CN102168545A - Coiled tubing supercritical CO2 injection fracturing method - Google Patents
Coiled tubing supercritical CO2 injection fracturing method Download PDFInfo
- Publication number
- CN102168545A CN102168545A CN2011100786186A CN201110078618A CN102168545A CN 102168545 A CN102168545 A CN 102168545A CN 2011100786186 A CN2011100786186 A CN 2011100786186A CN 201110078618 A CN201110078618 A CN 201110078618A CN 102168545 A CN102168545 A CN 102168545A
- Authority
- CN
- China
- Prior art keywords
- fracturing
- fluid
- supercritical
- liquid
- reservoir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000002347 injection Methods 0.000 title claims abstract description 24
- 239000007924 injection Substances 0.000 title claims abstract description 24
- 239000012530 fluid Substances 0.000 claims abstract description 77
- 239000003129 oil well Substances 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims description 57
- 238000002156 mixing Methods 0.000 claims description 14
- 239000004576 sand Substances 0.000 claims description 11
- 239000003082 abrasive agent Substances 0.000 claims description 8
- 238000002955 isolation Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 239000003245 coal Substances 0.000 claims description 3
- 238000011010 flushing procedure Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 2
- 230000008676 import Effects 0.000 claims 3
- 241000219991 Lythraceae Species 0.000 claims 1
- 235000014360 Punica granatum Nutrition 0.000 claims 1
- 239000004575 stone Substances 0.000 claims 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 20
- 239000003921 oil Substances 0.000 abstract description 20
- 238000011084 recovery Methods 0.000 abstract description 9
- 238000005488 sandblasting Methods 0.000 abstract description 8
- 239000000295 fuel oil Substances 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 6
- 238000009792 diffusion process Methods 0.000 abstract description 4
- 238000011017 operating method Methods 0.000 abstract description 3
- 206010017076 Fracture Diseases 0.000 description 33
- 208000010392 Bone Fractures Diseases 0.000 description 23
- 125000006850 spacer group Chemical group 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000006073 displacement reaction Methods 0.000 description 11
- 239000010779 crude oil Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000005755 formation reaction Methods 0.000 description 9
- 239000011435 rock Substances 0.000 description 9
- 238000011144 upstream manufacturing Methods 0.000 description 9
- 239000011148 porous material Substances 0.000 description 6
- 238000005086 pumping Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 208000013201 Stress fracture Diseases 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Landscapes
- Earth Drilling (AREA)
Abstract
本发明涉及一种连续油管超临界CO2喷射压裂方法。该方法是以超临界CO2为压裂液对油井储层进行喷射压裂的方法。本发明采用超临界CO2流体作为压裂液进行喷射压裂,超临界CO2喷砂射孔能够降低系统压力,同时超临界CO2流体的低黏和高扩散特性,也能进一步降低裂缝扩展所需压力;最重要的是超临界CO2喷射压裂对储层无任何污染,相反超临界CO2进入储层还能进一步提高油气采收率;同时压裂完成后无需返排,利用连续油管进行分段喷射压裂时也不需要井筒泄压即可上提或下放管柱,减少了作业工序,降低了作业成本,因此非常适合于采取常规水基压裂液收效甚微的稠油油藏、低渗特低渗油气藏、页岩气藏、煤层气藏等非常规油气藏压裂改造。
The invention relates to a coiled tubing supercritical CO2 injection fracturing method. The method uses supercritical CO2 as the fracturing fluid to jet-fracture oil well reservoirs. The present invention uses supercritical CO 2 fluid as the fracturing fluid for jet fracturing, supercritical CO 2 sand blasting and perforation can reduce system pressure, and at the same time, the low viscosity and high diffusion characteristics of supercritical CO 2 fluid can also further reduce fracture propagation required pressure; the most important thing is that supercritical CO 2 injection fracturing does not cause any pollution to the reservoir, on the contrary, entering the reservoir with supercritical CO 2 can further improve oil and gas recovery; at the same time, no flowback is required after fracturing When the oil tubing is subjected to staged injection fracturing, the pipe string can be lifted or lowered without pressure relief from the wellbore, which reduces operating procedures and operating costs, so it is very suitable for heavy oil with little effect from conventional water-based fracturing fluids Oil reservoirs, low-permeability and ultra-low-permeability oil and gas reservoirs, shale gas reservoirs, coalbed methane reservoirs and other unconventional oil and gas reservoirs are fracturing.
Description
技术领域technical field
本发明涉及一种油井喷射压裂方法,尤其涉及一种连续油管超临界CO2喷射压裂方法,属于石油钻探领域。The invention relates to an oil well jet fracturing method, in particular to a coiled tubing supercritical CO2 jet fracturing method, which belongs to the field of oil drilling.
背景技术Background technique
水力压裂技术最早在20世纪40年代提出,当时主要应用于老井改造、提高采收率,目前水力压裂技术已成为低渗特低渗油田、页岩气藏、煤层气藏等非常规油气藏增产的主要措施之一。它利用地面高压泵组,以超过地层(储层)吸收能力的排量将压裂液注入井筒,在井底附近产生高压,当该压力克服了井壁附近的地应力和岩石的抗拉强度时,将会使地层破裂并延伸一定距离;随着压裂液持续泵入,裂缝持续向前延伸,在裂缝达到要求尺寸后,泵注混有支撑剂的携砂液,携砂液将继续延伸裂缝并将支撑剂输送到裂缝内;携砂液泵送完毕后,泵送破胶剂,将高黏压裂液破胶降为低黏度的液体流回井筒,返排到地面,这样当压裂结束后,裂缝内只留下支撑剂用于支撑裂缝壁面,形成了一条具有高导流能力的裂缝通道。Hydraulic fracturing technology was first proposed in the 1940s. At that time, it was mainly used in the reconstruction of old wells and enhanced oil recovery. At present, hydraulic fracturing technology has become an unconventional technology for low-permeability and ultra-low-permeability oil fields, shale gas reservoirs, and coalbed methane reservoirs. One of the main measures to increase production of oil and gas reservoirs. It uses surface high-pressure pumps to inject fracturing fluid into the wellbore with a displacement exceeding the absorption capacity of the formation (reservoir), and generates high pressure near the bottom of the well. When the pressure overcomes the in-situ stress near the well wall and the tensile strength of the rock When the fracturing fluid is continuously pumped, the fracture will continue to extend forward. After the fracture reaches the required size, the sand-carrying fluid mixed with proppant will be pumped and the sand-carrying fluid will continue to Extend the fracture and transport the proppant into the fracture; after the sand-carrying fluid is pumped, the gel breaker is pumped to reduce the high-viscosity fracturing fluid to a low-viscosity fluid and flow it back to the wellbore and back to the surface. After fracturing, only the proppant is left in the fracture to support the fracture wall, forming a fracture channel with high conductivity.
众所周知,水力压裂的目的就是生成一条具有高导流能力的裂缝通道,穿透近井筒地带的伤害区,使油井恢复自然产能。然而对于上述传统压裂来说,需要注入大量高黏压裂液,随后还要泵入破胶剂,再返排压裂液,这样不仅成本高,而且程序复杂,最重要的是大量的水进入储层后,会造成储层二次伤害,降低储层渗透率,从而降低压裂效果。虽然目前已经出现多种清洁压裂液,对储层污染有所减轻,但是仍然无法从根本上彻底消除压裂时储层二次污染。As we all know, the purpose of hydraulic fracturing is to create a fracture channel with high conductivity, penetrate the damaged zone near the wellbore, and restore the natural productivity of the oil well. However, for the above-mentioned traditional fracturing, it is necessary to inject a large amount of high-viscosity fracturing fluid, then pump the gel breaker, and then flow back the fracturing fluid. This is not only costly, but also complicated. The most important thing is that a large amount of water After entering the reservoir, it will cause secondary damage to the reservoir, reduce the permeability of the reservoir, and thus reduce the fracturing effect. Although a variety of clean fracturing fluids have appeared to reduce the reservoir pollution, it is still impossible to fundamentally eliminate the secondary pollution of the reservoir during fracturing.
CO2是一种常见气体,将其加温加压至临界点以上(Tc>31.1℃,Pc>7.38MPa)时成为超临界CO2流体(SC-CO2-super critical CO2),在地层温度和压力条件下,一般750m以上便能使CO2达到超临界状态。超临界CO2流体既不同于气体,也不同于液体,它具有接近于气体的低黏度和高扩散性、接近于液体的高密度以及表面张力为零等特性。如果将CO2用于油井的喷射压裂,上述的这些特性会使得超临界CO2喷射破岩具有较高的效率和较低的破岩门限压力,同时其低黏的特性,在压裂过程中将有助于CO2流体流动,容易在储层中产生多而复杂的裂缝。连续油管可以带压作业,起下方便,因此,如果将超临界CO2流体与连续油管结合起来进行储层喷射压裂将可以大大降低压裂成本,提高压裂效果。CO 2 is a common gas. When it is heated and pressurized above the critical point (T c >31.1°C, P c >7.38MPa), it becomes a supercritical CO 2 fluid (SC-CO 2 -super critical CO 2 ), Under formation temperature and pressure conditions, CO2 can reach a supercritical state generally above 750m. Supercritical CO 2 fluid is different from both gas and liquid. It has low viscosity and high diffusivity close to gas, high density close to liquid, and zero surface tension. If CO 2 is used for jet fracturing of oil wells, the above-mentioned characteristics will make supercritical CO 2 jet rock breaking have higher efficiency and lower rock breaking threshold pressure. It will help the flow of CO2 fluid, which is easy to generate many and complex fractures in the reservoir. Coiled tubing can work under pressure and is easy to get off and on. Therefore, if the combination of supercritical CO 2 fluid and coiled tubing is used for reservoir injection fracturing, the fracturing cost can be greatly reduced and the fracturing effect can be improved.
