CN102394606B - Jump-key (JK) trigger capable of defending power attack - Google Patents
Jump-key (JK) trigger capable of defending power attack Download PDFInfo
- Publication number
- CN102394606B CN102394606B CN201110284559.8A CN201110284559A CN102394606B CN 102394606 B CN102394606 B CN 102394606B CN 201110284559 A CN201110284559 A CN 201110284559A CN 102394606 B CN102394606 B CN 102394606B
- Authority
- CN
- China
- Prior art keywords
- pipe
- pmos pipe
- nmos pipe
- grid
- pmos
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 31
- 230000000295 complement effect Effects 0.000 abstract description 80
- 238000005265 energy consumption Methods 0.000 abstract description 19
- 230000008901 benefit Effects 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000005094 computer simulation Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明公开了一种防御能量攻击的JK触发器,特点是包括第一互补信号产生电路、第二互补信号产生电路、触发器原型电路、第一主从锁存单元、第二主从锁存单元、第三主从锁存单元及第四主从锁存单元,触发器原型电路与第一主从锁存单元连接,第一主从锁存单元与第一互补信号产生电路连接,第一互补信号产生电路与第三主从锁存单元连接,第三主从锁存单元与触发器原型电路连接,触发器原型电路与第二主从锁存单元连接,第二主从锁存单元与第二互补信号产生电路连接,第二互补信号产生电路与第四主从锁存单元连接,第四主从锁存单元与触发器原型电路连接;优点是能耗与所处理数据相互独立且能耗稳定,具有良好的防御能量攻击的性能。
The invention discloses a JK flip-flop for defending against energy attacks, which is characterized in that it includes a first complementary signal generating circuit, a second complementary signal generating circuit, a flip-flop prototype circuit, a first master-slave latch unit, and a second master-slave latch unit, the third master-slave latch unit and the fourth master-slave latch unit, the flip-flop prototype circuit is connected with the first master-slave latch unit, the first master-slave latch unit is connected with the first complementary signal generating circuit, and the first The complementary signal generating circuit is connected with the third master-slave latch unit, the third master-slave latch unit is connected with the flip-flop prototype circuit, the flip-flop prototype circuit is connected with the second master-slave latch unit, and the second master-slave latch unit is connected with the The second complementary signal generating circuit is connected, the second complementary signal generating circuit is connected with the fourth master-slave latch unit, and the fourth master-slave latch unit is connected with the flip-flop prototype circuit; the advantage is that the energy consumption and the processed data are independent of each other and can be The consumption is stable, and it has good performance in defending against energy attacks.
Description
技术领域technical field
本发明涉及一种JK触发器,尤其是涉及一种防御能量攻击的JK触发器。The invention relates to a JK trigger, in particular to a JK trigger for defending against energy attacks.
背景技术Background technique
随着计算机和通信技术的发展,用户对信息存储、处理和传输的安全性需求越来越迫切,普遍采用在加密器件上执行密码算法的策略,达到保护信息安全的目的。然而,在执行密码算法过程中物理器件总是要泄漏出各种与密码系统本身相关的信息,譬如能量消耗、电磁辐射、运行时间等。攻击者利用这些信息攻击加密器件获得密钥的过程称为旁道攻击(Side Channel Attack,SCA)。在诸多旁道攻击方案中,差分能量攻击(Differential Power Analysis,DPA)技术已被证明是一种更有效且易于实现的策略,对密码模块的安全构成重大威胁。With the development of computer and communication technology, users have more and more urgent demands on the security of information storage, processing and transmission. The strategy of implementing cryptographic algorithms on encryption devices is generally adopted to achieve the purpose of protecting information security. However, in the process of executing cryptographic algorithms, physical devices always leak various information related to the cryptographic system itself, such as energy consumption, electromagnetic radiation, and running time. The process in which an attacker uses this information to attack an encryption device to obtain a key is called a Side Channel Attack (SCA). Among many side channel attack schemes, Differential Power Analysis (DPA) technology has been proved to be a more effective and easy-to-implement strategy, which poses a major threat to the security of cryptographic modules.
密码系统中,触发器是一种具有记忆功能、能存储信息的最常用的单元电路,被广泛应用于寄存器、计数器、移位寄存器等逻辑器件。静态互补CMOS逻辑单元是传统触发器的基本组成部分,由于其仅仅当节点状态存在0→1、1→0跳变时消耗能量,而当节点状态保持不变时不消耗能量,因此其能量消耗存在不对称性,这一特点已成为差分能量攻击技术破解传统加密器件的突破口。In a cryptographic system, a flip-flop is the most commonly used unit circuit with a memory function and can store information. It is widely used in logic devices such as registers, counters, and shift registers. The static complementary CMOS logic unit is the basic component of the traditional flip-flop, because it only consumes energy when the node state has 0→1, 1→0 jumps, and does not consume energy when the node state remains unchanged, so its energy consumption There is asymmetry, and this feature has become a breakthrough for differential energy attack technology to crack traditional encryption devices.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种在保证具有正确的逻辑功能的前提下,能量消耗与所处理数据相互独立且能量消耗稳定的防御能量攻击的JK触发器。The technical problem to be solved by the present invention is to provide a JK flip-flop for defending against energy attacks that is independent of energy consumption and processed data and has stable energy consumption under the premise of ensuring correct logic functions.
本发明解决上述技术问题所采用的技术方案为:一种防御能量攻击的JK触发器,包括第一互补信号产生电路、第二互补信号产生电路、触发器原型电路、第一主从锁存单元、第二主从锁存单元、第三主从锁存单元及第四主从锁存单元,所述的触发器原型电路的第一信号输出端与所述的第一主从锁存单元的第一信号输入端相连接,所述的触发器原型电路的第二信号输出端与所述的第一主从锁存单元的第二信号输入端相连接,所述的第一主从锁存单元的第一信号输出端与所述的第一互补信号产生电路的第一信号输入端相连接,所述的第一主从锁存单元的第二信号输出端与所述的第一互补信号产生电路的第二信号输入端相连接,所述的第一互补信号产生电路的第一信号输出端与所述的第三主从锁存单元的第一信号输入端相连接,所述的第一互补信号产生电路的第二信号输出端与所述的第三主从锁存单元的第二信号输入端相连接,所述的第三主从锁存单元的第一信号输出端与所述的触发器原型电路的第一信号输入端相连接,所述的第三主从锁存单元的第二信号输出端与所述的触发器原型电路的第二信号输入端相连接,所述的触发器原型电路的第一信号输出端与所述的第二主从锁存单元的第二信号输入端相连接,所述的触发器原型电路的第二信号输出端与所述的第二主从锁存单元的第一信号输入端相连接,所述的第二主从锁存单元的第一信号输出端与所述的第二互补信号产生电路的第一信号输入端相连接,所述的第二主从锁存单元的第二信号输出端与所述的第二互补信号产生电路的第二信号输入端相连接,所述的第二互补信号产生电路的第一信号输出端与所述的第四主从锁存单元的第一信号输入端相连接,所述的第二互补信号产生电路的第二信号输出端与所述的第四主从锁存单元的第二信号输入端相连接,所述的第四主从锁存单元的第一信号输出端与所述的触发器原型电路的第三信号输入端相连接,所述的第四主从锁存单元的第二信号输出端与所述的触发器原型电路的第四信号输入端相连接。The technical solution adopted by the present invention to solve the above technical problems is: a JK flip-flop for defending against energy attacks, including a first complementary signal generating circuit, a second complementary signal generating circuit, a flip-flop prototype circuit, and a first master-slave latch unit , the second master-slave latch unit, the third master-slave latch unit and the fourth master-slave latch unit, the first signal output end of the flip-flop prototype circuit is connected to the first master-slave latch unit The first signal input terminal is connected, the second signal output terminal of the flip-flop prototype circuit is connected with the second signal input terminal of the first master-slave latch unit, and the first master-slave latch The first signal output terminal of the unit is connected with the first signal input terminal of the first complementary signal generating circuit, and the second signal output terminal of the first master-slave latch unit is connected with the first complementary signal The second signal input end of the generating circuit is connected, the first signal output end of the first complementary signal generating circuit is connected with the first signal input end of the third master-slave latch unit, and the first The second signal output end of a complementary signal generating circuit is connected with the second signal input end of the third master-slave latch unit, and the first signal output end of the third master-slave latch unit is connected with the The first signal input end of the flip-flop prototype circuit is connected, the second signal output end of the third master-slave latch unit is connected with the second signal input end of the flip-flop prototype circuit, and the The first signal output end of the flip-flop prototype circuit is connected with the second signal input end of the second master-slave latch unit, and the second signal output end of the flip-flop prototype circuit is connected with the second master-slave latch unit. The first signal input end of the slave latch unit is connected, the first signal output end of the second master-slave latch unit is connected with the first signal input end of the second complementary signal generating circuit, the The second signal output end of the second master-slave latch unit is connected to the second signal input end of the second complementary signal generation circuit, and the first signal output end of the second complementary signal generation circuit is connected to the second signal output end of the second complementary signal generation circuit. The first signal input end of the fourth master-slave latch unit described above is connected, the second signal output end of the second complementary signal generating circuit is connected with the second signal input end of the fourth master-slave latch unit connected, the first signal output end of the fourth master-slave latch unit is connected with the third signal input end of the flip-flop prototype circuit, the second signal of the fourth master-slave latch unit The output end is connected with the fourth signal input end of the flip-flop prototype circuit.
