CN102251130B - 一种超细晶粒硬质合金的制备方法 - Google Patents
一种超细晶粒硬质合金的制备方法 Download PDFInfo
- Publication number
- CN102251130B CN102251130B CN201110170866A CN201110170866A CN102251130B CN 102251130 B CN102251130 B CN 102251130B CN 201110170866 A CN201110170866 A CN 201110170866A CN 201110170866 A CN201110170866 A CN 201110170866A CN 102251130 B CN102251130 B CN 102251130B
- Authority
- CN
- China
- Prior art keywords
- cemented carbide
- powder
- coated
- preparation
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 40
- 239000000843 powder Substances 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000005245 sintering Methods 0.000 claims abstract description 25
- 238000002156 mixing Methods 0.000 claims abstract description 19
- 230000008569 process Effects 0.000 claims abstract description 11
- 239000002245 particle Substances 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 239000011858 nanopowder Substances 0.000 claims abstract 6
- 238000001556 precipitation Methods 0.000 claims abstract 3
- 238000011065 in-situ storage Methods 0.000 claims abstract 2
- 239000000956 alloy Substances 0.000 claims description 33
- 229910045601 alloy Inorganic materials 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 22
- 229910009043 WC-Co Inorganic materials 0.000 claims description 17
- 239000012298 atmosphere Substances 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 238000000498 ball milling Methods 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 6
- 230000032683 aging Effects 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 239000012188 paraffin wax Substances 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 238000007873 sieving Methods 0.000 claims description 3
- 238000003763 carbonization Methods 0.000 claims description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 claims 3
- 239000000243 solution Substances 0.000 claims 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims 1
- 239000012300 argon atmosphere Substances 0.000 claims 1
- 239000011259 mixed solution Substances 0.000 claims 1
- 239000002244 precipitate Substances 0.000 claims 1
- 239000002904 solvent Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 125000004432 carbon atom Chemical group C* 0.000 abstract description 4
- 239000012071 phase Substances 0.000 abstract description 4