发明内容Contents of the invention
为解决上述技术问题,本发明的目的在于提供一种油井储层喷射压裂方法,其是采用连续油管输送液态CO2,使其在油井底部成为超临界CO2并对储层进行喷射压裂的方法,具有喷射破岩效率高,破岩门限压力低,作业工序少,压裂成本低等特点。In order to solve the above-mentioned technical problems, the object of the present invention is to provide a method for jet fracturing of oil well reservoirs, which uses coiled tubing to transport liquid CO 2 to make it supercritical CO 2 at the bottom of the oil well and jet fracturing the reservoir The method has the characteristics of high jet rock breaking efficiency, low rock breaking threshold pressure, less operating procedures, and low fracturing cost.
为达到上述目的,本发明提供了一种连续油管超临界CO2喷射压裂的方法,其是以超临界CO2为压裂液对储层进行喷射压裂的方法。In order to achieve the above object, the present invention provides a coiled tubing supercritical CO 2 jet fracturing method, which uses supercritical CO 2 as a fracturing fluid to jet fracturing a reservoir.
本发明所提供的上述连续油管超临界CO2喷射压裂的方法可以包括以下步骤:The above-mentioned coiled tubing supercritical CO2 injection fracturing method provided by the present invention may comprise the following steps:
清井处理:利用清水或者洗井液循环洗井,并用通井规通井;Well cleaning treatment: use clean water or well cleaning fluid to circulate and wash the well, and use the well drilling gauge to open the well;
射孔处理:将液态CO2与射流用磨料相互混合得到混合流体,通过连续油管将混合流体输送到油井中,并通过油井中的喷射压裂装置进行喷砂射孔使储层产生孔道;Perforation treatment: Mix liquid CO2 and jet abrasives to obtain a mixed fluid, transport the mixed fluid to the oil well through coiled tubing, and perform sandblasting and perforation through the jet fracturing device in the oil well to create pores in the reservoir;
压裂处理:将油井底部的杂物清除之后,持续输入纯净的液态CO2,该液态CO2将在井筒一定深度转变为超临界CO2流体并对储层进行压裂,使储层产生裂缝;Fracturing treatment: After removing the sundries at the bottom of the oil well, continue to input pure liquid CO 2 , which will be transformed into supercritical CO 2 fluid at a certain depth in the wellbore and fracturing the reservoir, causing fractures in the reservoir ;
支撑处理:将支撑剂混入液态CO2中,使其随液态CO2进入所产生的裂缝中,当进入裂缝的支撑剂达到预定数量时,停止混入支撑剂,停止泵入液态CO2,完成一段压裂作业。Propping treatment: mix the proppant into the liquid CO 2 and make it enter the generated fracture with the liquid CO 2 . When the proppant entering the fracture reaches the predetermined amount, stop mixing the proppant and stop pumping the liquid CO 2 to complete a stage. fracking operations.
根据本发明的具体技术方案,本发明所提供的上述喷射压裂方法适用于只进行一段压裂,也可以适用于进行两段以上的压裂,当进行多段的压裂时,需要对已经压裂的裂缝和孔道进行隔离,以避免在后续的压裂作业中液态CO2大量涌入第一段裂缝,隔离液要具有较高的粘度和低滤失性能,尽量减少第二段压裂时渗入储层,同时要求压裂液在一定温度下经过一段时间后可以自行水化,以便压裂完毕后返排,本发明所采用的隔离液可以是本领域常用的隔离液,例如胍胶、水基植物胶隔离液。当完成了最后一段压裂作业,不再进行压裂时,则不必再进行隔离处理。根据本发明的具体技术方案,优选地,上述方法还包括以下步骤:According to the specific technical solution of the present invention, the above-mentioned spray fracturing method provided by the present invention is suitable for performing only one stage of fracturing, and can also be suitable for performing more than two stages of fracturing. When performing multi-stage fracturing, it is necessary to The fractured fractures and channels should be isolated to avoid liquid CO 2 pouring into the first stage of fractures in subsequent fracturing operations. Infiltrate into the reservoir, and require the fracturing fluid to hydrate itself after a period of time at a certain temperature, so that it can flow back after the fracturing is completed. The spacer used in the present invention can be a spacer commonly used in the field, such as guar gum, Water-based vegetable glue spacer. When the last stage of fracturing operation is completed and fracturing is no longer performed, isolation treatment is no longer necessary. According to the specific technical solution of the present invention, preferably, the above-mentioned method also includes the following steps:
隔离处理:输入隔离液,封堵裂缝与孔道;Isolation treatment: input isolating fluid, plugging cracks and channels;
将连续油管上提至下一段压裂位置,然后重复射孔处理、压裂处理和支撑处理步骤,完成下一段压裂作业。Lift the coiled tubing to the next stage of fracturing, then repeat the steps of perforation, fracturing and support to complete the next stage of fracturing.
当完成最后一段压裂作业之后,不再需要进行隔离处理,可以直接进行下一步作业,具体地,当油井中的压裂储层为稠油油藏或者煤层气、页岩气藏时,在压裂处理之后,可以进行闷井处理(使超临界CO2与稠油充分作用,降低原油黏度,或者充分置换煤层气和页岩气藏中CH4后再开井生产),即上述方法还包括进行返排处理或闷井处理的步骤;当油井中的压裂储层为常规油气藏时,可以直接进行生产,无需进行返排处理或闷井处理。After the last fracturing operation is completed, isolation treatment is no longer needed, and the next step can be directly performed. Specifically, when the fracturing reservoir in the oil well is a heavy oil reservoir or a coalbed methane or shale gas reservoir, the After the fracturing treatment, borehole treatment can be carried out (make supercritical CO 2 fully interact with heavy oil to reduce the viscosity of crude oil, or fully replace CH 4 in coalbed methane and shale gas reservoirs before opening the well for production), that is, the above method can also It includes the step of performing flowback treatment or borehole treatment; when the fractured reservoir in the oil well is a conventional oil and gas reservoir, it can be directly produced without flowback treatment or borehole treatment.
在本发明提供的上述压裂方法中,所采用的CO2来源比较广泛,可由CO2气田直接获得,或者从电厂、钢厂等产生的尾气中提取(这样有利于环境保护),由于超临界CO2压裂时CO2用量不是很大,可由CO2罐车运送,CO2储罐优选能够承压10MPa左右,保证CO2在一定的温度和压力下处于液态,同时也需要具有保温作用,维持储罐内需要的低温。CO2罐车上可以根据需要加装制冷机组,保证运输过程中以及泵入压裂车前的需要。CO2的运输压力一般可以控制在3-5MPa,温度控制在-20℃至5℃,这样能保证安全运输。为了更好地保证液态CO2的状态,优选地,储存在CO2罐车中的液态CO2的压力可以控制为4-5MPa,温度可以控制为-10℃到5℃。In the above-mentioned fracturing method provided by the present invention, the CO2 source that adopts is more extensive, can be directly obtained by CO2 gas field, perhaps extracts from the tail gas that power plant, steel mill etc. produce (helps environmental protection like this), because supercritical The amount of CO 2 used in CO 2 fracturing is not very large, and it can be transported by a CO 2 tank truck. The CO 2 storage tank is preferably able to withstand a pressure of about 10 MPa to ensure that the CO 2 is in a liquid state at a certain temperature and pressure. The low temperature required in the storage tank. Refrigeration units can be installed on the CO2 tank truck as needed to ensure the needs during transportation and before pumping into the fracturing truck. The transportation pressure of CO 2 can generally be controlled at 3-5MPa, and the temperature can be controlled at -20°C to 5°C, which can ensure safe transportation. In order to better ensure the state of liquid CO2 , preferably, the pressure of liquid CO2 stored in the CO2 tanker can be controlled to be 4-5MPa, and the temperature can be controlled to be -10°C to 5°C.
常规压裂设备经过简单改进便可进行超临界CO2压裂,首先将管阀、高压泵、井下工具中的橡胶等化工制品密封垫改为金属密封垫,主要原因是,CO2穿透性很强,能够渗透到橡胶类大分子材料中,时间过长便可刺漏胶垫;其次,在压裂车上的高压泵泵头上加装循环冷却装置,温度一般控制在0-3℃左右,防止活塞与套筒摩擦生热,使液态CO2汽化,影响泵效。Conventional fracturing equipment can be used for supercritical CO 2 fracturing after simple improvement. Firstly, the gaskets of chemical products such as rubber in pipe valves, high-pressure pumps, and downhole tools are replaced with metal gaskets. The main reason is that CO 2 penetrating It is very strong and can penetrate into rubber-like macromolecular materials. If the time is too long, the rubber pad will be leaked; secondly, a circulating cooling device is installed on the head of the high-pressure pump on the fracturing vehicle, and the temperature is generally controlled at 0-3°C Left and right, to prevent the friction between the piston and the sleeve to generate heat, vaporize the liquid CO 2 and affect the pump efficiency.