所述的第一互补信号产生电路由第一PMOS管、第二PMOS管、第三PMOS管、第四PMOS管、第五PMOS管、第六PMOS管、第七PMOS管、第八PMOS管、第九PMOS管、第一NMOS管、第二NMOS管、第三NMOS管及第四NMOS管组成,所述的第一PMOS管的漏极与电源正端相连接,所述的第一PMOS管的源极、所述的第二PMOS管的漏极及所述的第三PMOS管的漏极三者相连接,所述的第二PMOS管的栅极与所述的第一互补信号产生电路的第三信号输入端相连接,所述的第三PMOS管的栅极与所述的第一互补信号产生电路的第四信号输入端相连接,所述的第二PMOS管的源极、所述的第四PMOS管的漏极及所述的第六PMOS管的漏极三者相连接,所述的第三PMOS管的源极、所述的第五PMOS管的漏极及所述的第七PMOS管的漏极三者相连接,所述的第四PMOS管的栅极、所述的第五PMOS管的栅极均与所述的第一互补信号产生电路的第一信号输入端相连接,所述的第四PMOS管的源极、所述的第六PMOS管的源极、所述的第七PMOS管的源极及所述的第八PMOS管的漏极四者相连接,所述的第六PMOS管的栅极、所述的第七PMOS管的栅极均与所述的第一互补信号产生电路的第二信号输入端相连接,所述的第五PMOS管的源极与所述的第九PMOS管的漏极相连接,所述的第八PMOS管的源极、所述的第一NMOS管的漏极、所述的第二NMOS管的漏极、所述的第九PMOS管的栅极及所述的第三NMOS管的栅极均与所述的第一互补信号产生电路的第一信号输出端相连接,所述的第八PMOS管的栅极、所述的第二NMOS管的栅极、所述的第三NMOS管的漏极、所述的第九PMOS管的源极及所述的第四NMOS管的漏极均与所述的第一互补信号产生电路的第二信号输出端相连接,所述的第一NMOS管的源极、所述的第二NMOS管的源极、所述的第三NMOS管的源极及所述的第四NMOS管的源极均接地,所述的第一PMOS管的栅极、所述的第一NMOS管的栅极及所述的第四NMOS管的栅极均与时钟信号输入端相连接。The first complementary signal generating circuit is composed of a first PMOS transistor, a second PMOS transistor, a third PMOS transistor, a fourth PMOS transistor, a fifth PMOS transistor, a sixth PMOS transistor, a seventh PMOS transistor, an eighth PMOS transistor, The ninth PMOS transistor, the first NMOS transistor, the second NMOS transistor, the third NMOS transistor and the fourth NMOS transistor, the drain of the first PMOS transistor is connected to the positive terminal of the power supply, and the first PMOS transistor The source, the drain of the second PMOS transistor and the drain of the third PMOS transistor are connected, and the gate of the second PMOS transistor is connected to the first complementary signal generating circuit connected to the third signal input end of the third PMOS transistor, the gate of the third PMOS transistor is connected to the fourth signal input end of the first complementary signal generating circuit, the source electrode of the second PMOS transistor, the The drain of the fourth PMOS transistor and the drain of the sixth PMOS transistor are connected, the source of the third PMOS transistor, the drain of the fifth PMOS transistor and the The drains of the seventh PMOS transistor are connected to each other, and the gate of the fourth PMOS transistor and the gate of the fifth PMOS transistor are connected to the first signal input terminal of the first complementary signal generating circuit. connected, the source of the fourth PMOS transistor, the source of the sixth PMOS transistor, the source of the seventh PMOS transistor and the drain of the eighth PMOS transistor are connected , the gate of the sixth PMOS transistor and the gate of the seventh PMOS transistor are connected to the second signal input end of the first complementary signal generating circuit, and the fifth PMOS transistor The source is connected to the drain of the ninth PMOS transistor, the source of the eighth PMOS transistor, the drain of the first NMOS transistor, the drain of the second NMOS transistor, the The grid of the ninth PMOS transistor and the grid of the third NMOS transistor are connected to the first signal output end of the first complementary signal generating circuit, and the grid of the eighth PMOS transistor , the gate of the second NMOS transistor, the drain of the third NMOS transistor, the source of the ninth PMOS transistor and the drain of the fourth NMOS transistor are all connected to the drain of the first NMOS transistor The second signal output terminal of a complementary signal generating circuit is connected, the source of the first NMOS transistor, the source of the second NMOS transistor, the source of the third NMOS transistor and the The sources of the fourth NMOS transistor are all grounded, and the grid of the first PMOS transistor, the grid of the first NMOS transistor and the grid of the fourth NMOS transistor are all connected to the clock signal input terminal .
所述的第二互补信号产生电路由第十PMOS管、第十一PMOS管、第十二PMOS管、第十三PMOS管、第十四PMOS管、第十五PMOS管、第十六PMOS管、第十七PMOS管、第十八PMOS管、第五NMOS管、第六NMOS管、第七NMOS管及第八NMOS管组成,所述的第十PMOS管的漏极与电源正端相连接,所述的第十PMOS管的源极、所述的第十一PMOS管的漏极及所述的第十二PMOS管的漏极三者相连接,所述的第十一PMOS管的栅极与所述的第二互补信号产生电路的第三信号输入端相连接,所述的第十二PMOS管的栅极与所述的第二互补信号产生电路的第四信号输入端相连接,所述的第十一PMOS管的源极、所述的第十三PMOS管的漏极及所述的第十五PMOS管的漏极三者相连接,所述的第十二PMOS管的源极、所述的第十四PMOS管的漏极及所述的第十六PMOS管的漏极三者相连接,所述的第十三PMOS管的栅极、所述的第十四PMOS管的栅极均与所述的第二互补信号产生电路的第一信号输入端相连接,所述的第十三PMOS管的源极、所述的第十五PMOS管的源极、所述的第十六PMOS管的源极及所述的第十七PMOS管的漏极四者相连接,所述的第十五PMOS管的栅极、所述的第十六PMOS管的栅极均与所述的第二互补信号产生电路的第二信号输入端相连接,所述的第十四PMOS管的源极与所述的第十八PMOS管的漏极相连接,所述的第十七PMOS管的源极、所述的第五NMOS管的漏极、所述的第六NMOS管的漏极、所述的第十八PMOS管的栅极及所述的第七NMOS管的栅极均与所述的第二互补信号产生电路的第一信号输出端相连接,所述的第十七PMOS管的栅极、所述的第六NMOS管的栅极、所述的第七NMOS管的漏极、所述的第十八PMOS管的源极及所述的第八NMOS管的漏极均与所述的第二互补信号产生电路的第二信号输出端相连接,所述的第五NMOS管的源极、所述的第六NMOS管的源极、所述的第七NMOS管的源极及所述的第八NMOS管的源极均接地,所述的第十PMOS管的栅极、所述的第五NMOS管的栅极及所述的第八NMOS管的栅极均与时钟信号输入端相连接。The second complementary signal generation circuit consists of tenth PMOS transistors, eleventh PMOS transistors, twelfth PMOS transistors, thirteenth PMOS transistors, fourteenth PMOS transistors, fifteenth PMOS transistors, sixteenth PMOS transistors , the seventeenth PMOS transistor, the eighteenth PMOS transistor, the fifth NMOS transistor, the sixth NMOS transistor, the seventh NMOS transistor and the eighth NMOS transistor, the drain of the tenth PMOS transistor is connected to the positive terminal of the power supply , the source of the tenth PMOS transistor, the drain of the eleventh PMOS transistor and the drain of the twelfth PMOS transistor are connected, and the gate of the eleventh PMOS transistor pole is connected with the third signal input end of the second complementary signal generating circuit, the gate of the twelfth PMOS transistor is connected with the fourth signal input end of the second complementary signal generating circuit, The source of the eleventh PMOS transistor, the drain of the thirteenth PMOS transistor and the drain of the fifteenth PMOS transistor are connected, and the source of the twelfth PMOS transistor pole, the drain of the fourteenth PMOS transistor and the drain of the sixteenth PMOS transistor are connected, the gate of the thirteenth PMOS transistor, the fourteenth PMOS transistor The gates of the gates are all connected to the first signal input end of the second complementary signal generating circuit, the source of the thirteenth PMOS transistor, the source of the fifteenth PMOS transistor, the The source electrode of the sixteenth PMOS transistor is connected to the drain electrode of the seventeenth PMOS transistor, and the gate electrode of the fifteenth PMOS transistor and the gate electrode of the sixteenth PMOS transistor are connected to each other. The second signal input end of the second complementary signal generating circuit is connected, the source of the fourteenth PMOS transistor is connected with the drain of the eighteenth PMOS transistor, and the seventeenth PMOS transistor is connected to the drain of the eighteenth PMOS transistor. The source of the PMOS transistor, the drain of the fifth NMOS transistor, the drain of the sixth NMOS transistor, the gate of the eighteenth PMOS transistor, and the gate of the seventh NMOS transistor are all connected to the first signal output end of the second complementary signal generating circuit, the gate of the seventeenth PMOS transistor, the gate of the sixth NMOS transistor, the seventh NMOS transistor The drain, the source of the eighteenth PMOS transistor and the drain of the eighth NMOS transistor are all connected to the second signal output end of the second complementary signal generating circuit, and the first The source of the fifth NMOS transistor, the source of the sixth NMOS transistor, the source of the seventh NMOS transistor and the source of the eighth NMOS transistor are all grounded, and the source of the tenth PMOS transistor The gate, the gate of the fifth NMOS transistor and the gate of the eighth NMOS transistor are all connected to the clock signal input terminal.
