer and the second solid electrolyte layer is electrically connected to at least one of the plurality of contact terminals of the storage device. 5.根据权利要求4所述的存储器阵列,其中该存储装置具有相对的一第一接触端与一第二接触端,该存储装置的该第一接触端被电性连接至该切换装置的该第二固态电解质层。5. The memory array according to claim 4, wherein the memory device has a first contact terminal and a second contact terminal opposite, the first contact terminal of the memory device is electrically connected to the switching device the second solid electrolyte layer. 6.根据权利要求4所述的存储器阵列,更包括多个字线与位线,其中该切换装置的该第一固态电解质层被电性连接至该多个字线其中之一,该存储装置的该第二接触端被电性连接至该多个位线其中之一。6. The memory array according to claim 4, further comprising a plurality of word lines and bit lines, wherein the first solid electrolyte layer of the switching device is electrically connected to one of the plurality of word lines, the memory device The second contact terminal is electrically connected to one of the plurality of bit lines. 7.根据权利要求4所述的存储器阵列,其中该存储装置包括可变电阻式存储器(ReRAM)、Programmable Metallization Cell(PMC)ReRAM,Phase Change Memory(PCM),and MRAM7. The memory array according to claim 4, wherein the memory device comprises variable resistance memory (ReRAM), Programmable Metallization Cell (PMC) ReRAM, Phase Change Memory (PCM), and MRAM 8.根据权利要求4所述的存储器阵列,其中该存储装置与该切换装置是电性串联。8. The memory array of claim 4, wherein the storage device and the switching device are electrically connected in series. 9.根据权利要求4所述的存储器阵列,其中该切换装置被用作电流开关。9. The memory array of claim 4, wherein the switching device is used as a current switch. 10.一种切换装置的操作方法,包括:10. A method of operating a switching device, comprising: 施加一第一偏压至如权利要求1至3其中之一所述的切换装置,以使该切换层的性质从电性阻断转变成电性导通;以及applying a first bias voltage to the switching device according to any one of claims 1 to 3, so that the property of the switching layer changes from electrically blocking to electrically conducting; and 施加不同于该第一偏压的一第二偏压至该切换装置,以使该切换层的性质从电性导通转变成电性阻断。A second bias voltage different from the first bias voltage is applied to the switching device, so that the property of the switching layer changes from electrically conducting to electrically blocking.
CN201210272482.7A 2012-08-02 2012-08-02 Switching device, operating method thereof, and memory array Pending CN103579498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210272482.7A CN103579498A (en) 2012-08-02 2012-08-02 Switching device, operating method thereof, and memory array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210272482.7A CN103579498A (en) 2012-08-02 2012-08-02 Switching device, operating method thereof, and memory array

Publications (1)

Publication Number Publication Date
CN103579498A true CN103579498A (en) 2014-02-12

Family

ID=50050837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210272482.7A Pending CN103579498A (en) 2012-08-02 2012-08-02 Switching device, operating method thereof, and memory array

Country Status (1)

Country Link
CN (1) CN103579498A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635331A (en) * 2008-07-24 2010-01-27 海力士半导体有限公司 Resistive memory device and method of fabricating the same
CN101728483A (en) * 2008-10-10 2010-06-09 旺宏电子股份有限公司 Dielectric layer sandwiched columnar memory device
CN101887903A (en) * 2009-05-15 2010-11-17 旺宏电子股份有限公司 Phase change memory device with transistor, resistor and capacitor and method of operation thereof
CN102044293A (en) * 2009-10-13 2011-05-04 南亚科技股份有限公司 Interleaved Memory Array Device
CN102544365A (en) * 2012-01-18 2012-07-04 北京大学 Resistance random access memory and manufacturing method thereof
US20120168705A1 (en) * 2010-12-30 2012-07-05 Micron Technology, Inc. Bipolar Switching Memory Cell With Built-in "On" State Rectifying Current-Voltage Characteristics

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635331A (en) * 2008-07-24 2010-01-27 海力士半导体有限公司 Resistive memory device and method of fabricating the same
CN101728483A (en) * 2008-10-10 2010-06-09 旺宏电子股份有限公司 Dielectric layer sandwiched columnar memory device
CN101887903A (en) * 2009-05-15 2010-11-17 旺宏电子股份有限公司 Phase change memory device with transistor, resistor and capacitor and method of operation thereof
CN102044293A (en) * 2009-10-13 2011-05-04 南亚科技股份有限公司 Interleaved Memory Array Device
US20120168705A1 (en) * 2010-12-30 2012-07-05 Micron Technology, Inc. Bipolar Switching Memory Cell With Built-in "On" State Rectifying Current-Voltage Characteristics
CN102544365A (en) * 2012-01-18 2012-07-04 北京大学 Resistance random access memory and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9768234B2 (en) Resistive memory architecture and devices
CN101971264B (en) Non-volatile memory with resistive access component
US8063394B2 (en) Integrated circuit
US9208873B2 (en) Non-volatile storage system biasing conditions for standby and first read
US9818478B2 (en) Programmable resistive device and memory using diode as selector
JP5469239B2 (en) Three-dimensional array of reprogrammable non-volatile memory elements having vertical bit lines
JP5996324B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
TWI515935B (en) Switching device structures and methods
US8957399B2 (en) Nonvolatile memory element and nonvolatile memory device
US9147840B2 (en) Memory
US7718533B2 (en) Inverted variable resistance memory cell and method of making the same
US8604457B2 (en) Phase-change memory element
CN100543966C (en) Method for manufacturing memory element
US8824188B2 (en) Operating method for memory device and memory array and operating method for the same
US10847579B1 (en) Method for fabricating an array of 4F2 resistive non-volatile memory in a NAND architecture
JP2021527341A (en) Transition metal-doped germanium-antimony telluride (GST) memory device components and compositions
US9601692B1 (en) Hetero-switching layer in a RRAM device and method
US20190272874A1 (en) Memory device, method of forming the same, method for controlling the same and memory array
US20100108975A1 (en) Non-volatile memory cell formation
US9000412B2 (en) Switching device and operating method for the same and memory array
TWI485701B (en) Switching device and operating method for the same and memory array
CN103579498A (en) Switching device, operating method thereof, and memory array
TWI840901B (en) Integrated circuit device, memory array and method of operating non-volatile memory cell
CN101743649A (en) non-volatile memory device
CN103578532B (en) Operation method of storage device, memory array and operation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140212