进行压裂作业时,在井口处,连续油管中的液态CO2处于低温高压液态,随着液态CO2逐渐下行,其温度和压力也逐渐升高,当温度和压力同时超过临界点时,液态CO2转变为超临界CO2,超临界CO2与磨料的混合流体经过喷射压裂装置的喷嘴产生高压射流喷射储层,使储层产生孔道。由于地层的温度随着深度的增加而逐渐上升,温度梯度约为20-50℃/km,在地下几百米深的地方温度将超过CO2的临界温度(31.1℃),同时压裂所需压力一般较高,很容易达到CO2的临界压力(7.38MPa),因此,通常在井下750m便可实现超临界CO2喷射压裂。而当地层温度异常,或在浅部地层压裂无法达到临界温度时,可以在地面对液态CO2流体进行加热,即本发明所提供的喷射压裂方法还可以包括在射孔处理中对输入连续油管的液态CO2与射流磨料组成的混合流体进行加热的步骤;该加热处理可以在地面进行。During fracturing operations, at the wellhead, the liquid CO2 in the coiled tubing is in a low-temperature, high-pressure liquid state. As the liquid CO2 gradually descends, its temperature and pressure gradually increase. When the temperature and pressure exceed the critical point at the same time, the liquid CO2 CO 2 is transformed into supercritical CO 2 , and the mixed fluid of supercritical CO 2 and abrasive passes through the nozzle of the jet fracturing device to generate high-pressure jets to spray the reservoir, so that the reservoir produces pores. Since the temperature of the formation rises gradually with the increase of depth, the temperature gradient is about 20-50°C/km, and the temperature will exceed the critical temperature of CO2 (31.1°C) at a depth of several hundred meters underground. The pressure is generally high, and it is easy to reach the critical pressure of CO 2 (7.38MPa). Therefore, supercritical CO 2 injection fracturing can usually be realized at 750m downhole. And when the formation temperature is abnormal, or when the shallow formation fracturing cannot reach the critical temperature, the liquid CO2 fluid can be heated on the ground, that is, the jet fracturing method provided by the present invention can also include in the perforation treatment. A step of heating the mixed fluid composed of liquid CO 2 and jet abrasive fed into the coiled tubing; this heating treatment can be performed on the ground.
根据本发明的具体技术方案,优选地,射孔处理可以包括以下具体步骤:According to the specific technical solution of the present invention, preferably, the perforation treatment may include the following specific steps:
通过管线将储存在CO2罐车中的液态CO2输送到混砂车,将射流用磨料与液态CO2混合,然后经过高压管线输送到压裂车;通过压裂车(压裂车的数量可以根据排量需要进行增减)将液态CO2与射流用磨料混合组成的混合流体经由高压管线送入连续油管,并到达油井底部的喷射压裂装置进行喷砂射孔使储层产生孔道。在射孔处理中的混合流体中,所采用的射流用磨料的添加量可以控制为占混合流体重量的5-8wt%,所采用的射流用磨料可以是本领域常用的射流用磨料,例如细度为60目-120目的石榴石砂或者石英砂。The liquid CO2 stored in the CO2 tanker is transported to the sand mixing vehicle through the pipeline, and the jet abrasive is mixed with the liquid CO2 , and then transported to the fracturing vehicle through the high-pressure pipeline; through the fracturing vehicle (the number of fracturing vehicles can be Increase or decrease according to displacement needs) The mixed fluid composed of liquid CO 2 and jet abrasive is sent to the coiled tubing through the high-pressure pipeline, and reaches the jet fracturing device at the bottom of the oil well for sand blasting and perforation to create pores in the reservoir. In the mixed fluid in the perforation treatment, the amount of the jet abrasive used can be controlled to account for 5-8 wt% of the weight of the mixed fluid, and the jet abrasive used can be commonly used in the art, such as fine The density is 60 mesh-120 mesh garnet sand or quartz sand.
在本发明提供的上述压裂方法中,优选地,压裂处理可以包括以下步骤:In the above-mentioned fracturing method provided by the present invention, preferably, the fracturing treatment may include the following steps:
油井井口处设置环空回压阀,合理控制井口压力(一般可以控制在5-8MPa),使油井底部的CO2将杂物清除(顺利携出井筒),即使在油井底部成为超临界状态的CO2通过环空(连续油管与井筒之间的空间称为环空)将射孔产生的磨料和岩屑携带出井筒;然后关闭环空回压阀,通过连续油管持续输入纯净的液态CO2或者通过连续油管和环空同时输入纯净的液态CO2,该液态CO2在油井中成为超临界CO2流体,该超临界CO2流体进入孔道,对储层进行压裂,使储层产生裂缝。An annular back pressure valve is installed at the wellhead of the oil well to reasonably control the wellhead pressure (generally can be controlled at 5-8MPa), so that the CO2 at the bottom of the oil well can remove impurities (smoothly carried out of the wellbore), even if the bottom of the oil well becomes supercritical CO 2 carries the abrasive and cuttings produced by perforation out of the wellbore through the annulus (the space between the coiled tubing and the wellbore is called the annulus); then the annulus back pressure valve is closed, and pure liquid CO 2 is continuously input through the coiled tubing Or input pure liquid CO 2 through the coiled tubing and the annular space at the same time, the liquid CO 2 becomes supercritical CO 2 fluid in the oil well, and the supercritical CO 2 fluid enters the pores, fracturing the reservoir and causing fractures in the reservoir .
在本发明提供的上述压裂方法中,进行压裂作业时,对于已经压裂的孔道和裂缝需要进行支撑处理,优选地,支撑处理包括以下步骤:In the above-mentioned fracturing method provided by the present invention, when performing fracturing operations, support treatment is required for the fractured tunnels and fractures. Preferably, the support treatment includes the following steps:
当裂缝延伸到预定长度后(在本领域中,根据不同的地质情况以及实际生产需要,可以预定不同的压裂长度,再由此确定泵送压裂液的压裂时间和排量,一般情况下,每一段压裂作业的压裂时间可以控制为10-30分钟,泵送量可以控制为5-9方/分钟),但不限于此范围),通过混砂车将支撑剂混入液态CO2中,使其随液态CO2进入所产生的裂缝中,对裂缝予以支撑;当进入裂缝的支撑剂达到预定数量时,停止混入支撑剂,停止输入液态CO2,完成一段压裂作业。在支撑处理中,优选地,所采用的支撑剂的添加量可以控制为占液态CO2与支撑剂质量之和的5-20wt%,这里的液态CO2是指与支撑剂同时泵入的液态CO2,所采用的支撑剂可以是本领域常用的支撑剂,优选为空心陶瓷支撑剂。When the fracture extends to a predetermined length (in this field, according to different geological conditions and actual production needs, different fracturing lengths can be predetermined, and then determine the fracturing time and displacement of the pumped fracturing fluid. Generally, The fracturing time of each fracturing operation can be controlled to 10-30 minutes, the pumping volume can be controlled to 5-9 cubic meters per minute), but not limited to this range), and the proppant is mixed into the liquid CO 2 , let it enter the generated fracture with liquid CO 2 to support the fracture; when the proppant entering the fracture reaches a predetermined amount, stop mixing proppant, stop inputting liquid CO 2 , and complete a fracturing operation. In the propping treatment, preferably, the amount of proppant added can be controlled to account for 5-20 wt% of the sum of liquid CO 2 and proppant mass, where
本发明采用超临界CO2流体作为压裂液进行喷射压裂,具有以下一些优点:The present invention uses supercritical CO2 fluid as the fracturing fluid to carry out jet fracturing, which has the following advantages:
1、超临界CO2喷射破岩效率高,破岩门限压力低,因此可以在超临界CO2流体中加入射流用磨料,进行套管开窗喷射压裂,不仅降低了系统注入压力要求,而且提高了压裂施工的安全性。1. Supercritical CO 2 jetting has high rock-breaking efficiency and low rock-breaking threshold pressure. Therefore, jet abrasives can be added to supercritical CO 2 fluid to carry out jet fracturing with casing window opening, which not only reduces the injection pressure requirements of the system, but also The safety of fracturing construction is improved.
2、超临界CO2流体黏度较低,具有高扩散特性,即使在较小尺寸的连续油管中流动,其摩阻也很小,非常容易流动,同时,在储层原有的微裂缝中,高黏压裂液无法进入,而超临界CO2流体可以随意流动,有助于井筒中压力的传递,降低压裂系统压力,更能使储层产生多而复杂的微裂缝,在储层内组成裂缝网络,连接井筒,提高单井产量和采收率。2. The supercritical CO 2 fluid has a low viscosity and high diffusion characteristics. Even if it flows in a small-sized coiled tubing, its frictional resistance is very small and it flows very easily. At the same time, in the original micro-fractures of the reservoir, High-viscosity fracturing fluid cannot enter, but supercritical CO 2 fluid can flow freely, which is helpful for the transmission of pressure in the wellbore, reduces the pressure of the fracturing system, and can make the reservoir produce many and complex micro-fractures. Form a fracture network, connect the wellbore, and increase the production and recovery of a single well.