所述的触发器原型电路由第十九PMOS管、第二十PMOS管、第二十一PMOS管、第二十二PMOS管、第九NMOS管、第十NMOS管、第十一NMOS管、第十二NMOS管、第十三NMOS管、第十四NMOS管、第十五NMOS管、第十六NMOS管及第十七NMOS管组成,所述的第十九PMOS管的漏极、所述的第二十PMOS管的漏极、所述的第二十一PMOS管的漏极及所述的第二十二PMOS管的漏极均与电源正端相连接,所述的第二十PMOS管的栅极、所述的第九NMOS管的栅极、所述的第二十一PMOS管的源极、所述的第十NMOS管的漏极及所述的第二十二PMOS管的源极均与所述的触发器原型电路的第一信号输出端相连接,所述的第十九PMOS管的源极、所述的第二十PMOS管的源极、所述的第九NMOS管的漏极、所述的第二十一PMOS管的栅极及所述的第十NMOS管的栅极均与所述的触发器原型电路的第二信号输出端相连接,所述的第九NMOS管的源极、所述的第十三NMOS管的漏极、所述的第十一NMOS管的漏极及所述的第十四NMOS管的漏极四者相连接,所述的第十NMOS管的源极与所述的第十二NMOS管的漏极相连接,所述的第十一NMOS管的栅极、所述的第十二NMOS管的栅极均与所述的触发器原型电路的第一信号输入端相连接,所述的第十三NMOS管的栅极、所述的第十四NMOS管的栅极均与所述的触发器原型电路的第二信号输入端相连接,所述的第十一NMOS管的源极、所述的第十三NMOS管的源极及所述的第十五NMOS管的漏极三者相连接,所述的第十二NMOS管的源极、所述的第十四NMOS管的源极及所述的第十六NMOS管的漏极三者相连接,所述的第十五NMOS管的源极、所述的第十六NMOS管的源极及所述的第十七NMOS管的漏极三者相连接,所述的第十六NMOS管的栅极与所述的触发器原型电路的第三信号输入端相连接,所述的第十五NMOS管的栅极与所述的触发器原型电路的第四信号输入端相连接,所述的第十七NMOS管的源极接地,所述的第十七NMOS管的栅极、所述的第十九PMOS管的栅极及所述的第二十二PMOS管的栅极均与时钟信号输入端相连接。The flip-flop prototype circuit consists of the nineteenth PMOS transistor, the twentieth PMOS transistor, the twenty-first PMOS transistor, the twenty-second PMOS transistor, the ninth NMOS transistor, the tenth NMOS transistor, the eleventh NMOS transistor, The twelfth NMOS transistor, the thirteenth NMOS transistor, the fourteenth NMOS transistor, the fifteenth NMOS transistor, the sixteenth NMOS transistor and the seventeenth NMOS transistor, the drain of the nineteenth PMOS transistor, the The drain of the twentieth PMOS transistor, the drain of the twenty-first PMOS transistor and the drain of the twenty-second PMOS transistor are all connected to the positive terminal of the power supply. The gate of the PMOS transistor, the gate of the ninth NMOS transistor, the source of the twenty-first PMOS transistor, the drain of the tenth NMOS transistor, and the twenty-second PMOS transistor The sources of all are connected to the first signal output end of the flip-flop prototype circuit, the source of the nineteenth PMOS transistor, the source of the twentieth PMOS transistor, the ninth The drain of the NMOS transistor, the grid of the twenty-first PMOS transistor and the grid of the tenth NMOS transistor are all connected to the second signal output end of the flip-flop prototype circuit, and the The source of the ninth NMOS transistor, the drain of the thirteenth NMOS transistor, the drain of the eleventh NMOS transistor, and the drain of the fourteenth NMOS transistor are connected, and the The source of the tenth NMOS transistor is connected to the drain of the twelfth NMOS transistor, and the gate of the eleventh NMOS transistor and the gate of the twelfth NMOS transistor are connected to the drain of the twelfth NMOS transistor. The first signal input terminal of the flip-flop prototype circuit is connected, and the grid of the thirteenth NMOS transistor and the grid of the fourteenth NMOS transistor are connected with the second signal of the flip-flop prototype circuit. The input ends are connected, the source of the eleventh NMOS transistor, the source of the thirteenth NMOS transistor and the drain of the fifteenth NMOS transistor are connected, and the tenth NMOS transistor is connected to each other. The sources of the two NMOS transistors, the source of the fourteenth NMOS transistor and the drain of the sixteenth NMOS transistor are connected, the source of the fifteenth NMOS transistor, the The source of the sixteenth NMOS transistor and the drain of the seventeenth NMOS transistor are connected, and the gate of the sixteenth NMOS transistor is connected to the third signal input terminal of the flip-flop prototype circuit connected, the gate of the fifteenth NMOS transistor is connected to the fourth signal input terminal of the flip-flop prototype circuit, the source of the seventeenth NMOS transistor is grounded, and the seventeenth NMOS transistor is grounded. The gate of the NMOS transistor, the gate of the nineteenth PMOS transistor and the gate of the twenty-second PMOS transistor are all connected to the clock signal input end.
所述的第一主从锁存单元与所述的第二主从锁存单元的内部结构相同,所述的第一主从锁存单元由第一主锁存电路和第一从锁存电路组成,所述的第一主锁存电路由第二十三PMOS管、第二十四PMOS管、第二十五PMOS管、第二十六PMOS管、第十八NMOS管、第十九NMOS管、第二十NMOS管、第二十一NMOS管及第二十二NMOS管组成,所述的第二十三PMOS管的漏极、所述的第二十四PMOS管的漏极、所述的第二十五PMOS管的漏极及所述的第二十六PMOS管的漏极均与电源正端相连接,所述的第二十四PMOS管的栅极、所述的第十八NMOS管的栅极、所述的第二十五PMOS管的源极、所述的第十九NMOS管的漏极及所述的第二十六PMOS管的源极均与所述的第一主锁存电路的第一信号输出端相连接,所述的第二十三PMOS管的源极、所述的第二十四PMOS管的源极、所述的第十八NMOS管的漏极、所述的第二十五PMOS管的栅极及所述的第十九NMOS管的栅极均与所述的第一主锁存电路的第二信号输出端相连接,所述的第十八NMOS管的源极与所述的第二十NMOS管的漏极相连接,所述的第二十NMOS管的栅极与所述的第一主从锁存单元的第一信号输入端相连接,所述的第十九NMOS管的源极与所述的第二十一NMOS管的漏极相连接,所述的第二十一NMOS管的栅极与所述的第一主从锁存单元的第二信号输入端相连接,所述的第二十NMOS管的源极、所述的第二十一NMOS管的源极及所述的第二十二NMOS管的漏极三者相连接,所述的第二十二NMOS管的源极接地,所述的第二十二NMOS管的栅极、所述的第二十三PMOS管的栅极及所述的第二十六PMOS管的栅极均与时钟信号输入端相连接,所述的第一从锁存电路由第二十七PMOS管、第二十八PMOS管、第二十九PMOS管、第三十PMOS管、第三十一PMOS管、第二十三NMOS管、第二十四NMOS管、第二十五NMOS管及第二十六NMOS管组成,所述的第二十七PMOS管的漏极与电源正端相连接,所述的第二十七PMOS管的源极、所述的第二十八PMOS管的漏极及所述的第二十九PMOS管的漏极三者相连接,所述的第二十八PMOS管的栅极与所述的第一从锁存电路的第一信号输入端连接,所述的第二十九PMOS管的栅极与所述的第一从锁存电路的第二信号输入端连接,所述的第二十八PMOS管的源极与所述的第三十PMOS管的漏极相连接,所述的第二十九PMOS管的源极与所述的第三十一PMOS管的漏极相连接,所述的第三十PMOS管的栅极、所述的第二十四NMOS管的栅极、所述的第三十一PMOS管的源极、所述的第二十五NMOS管的漏极及所述的第二十六NMOS管的漏极均与所述的第一主从锁存单元的第一信号输出端相连接,所述的第三十PMOS管的源极、所述的第二十三NMOS管的漏极、所述的第二十四NMOS管的漏极、所述的第三十一PMOS管的栅极及所述的第二十五NMOS管的栅极均与所述的第一主从锁存单元的第二信号输出端相连接,所述的第二十三NMOS管的源极、所述的第二十四NMOS管的源极、所述的第二十五NMOS管的源极及所述的第二十六NMOS管的源极均接地,所述的第二十三NMOS管的栅极、所述的第二十六NMOS管的栅极及所述的第二十七PMOS管的栅极均与时钟信号输入端相连接,所述的第一主锁存电路的第一信号输出端与所述的第一从锁存电路的第一信号输入端相连接,所述的第一主锁存电路的第二信号输出端与所述的第一从锁存电路的第二信号输入端相连接。The internal structure of the first master-slave latch unit is the same as that of the second master-slave latch unit, and the first master-slave latch unit is composed of the first master latch circuit and the first slave latch circuit The first main latch circuit is composed of twenty-third PMOS transistors, twenty-fourth PMOS transistors, twenty-fifth PMOS transistors, twenty-sixth PMOS transistors, eighteenth NMOS transistors, and nineteenth NMOS transistors. tube, the twentieth NMOS tube, the twenty-first NMOS tube and the twenty-second NMOS tube, the drain of the twenty-third PMOS tube, the drain of the twenty-fourth PMOS tube, the The drain of the twenty-fifth PMOS transistor and the drain of the twenty-sixth PMOS transistor are connected to the positive terminal of the power supply, the grid of the twenty-fourth PMOS transistor, the tenth PMOS transistor The gate of the eighth NMOS transistor, the source of the twenty-fifth PMOS transistor, the drain of the nineteenth NMOS transistor and the source of the twenty-sixth PMOS transistor are all connected to the source of the twenty-sixth PMOS transistor. The first signal output end of a master latch circuit is connected, the source of the twenty-third PMOS transistor, the source of the twenty-fourth PMOS transistor, and the drain of the eighteenth NMOS transistor pole, the gate of the twenty-fifth PMOS transistor and the gate of the nineteenth NMOS transistor are all connected to the second signal output end of the first master latch circuit, and the first The source of the eighteenth NMOS transistor is connected to the drain of the twenty NMOS transistor, and the gate of the twenty NMOS transistor is connected to the first signal input terminal of the first master-slave latch unit The source of the nineteenth NMOS transistor is connected to the drain of the twenty-first NMOS transistor, and the gate of the twenty-first NMOS transistor is connected to the first master-slave The second signal input end of the latch unit is connected, the source of the twentieth NMOS transistor, the source of the twenty-first NMOS transistor and the drain of the twenty-second NMOS transistor three The source of the twenty-second NMOS transistor is grounded, the gate of the twenty-second NMOS transistor, the gate of the twenty-third PMOS transistor and the twenty-third The gates of the six PMOS transistors are all connected to the clock signal input terminal, and the first slave latch circuit is composed of the twenty-seventh PMOS transistor, the twenty-eighth PMOS transistor, the twenty-ninth PMOS transistor, and the thirty PMOS transistor. tube, the thirty-first PMOS tube, the twenty-third NMOS tube, the twenty-fourth NMOS tube, the twenty-fifth NMOS tube and the twenty-sixth NMOS tube, the drain of the twenty-seventh PMOS tube connected to the positive terminal of the power supply, the source of the twenty-seventh PMOS transistor, the drain of the twenty-eighth PMOS transistor and the drain of the twenty-ninth PMOS transistor are connected, The gate of the twenty-eighth PMOS transistor is connected to the first signal input end of the first slave latch circuit, and the gate of the twenty-ninth PMOS transistor is connected to the first slave latch circuit. The second signal input terminal of the storage circuit is connected, the source of the twenty-eighth PMOS transistor is connected with the drain of the thirty-first PMOS transistor, and the The source of the twenty-ninth PMOS transistor is connected to the drain of the thirty-first PMOS transistor, the gate of the thirty-first PMOS transistor, the gate of the twenty-fourth NMOS transistor, The source of the thirty-first PMOS transistor, the drain of the twenty-fifth NMOS transistor and the drain of the twenty-sixth NMOS transistor are all connected to the first master-slave latch unit connected to the first signal output end of the 30th PMOS transistor, the drain of the 23rd NMOS transistor, the drain of the 24th NMOS transistor, the The gate of the thirty-first PMOS transistor and the gate of the twenty-fifth NMOS transistor are all connected to the second signal output end of the first master-slave latch unit, and the twenty-third The source of the NMOS transistor, the source of the twenty-fourth NMOS transistor, the source of the twenty-fifth NMOS transistor, and the source of the twenty-sixth NMOS transistor are all grounded, and the The gate of the twenty-third NMOS transistor, the gate of the twenty-sixth NMOS transistor and the gate of the twenty-seventh PMOS transistor are all connected to the clock signal input end, and the first main The first signal output end of the latch circuit is connected to the first signal input end of the first slave latch circuit, and the second signal output end of the first master latch circuit is connected to the first slave latch circuit. The second signal input terminals of the latch circuit are connected.