- 239000011159 matrix material Substances 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 230000002068 genetic effect Effects 0.000 abstract description 2
- 239000007791 liquid phase Substances 0.000 abstract description 2
- 239000002114 nanocomposite Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000002401 inhibitory effect Effects 0.000 abstract 3
- 230000002159 abnormal effect Effects 0.000 abstract 2
- 238000004090 dissolution Methods 0.000 abstract 2
- 239000006185 dispersion Substances 0.000 abstract 1
- 238000009826 distribution Methods 0.000 abstract 1
- 239000003112 inhibitor Substances 0.000 abstract 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 239000003966 growth inhibitor Substances 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000005255 carburizing Methods 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 239000013049 sediment Substances 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000002512 suppressor factor Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910001009 interstitial alloy Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 238000003701 mechanical milling Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
Abstract
一种超细晶粒硬质合金的制备方法,通过化学沉淀-后续碳化的方法,制备出具有V2O5包覆WO3结构的纳米粉末,并通过原位碳化反应生成具有结构遗传性的VC包覆WC结构的微纳米复合粉末,VC均匀的包覆在WC晶粒的外层,粒径均匀,粉末分散性好。在烧结时,WC外层的VC均匀溶解在液相Co中,阻碍W、C原子的扩散,降低WC在粘接相中的溶解度,有效抑制W、C原子的溶解和析出,减少WC通过溶解析出再长大的速率与几率,使WC晶粒得到细化。本发明工艺方法简单、操作方便、硬质合金基体中VC分布均匀、可有效抑制烧结时WC晶粒异常长大;所制备的超细硬质合金,其硬度、抗弯强度等性能均优于采用混料方式添加VC等抑制剂的硬质合金,可减少VC添加量,有效抑制WC晶粒的异常长大。可实工业化规模生产。
Description
技术领域
本发明涉及一种超细晶粒硬质合金的制备方法;具体涉及一种采用VC包覆WC抑制超细硬质合金晶粒长大的超细晶粒硬质合金的制备方法,属于硬质合金材料制备技术领域。
背景技术
硬质合金是由一种或多种高硬度、高弹性模量的间隙化合物(通常由难熔金属硬质化合物WC作为主相)和过渡族的金属Fe、Co、Ni或其合金作为粘结相组成的复合材料。主相提供高强度、高硬度和高耐磨性,塑性粘结相为材料变形提供必需的韧性,它是一种具备高硬度、高强度和良好韧性的复合材料,通常由粉末冶金技术制备。WC-Co硬质合金因具有高的强度、硬度以及优良的耐磨性和抗氧化性,被广泛地应用于机械加工、石油、矿山、模具和结构耐磨件等领域。超细WC-Co硬质合金具有高强度、高硬度特性,有效地解决了传统硬质合金硬度与强度之间的矛盾。生产具有纳米结构的硬质合金的关键技术之一是需要制备纳米WC粉或纳米WC-Co复合粉末。纳米级粉末的平均粒度一般要小于100nm,作为纳米硬质合金用粉末其粒度最好小于50nm。国内外已研制开发出多种制备纳米WC粉和纳米WC-Co复合粉的方法,主要有热化学合成法、直接碳化还原法、机械合金化法等。
烧结是粉末或粉末成型压坯在一定温度、气氛和外界压力下发生的致密化过程,是制备硬质合金块体材料的最后一道重要工序,对产品性能起着决定性作用。经过长期的生产实践与研究,可用于纳米WC-Co硬质合金粉末的烧结工艺主要有低压烧结、热压烧结、放电等离子烧结等。由于超细硬质合金所用原料WC粉末粒度很细,具有很高的烧结活性,易自然团聚,不利于WC-Co的球磨混合均匀,在烧结过程中易出现WC晶粒不均匀长大等诸多问题,其原料要求高,生产难度大,严重影响超细硬质合金的推广应用。