3、超临界CO2对储层无任何污染,不含固相颗粒也不含水,当它进入储层时,能够避免孔隙吼道堵塞、储层黏土膨胀、岩石润湿反转、水敏等危害的发生,同时,在其超强溶剂化能力作用下,超临界CO2能够溶解近井地带的重油组分和其他污染物,减小近井地带油气流动阻力,因此,超临界CO2喷射压裂完毕后,无需注入破胶剂也无需返排,可直接投产,不仅减少作业工序,降低成本,而且还可以防止裂缝中支撑剂回流井筒;此外,如果储层中原油粘度较高,还可以选择闷井,使超临界CO2与原油充分作用,增加储层能量,降低原油粘度,增强其流动性,从而进一步提高原油采收率。3. Supercritical CO 2 has no pollution to the reservoir, and does not contain solid particles or water. When it enters the reservoir, it can avoid pore clogging, reservoir clay expansion, rock wetting reversal, water sensitivity, etc. At the same time, under the action of its super solvating ability, supercritical CO 2 can dissolve heavy oil components and other pollutants in the near wellbore area, reducing the oil and gas flow resistance in the near wellbore area. Therefore, supercritical CO 2 injection After the fracturing is completed, there is no need to inject gel breaker or flowback, and it can be put into production directly, which not only reduces operating procedures and costs, but also prevents the proppant in the fracture from flowing back into the wellbore; in addition, if the crude oil in the reservoir has a high viscosity, Poor wells can be selected to fully interact with supercritical CO2 and crude oil, increase reservoir energy, reduce crude oil viscosity, and enhance its fluidity, thereby further improving oil recovery.
4、超临界CO2流体的表面张力为零,能够进入到任何大于超临界CO2分子的空间,同时对于页岩层和煤层来说,CO2分子与其吸附能力远大于CH4分子,因此在进行页岩气藏和煤层气藏压裂时,超临界CO2进入储层还能置换吸附气含量高达85%的煤层气和页岩气,进一步提高气藏采收率和气井产量,最重要的是这类气藏渗透率极低,滤失性相对较小,更有利于裂缝的形成,因此非常适合于页岩气藏、煤层气藏、致密砂岩气藏的压裂改造。4. The surface tension of supercritical CO 2 fluid is zero, and it can enter any space larger than supercritical CO 2 molecules. At the same time, for shale and coal seams, CO 2 molecules and their adsorption capacity are much greater than CH 4 molecules, so in the process of When shale gas reservoirs and coalbed methane reservoirs are fractured, supercritical CO2 entering the reservoir can also replace coalbed methane and shale gas with an adsorbed gas content of up to 85%, further improving the recovery rate of gas reservoirs and gas well production, the most important This type of gas reservoir has extremely low permeability, relatively small fluid loss, and is more conducive to the formation of fractures, so it is very suitable for fracturing stimulation of shale gas reservoirs, coalbed methane reservoirs, and tight sandstone gas reservoirs.
5、超临界CO2流体与连续油管结合进行多段喷射压裂时,上提管柱过程中无需泄压,连续油管可直接带压作业,节省工序和时间。5. When combining supercritical CO 2 fluid and coiled tubing for multi-stage jet fracturing, there is no need to release pressure during the lifting of the string, and the coiled tubing can be directly operated under pressure, saving procedures and time.
附图说明Description of drawings
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发明的范围。其中:The following drawings are only intended to illustrate and explain the present invention schematically, and do not limit the scope of the present invention. in:
图1为连续油管超临界CO2喷射分段压裂流程示意图;Figure 1 is a schematic diagram of the coiled tubing supercritical CO2 injection staged fracturing process;
图2为第一段压裂前喷砂射孔示意图;Figure 2 is a schematic diagram of sandblasting and perforating before the first stage of fracturing;
图3为第一段压裂的压裂方式示意图;Fig. 3 is the schematic diagram of the fracturing method of the first stage of fracturing;
图4为压开裂缝的另外一种方式示意图;Fig. 4 is another kind of mode schematic diagram of pressing open crack;
图5为第一段裂缝压完后打隔离液的输入方式示意图;Fig. 5 is a schematic diagram of the input method of spacer fluid after the first section of fracture is pressed;
图6为隔离液的另一种输入方式的示意图;Fig. 6 is a schematic diagram of another input mode of spacer fluid;
图7为第二段压裂前喷砂射孔方式示意图;Fig. 7 is a schematic diagram of the sandblasting and perforating method before the second stage of fracturing;
图8为第二段压裂的压裂方式示意图;Fig. 8 is a schematic diagram of the fracturing method of the second stage of fracturing;
图9为隔离液的返排方式示意图;Fig. 9 is a schematic diagram of the flowback mode of the spacer;
图10为隔离液的另外一种返排方式的示意图;Fig. 10 is a schematic diagram of another flowback mode of the spacer;
图11为不返排隔离液闷井待产的示意图;Fig. 11 is a schematic diagram of a well waiting for production without flowback spacer fluid;
图12为带地面加热器的连续油管超临界CO2喷射分段压裂流程示意图。Fig. 12 is a schematic diagram of the coiled tubing supercritical CO 2 injection staged fracturing process with a surface heater.
附图标号说明:Explanation of reference numbers:
1CO2罐车 2车载式制冷机组 3CO2储罐 4绝热高压管线 5混砂车6压裂车 7连续油管 8连续油管滚筒 9连续油管注入头 10井口装置11环控回压阀 12井壁 13环空 14地面 15喷射压裂工具 16超临界CO2射流 17孔眼 18喷射孔 19井底 20储层 21地面加热装置 22裂缝1CO 2 tank truck 2 vehicle-mounted refrigeration unit 3CO 2 storage tank 4 adiabatic high-
具体实施方式Detailed ways
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现参照说明书附图对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。In order to have a clearer understanding of the technical features, purposes and beneficial effects of the present invention, the technical solutions of the present invention will be described in detail below with reference to the accompanying drawings, but this should not be construed as limiting the scope of the present invention.
实施例Example
本发明提供的连续油管超临界CO2喷射压裂方法引入超临界CO2流体作为压裂液体,能够充分发挥超临界CO2和连续油管的各自优势,该方法可以包括以下具体步骤:The coiled tubing supercritical CO2 jet fracturing method provided by the present invention introduces supercritical CO2 fluid as the fracturing liquid, and can fully exert the respective advantages of supercritical CO2 and coiled tubing, and the method may include the following specific steps:
1、清井处理:1. Well cleaning treatment:
使用通径规通井,用清水或者洗井液(本领域常用的洗井液即可)进行洗井,一方面防止工具遇阻或遇卡,另一方面也防止井筒中杂物在压裂过程中进入深部地层,污染储层;Use a drift gauge to drill the well, and wash the well with clean water or well flushing fluid (well flushing fluid commonly used in this field is enough), on the one hand, to prevent tools from being blocked or stuck, and on the other hand, to prevent debris in the wellbore from fracturing During the process, it enters the deep formation and pollutes the reservoir;
2、射孔处理:2. Perforation treatment:
图1所示为连续油管超临界CO2喷射分段压裂流程示意图,在进行第一段喷砂射孔时,先将压裂工具15下入到井底19的预定层位,误差不超过0.5米;Fig. 1 is a schematic diagram of the coiled tubing supercritical CO 2 injection staged fracturing process. When performing the first stage of sandblasting and perforating, the fracturing
液态CO2由加装有制冷机组2的CO2罐车1运输,运输压力控制在4-5MPa,温度控制在-10℃至5℃;Liquid CO2 is transported by a CO2
CO2储罐3中的液态CO2经过绝热高压管线4输送到混砂车5,混砂车5将射流用磨料与液态CO2充分混合得到混合流体后输送到压裂车6;The liquid CO2 in the CO2
液态CO2与射流用磨料的混合流体经过压裂车6加压后变为高压混合流体,直接输送到连续油管7,连续油管7依次经过连续油管滚筒8、连续油管注入头9、井口装置10和井筒13将高压混合流体输送到井下喷射压裂工具15;当需要对高压混合流体进行加热时,可以在压裂车6之后设置地面加热装置21,如图12所示;The mixed fluid of liquid CO 2 and jet abrasive is pressurized by the fracturing vehicle 6 and becomes a high-pressure mixed fluid, which is directly transported to the