所述的第三主从锁存单元与所述的第四主从锁存单元的内部结构相同,所述的第三主从锁存单元由第二主锁存电路和第二从锁存电路组成,所述的第二主锁存电路由第三十二PMOS管、第三十三PMOS管、第三十四PMOS管、第三十五PMOS管、第三十六PMOS管、第二十七NMOS管、第二十八NMOS管、第二十九NMOS管及第三十NMOS管组成,所述的第三十二PMOS管的漏极与电源正端相连接,所述的第三十二PMOS管的源极、所述的第三十三PMOS管的漏极及所述的第三十四PMOS管的漏极三者相连接,所述的第三十三PMOS管的栅极与所述的第三主从锁存单元的第一信号输入端连接,所述的第三十四PMOS管的栅极与所述的第三主从锁存单元的第二信号输入端连接,所述的第三十三PMOS管的源极与所述的第三十五PMOS管的漏极相连接,所述的第三十四PMOS管的源极与所述的第三十六PMOS管的漏极相连接,所述的第三十五PMOS管的栅极、所述的第二十八NMOS管的栅极、所述的第三十六PMOS管的源极、所述的第二十九NMOS管的漏极及所述的第三十NMOS管的漏极均与所述的第二主锁存电路的第一信号输出端相连接,所述的第三十五PMOS管的源极、所述的第二十七NMOS管的漏极、所述的第二十八NMOS管的漏极、所述的第三十六PMOS管的栅极及所述的第二十九NMOS管的栅极均与所述的第二主锁存电路的第二信号输出端相连接,所述的第二十七NMOS管的源极、所述的第二十八NMOS管的源极、所述的第二十九NMOS管的源极及所述的第三十NMOS管的源极均接地,所述的第二十七NMOS管的栅极、所述的第三十NMOS管的栅极及所述的第三十二PMOS管的栅极均与时钟信号输入端相连接,所述的第二从锁存电路由第三十七PMOS管、第三十八PMOS管、第三十九PMOS管、第四十PMOS管、第三十一NMOS管、第三十二NMOS管、第三十三NMOS管、第三十四NMOS管及第三十五NMOS管组成,所述的第三十七PMOS管的漏极、所述的第三十八PMOS管的漏极、所述的第三十九PMOS管的漏极及所述的第四十PMOS管的漏极均与电源正端相连接,所述的第三十八PMOS管的栅极、所述的第三十一NMOS管的栅极、所述的第三十九PMOS管的源极、所述的第三十二NMOS管的漏极及所述的第四十PMOS管的源极均与所述的第三主从锁存单元的第一信号输出端相连接,所述的第三十七PMOS管的源极、所述的第三十八PMOS管的源极、所述的第三十一NMOS管的漏极、所述的第三十九PMOS管的栅极及所述的第三十二NMOS管的栅极均与所述的第三主从锁存单元的第二信号输出端相连接,所述的第三十一NMOS管的源极与所述的第三十三NMOS管的漏极相连接,所述的第三十三NMOS管的栅极与所述的第二从锁存电路的第一信号输入端相连接,所述的第三十二NMOS管的源极与所述的第三十四NMOS管的漏极相连接,所述的第三十四NMOS管的栅极与所述的第二从锁存电路的第二信号输入端相连接,所述的第三十三NMOS管的源极、所述的第三十四NMOS管的源极及所述的第三十五NMOS管的漏极三者相连接,所述的第三十五NMOS管的源极接地,所述的第三十五NMOS管的栅极、所述的第三十七PMOS管的栅极及所述的第四十PMOS管的栅极均与时钟信号输入端相连接,所述的第二主锁存电路的第一信号输出端与所述的第二从锁存电路的第一信号输入端相连接,所述的第二主锁存电路的第二信号输出端与所述的第二从锁存电路的第二信号输入端相连接。The third master-slave latch unit is identical to the internal structure of the fourth master-slave latch unit, and the third master-slave latch unit is composed of a second master latch circuit and a second slave latch circuit Composed of, the second main latch circuit is composed of the thirty-second PMOS tube, the thirty-third PMOS tube, the thirty-fourth PMOS tube, the thirty-fifth PMOS tube, the thirty-sixth PMOS tube, the twenty-first The seven NMOS transistors, the twenty-eighth NMOS transistors, the twenty-ninth NMOS transistors and the thirty NMOS transistors are composed of the thirty-second PMOS transistors whose drains are connected to the positive terminal of the power supply, and the thirty-second PMOS transistors The source electrode of the two PMOS transistors, the drain electrode of the thirty-third PMOS transistor and the drain electrode of the thirty-fourth PMOS transistor are connected, and the grid of the thirty-third PMOS transistor is connected to the drain electrode of the thirty-third PMOS transistor. The first signal input end of the third master-slave latch unit is connected, the gate of the thirty-fourth PMOS transistor is connected with the second signal input end of the third master-slave latch unit, and The source of the thirty-third PMOS transistor is connected to the drain of the thirty-fifth PMOS transistor, and the source of the thirty-fourth PMOS transistor is connected to the thirty-sixth PMOS transistor. The drains are connected, the gate of the thirty-fifth PMOS transistor, the gate of the twenty-eighth NMOS transistor, the source of the thirty-sixth PMOS transistor, the twenty-eighth PMOS transistor The drains of the nine NMOS transistors and the drains of the 30th NMOS transistors are all connected to the first signal output end of the second master latch circuit, and the source electrodes of the 35th PMOS transistors , the drain of the twenty-seventh NMOS transistor, the drain of the twenty-eighth NMOS transistor, the gate of the thirty-sixth PMOS transistor, and the gate of the twenty-ninth NMOS transistor The gates are all connected to the second signal output end of the second main latch circuit, the source of the twenty-seventh NMOS transistor, the source of the twenty-eighth NMOS transistor, the The source of the twenty-ninth NMOS transistor and the source of the thirtieth NMOS transistor are grounded, the gate of the twenty-seventh NMOS transistor, the gate of the thirtieth NMOS transistor and The gates of the thirty-second PMOS transistors are all connected to the clock signal input end, and the second slave latch circuit is composed of the thirty-seventh PMOS transistor, the thirty-eighth PMOS transistor, the thirty-ninth PMOS transistor tube, the fortieth PMOS tube, the thirty-first NMOS tube, the thirty-second NMOS tube, the thirty-third NMOS tube, the thirty-fourth NMOS tube and the thirty-fifth NMOS tube, the thirty-fifth The drain of the seventh PMOS transistor, the drain of the thirty-eighth PMOS transistor, the drain of the thirty-ninth PMOS transistor and the drain of the fortieth PMOS transistor are all in phase with the positive terminal of the power supply connection, the gate of the thirty-eighth PMOS transistor, the gate of the thirty-first NMOS transistor, the source of the thirty-ninth PMOS transistor, the thirty-second NMOS transistor The drain and the source of the fortieth PMOS transistor are connected to the first signal output end of the third master-slave latch unit, and the thirty-seventh The source of the PMOS transistor, the source of the thirty-eighth PMOS transistor, the drain of the thirty-first NMOS transistor, the gate of the thirty-ninth PMOS transistor, and the third The gates of the twelve NMOS transistors are all connected to the second signal output end of the third master-slave latch unit, and the source of the thirty-first NMOS transistor is connected to the thirty-third NMOS transistor. The drain of the thirty-third NMOS transistor is connected to the first signal input terminal of the second slave latch circuit, and the source of the thirty-second NMOS transistor is connected to the The drain of the thirty-fourth NMOS transistor is connected, the gate of the thirty-fourth NMOS transistor is connected to the second signal input end of the second slave latch circuit, and the first The source of the thirty-third NMOS transistor, the source of the thirty-fourth NMOS transistor and the drain of the thirty-fifth NMOS transistor are connected, and the source of the thirty-fifth NMOS transistor The gate of the thirty-fifth NMOS transistor, the gate of the thirty-seventh PMOS transistor and the gate of the fortieth PMOS transistor are all connected to the clock signal input end, and The first signal output end of the second master latch circuit is connected to the first signal input end of the second slave latch circuit, and the second signal output end of the second master latch circuit is connected to the second slave latch circuit. The second signal input terminal of the second slave latch circuit is connected.