此外,传统超细硬质合金制备过程,通常使用晶粒长大抑制剂VC,Cr3C2,NbC,Mo2C等控制晶粒长大。但是由于晶粒长大抑制剂的粉末粒度很细(小于1μm),添加量小于1wt%,粉末易自然团聚,不利于球磨过程的均匀混合,因此会带来晶粒长大抑制不充分和异常长大的问题,至今相关的研究工作并未取得理想的结果。
发明内容
本发明的目的在于克服现有技术之不足而提供一种工艺方法简单、操作方便、硬质合金基体中VC分布均匀、可有效抑制烧结时WC晶粒异常长大的超细晶粒硬质合金的制备方法。
本发明一种超细晶粒硬质合金的制备方法,包括下述步骤:
第一步:V2O5包覆WO3结构的纳米粉末的制备
取100-300克的H2WO4添加到浓度为0.2~0.6mol/L的2L氨水中,得到浓度为0.2~0.6mol/L的(NH4)2WO4;取1~2 L的(NH4)2WO4与浓度为0.02~0.06的0.1~0.2 L的NH4VO3混合,得到浓度为0.2~0.6mol/L的(NH4)2WO4、NH4VO3的混合溶液;将相同体积、相同温度,浓度为0.4~1.2mol/L的HCl溶液加入所得(NH4)2WO4、NH4VO3的混合溶液,搅拌产生沉淀;经过6~8小时陈化后,固液分离,取固体沉淀物,加热到400~500℃煅烧3~6h,得到V2O5包覆WO3结构的纳米粉末;
第二步:VC包覆WC结构的WC-Co微纳米合金粉末的制备
按质量比为:V2O5包覆WO3结构的纳米粉末∶C∶Co3O4=(72-74)∶(9-11);(17-19),分别称取V2O5包覆WO3结构的纳米粉末、C、Co3O4,混合球磨,得合金粉末混合物;将所述合金粉末混合物模压制成压坯,所述模压压力为50~100MPa;将所述压坯置于真空气氛中进行原位碳化反应,反应温度为1000~1100℃,随炉冷却,得到VC包覆WC结构的WC-Co微纳米合金粉末;
第三步:在第二步所得合金粉末混合物中加入成型剂,搅拌均匀、过筛后模压成坯,于氩气气氛中进行压力烧结随炉冷却,得到超细晶粒硬质合金。
本发明一种超细晶粒硬质合金的制备方法中,制备的超细晶粒硬质合金由以下组份按重量百分比组成:
Co:8~12%;VC:0.3~0.8%
余量为WC;各组分重量百分之和为100%。
本发明一种超细晶粒硬质合金的制备方法中,所述V2O5包覆WO3结构的纳米粉末的平均粒度为40~90nm;C的平均粒度为100~200nm;Co3O4的平均粒度为100~200nm。
本发明一种超细晶粒硬质合金的制备方法中,所述球磨工艺参数是:在行星式球磨机中球料比为(8~10)∶1,以200~300转/分钟的速度球磨40~50小时。
本发明一种超细晶粒硬质合金的制备方法中,所述过筛采用50~100目筛。
本发明一种超细晶粒硬质合金的制备方法中,所述成型剂由石蜡与溶剂汽油按质量比1∶(8~16)混合而成。
本发明一种超细晶粒硬质合金的制备方法中,所述烧结压力为5~8MPa。
本发明由于采用上述组份配比及制备工艺,通过化学沉淀-后续碳化的方法,制备出具有V2O5包覆WO3结构的纳米粉末,并通过原位碳化反应生成具有结构遗传性的VC包覆WC结构的微纳米复合粉末,可以使VC均匀的包覆在WC晶粒的外层,并且粒径均匀,粉末分散性好。在烧结过程中,WC外层的VC晶粒长大抑制剂均匀溶解在液相Co中,阻碍了W、C原子的扩散,降低了WC在粘接相中的溶解度,有效抑制W、C原子的溶解和析出,减少WC在粘结相中通过溶解析出再长大的速率与几率,使WC晶粒得到细化,并且由于VC分布均匀,抑制了WC晶粒异常长大的出现,提高硬质合金的硬度。并且,采用该方法不会出现VC团聚的问题,VC的添加量减少,并且抑制了晶粒的异常长大,对合金基体有细晶强化的效果,提高硬质合金的强度。
与常规WC硬质合金相比,本发明具有以下优点:
1、本发明采用采用VC包覆WC的方法制造的硬质合金,加入较少量的晶粒长大抑制剂,实现硬质合金显微组织晶粒的细化和硬度的大幅提高,其硬度和抗弯强度均优于现有的通过球磨混料方式添加晶粒长大抑制剂的硬质合金。
2、解决了传统混料工艺过程,晶粒长大抑制剂VC团聚现象导致的晶粒异常长大和晶粒细化效果不明显现的问题。
综上所述,本发明工艺方法简单、操作方便、硬质合金基体中VC分布均匀、可有效抑制烧结时WC晶粒异常长大;采用该方法所制备的超细硬质合金,其硬度、抗弯强度等性能均优于现有的采用混料方式添加VC等抑制剂的硬质合金,在减少VC抑制剂添加量的同时,抑制WC晶粒的异常长大。可实工业化规模生产。
附图说明
附图1为本发明实施例1制备的V2O5包覆WO3结构的纳米粉末扫描电镜照片。
附图2为本发明实施例2制备的V2O5包覆WO3结构的纳米粉末扫描电镜照片。
附图3为本发明实施例3制备的V2O5包覆WO3结构的纳米粉末扫描电镜照片。
从照片中可以看出实施例1制备的V2O5包覆WO3结构的粉末粒度为40-60nm;实施例2制备的V2O5包覆WO3结构的粉末粒度为50-80nm;实施例3制备的V2O5包覆WO3结构的粉末粒度为40-90nm。
具体实施
实施例1
第一步:V2O5包覆WO3结构的纳米粉末的制备
取100克的H2WO4添加到浓度为0.2mol/L的2L氨水中,得到浓度为0.2mol/L的(NH4)2WO4;取1L的(NH4)2WO4与浓度为0.04mol/L的0.1L的NH4VO3混合,得到浓度为0.2mol/L的(NH4)2WO4、NH4VO3的混合溶液;将相同体积、相同温度,浓度为0.4mol/L的HCl溶液加入所得(NH4)2WO4、NH4VO3的混合溶液,搅拌产生沉淀;经过6小时陈化后,固液分离,取固体沉淀物,加热到500℃煅烧3h,得到粒度为40~60nmV2O5包覆WO3结构的纳米粉末;