高压的超临界CO2与射流用磨料的混合流体经过喷射压裂工具15的喷射孔18产生高速磨料射流16,射穿套管(套管完井)或直接作用于储层20(裸眼完井)生成一定尺寸的孔眼(孔道)17,如图2所示;连续油管7与井壁12之间的空间为环空,可以通过设置环空回压阀11来控制环空底部压力;在喷砂射孔时,环空回压阀11应该调整到一个合适的位置,使得井底的超临界CO2密度处于最佳范围(一般控制在700kg/m3以上),提高喷砂射孔效率,同时也要保证射孔生成的岩屑和磨料废渣等杂物能够被超临界CO2流体经过环空携出井筒13,到达地面14;The mixed fluid of high-pressure supercritical CO 2 and jet abrasive passes through the
3、压裂处理:3. Fracturing treatment:
喷砂射孔完毕后,混砂车5停止工作,关闭环空回压阀11,持续大排量(可以控制为5-9方/分钟,每一段压裂处理的时间可以控制为10-30分钟,优选为20分钟)泵入液态CO2,使其进入孔眼17中,对储层20进行压裂,使裂缝22在储层孔眼17的应力集中位置生成并延伸;After the sandblasting and perforating is completed, the
4、支撑处理:4. Support processing:
当裂缝22的长度达到预定要求时,开启混砂车5,开始泵入压裂用支撑剂,如图3所示;由于超临界CO2流体黏度较低,与常规水基压裂液相比,其挟砂能力较差,因此泵入支撑剂时也需要较大的排量(该排量可以根据实际情况按照本领域常规的做法确定,一般可以控制在5-9方/分钟),这样才能保证支撑剂顺利进入裂缝根部,实现裂缝的有效支撑。对于CO2气体来说,高压超临界CO2从喷射孔18喷出后,压力急剧降低,体积快速膨胀,产生焦耳-汤姆逊冷却效应,使得射流周围急剧降温,当温度降到冰点以下,如遇水将结冰,对喷射压裂效果及安全带来不利影响,因此在喷射压裂过程中要严格控制喷嘴压降及排量,尽量避免井底结冰,可以采取从环空和连续油管共同泵注方式来降低连续油管流量压力,如图4所示;When the length of the
5、隔离处理:5. Isolation treatment:
当第一段裂缝支撑剂泵入完毕后,停止泵入CO2,泵入少量隔离液,封堵第一段压裂的裂缝22与孔眼17,防止进行第二段压裂时CO2大量涌入第一段压裂的裂缝22,此时的隔离液要求具有较高的黏度和低滤失性能,尽量减少第二段地层压裂时渗入储层,同时要求它在一定温度下某一时间段后自行水化,以便压裂完毕后返排;泵注方法如图5和图6所示,图5是直接从连续油管注入,如果隔离液黏度较高,则摩阻较大,可选用图6所示的环空注入方法;After the first stage of fracture proppant pumping is completed, stop pumping CO 2 and pump a small amount of spacer fluid to seal the
6、第二段压裂作业:6. The second stage of fracturing operation:
隔离液在第一段压裂的裂缝注入完毕后,上提连续油管7至下一段压裂位置(连续油管7可带压作业,省去了普通管柱泄压接单根等繁琐步骤),重复进行射孔、压裂和支撑处理,进行第二段喷射压裂(如图7和图8所示);After the spacer fluid is injected into the fractures of the first stage of fracturing, the
最后一段压裂完毕后不必再打入隔离液,待此前打入的隔离液水化后返排隔离液;由于压裂时大量CO2进入储层,因此为储层补充了足够的能量,返排较为容易,即便是开采后期的枯竭油气藏也能够顺利返排,返排方式可选择图9和图10所示的方式中的任一种方式;After the last stage of fracturing, there is no need to inject spacer fluid. After the previously injected spacer fluid is hydrated, the spacer fluid is flowed back. Since a large amount of CO 2 enters the reservoir during fracturing, sufficient energy is added to the reservoir, and the return The flowback is relatively easy, and even the depleted oil and gas reservoirs in the later stage of production can flow back smoothly, and the flowback method can be any one of the methods shown in Figure 9 and Figure 10;
如果压裂的储层是稠油油藏或者页岩气藏、煤层气藏,则压裂后可不返排隔离液(隔离液量非常少,对储层渗透率影响很小),采取闷井的方法,使得进入储层的CO2与稠油充分作用,降低粘度,降低原油流动阻力,或者与页岩气藏和煤层气藏中的CH4充分发生置换反应,提高气藏中游离CH4含量,闷井一段时间后开井生产,无论产量和采收率都将大大提高。If the fractured reservoir is a heavy oil reservoir or a shale gas reservoir or a coalbed methane reservoir, it is not necessary to flow back spacer fluid after fracturing (the volume of spacer fluid is very small and has little impact on the reservoir permeability), and boring wells are used. The method makes the CO 2 entering the reservoir fully interact with the heavy oil, reduce the viscosity, reduce the flow resistance of crude oil, or fully replace the CH 4 in the shale gas reservoir and coalbed methane reservoir, and increase the free CH 4 in the gas reservoir. Content, when the bored well is opened for production after a period of time, both production and recovery will be greatly improved.
超临界CO2喷射压裂提高原油采收率和单井产量机理如下:The mechanism of supercritical CO 2 injection fracturing to enhance oil recovery and single well production is as follows:
1、超临界CO2流体密度大,有很强的溶剂化能力,它能够溶解近井地带的重油组分和其他有机物,减小近井地带油气流动阻力;1. The supercritical CO 2 fluid has a high density and strong solvation ability. It can dissolve heavy oil components and other organic matter near the wellbore and reduce the oil and gas flow resistance near the wellbore;
2、超临界CO2流体黏度小(接近气体黏度),扩散能力强,容易渗透扩散到储层原油中,使原油体积膨胀,降低原油黏度,增大原油流动性,同时超临界CO2流体表面张力为零,容易进入任何大于其分子的空间,有利于驱油;2. The supercritical CO 2 fluid has a small viscosity (close to the gas viscosity), strong diffusion ability, and is easy to permeate and diffuse into the crude oil in the reservoir, so that the volume of the crude oil expands, reduces the viscosity of the crude oil, and increases the fluidity of the crude oil. At the same time, the surface of the supercritical CO 2 fluid The tension is zero, and it is easy to enter any space larger than its molecules, which is conducive to oil displacement;
3、超临界CO2流体中不含液态水,不会使储层中粘土膨胀,相反还可以使致密的粘土沙层脱水,打开沙层孔道,降低井壁表皮系数;3. The supercritical CO 2 fluid does not contain liquid water, so it will not expand the clay in the reservoir, on the contrary, it can also dehydrate the dense clay sand layer, open the sand layer pores, and reduce the skin coefficient of the well wall;
4、压裂过程中,大量CO2渗入储层,为储层提供了能量,增加原油流动能力,大幅降低油水界面张力,减小残余油饱和度,从而提高原油采收率;4. During the fracturing process, a large amount of CO2 infiltrates into the reservoir, providing energy for the reservoir, increasing the flow capacity of crude oil, greatly reducing the interfacial tension of oil and water, reducing the saturation of residual oil, thereby improving oil recovery;
5、利用超临界CO2喷射压裂改造页岩气藏和煤层气藏时,由于CO2与岩石的吸附能力强于CH4与岩石的吸附能力,CO2进入储层后可以置换吸附在页岩层和煤层上的CH4,增大游离态CH4含量,从而提高产量和采收率,也能实现CO2埋存,保护环境;5. When supercritical CO 2 injection fracturing is used to transform shale gas and coalbed methane reservoirs, since the adsorption capacity of CO 2 and rock is stronger than that of CH 4 and rock, CO 2 can be replaced and adsorbed on the shale gas after entering the reservoir. CH 4 in rock formations and coal seams can increase the content of free CH 4 , thereby increasing production and recovery, and can also achieve CO 2 storage and protect the environment;
6、超临界CO2压裂液属于清洁压裂液,对储层无任何伤害,压裂后不用返排,也不会有残渣,保护了储层,简化了作业工序;6. Supercritical CO 2 fracturing fluid is a clean fracturing fluid, without any damage to the reservoir, no flowback and no residue after fracturing, which protects the reservoir and simplifies the operation process;
7、超临界CO2低黏易扩散等特性能使储层产生多而复杂的微裂缝,增大泄油面积。7. The characteristics of supercritical CO 2 , such as low viscosity and easy diffusion, can produce many and complex micro-fractures in the reservoir and increase the oil drainage area.
喷嘴压降的合理确定:Reasonable determination of nozzle pressure drop:
对于CO2气体来说,经过节流喷嘴后,压力急剧降低,体积快速膨胀,产生焦耳-汤姆逊冷却效应,使得喷嘴周围温度急剧降低,低温会使井底水结冰,对喷射压裂造成安全隐患。温降与气体排量、喷嘴直径、喷嘴上下游压力、喷嘴上游CO2温度等参数有关,因此压裂过程中要合理选择以上参数,下面举例说明。For CO 2 gas, after passing through the throttling nozzle, the pressure drops sharply and the volume expands rapidly, resulting in the Joule-Thomson cooling effect, which makes the temperature around the nozzle drop sharply. Security risks. The temperature drop is related to parameters such as gas displacement, nozzle diameter, upstream and downstream pressure of the nozzle, and CO2 temperature upstream of the nozzle. Therefore, the above parameters should be reasonably selected during the fracturing process. The following examples illustrate.