与现有技术相比,本发明的优点在于在JK触发器的设计中,应用具有能耗对称特点的灵敏放大型逻辑,并结合沟道宽长比对数据传输速率的影响,在传统JK触发器结构的基础上,提出一种防御能量攻击的JK触发器;在HSPICE环境下,采用PTM90nm CMOS工艺器件参数进行计算机仿真,实验结果证明该触发器的逻辑功能正确、能量消耗稳定且能量消耗与所处理数据相互独立,具有良好的防御能量攻击的性能。Compared with the prior art, the advantage of the present invention is that in the design of the JK flip-flop, the sensitive amplification logic with the characteristics of energy consumption symmetry is applied, and combined with the influence of the channel width to length ratio on the data transmission rate, the traditional JK flip-flop On the basis of the device structure, a JK flip-flop that defends against energy attacks is proposed; under the HSPICE environment, computer simulation is carried out using PTM90nm CMOS process device parameters. The experimental results prove that the logic function of the flip-flop is correct, and the energy consumption is stable. The processed data are independent of each other and have good performance in defending against energy attacks.
附图说明Description of drawings
图1为本发明JK触发器的电路原理图;Fig. 1 is the circuit principle diagram of JK flip-flop of the present invention;
图2为本发明JK触发器中第一主从锁存单元的电路原理图及符号表示图;Fig. 2 is the circuit principle diagram and the symbol representation diagram of the first master-slave latch unit in the JK flip-flop of the present invention;
图3为本发明JK触发器中第三主从锁存单元的电路原理图及符号表示图;Fig. 3 is the circuit principle diagram and the symbol representation diagram of the third master-slave latch unit in the JK flip-flop of the present invention;
图4为本发明JK触发器的模拟波形;Fig. 4 is the analog waveform of the JK flip-flop of the present invention;
图5为本发明JK触发器的能耗曲线。Fig. 5 is the energy consumption curve of the JK flip-flop of the present invention.
具体实施方式Detailed ways
以下结合附图实施例对本发明作进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
如图1所示,一种防御能量攻击的JK触发器,包括第一互补信号产生电路1、第二互补信号产生电路3、触发器原型电路2、第一主从锁存单元4、第二主从锁存单元5、第三主从锁存单元6及第四主从锁存单元7,触发器原型电路2的第一信号输出端Q与第一主从锁存单元4的第一信号输入端相连接,触发器原型电路2的第二信号输出端与第一主从锁存单元4的第二信号输入端相连接,第一主从锁存单元4的第一信号输出端与第一互补信号产生电路1的第一信号输入端相连接,第一主从锁存单元4的第二信号输出端与第一互补信号产生电路1的第二信号输入端相连接,第一互补信号产生电路1的第一信号输出端与第三主从锁存单元6的第一信号输入端相连接,第一互补信号产生电路1的第二信号输出端x与第三主从锁存单元6的第二信号输入端相连接,第三主从锁存单元6的第一信号输出端与触发器原型电路2的第一信号输入端相连接,第三主从锁存单元6的第二信号输出端与触发器原型电路2的第二信号输入端相连接,触发器原型电路2的第一信号输出端Q与第二主从锁存单元5的第二信号输入端相连接,触发器原型电路2的第二信号输出端与第二主从锁存单元5的第一信号输入端相连接,第二主从锁存单元5的第一信号输出端与第二互补信号产生电路3的第一信号输入端相连接,第二主从锁存单元5的第二信号输出端与第二互补信号产生电路3的第二信号输入端相连接,第二互补信号产生电路3的第一信号输出端与第四主从锁存单元7的第一信号输入端相连接,第二互补信号产生电路3的第二信号输出端y与第四主从锁存单元7的第二信号输入端相连接,第四主从锁存单元7的第一信号输出端与触发器原型电路2的第三信号输入端相连接,第四主从锁存单元7的第二信号输出端与触发器原型电路2的第四信号输入端相连接。As shown in Figure 1, a JK flip-flop that defends against energy attacks includes a first complementary signal generating circuit 1, a second complementary signal generating circuit 3, a flip-
第一互补信号产生电路1由第一PMOS管P1、第二PMOS管P2、第三PMOS管P3、第四PMOS管P4、第五PMOS管P5、第六PMOS管P6、第七PMOS管P7、第八PMOS管P8、第九PMOS管P9、第一NMOS管N1、第二NMOS管N2、第三NMOS管N3及第四NMOS管N4组成,第一PMOS管P1的漏极与电源正端VDD相连接,第一PMOS管P1的源极、第二PMOS管P2的漏极及第三PMOS管P3的漏极三者相连接,第二PMOS管P2的栅极与第一互补信号产生电路1的第三信号输入端J相连接,第三PMOS管P3的栅极与第一互补信号产生电路1的第四信号输入端相连接,第二PMOS管P2的源极、第四PMOS管P4的漏极及第六PMOS管P6的漏极三者相连接,第三PMOS管P3的源极、第五PMOS管P5的漏极及第七PMOS管P7的漏极三者相连接,第四PMOS管P4的栅极、第五PMOS管P5的栅极均与第一互补信号产生电路1的第一信号输入端相连接,第四PMOS管P4的源极、第六PMOS管P6的源极、第七PMOS管P7的源极及第八PMOS管P8的漏极四者相连接,第六PMOS管P6的栅极、第七PMOS管P7的栅极均与第一互补信号产生电路1的第二信号输入端相连接,第五PMOS管P5的源极与第九PMOS管P9的漏极相连接,第八PMOS管P8的源极、第一NMOS管N1的漏极、第二NMOS管N2的漏极、第九PMOS管P9的栅极及第三NMOS管N3的栅极均与第一互补信号产生电路1的第一信号输出端相连接,第八PMOS管P8的栅极、第二NMOS管N2的栅极、第三NMOS管N3的漏极、第九PMOS管P9的源极及第四NMOS管N4的漏极均与第一互补信号产生电路1的第二信号输出端x相连接,第一NMOS管N1的源极、第二NMOS管N2的源极、第三NMOS管N3的源极及第四NMOS管N4的源极均接地,第一PMOS管P1的栅极、第一NMOS管N1的栅极及第四NMOS管N4的栅极均与时钟信号输入端clk相连接。The first complementary signal generating circuit 1 is composed of a first PMOS transistor P1, a second PMOS transistor P2, a third PMOS transistor P3, a fourth PMOS transistor P4, a fifth PMOS transistor P5, a sixth PMOS transistor P6, a seventh PMOS transistor P7, The eighth PMOS transistor P8, the ninth PMOS transistor P9, the first NMOS transistor N1, the second NMOS transistor N2, the third NMOS transistor N3 and the fourth NMOS transistor N4, the drain of the first PMOS transistor P1 is connected to the positive power supply terminal VDD The source of the first PMOS transistor P1, the drain of the second PMOS transistor P2 and the drain of the third PMOS transistor P3 are connected, and the gate of the second PMOS transistor P2 is connected to the first complementary signal generating circuit 1 The third signal input terminal J of the third PMOS transistor P3 is connected to the fourth signal input terminal of the first complementary signal generation circuit 1 The source of the second PMOS transistor P2, the drain of the fourth PMOS transistor P4 and the drain of the sixth PMOS transistor P6 are connected, the source of the third PMOS transistor P3, the drain of the fifth PMOS transistor P5 pole and the drain of the seventh PMOS transistor P7 are connected, the grid of the fourth PMOS transistor P4 and the grid of the fifth PMOS transistor P5 are connected with the first signal input terminal of the first complementary signal generating circuit 1, The source of the fourth PMOS transistor P4, the source of the sixth PMOS transistor P6, the source of the seventh PMOS transistor P7, and the drain of the eighth PMOS transistor P8 are connected, and the gate of the sixth PMOS transistor P6 and the drain of the sixth PMOS transistor P6 are connected to each other. The gates of the seven PMOS transistors P7 are all connected to the second signal input terminal of the first complementary signal generating circuit 1, the source of the fifth PMOS transistor P5 is connected to the drain of the ninth PMOS transistor P9, and the eighth PMOS transistor P8 The source of the first NMOS transistor N1, the drain of the second NMOS transistor N2, the gate of the ninth PMOS transistor P9 and the gate of the third NMOS transistor N3 are all connected to the first complementary signal generating circuit 1 a signal output connected, the gate of the eighth PMOS transistor P8, the gate of the second NMOS transistor N2, the drain of the third NMOS transistor N3, the source of the ninth PMOS transistor P9 and the drain of the fourth NMOS transistor N4 are all connected to the drain of the fourth NMOS transistor N4 The second signal output terminal x of a complementary signal generating circuit 1 is connected, the source of the first NMOS transistor N1, the source of the second NMOS transistor N2, the source of the third NMOS transistor N3 and the source of the fourth NMOS transistor N4 Both poles are grounded, and the gates of the first PMOS transistor P1, the first NMOS transistor N1 and the fourth NMOS transistor N4 are all connected to the clock signal input terminal clk.