第二步:VC包覆WC结构的WC-Co微纳米合金粉末的制备
按质量比为:V2O5包覆WO3结构的纳米粉末∶C∶Co3O4=73∶9;18,分别称取粒度为40~60nmV2O5包覆WO3结构的纳米粉末、100~200nm的C、100~200nm的Co3O4,混合后,在行星式球磨机中球料比为10∶1,以300转/分钟的速度球磨50小时,得合金粉末混合物;将所述合金粉末混合物模压制成压坯,所述模压压力为100MPa;将所述压坯置于真空度为1×10-3的气氛中进行原位碳化反应,反应温度为1000℃,随炉冷却,得到VC包覆WC结构的WC-Co微纳米合金粉末;
第三步:在第二步所得合金粉末混合物中加入由石蜡与溶剂汽油按质量比1∶8混合而成的成型剂,搅拌均匀、过50~100目筛后于200MPa模压成坯后于氩气气氛中,7MPa压力下进行烧结,烧结温度为1360℃,烧结时间为1.5h,随炉冷却,得到89.6%WC+0.4%VC+10%Co的超细晶粒硬质合金。
本实施例制备的合金材料的密度为14.53g·cm-3,硬度为HRA93.5,抗弯强度为3000MPa。
实施例2
第一步:V2O5包覆WO3结构的纳米粉末的制备
取200克的H2WO4添加到浓度为0.4mol/L的2L氨水中,得到浓度为0.4mol/L的(NH4)2WO4;取1L的(NH4)2WO4与浓度为0.06mol/L的0.1L的NH4VO3混合,得到浓度为0.4mol/L的(NH4)2WO4、NH4VO3的混合溶液;将相同体积、相同温度,浓度为0.8mol/L的HCl溶液加入所得(NH4)2WO4、NH4VO3的混合溶液,搅拌产生沉淀;经过6小时陈化后,固液分离,取固体沉淀物,加热到450℃煅烧4h,得到粒度为50~80nmV2O5包覆WO3结构的纳米粉末;
第二步:VC包覆WC结构的WC-Co微纳米合金粉末的制备
按质量比为:V2O5包覆WO3结构的纳米粉末∶C∶Co3O4=74∶7;19,分别称取粒度为50~80nmV2O5包覆WO3结构的纳米粉末、100~200nm的C、100~200nm的Co3O4,混合后,在行星式球磨机中球料比为9∶1,以250转/分钟的速度球磨40小时,得合金粉末混合物;将所述合金粉末混合物模压制成压坯,所述模压压力为80MPa;将所述压坯置于真空度为2×10-3的气氛中进行原位碳化反应,反应温度为1050℃,随炉冷却,得到VC包覆WC结构的WC-Co微纳米合金粉末;
第三步:在第二步所得合金粉末混合物中加入由石蜡与溶剂汽油按质量比1∶8混合而成的成型剂,搅拌均匀、过50目筛后于150MPa模压成坯后于氩气气氛中,8MPa压力下进行烧结,烧结温度为1400℃,烧结时间为1.5h,随炉冷却,得到91.4%WC+0.6%VC+8%Co的超细晶粒硬质合金。
本实施例制备的合金材料的密度为14.85g·cm-3,硬度为HRA93.9,抗弯强度为2700MPa。
实施例3
第一步:V2O5包覆WO3结构的纳米粉末的制备
取300克的H2WO4添加到浓度为0.6mol/L的2L氨水中,得到浓度为0.6mol/L的(NH4)2WO4;取1L的(NH4)2WO4与浓度为0.08mol/L的0.1L的NH4VO3混合,得到浓度为0.6mol/L的(NH4)2WO4、NH4VO3的混合溶液;将相同体积、相同温度,浓度为1.2mol/L的HCl溶液加入所得(NH4)2WO4、NH4VO3的混合溶液,搅拌产生沉淀;经过6小时陈化后,固液分离,取固体沉淀物,加热到400℃煅烧3h,得到粒度为40~90nmV2O5包覆WO3结构的纳米粉末;
第二步:VC包覆WC结构的WC-Co微纳米合金粉末的制备
按质量比为:V2O5包覆WO3结构的纳米粉末∶C∶Co3O4=72∶11∶17,分别称取粒度为40~90nmV2O5包覆WO3结构的纳米粉末、100~200nm的C、100~200nm的Co3O4,混合后,在行星式球磨机中球料比为10∶1,以230转/分钟的速度球磨45小时,得合金粉末混合物;将所述合金粉末混合物模压制成压坯,所述模压压力为60MPa;将所述压坯置于真空度为3×10-3的气氛中进行原位碳化反应,反应温度为1100℃,随炉冷却,得到VC包覆WC结构的WC-Co微纳米合金粉末;
第三步:在第二步所得合金粉末混合物中加入由石蜡与溶剂汽油按质量比1∶8混合而成的成型剂,搅拌均匀、过50目筛后于150MPa模压成坯后于氩气气氛中,8MPa压力下进行烧结,烧结温度为1430℃,烧结时间为1h,随炉冷却,得到87.2%WC+0.8%VC+12%Co的超细晶粒硬质合金。
本实施例制备的合金材料的密度为14.22g·cm-3,硬度为HRA93.7,抗弯强度为3100MPa。
Claims (7)
1.一种超细晶粒硬质合金的制备方法,包括下述步骤:
第一步:V2O5包覆WO3结构的纳米粉末的制备
取100-300克的H2WO4添加到浓度为0.2~0.6mol/L的2L氨水中,得到浓度为0.2~0.6mol/L的(NH4)2WO4;取1~2L的(NH4)2WO4与浓度为0.02~0.06mol/L的0.1~0.2L的NH4VO3混合,得到浓度为0.2~0.6mol/L的(NH4)2WO4、NH4VO3的混合溶液;将相同体积、相同温度,浓度为0.4~1.2mol/L的HCl溶液加入所得(NH4)2WO4、NH4VO3的混合溶液,搅拌产生沉淀;经过6~8小时陈化后,固液分离,取固体沉淀物,加热到400~500℃煅烧3~6h,得到V2O5包覆WO3结构的纳米粉末;