假设1900m井深处喷嘴上游温度为340K恒定不变,喷嘴下游(井底)压力为10MPa,喷嘴直径为4mm,试计算在喷嘴上游压力分别为14、18、22、26MPa时喷嘴下游温度。Assuming that the upstream temperature of the nozzle at a depth of 1900m is constant at 340K, the pressure downstream of the nozzle (bottom hole) is 10MPa, and the diameter of the nozzle is 4mm, try to calculate the downstream temperature of the nozzle when the upstream pressure of the nozzle is 14, 18, 22, and 26MPa respectively.
根据公式便可求出喷嘴下游温度。经查表CO2的k值(等熵指数)为1.28,代入相应数据可计算出不同喷嘴上游温度时下游温度,如表1所示:According to the formula The downstream temperature of the nozzle can be obtained. The k value (isentropic index) of CO2 in the table is 1.28, and the downstream temperature can be calculated at the upstream temperature of different nozzles by substituting the corresponding data, as shown in Table 1:
Tdn——喷嘴下游温度,K;Tup——喷嘴上游温度,K;Pdn——喷嘴下游压力,MPa;Pup——喷嘴上游压力,MPa。T dn - temperature downstream of the nozzle, K; T up - temperature upstream of the nozzle, K; P dn - pressure downstream of the nozzle, MPa; P up - pressure upstream of the nozzle, MPa.
表1Table 1
由表1的数据可知,当喷嘴上游压力达到27.2MPa时,井底温度便可以降至冰点,也就是在上述条件下,喷嘴最大压差设计为17.2MPa。在实际压裂过程中,可以通过减小泵排量来降低注入压力,从而降低喷嘴压差,本领域技术人员能够根据所需要的压差的大小来确定泵排量的大小,一般可以控制为5-9方/分钟。It can be seen from the data in Table 1 that when the upstream pressure of the nozzle reaches 27.2MPa, the bottomhole temperature can drop to freezing point, that is, under the above conditions, the maximum pressure difference of the nozzle is designed to be 17.2MPa. In the actual fracturing process, the injection pressure can be reduced by reducing the pump displacement, thereby reducing the nozzle pressure difference. Those skilled in the art can determine the size of the pump displacement according to the required pressure difference. Generally, it can be controlled as 5-9 squares/minute.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110078618 CN102168545B (en) | 2011-03-30 | 2011-03-30 | Coiled tubing supercritical CO2 injection fracturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110078618 CN102168545B (en) | 2011-03-30 | 2011-03-30 | Coiled tubing supercritical CO2 injection fracturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102168545A true CN102168545A (en) | 2011-08-31 |
CN102168545B CN102168545B (en) | 2013-11-06 |
Family
ID=44489845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110078618 Expired - Fee Related CN102168545B (en) | 2011-03-30 | 2011-03-30 | Coiled tubing supercritical CO2 injection fracturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102168545B (en) |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102409976A (en) * | 2011-12-02 | 2012-04-11 | 中国石油大学(华东) | Radial horizontal drilling system using supercritical carbon dioxide and drilling method thereof |
CN102691494A (en) * | 2012-06-08 | 2012-09-26 | 四川大学 | Pneumatic embrittlement method and equipment for shale gas exploitation |
CN102777138A (en) * | 2011-11-14 | 2012-11-14 | 中国石油大学(北京) | Coiled tubing supercritical CO2 jet sand flushing and plugging removal method |
CN102852508A (en) * | 2012-08-23 | 2013-01-02 | 陕西延长石油(集团)有限责任公司研究院 | Liquid CO2 fracturing technology for shale gas well |
CN102944666A (en) * | 2012-12-05 | 2013-02-27 | 西南石油大学 | Shale gas reservoir recovery simulation experimental device |
CN103244095A (en) * | 2013-06-05 | 2013-08-14 | 重庆大学 | Supercritical carbon dioxide fracturing method and supercritical carbon dioxide fracturing system |
CN103742075A (en) * | 2013-12-18 | 2014-04-23 | 中国石油大学(北京) | Supercritical carbon dioxide abrasive jet flow perforation simulation experiment system |
CN103754108A (en) * | 2013-12-30 | 2014-04-30 | 三一重型能源装备有限公司 | Fracturing truck and fracturing equipment set |
CN103790516A (en) * | 2014-03-04 | 2014-05-14 | 中国石油大学(北京) | New well drilling method for efficient rock breaking by means of heating power jet flow |
CN103806934A (en) * | 2014-02-28 | 2014-05-21 | 山东科技大学 | High-stress low-porosity coal bed presplitting permeability-increase methane drainage system and method |
CN103939078A (en) * | 2014-03-27 | 2014-07-23 | 上海井拓石油开发技术有限公司 | Equal-fluidity fuel scavenge and fracturing integrated technology |
CN103975116A (en) * | 2011-12-07 | 2014-08-06 | 贝克休斯公司 | Ball seat milling and re-fracturing method |
CN104018813A (en) * | 2014-05-31 | 2014-09-03 | 贵州盘江煤层气开发利用有限责任公司 | Coal bed gas exploitation method |
CN104152133A (en) * | 2013-05-13 | 2014-11-19 | 中国石油化工股份有限公司 | Carbon dioxide fracturing fluid and preparation method thereof |
CN104254666A (en) * | 2012-02-15 | 2014-12-31 | 四川宏华石油设备有限公司 | Shale gas production method |
CN104632174A (en) * | 2014-12-29 | 2015-05-20 | 西安科技大学 | Coal seam liquid carbon dioxide fracturing device and method |
CN104806221A (en) * | 2015-05-06 | 2015-07-29 | 北京大学 | Unconventional fracturing transformation method for liquefied petroleum gas of oil and gas reservoir |
CN104989363A (en) * | 2015-06-11 | 2015-10-21 | 中国石油天然气股份有限公司 | Self-oscillation type well bottom sand mixing tool and method |
CN105064975A (en) * | 2015-08-17 | 2015-11-18 | 牛辉英 | Permeability set cement fracturing-production method for unconventional oil and gas layers |
CN105114038A (en) * | 2015-08-04 | 2015-12-02 | 太原理工大学 | System and method for increasing drainage quantity of coal bed gas of ground well drainage goaf |
CN105221129A (en) * | 2015-11-13 | 2016-01-06 | 重庆大学 | A kind of hydraulic pressure demolition opens and splits-CO 2take the reservoir anti-reflection method of proppant pressure break |
CN105569619A (en) * | 2015-12-10 | 2016-05-11 | 中国石油天然气集团公司 | Abrasive perforating unblocking method and device for coiled tubing |
CN105625946A (en) * | 2016-01-25 | 2016-06-01 | 中国石油大学(北京) | Supercritical CO2 jet cavity creation and multi-stage synchronous deflagration fracturing method for coalbed methane horizontal wells |
CN105649595A (en) * | 2015-12-31 | 2016-06-08 | 中国石油天然气股份有限公司 | Air cushion type filtration reducing and drainage assisting method for repeated transformation of old well of low-pressure gas field |
CN105804716A (en) * | 2016-05-12 | 2016-07-27 | 中国矿业大学(北京) | Method for exhausting and mining shale gas in explosive fracturing way and exploding bomb |
CN106030028A (en) * | 2013-11-21 | 2016-10-12 | 南加州大学 | Reforming shale gas into methanol using CO2 fracturing |
CN106289988A (en) * | 2015-05-29 | 2017-01-04 | 中国科学院地质与地球物理研究所 | Supercritical carbon dioxide rock fracture pilot system |
CN106522913A (en) * | 2016-12-28 | 2017-03-22 | 西安石油大学 | Parallel-pipe type underground supercritical carbon dioxide jetting sand-mixing device |
CN106837285A (en) * | 2017-01-19 | 2017-06-13 | 中国矿业大学(北京) | A kind of high temp jet strengthens liquid nitrogen vaporization fracturing process and device |
CN106894796A (en) * | 2017-01-09 | 2017-06-27 | 神华集团有限责任公司 | Inject a gas into method and device, the equipment on stratum |
CN107035350A (en) * | 2017-06-05 | 2017-08-11 | 太原理工大学 | A kind of novel pressure cracking supports method for exploiting coal bed methane |
CN107060704A (en) * | 2017-02-14 | 2017-08-18 | 四川洁能锐思石油技术有限公司 | Supercritical CO2It is atomized deep penetration acid fracturing method |
CN107246255A (en) * | 2017-07-26 | 2017-10-13 | 太原理工大学 | Supercritical CO2The analogue means and method of fracturing coal body are combined with hydraulic fracturing |
CN107420077A (en) * | 2017-09-06 | 2017-12-01 | 中国矿业大学(北京) | One kind is based on high energy CO2The shale oil recovery method and device of fluid fracturing |
CN108424758A (en) * | 2018-03-29 | 2018-08-21 | 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 | A kind of anti-freeze type insulating liquid and preparation method and application |
CN108825194A (en) * | 2018-04-17 | 2018-11-16 | 中国石油天然气股份有限公司 | Carbon dioxide anhydrous sand adding fracturing method |
CN109138959A (en) * | 2018-08-07 | 2019-01-04 | 中国石油大学(北京) | A kind of supercritical CO2Cumulative fracturing process |