第二互补信号产生电路3由第十PMOS管P10、第十一PMOS管P11、第十二PMOS管P12、第十三PMOS管P13、第十四PMOS管P14、第十五PMOS管P15、第十六PMOS管P16、第十七PMOS管P17、第十八PMOS管P18、第五NMOS管N5、第六NMOS管N6、第七NMOS管N7及第八NMOS管N8组成,第十PMOS管P10的漏极与电源正端VDD相连接,第十PMOS管P10的源极、第十一PMOS管P11的漏极及第十二PMOS管P12的漏极三者相连接,第十一PMOS管P11的栅极与第二互补信号产生电路3的第三信号输入端相连接,第十二PMOS管P12的栅极与第二互补信号产生电路3的第四信号输入端K相连接,第十一PMOS管P11的源极、第十三PMOS管P13的漏极及第十五PMOS管P15的漏极三者相连接,第十二PMOS管P12的源极、第十四PMOS管P14的漏极及第十六PMOS管P16的漏极三者相连接,第十三PMOS管P13的栅极、第十四PMOS管P14的栅极均与第二互补信号产生电路3的第一信号输入端相连接,第十三PMOS管P13的源极、第十五PMOS管P15的源极、第十六PMOS管P16的源极及第十七PMOS管P17的漏极四者相连接,第十五PMOS管P15的栅极、第十六PMOS管P16的栅极均与第二互补信号产生电路3的第二信号输入端相连接,第十四PMOS管P14的源极与第十八PMOS管P18的漏极相连接,第十七PMOS管P17的源极、第五NMOS管N5的漏极、第六NMOS管N6的漏极、第十八PMOS管P18的栅极及第七NMOS管N7的栅极均与第二互补信号产生电路3的第一信号输出端相连接,第十七PMOS管P17的栅极、第六NMOS管N6的栅极、第七NMOS管N7的漏极、第十八PMOS管P18的源极及第八NMOS管N8的漏极均与第二互补信号产生电路3的第二信号输出端y相连接,第五NMOS管N5的源极、第六NMOS管N6的源极、第七NMOS管N7的源极及第八NMOS管N8的源极均接地,第十PMOS管P10的栅极、第五NMOS管N5的栅极及第八NMOS管N8的栅极均与时钟信号输入端clk相连接。The second complementary signal generating circuit 3 is composed of the tenth PMOS transistor P10, the eleventh PMOS transistor P11, the twelfth PMOS transistor P12, the thirteenth PMOS transistor P13, the fourteenth PMOS transistor P14, the fifteenth PMOS transistor P15, the The sixteenth PMOS transistor P16, the seventeenth PMOS transistor P17, the eighteenth PMOS transistor P18, the fifth NMOS transistor N5, the sixth NMOS transistor N6, the seventh NMOS transistor N7 and the eighth NMOS transistor N8, the tenth PMOS transistor P10 The drain of the power supply is connected to the positive power supply terminal VDD, the source of the tenth PMOS transistor P10, the drain of the eleventh PMOS transistor P11 and the drain of the twelfth PMOS transistor P12 are connected, and the eleventh PMOS transistor P11 The gate and the third signal input terminal of the second complementary signal generating circuit 3 The gate of the twelfth PMOS transistor P12 is connected with the fourth signal input terminal K of the second complementary signal generating circuit 3, the source of the eleventh PMOS transistor P11, the drain of the thirteenth PMOS transistor P13 and The drains of the fifteenth PMOS transistor P15 are connected, the source of the twelfth PMOS transistor P12, the drain of the fourteenth PMOS transistor P14 and the drain of the sixteenth PMOS transistor P16 are connected, and the drains of the tenth PMOS transistor P16 are connected. The gates of the third PMOS transistor P13 and the gate of the fourteenth PMOS transistor P14 are all connected to the first signal input terminal of the second complementary signal generating circuit 3, the source of the thirteenth PMOS transistor P13, the fifteenth PMOS transistor The source of P15, the source of the sixteenth PMOS transistor P16, and the drain of the seventeenth PMOS transistor P17 are connected to each other, and the gate of the fifteenth PMOS transistor P15 and the gate of the sixteenth PMOS transistor P16 are connected to each other. The second signal input terminal of the second complementary signal generating circuit 3 is connected, the source of the fourteenth PMOS transistor P14 is connected with the drain of the eighteenth PMOS transistor P18, the source of the seventeenth PMOS transistor P17, the fifth The drain of the NMOS transistor N5, the drain of the sixth NMOS transistor N6, the gate of the eighteenth PMOS transistor P18, and the gate of the seventh NMOS transistor N7 are all connected to the first signal output terminal of the second complementary signal generating circuit 3 The gate of the seventeenth PMOS transistor P17, the gate of the sixth NMOS transistor N6, the drain of the seventh NMOS transistor N7, the source of the eighteenth PMOS transistor P18, and the drain of the eighth NMOS transistor N8 are all Connected to the second signal output terminal y of the second complementary signal generating circuit 3, the source of the fifth NMOS transistor N5, the source of the sixth NMOS transistor N6, the source of the seventh NMOS transistor N7 and the eighth NMOS transistor N8 The sources of the transistors are all grounded, and the gates of the tenth PMOS transistor P10, the fifth NMOS transistor N5, and the eighth NMOS transistor N8 are all connected to the clock signal input terminal clk.
触发器原型电路2由第十九PMOS管P19、第二十PMOS管P20、第二十一PMOS管P21、第二十二PMOS管P22、第九NMOS管N9、第十NMOS管N10、第十一NMOS管N11、第十二NMOS管N12、第十三NMOS管N13、第十四NMOS管N14、第十五NMOS管N15、第十六NMOS管N16及第十七NMOS管N17组成,第十九PMOS管P19的漏极、第二十PMOS管P20的漏极、第二十一PMOS管P21的漏极及第二十二PMOS管P22的漏极均与电源正端VDD相连接,第二十PMOS管P20的栅极、第九NMOS管N9的栅极、第二十一PMOS管P21的源极、第十NMOS管N10的漏极及第二十二PMOS管P22的源极均与触发器原型电路2的第一信号输出端Q相连接,第十九PMOS管P19的源极、第二十PMOS管P20的源极、第九NMOS管N9的漏极、第二十一PMOS管P21的栅极及第十NMOS管N10的栅极均与触发器原型电路2的第二信号输出端相连接,第九NMOS管N9的源极、第十三NMOS管N13的漏极、第十一NMOS管N11的漏极及第十四NMOS管N14的漏极四者相连接,第十NMOS管N10的源极与第十二NMOS管N12的漏极相连接,第十一NMOS管N11的栅极、第十二NMOS管N12的栅极均与触发器原型电路2的第一信号输入端相连接,第十三NMOS管N13的栅极、第十四NMOS管N14的栅极均与触发器原型电路2的第二信号输入端相连接,第十一NMOS管N11的源极、第十三NMOS管N13的源极及第十五NMOS管N15的漏极三者相连接,第十二NMOS管N12的源极、第十四NMOS管N14的源极及第十六NMOS管N16的漏极三者相连接,第十五NMOS管N15的源极、第十六NMOS管N16的源极及第十七NMOS管N17的漏极三者相连接,第十六NMOS管N16的栅极与触发器原型电路2的第三信号输入端相连接,第十五NMOS管N15的栅极与触发器原型电路2的第四信号输入端相连接,第十七NMOS管N17的源极接地,第十七NMOS管N17的栅极、第十九PMOS管P19的栅极及第二十二PMOS管P22的栅极均与时钟信号输入端clk相连接。The flip-
第一主从锁存单元4与第二主从锁存单元5的内部结构相同,如图2所示,第一主从锁存单元4由第一主锁存电路8和第一从锁存电路9组成,第一主锁存电路8由第二十三PMOS管P23、第二十四PMOS管P24、第二十五PMOS管P25、第二十六PMOS管P26、第十八NMOS管N18、第十九NMOS管N19、第二十NMOS管N20、第二十一NMOS管N21及第二十二NMOS管N22组成,第二十三PMOS管P23的漏极、第二十四PMOS管P24的漏极、第二十五PMOS管P25的漏极及第二十六PMOS管P26的漏极均与电源正端VDD相连接,第二十四PMOS管P24的栅极、第十八NMOS管N18的栅极、第二十五PMOS管P25的源极、第十九NMOS管N19的漏极及第二十六PMOS管P26的源极均与第一主锁存电路8的第一信号输出端out1相连接,第二十三PMOS管P23的源极、第二十四PMOS管P24的源极、第十八NMOS管N18的漏极、第二十五PMOS管P25的栅极及第十九NMOS管N19的栅极均与第一主锁存电路8的第二信号输出端相连接,第十八NMOS管N18的源极与第二十NMOS管N20的漏极相连接,第二十NMOS管N20的栅极与第一主从锁存单元4的第一信号输入端相连接,第十九NMOS管N19的源极与第二十一NMOS管N21的漏极相连接,第二十一NMOS管N21的栅极与第一主从锁存单元4的第二信号输入端Qn相连接,第二十NMOS管N20的源极、第二十一NMOS管N21的源极及第二十二NMOS管N22的漏极三者相连接,第二十二NMOS管N22的源极接地,第二十二NMOS管N22的栅极、第二十三PMOS管P23的栅极及第二十六PMOS管P26的栅极均与时钟信号输入端clk相连接,第一从锁存电路9由第二十七PMOS管P27、第二十八PMOS管P28、第二十九PMOS管P29、第三十PMOS管P30、第三十一PMOS管P31、第二十三NMOS管N23、第二十四NMOS管N24、第二十五NMOS管N25及第二十六NMOS管N26组成,第二十七PMOS管P27的漏极与电源正端VDD相连接,第二十七PMOS管P27的源极、第二十八PMOS管P28的漏极及第二十九PMOS管P29的漏极三者相连接,第二十八PMOS管P28的栅极与第一从锁存电路9的第一信号输入端in1连接,第二十九PMOS管P29的栅极与第一从锁存电路9的第二信号输入端连接,第二十八PMOS管P28的源极与第三十PMOS管P30的漏极相连接,第二十九PMOS管P29的源极与第三十一PMOS管P31的漏极相连接,第三十PMOS管P30的栅极、第二十四NMOS管N24的栅极、第三十一PMOS管P31的源极、第二十五NMOS管N25的漏极及第二十六NMOS管N26的漏极均与第一主从锁存单元4的第一信号输出端相连接,第三十PMOS管P30的源极、第二十三NMOS管N23的漏极、第二十四NMOS管N24的漏极、第三十一PMOS管P31的栅极及第二十五NMOS管N25的栅极均与第一主从锁存单元4的第二信号输出端out2相连接,第二十三NMOS管N23的源极、第二十四NMOS管N24的源极、第二十五NMOS管N25的源极及第二十六NMOS管N26的源极均接地,第二十三NMOS管N23的栅极、第二十六NMOS管N26的栅极及第二十七PMOS管P27的栅极均与时钟信号输入端clk相连接,第一主锁存电路8的第一信号输出端out1与第一从锁存电路9的第一信号输入端in1相连接,第一主锁存电路8的第二信号输出端与第一从锁存电路9的第二信号输入端相连接。The first master-slave latch unit 4 is identical to the internal structure of the second master-slave latch unit 5, as shown in Figure 2, the first master-slave latch unit 4 is latched by the first