第二步:VC包覆WC结构的WC-Co微纳米合金粉末的制备
按质量比为:V2O5包覆WO3结构的纳米粉末:C∶Co3O4=(72-74)∶(9-11);(17-19),分别称取V2O5包覆WO3结构的纳米粉末、C、Co3O4,混合球磨,得合金粉末混合物;将所述合金粉末混合物模压制成压坯,所述模压压力为50~100MPa;将所述压坯置于真空气氛中进行原位碳化反应,反应温度为1000~1100℃,随炉冷却,得到VC包覆WC结构的WC-Co微纳米合金粉末;
第三步:在第二步所得VC包覆WC结构的WC-Co微纳米合金粉末混合物中加入成型剂,搅拌均匀、过筛、模压成坯后于氩气气氛中进行压力烧结,随炉冷却,得到超细晶粒硬质合金。
2.根据权利要求1所述的一种超细晶粒硬质合金的制备方法,其特征在于:所述V2O5包覆WO3结构的纳米粉末的平均粒度为40~90nm;C的平均粒度为100~200nm;Co3O4的平均粒度为100~200nm。
3.根据权利要求2所述的一种超细晶粒硬质合金的制备方法,其特征在于:所述球磨工艺参数是:在行星式球磨机中球料比为(8~10)∶1,以200~300转/分钟的速度球磨40~50小时。
4.根据权利要求3所述的一种超细晶粒硬质合金的制备方法,其特征在于:所述过筛采用50~100目筛。
5.根据权利要求4所述的一种超细晶粒硬质合金的制备方法,其特征在于:所述成型剂由石蜡与溶剂汽油按质量比1∶(8~16)混合而成。
6.根据权利要求5所述的一种超细晶粒硬质合金的制备方法,其特征在于:所述烧结压力为5~8MPa。
7.根据权利要求1-6任意一项所述的一种超细晶粒硬质合金的制备方法,其特征在于:制备的超细晶粒硬质合金由以下组份按重量百分比组成:
Co:8~12%;
VC:0.3~0.8%;
余量为WC;各组分重量百分之和为100%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110170866A CN102251130B (zh) | 2011-06-23 | 2011-06-23 | 一种超细晶粒硬质合金的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110170866A CN102251130B (zh) | 2011-06-23 | 2011-06-23 | 一种超细晶粒硬质合金的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102251130A CN102251130A (zh) | 2011-11-23 |
CN102251130B true CN102251130B (zh) | 2012-09-12 |
Family
ID=44978695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110170866A Expired - Fee Related CN102251130B (zh) | 2011-06-23 | 2011-06-23 | 一种超细晶粒硬质合金的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102251130B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104087790B (zh) * | 2014-04-09 | 2018-05-18 | 湖南博云东方粉末冶金有限公司 | 用于超细硬质合金制备的晶粒生长抑制剂的添加方法 |
CN105755305B (zh) * | 2015-12-28 | 2019-11-05 | 国家纳米科学中心 | 一种用于校准纳米压痕仪的高硬度值纳米硬度标准物质的制备方法 |
CN106636834B (zh) * | 2016-10-24 | 2018-08-31 | 湖南大学 | 抑制硬质合金晶粒长大的方法及超细晶硬质合金制备工艺 |
CN108080647B (zh) * | 2017-12-06 | 2021-05-11 | 崇义章源钨业股份有限公司 | 纳米/超细WC-Co复合粉末及其制备方法 |
EP3971136B1 (en) * | 2019-05-13 | 2024-03-06 | Sumitomo Electric Industries, Ltd. | Tungsten carbide powder and production method therefor |
CN111925213B (zh) * | 2020-06-16 | 2021-09-03 | 季华实验室 | 一种表面包覆金属氧化物层的碳化钨粉体及其成型方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1241639A (zh) * | 1998-07-09 | 2000-01-19 | 浙江大学 | 纳米碳化钨-钴-碳化钒硬质合金的制造方法及设备 |
CN101824575A (zh) * | 2010-05-27 | 2010-09-08 | 中南大学 | 一种超细晶碳化钨/钴系硬质合金及其制备方法 |
-
2011
- 2011-06-23 CN CN201110170866A patent/CN102251130B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1241639A (zh) * | 1998-07-09 | 2000-01-19 | 浙江大学 | 纳米碳化钨-钴-碳化钒硬质合金的制造方法及设备 |