US10240447B2 (en) | 2013-09-26 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Method for optimizing conductivity in a hydraulic fracturing operation |
CN109538177A (en) * | 2018-10-19 | 2019-03-29 | 中国石油大学(北京) | A kind of supercritical CO2The new process of pressure break |
CN110295878A (en) * | 2018-03-21 | 2019-10-01 | 陕西延长石油(集团)有限责任公司研究院 | Method for executing pressure break in fine and close oily oil reservoir and improving oil recovery |
CN110318674A (en) * | 2019-06-13 | 2019-10-11 | 太原理工大学 | A kind of method of back fracturing protrusion-dispelling |
CN110500080A (en) * | 2019-09-20 | 2019-11-26 | 四川洁能锐思石油技术有限公司 | A kind of high permeability zone bottom water coning shuts down stifled dredge of well and adopts control comprehensive processing method |
CN110735622A (en) * | 2019-11-27 | 2020-01-31 | 太原理工大学 | kinds of supercritical CO2Method and device for exploiting coal bed gas by water-combined fracturing |
CN111520110A (en) * | 2019-02-02 | 2020-08-11 | 中国石油天然气股份有限公司 | Supercritical CO of horizontal well2Method and system for developing enhanced geothermal energy by fracturing |
US10808511B2 (en) | 2013-03-08 | 2020-10-20 | Baker Hughes, A Ge Company, Llc | Method of enhancing the complexity of a fracture network within a subterranean formation |
CN111879674A (en) * | 2020-07-15 | 2020-11-03 | 西南石油大学 | Test device and method for determining reasonable well boring time based on shale imbibition permeability |
CN111911124A (en) * | 2020-08-26 | 2020-11-10 | 中国石油大学(北京) | Spherical shaped fracturing tool |
CN112360492A (en) * | 2020-11-26 | 2021-02-12 | 中铁工程装备集团有限公司 | Composite rock breaking method, cutter head and heading machine |
CN112832728A (en) * | 2021-01-08 | 2021-05-25 | 中国矿业大学 | A shale reservoir fracturing method based on methane multistage detonation |
CN112881652A (en) * | 2021-01-27 | 2021-06-01 | 武汉工程大学 | Supercritical CO2Joule-Thomson effect test simulation device for injection shale reservoir |
CN112922577A (en) * | 2021-02-03 | 2021-06-08 | 中国矿业大学 | Shale reservoir multi-level radial horizontal well methane combustion and explosion fracturing method |
CN112983358A (en) * | 2021-02-10 | 2021-06-18 | 中国石油大学(北京) | Method for exploiting coal bed gas by injecting carbon dioxide between same well seams of horizontal well |
CN113027407A (en) * | 2021-04-21 | 2021-06-25 | 太原理工大学 | Foam-gas composite staged fracturing method for stratum |
CN113217009A (en) * | 2021-05-19 | 2021-08-06 | 中铁工程装备集团有限公司 | Microwave gain type CO2 phase change pressure release rock burst prevention and control method |
CN113530511A (en) * | 2020-04-21 | 2021-10-22 | 中国石油天然气股份有限公司 | Method for developing natural gas reservoir |
CN115199251A (en) * | 2022-06-02 | 2022-10-18 | 中国石油大学(北京) | A kind of carbonate rock geothermal reservoir fracturing method |
CN116291342A (en) * | 2023-02-08 | 2023-06-23 | 新疆敦华绿碳技术股份有限公司 | High miscible pressure reservoir CO 2 Mixed phase driving device and method |
CN118187799A (en) * | 2024-05-16 | 2024-06-14 | 太原理工大学 | A downhole fracturing device and method for deep high-gas crushed soft coal seam |
CN116658145B (en) * | 2023-06-26 | 2024-12-13 | 中国矿业大学 | A method for carbon dioxide storage and reservoir fracturing transformation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4480696A (en) * | 1982-10-25 | 1984-11-06 | Halliburton Company | Fracturing method for stimulation of wells utilizing carbon dioxide based fluids |
CN85102151A (en) * | 1984-01-20 | 1987-02-18 | 哈利伯顿公司 | With carbon dioxide-base liquid Splitting Method with stimulation of wells |
CN100999989A (en) * | 2006-01-13 | 2007-07-18 | 中国石油大学(北京) | High pressure water jet-flow deep penetrating perforating and its auxiliary crushing method and apparatus |
CN101457640A (en) * | 2007-12-14 | 2009-06-17 | 中国石油大学(北京) | Abradant jet downhole perforation, kerf multiple fracturing method and device |
CN101999989A (en) * | 2010-11-19 | 2011-04-06 | 江中泉 | Nursing bottle with bells |
-
2011
- 2011-03-30 CN CN 201110078618 patent/CN102168545B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4480696A (en) * | 1982-10-25 | 1984-11-06 | Halliburton Company | Fracturing method for stimulation of wells utilizing carbon dioxide based fluids |
CN85102151A (en) * | 1984-01-20 | 1987-02-18 | 哈利伯顿公司 | With carbon dioxide-base liquid Splitting Method with stimulation of wells |
CN100999989A (en) * | 2006-01-13 | 2007-07-18 | 中国石油大学(北京) | High pressure water jet-flow deep penetrating perforating and its auxiliary crushing method and apparatus |
CN101457640A (en) * | 2007-12-14 | 2009-06-17 | 中国石油大学(北京) | Abradant jet downhole perforation, kerf multiple fracturing method and device |
CN101999989A (en) * | 2010-11-19 | 2011-04-06 | 江中泉 | Nursing bottle with bells |
Non-Patent Citations (2)
Title |
---|
曾雨辰: "中原油田二氧化碳压裂改造初探", 《天然气勘探与开发》 * |
赵福麟: "压裂液", 《石油大学学报(自然科学版)》 * |
Cited By (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102777138B (en) * | 2011-11-14 | 2016-01-27 | 中国石油大学(北京) | Coiled tubing supercritical CO 2the method of jet flow sand washing de-plugging |
CN102777138A (en) * | 2011-11-14 | 2012-11-14 | 中国石油大学(北京) | Coiled tubing supercritical CO2 jet sand flushing and plugging removal method |
CN102409976A (en) * | 2011-12-02 | 2012-04-11 | 中国石油大学(华东) | Radial horizontal drilling system using supercritical carbon dioxide and drilling method thereof |
CN103975116A (en) * | 2011-12-07 | 2014-08-06 | 贝克休斯公司 | Ball seat milling and re-fracturing method |
CN104254666A (en) * | 2012-02-15 | 2014-12-31 | 四川宏华石油设备有限公司 | Shale gas production method |
CN102691494A (en) * | 2012-06-08 | 2012-09-26 | 四川大学 | Pneumatic embrittlement method and equipment for shale gas exploitation |
CN102691494B (en) * | 2012-06-08 | 2014-10-22 | 四川大学 | Pneumatic embrittlement method and equipment for shale gas exploitation |
CN102852508A (en) * | 2012-08-23 | 2013-01-02 | 陕西延长石油(集团)有限责任公司研究院 | Liquid CO2 fracturing technology for shale gas well |
CN102944666A (en) * | 2012-12-05 | 2013-02-27 | 西南石油大学 | Shale gas reservoir recovery simulation experimental device |
US10808511B2 (en) | 2013-03-08 | 2020-10-20 | Baker Hughes, A Ge Company, Llc | Method of enhancing the complexity of a fracture network within a subterranean formation |
CN104152133A (en) * | 2013-05-13 | 2014-11-19 | 中国石油化工股份有限公司 | Carbon dioxide fracturing fluid and preparation method thereof |
CN103244095A (en) * | 2013-06-05 | 2013-08-14 | 重庆大学 | Supercritical carbon dioxide fracturing method and supercritical carbon dioxide fracturing system |
US10240447B2 (en) | 2013-09-26 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Method for optimizing conductivity in a hydraulic fracturing operation |
CN106030028A (en) * | 2013-11-21 | 2016-10-12 | 南加州大学 | Reforming shale gas into methanol using CO2 fracturing |
CN103742075B (en) * | 2013-12-18 | 2016-04-13 | 中国石油大学(北京) | Supercritical carbon dioxide abrasive jet flow perforation simulation experiment system |
CN103742075A (en) * | 2013-12-18 | 2014-04-23 | 中国石油大学(北京) | Supercritical carbon dioxide abrasive jet flow perforation simulation experiment system |
CN103754108B (en) * | 2013-12-30 | 2017-04-26 | 三一石油智能装备有限公司 | Fracturing truck and fracturing equipment set |
CN103754108A (en) * | 2013-12-30 | 2014-04-30 | 三一重型能源装备有限公司 | Fracturing truck and fracturing equipment set |
CN103806934B (en) * | 2014-02-28 | 2017-02-15 | 山东科技大学 | High-stress low-porosity coal bed presplitting permeability-increase methane drainage method |
CN103806934A (en) * | 2014-02-28 | 2014-05-21 | 山东科技大学 | High-stress low-porosity coal bed presplitting permeability-increase methane drainage system and method |
CN103790516A (en) * | 2014-03-04 | 2014-05-14 | 中国石油大学(北京) | New well drilling method for efficient rock breaking by means of heating power jet flow |