第三主从锁存单元6与第四主从锁存单元7的内部结构相同,如图3所示,第三主从锁存单元6由第二主锁存电路10和第二从锁存电路11组成,第二主锁存电路10由第三十二PMOS管P32、第三十三PMOS管P33、第三十四PMOS管P34、第三十五PMOS管P35、第三十六PMOS管P36、第二十七NMOS管N27、第二十八NMOS管N28、第二十九NMOS管N29及第三十NMOS管N30组成,第三十二PMOS管P32的漏极与电源正端VDD相连接,第三十二PMOS管P32的源极、第三十三PMOS管P33的漏极及第三十四PMOS管P34的漏极三者相连接,第三十三PMOS管P33的栅极与第三主从锁存单元6的第一信号输入端x连接,第三十四PMOS管P34的栅极与第三主从锁存单元6的第二信号输入端y连接,第三十三PMOS管P33的源极与第三十五PMOS管P35的漏极相连接,第三十四PMOS管P34的源极与第三十六PMOS管P36的漏极相连接,第三十五PMOS管P35的栅极、第二十八NMOS管N28的栅极、第三十六PMOS管P36的源极、第二十九NMOS管N29的漏极及第三十NMOS管N30的漏极均与第二主锁存电路10的第一信号输出端out3相连接,第三十五PMOS管P35的源极、第二十七NMOS管N27的漏极、第二十八NMOS管N28的漏极、第三十六PMOS管P36的栅极及第二十九NMOS管N29的栅极均与第二主锁存电路10的第二信号输出端相连接,第二十七NMOS管N27的源极、第二十八NMOS管N28的源极、第二十九NMOS管N29的源极及第三十NMOS管N30的源极均接地,第二十七NMOS管N27的栅极、第三十NMOS管N30的栅极及第三十二PMOS管P32的栅极均与时钟信号输入端clk相连接,第二从锁存电路11由第三十七PMOS管P37、第三十八PMOS管P38、第三十九PMOS管P39、第四十PMOS管P40、第三十一NMOS管N31、第三十二NMOS管N32、第三十三NMOS管N33、第三十四NMOS管N34及第三十五NMOS管N35组成,第三十七PMOS管P37的漏极、第三十八PMOS管P38的漏极、第三十九PMOS管P39的漏极及第四十PMOS管P40的漏极均与电源正端VDD相连接,第三十八PMOS管P38的栅极、第三十一NMOS管N31的栅极、第三十九PMOS管P39的源极、第三十二NMOS管N32的漏极及第四十PMOS管P40的源极均与第三主从锁存单元6的第一信号输出端out4相连接,第三十七PMOS管P37的源极、第三十八PMOS管P38的源极、第三十一NMOS管N31的漏极、第三十九PMOS管P39的栅极及第三十二NMOS管N32的栅极均与第三主从锁存单元6的第二信号输出端相连接,第三十一NMOS管N31的源极与第三十三NMOS管N33的漏极相连接,第三十三NMOS管N33的栅极与第二从锁存电路11的第一信号输入端in2相连接,第三十二NMOS管N32的源极与第三十四NMOS管N34的漏极相连接,第三十四NMOS管N34的栅极与第二从锁存电路11的第二信号输入端相连接,第三十三NMOS管N33的源极、第三十四NMOS管N34的源极及第三十五NMOS管N35的漏极三者相连接,第三十五NMOS管N35的源极接地,第三十五NMOS管N35的栅极、第三十七PMOS管P37的栅极及第四十PMOS管P40的栅极均与时钟信号输入端clk相连接,第二主锁存电路10的第一信号输出端out3与第二从锁存电路11的第一信号输入端in2相连接,第二主锁存电路10的第二信号输出端与第二从锁存电路11的第二信号输入端相连接。The 3rd master-slave latch unit 6 is identical with the internal structure of the 4th master-slave latch unit 7, as shown in Figure 3, the 3rd master-slave latch unit 6 is latched by the second
上述实施例中所述的第二十七PMOS管P27的导通速率比第二十三PMOS管P23、第二十六PMOS管P26快,即第二十七PMOS管P27的宽长比大于第二十三PMOS管P23、第二十六PMOS管P26的宽长比,所述的第三十五NMOS管N35的导通速率比第二十七NMOS管N27、第三十NMOS管N30快,即第三十五NMOS管N35的宽长比大于第二十七NMOS管N27、第三十NMOS管N30的宽长比。The turn-on rate of the twenty-seventh PMOS transistor P27 described in the above embodiment is faster than that of the twenty-third PMOS transistor P23 and the twenty-sixth PMOS transistor P26, that is, the aspect ratio of the twenty-seventh PMOS transistor P27 is greater than that of the first PMOS transistor P27. The width-to-length ratio of the twenty-third PMOS transistor P23 and the twenty-sixth PMOS transistor P26, the conduction rate of the thirty-fifth NMOS transistor N35 is faster than that of the twenty-seventh NMOS transistor N27 and the thirtieth NMOS transistor N30, That is, the width-to-length ratio of the thirty-fifth NMOS transistor N35 is greater than the width-to-length ratios of the twenty-seventh NMOS transistor N27 and the thirtieth NMOS transistor N30.
本发明JK触发器的工作过程:当时钟信号clk=0时,触发器原型电路2进入预充阶段,触发器原型电路2的第一信号输出端Q和第二信号输出端均置为1;第一主从锁存单元4和第二主从锁存单元5输出内部储存的互补信号Qn和并将信号Qn传送至第一互补信号产生电路1的第一信号输入端和第二互补信号产生电路3的第二信号输入端,将互补信号传送至第一互补信号产生电路1的第二信号输入端和第二互补信号产生电路3的第一信号输入端;第一互补信号产生电路1和第二互补信号产生电路3进入求值阶段,均进行与/与非操作,第一互补信号产生电路1的第一信号输出端输出互补信号,第一互补信号产生电路1的第二信号输出端输出信号x,第二互补信号产生电路3的第一信号输出端输出互补信号第二互补信号产生电路3的第二信号输出端输出信号y;第三主从锁存单元6接收互补信号x和并将其暂存在器件单元内部;第四主从锁存单元7接收互补信号y和并将其暂存在器件单元内部;当时钟信号clk=1时,第一互补信号产生电路1和第二互补信号产生电路3进入预充阶段,输出端均置为低电平0状态;第三主从锁存单元6输出内部储存的互补信号x和第四主从锁存单元7输出内部储存的互补信号y和并将信号x传送至触发器原型电路2的第二信号输入端,将互补信号传送至触发器原型电路2的第一信号输入端,将信号y传送至触发器原型电路2的第四信号输入端,将互补信号传送至触发器原型电路2的第三信号输入端;触发器原型电路2进入求值阶段,进行或/或非操作,第一信号输出端Q和第二信号输出端输出互补信号Qn+1和第一主从锁存单元4和第二主从锁存单元5接收并暂存触发器原型电路2输出的互补信号Qn+1和 The working process of the JK flip-flop of the present invention: when the clock signal clk=0, the flip-flop prototype circuit 2 enters the pre-charging stage, and the first signal output terminal Q and the second signal output terminal of the flip-flop prototype circuit 2 are all set to 1; the first master-slave latch unit 4 and the second master-slave latch unit 5 output internally stored complementary signals Q n and And the signal Q n is sent to the first signal input end of the first complementary signal generating circuit 1 and the second signal input end of the second complementary signal generating circuit 3, and the complementary signal Delivered to the second signal input end of the first complementary signal generating circuit 1 and the first signal input end of the second complementary signal generating circuit 3; the first complementary signal generating circuit 1 and the second complementary signal generating circuit 3 enter the evaluation stage, Both perform AND/AND operations, and the first signal output terminal of the first complementary signal generating circuit 1 outputs a complementary signal , the second signal output terminal of the first complementary signal generating circuit 1 outputs the signal x, and the first signal output terminal of the second complementary signal generating circuit 3 outputs the complementary signal The second signal output terminal of the second complementary signal generating circuit 3 outputs signal y; the third master-slave latch unit 6 receives the complementary signal x and and temporarily store it inside the device unit; the fourth master-slave latch unit 7 receives complementary signals y and And temporarily store it inside the device unit; when the clock signal clk=1, the first complementary signal generating circuit 1 and the second complementary signal generating circuit 3 enter the pre-charging stage, and the output terminals are all set to a low level 0 state; the third The master-slave latch unit 6 outputs internally stored complementary signals x and The fourth master-slave latch unit 7 outputs internally stored complementary signals y and and transmit the signal x to the second signal input end of the flip-flop prototype circuit 2, and the complementary signal Transmit to the first signal input terminal of the flip-flop prototype circuit 2, transmit the signal y to the fourth signal input terminal of the flip-flop prototype circuit 2, and transmit the complementary signal Delivered to the third signal input end of the flip-flop prototype circuit 2; the flip-flop prototype circuit 2 enters the evaluation stage, performs or/or non-operation, the first signal output Q and the second signal output Output complementary signals Q n+1 and The first master-slave latch unit 4 and the second master-slave latch unit 5 receive and temporarily store the complementary signals Q n+1 and
在HSPICE环境下,采用PTM90nm CMOS工艺器件参数,对上述所述的JK触发器进行计算机仿真,其中第二十七PMOS管P27宽长比为1.35um/0.09um,第二十三PMOS管P23、第二十六PMOS管P26宽长比为0.09um/0.09um;第三十五NMOS管N35宽长比为0.9um/0.09um,第二十七NMOS管N27、第三十NMOS管N30宽长比为0.09um/0.09um,其他的NMOS管宽长比均取0.36um/0.09um,其他的PMOS管宽长比均取0.72um/0.09um。图4给出了该触发器的模拟波形,其中输入信号J和K分别为“10101010…”和“00110011…”,工作频率为50MHz,负载电容为10fF,分析表明,若clk为低电平,触发器输出端Q和均置为1;否则,当clk为高电平时,该电路在J=0、K=0时具有保持功能;在J=0、K=1时具有置0功能;在J=1、K=0时具有置1功能;在J=1、K=1时具有翻转功能。结果与表1一致,证明所设计电路具有正确的逻辑功能。图5给出了该触发器的功耗曲线,结果表明该设计在不同时钟周期内,功耗曲线是一致的,具有功耗恒定特性。In the HSPICE environment, using PTM90nm CMOS process device parameters, computer simulation is carried out on the above-mentioned JK flip-flop, wherein the twenty-seventh PMOS transistor P27 has a width-to-length ratio of 1.35um/0.09um, and the twenty-third PMOS transistor P23, The width-to-length ratio of the twenty-sixth PMOS transistor P26 is 0.09um/0.09um; the width-to-length ratio of the thirty-fifth NMOS transistor N35 is 0.9um/0.09um; The ratio is 0.09um/0.09um, the width-length ratio of other NMOS tubes is 0.36um/0.09um, and the width-length ratio of other PMOS tubes is 0.72um/0.09um. Figure 4 shows the analog waveform of the flip-flop, where the input signals J and K are "10101010..." and "00110011..." respectively, the operating frequency is 50MHz, and the load capacitance is 10fF. Analysis shows that if clk is low, flip-flop output Q and All are set to 1; otherwise, when clk is high, the circuit has a hold function when J=0, K=0; it has a function of setting 0 when J=0, K=1; when J=1, K= It has the function of setting 1 when it is 0; it has the function of flipping when J=1 and K=1. The results are consistent with Table 1, proving that the designed circuit has correct logic functions. Figure 5 shows the power consumption curve of the flip-flop, and the results show that the design has the same power consumption curve in different clock cycles and has the characteristic of constant power consumption.