CN101824575A (zh) * | 2010-05-27 | 2010-09-08 | 中南大学 | 一种超细晶碳化钨/钴系硬质合金及其制备方法 |
Non-Patent Citations (2)
Title |
---|
Xiao Dai-hong etc..《Effect of VC and NbC additions on microstructure and properties of ultrafine WC-10Co cemented carbides》.《Transactions of Nonferrous Metals Society of China》.2009,第19卷1520-1525. * |
肖代红等.《超细晶WC-10Co-VC-NbC硬质合金的组织与性能》.《材料热处理学报》.2010,第31卷(第10期),第26-29页. * |
Also Published As
Publication number | Publication date |
---|---|
CN102251130A (zh) | 2011-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4969008B2 (ja) | 粉末混合物と複合粉末、その製造方法、及び複合材料におけるその使用 | |
CN102251130B (zh) | 一种超细晶粒硬质合金的制备方法 | |
CN106636834B (zh) | 抑制硬质合金晶粒长大的方法及超细晶硬质合金制备工艺 | |
CN104831098B (zh) | 一种原位添加稀土氧化物晶粒细化剂的WC‑Co硬质合金的制备方法 | |
CN109576545B (zh) | 一种具有混晶结构的Ti(C,N)基金属陶瓷及其制备方法 | |
WO2020186752A1 (zh) | 一种等离子体球磨制备超细晶 WC-Co 硬质合金的方法 | |
CN106756391B (zh) | 一种具有混晶结构的WC-Co硬质合金制备方法 | |
WO2006106873A1 (ja) | 炭化チタン粉末および炭化チタン-セラミックス複合粉末とその製造方法ならびにその炭化チタン粉末の焼結体および炭化チタン-セラミックス複合粉末の焼結体とその製造方法 | |
CN103045887B (zh) | 一种细小纯板状晶硬质合金及其制备方法 | |
CN112063905B (zh) | 一种高性能WC-WCoB-Co复相硬质合金及其制备方法 | |
KR20140081149A (ko) | 탄소나노튜브를 포함하는 초경합금의 제조방법, 이에 의해 제조된 초경합금 및 초경합금을 포함하여 이루어지는 초경 절삭공구 | |
Zhang et al. | Microstructure and mechanical properties of Ti (C, N)-based cermets fabricated by in situ carbothermal reduction of TiO2 and subsequent liquid phase sintering | |
CN101508023A (zh) | 碳化物-Co/Ni复合粉及硬质合金的制备方法 | |
CN102732766B (zh) | 一种粗晶粒硬质合金材料及其制备方法 | |
CN112430770A (zh) | 一种多尺度结构非均匀硬质合金及其制备方法 | |
Zhou et al. | Preparation of Ni–Mo–C/Ti (C, N) coated powders and its influence on the microstructure and mechanical properties of Ti (C, N)-based cermets | |
CN109778046B (zh) | 一种低成本高性能混晶结构WC-Co硬质合金的制备方法 | |
CN104628385A (zh) | 含硼的纳米碳氮化钛固溶体粉末及其制备方法 | |
WO2019169744A1 (zh) | 一种(WMo)C基硬质合金材质及其制备方法 | |
JP2010500477A (ja) | 固溶体粉末を含む混合粉末とそれを用いた焼結体、固溶体粉末を含む混合サ−メット粉末とそれを用いたサ−メット、及びそれらの製造方法 | |
CN107116227B (zh) | 一种超细WC-Ni复合粉末的制备方法 | |
JP5647284B2 (ja) | バインダーが含まれた炭化物及び炭窒化物粉末の合成方法 | |
CN1210425C (zh) | 合成纳米晶钨钴硬质合金复合粉末的方法 | |
CN112359259A (zh) | 碳均匀分布的含晶粒抑制元素的非均匀双晶硬质合金及其制备方法 | |
CN107190196A (zh) | 一种刀具用高耐磨合金材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120912 Termination date: 20140623 |
|
EXPY | Termination of patent right or utility model |