表1:本发明JK触发器的状态转移真值表Table 1: The state transition truth table of the JK flip-flop of the present invention
表2:本发明和传统JK触发器周期内平均能耗对比(单位:10-14J)Table 2: Comparison of the average energy consumption in the period of the present invention and the traditional JK flip-flop (unit: 10-14J)
将本发明的JK触发器与传统JK触发器进行比较,以不同时钟周期内平均能耗的差异来反映电路的抗差分能量攻击性能,计算机仿真结果如表2所示。其中Eneri(i=1-8)为电路在第i个时钟周期内的平均能耗;E为电路在八个时钟周期内的平均能耗,σE为不同时钟周期内平均能耗的均方差。表2中第二行表明,当传统JK触发器在不同时钟周期内处理不同数据时,平均能耗不尽相同,前四个时钟周期里,第三个时钟周期内平均能耗最大,分析JK触发器的功能可知,此时触发器具有翻转功能,由此可见其能耗与处理的数据存在相关性。若将传统JK触发器作为密码系统的组成部分,通过记录系统工作时能耗,采用差分能量攻击技术,可分析出密码系统保护的信息。表中第三行表明,本发明的JK触发器在每个时钟周期内的平均能耗基本一致,即其具有能耗与处理的数据相互独立的特点。Comparing the JK flip-flop of the present invention with the traditional JK flip-flop, the difference in average energy consumption in different clock cycles is used to reflect the anti-differential energy attack performance of the circuit. The computer simulation results are shown in Table 2. Where Eneri(i=1-8) is the average energy consumption of the circuit in the i-th clock cycle; E is the average energy consumption of the circuit in eight clock cycles, and σ E is the mean square error of the average energy consumption in different clock cycles . The second line in Table 2 shows that when traditional JK flip-flops process different data in different clock cycles, the average energy consumption is different. Among the first four clock cycles, the average energy consumption in the third clock cycle is the largest. Analyzing JK From the function of the trigger, it can be seen that the flip-flop has a flip function at this time, so it can be seen that there is a correlation between its energy consumption and the processed data. If the traditional JK flip-flop is used as a part of the cryptographic system, the information protected by the cryptographic system can be analyzed by recording the energy consumption of the system and using the differential energy attack technology. The third row in the table shows that the average energy consumption of the JK flip-flop in each clock cycle of the present invention is basically the same, that is, it has the characteristics that energy consumption and processed data are independent of each other.
归一化标准差(Normalized Standard Deviation,NSD)是衡量电路抗差分能量攻击性能的常用标准,其定义为:The normalized standard deviation (Normalized Standard Deviation, NSD) is a common standard to measure the performance of circuits against differential energy attacks, which is defined as:
从而可计算出本发明的JK触发器与传统JK触发器归一化标准差分别为0.6%和43.8%。相比于传统设计,该设计的归一化标准差仅为前者的1/73(0.6%/43.8%),证明其防御能量攻击性能显著。Therefore, it can be calculated that the normalized standard deviations of the JK flip-flop of the present invention and the traditional JK flip-flop are 0.6% and 43.8%, respectively. Compared with the traditional design, the normalized standard deviation of this design is only 1/73 (0.6%/43.8%) of the former, which proves that its defense performance against energy attacks is remarkable.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110284559.8A CN102394606B (en) | 2011-09-23 | 2011-09-23 | Jump-key (JK) trigger capable of defending power attack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110284559.8A CN102394606B (en) | 2011-09-23 | 2011-09-23 | Jump-key (JK) trigger capable of defending power attack |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102394606A CN102394606A (en) | 2012-03-28 |
CN102394606B true CN102394606B (en) | 2014-03-26 |
Family
ID=45861821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110284559.8A Expired - Fee Related CN102394606B (en) | 2011-09-23 | 2011-09-23 | Jump-key (JK) trigger capable of defending power attack |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102394606B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102684677B (en) * | 2012-06-01 | 2014-04-23 | 北京大学 | Delay Based Dual Rail Precharge Logic Input Converter |
CN102684679A (en) * | 2012-06-05 | 2012-09-19 | 北京大学 | Delay-based dual-rail precharge logic output converter |
CN103593627B (en) * | 2013-11-06 | 2016-08-17 | 中国科学院信息工程研究所 | A kind of double-layer composite register system and the method for opposing power analysis |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5532634A (en) * | 1993-11-10 | 1996-07-02 | Kabushiki Kaisha Toshiba | High-integration J-K flip-flop circuit |
CN1216878A (en) * | 1997-09-30 | 1999-05-19 | 西门子公司 | Reset Set Flip Flop with Enable Input |
-
2011
- 2011-09-23 CN CN201110284559.8A patent/CN102394606B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5532634A (en) * | 1993-11-10 | 1996-07-02 | Kabushiki Kaisha Toshiba | High-integration J-K flip-flop circuit |
CN1216878A (en) * | 1997-09-30 | 1999-05-19 | 西门子公司 | Reset Set Flip Flop with Enable Input |
Non-Patent Citations (4)
Title |
---|
A dynamic and differential CMOS logic with signal independent power consumption to withstand differential power analysis on smart cards;K Tiri, M Akmal, I Verbauwhede;《Solid-State Circuits Conference》;20020930;全文 * |
A Moradi, T Eisenbarth, A Poschmann.Information Leakage of Flip-Flops in DPA-Resistant Logic Styles.《IACR Cryptology ePrint Archive》.2008, |
Information Leakage of Flip-Flops in DPA-Resistant Logic Styles;A Moradi, T Eisenbarth, A Poschmann;《IACR Cryptology ePrint Archive》;20081231;全文 * |
K Tiri, M Akmal, I Verbauwhede.A dynamic and differential CMOS logic with signal independent power consumption to withstand differential power analysis on smart cards.《Solid-State Circuits Conference》.2002, |
Also Published As
Publication number | Publication date |
---|---|
CN102394606A (en) | 2012-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumar et al. | EE-SPFAL: A novel energy-efficient secure positive feedback adiabatic logic for DPA resistant RFID and smart card | |
CN102880840B (en) | Current type physical unclonable function circuit for defending attack | |
CN105761748B (en) | A kind of Static RAM for defending differential power consumption analysis | |
CN105227176A (en) | A hybrid PUF circuit | |
CN103078629A (en) | Full-adder circuit based on 7 different or same transistors or units | |
CN104378103B (en) | Dual-Rail Precharge Logic Cell Architecture | |
CN102394606B (en) | Jump-key (JK) trigger capable of defending power attack | |
CN103595371B (en) | A kind of Double-edge D trigger based on N-type SABL logic | |
CN109327206B (en) | Power flattening standard integrated circuits | |
CN101547087B (en) | Method for designing control unit of DES encryption system based on reversible logical gate | |
CN101527628A (en) | Full-custom AES SubByte circuit resisting differential power analysis attack | |
CN108932438B (en) | Multimode mixed reconfigurable PUF unit circuit based on linear feedback | |
CN102394637B (en) | Anti-differential power attack ternary counter based on sense amplification logic | |
CN109711203B (en) | A Data Selector Using Threshold Voltage Qualification | |
CN102857215B (en) | Three-valued thermal-insulation domino direct circulation valve and reverse circulation valve | |
CN104333362B (en) | A kind of same or XOR double track precharge logical unit | |
CN106548806B (en) | A kind of shift register that DPA can be defendd to attack | |
CN103095288B (en) | Ultra-low power consumption three-valued counting unit and multi-bit counter based on Domino circuit | |
CN102832928B (en) | Three-value adiabatic domino addition unit | |
CN104410404A (en) | Adiabatic logic circuit and single bit full adder | |
CN104022758B (en) | A kind of band resets the power consumption equilibrium trigger of set port | |
CN109325371B (en) | Delayed Ternary PUF Circuit Based on CNFET | |
CN109546997B (en) | Numerical value comparator based on TDPL logic | |
CN102891668B (en) | Ternary low-power-consumption domino comparison unit | |
CN109474415B (en) | Three Phase Single Rail Precharge Logic Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210106 Address after: Room A507-1, Building 9, Jiuhuan Road, Jianggan District, Hangzhou City, Zhejiang 310000 Patentee after: HANGZHOU MAEN SCIENCE & TECHNOLOGY Co.,Ltd. Address before: 315211, Fenghua Road, Jiangbei District, Zhejiang, Ningbo 818 Patentee before: Ningbo University |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140326 Termination date: 20210923 |
|
CF01 | Termination of patent right due to non-payment of annual fee |