CN103939078A (en) * | 2014-03-27 | 2014-07-23 | 上海井拓石油开发技术有限公司 | Equal-fluidity fuel scavenge and fracturing integrated technology |
CN104018813A (en) * | 2014-05-31 | 2014-09-03 | 贵州盘江煤层气开发利用有限责任公司 | Coal bed gas exploitation method |
CN104632174A (en) * | 2014-12-29 | 2015-05-20 | 西安科技大学 | Coal seam liquid carbon dioxide fracturing device and method |
CN104806221A (en) * | 2015-05-06 | 2015-07-29 | 北京大学 | Unconventional fracturing transformation method for liquefied petroleum gas of oil and gas reservoir |
CN106289988A (en) * | 2015-05-29 | 2017-01-04 | 中国科学院地质与地球物理研究所 | Supercritical carbon dioxide rock fracture pilot system |
CN106289988B (en) * | 2015-05-29 | 2019-09-24 | 中国科学院地质与地球物理研究所 | Supercritical carbon dioxide rock fracture pilot system |
CN104989363A (en) * | 2015-06-11 | 2015-10-21 | 中国石油天然气股份有限公司 | Self-oscillation type well bottom sand mixing tool and method |
CN104989363B (en) * | 2015-06-11 | 2017-09-15 | 中国石油天然气股份有限公司 | Self-oscillation type well bottom sand mixing tool and method |
CN105114038B (en) * | 2015-08-04 | 2018-01-02 | 太原理工大学 | A kind of system and method for improving the old dead zone coal bed gas extraction amount of ground well drainage |
CN105114038A (en) * | 2015-08-04 | 2015-12-02 | 太原理工大学 | System and method for increasing drainage quantity of coal bed gas of ground well drainage goaf |
WO2017028559A1 (en) * | 2015-08-17 | 2017-02-23 | 四川行之智汇知识产权运营有限公司 | Permeable cement stone fracturing exploitationmethod forunconventional oil and gas layer |
CN105064975A (en) * | 2015-08-17 | 2015-11-18 | 牛辉英 | Permeability set cement fracturing-production method for unconventional oil and gas layers |
CN105064975B (en) * | 2015-08-17 | 2017-09-05 | 牛辉英 | Unconventionaloil pool layer permeable cement stone pressure break recovery method |
CN105221129A (en) * | 2015-11-13 | 2016-01-06 | 重庆大学 | A kind of hydraulic pressure demolition opens and splits-CO 2take the reservoir anti-reflection method of proppant pressure break |
CN105221129B (en) * | 2015-11-13 | 2017-09-12 | 重庆大学 | A kind of hydraulic pressure demolition, which is opened, splits CO2Take the reservoir anti-reflection method of proppant pressure break |
CN105569619A (en) * | 2015-12-10 | 2016-05-11 | 中国石油天然气集团公司 | Abrasive perforating unblocking method and device for coiled tubing |
CN105649595A (en) * | 2015-12-31 | 2016-06-08 | 中国石油天然气股份有限公司 | Air cushion type filtration reducing and drainage assisting method for repeated transformation of old well of low-pressure gas field |
CN105625946B (en) * | 2016-01-25 | 2018-07-17 | 中国石油大学(北京) | Coal bed gas horizontal well supercritical CO2Jet stream makes chamber and multistage synchronizes explosion fracturing method |
CN105625946A (en) * | 2016-01-25 | 2016-06-01 | 中国石油大学(北京) | Supercritical CO2 jet cavity creation and multi-stage synchronous deflagration fracturing method for coalbed methane horizontal wells |
CN105804716B (en) * | 2016-05-12 | 2019-05-17 | 中国矿业大学(北京) | A kind of method of blastingfracture extraction shale gas and swashs and split bullet |
CN105804716A (en) * | 2016-05-12 | 2016-07-27 | 中国矿业大学(北京) | Method for exhausting and mining shale gas in explosive fracturing way and exploding bomb |
CN106522913A (en) * | 2016-12-28 | 2017-03-22 | 西安石油大学 | Parallel-pipe type underground supercritical carbon dioxide jetting sand-mixing device |
CN106522913B (en) * | 2016-12-28 | 2023-03-14 | 西安石油大学 | Parallel pipe type underground supercritical carbon dioxide jet flow sand mixing device |
CN106894796B (en) * | 2017-01-09 | 2019-11-15 | 神华集团有限责任公司 | Method, device and equipment for injecting gas into formation |
CN106894796A (en) * | 2017-01-09 | 2017-06-27 | 神华集团有限责任公司 | Inject a gas into method and device, the equipment on stratum |
CN106837285A (en) * | 2017-01-19 | 2017-06-13 | 中国矿业大学(北京) | A kind of high temp jet strengthens liquid nitrogen vaporization fracturing process and device |
CN107060704A (en) * | 2017-02-14 | 2017-08-18 | 四川洁能锐思石油技术有限公司 | Supercritical CO2It is atomized deep penetration acid fracturing method |
CN107060704B (en) * | 2017-02-14 | 2019-02-26 | 四川洁能锐思石油技术有限公司 | Supercritical CO2It is atomized deep penetration acid fracturing method |
CN107035350A (en) * | 2017-06-05 | 2017-08-11 | 太原理工大学 | A kind of novel pressure cracking supports method for exploiting coal bed methane |
CN107246255A (en) * | 2017-07-26 | 2017-10-13 | 太原理工大学 | Supercritical CO2The analogue means and method of fracturing coal body are combined with hydraulic fracturing |
CN107246255B (en) * | 2017-07-26 | 2019-03-26 | 太原理工大学 | Supercritical CO2With the simulator and method of the compound fracturing coal body of hydraulic fracturing |
CN107420077A (en) * | 2017-09-06 | 2017-12-01 | 中国矿业大学(北京) | One kind is based on high energy CO2The shale oil recovery method and device of fluid fracturing |
CN110295878A (en) * | 2018-03-21 | 2019-10-01 | 陕西延长石油(集团)有限责任公司研究院 | Method for executing pressure break in fine and close oily oil reservoir and improving oil recovery |
CN108424758A (en) * | 2018-03-29 | 2018-08-21 | 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 | A kind of anti-freeze type insulating liquid and preparation method and application |
CN108825194B (en) * | 2018-04-17 | 2020-08-07 | 中国石油天然气股份有限公司 | Carbon dioxide anhydrous sand adding fracturing method |
CN108825194A (en) * | 2018-04-17 | 2018-11-16 | 中国石油天然气股份有限公司 | Carbon dioxide anhydrous sand adding fracturing method |
CN109138959A (en) * | 2018-08-07 | 2019-01-04 | 中国石油大学(北京) | A kind of supercritical CO2Cumulative fracturing process |
CN109538177A (en) * | 2018-10-19 | 2019-03-29 | 中国石油大学(北京) | A kind of supercritical CO2The new process of pressure break |
CN111520110B (en) * | 2019-02-02 | 2022-06-03 | 中国石油天然气股份有限公司 | Supercritical CO of horizontal well2Method and system for developing enhanced geothermal energy by fracturing |
CN111520110A (en) * | 2019-02-02 | 2020-08-11 | 中国石油天然气股份有限公司 | Supercritical CO of horizontal well2Method and system for developing enhanced geothermal energy by fracturing |
CN110318674A (en) * | 2019-06-13 | 2019-10-11 | 太原理工大学 | A kind of method of back fracturing protrusion-dispelling |
CN110500080A (en) * | 2019-09-20 | 2019-11-26 | 四川洁能锐思石油技术有限公司 | A kind of high permeability zone bottom water coning shuts down stifled dredge of well and adopts control comprehensive processing method |
CN110735622A (en) * | 2019-11-27 | 2020-01-31 | 太原理工大学 | kinds of supercritical CO2Method and device for exploiting coal bed gas by water-combined fracturing |
CN113530511A (en) * | 2020-04-21 | 2021-10-22 | 中国石油天然气股份有限公司 | Method for developing natural gas reservoir |
CN111879674A (en) * | 2020-07-15 | 2020-11-03 | 西南石油大学 | Test device and method for determining reasonable well boring time based on shale imbibition permeability |
CN111911124A (en) * | 2020-08-26 | 2020-11-10 | 中国石油大学(北京) | Spherical shaped fracturing tool |
CN112360492A (en) * | 2020-11-26 | 2021-02-12 | 中铁工程装备集团有限公司 | Composite rock breaking method, cutter head and heading machine |
CN112832728A (en) * | 2021-01-08 | 2021-05-25 | 中国矿业大学 | A shale reservoir fracturing method based on methane multistage detonation |
CN112832728B (en) * | 2021-01-08 | 2022-03-18 | 中国矿业大学 | A shale reservoir fracturing method based on methane multistage explosion |
CN112881652A (en) * | 2021-01-27 | 2021-06-01 | 武汉工程大学 | Supercritical CO2Joule-Thomson effect test simulation device for injection shale reservoir |
CN112881652B (en) * | 2021-01-27 | 2024-06-04 | 武汉工程大学 | Supercritical CO2Shale reservoir injection Joule-Thomson effect test simulation device |
CN112922577A (en) * | 2021-02-03 | 2021-06-08 | 中国矿业大学 | Shale reservoir multi-level radial horizontal well methane combustion and explosion fracturing method |
CN112983358A (en) * | 2021-02-10 | 2021-06-18 | 中国石油大学(北京) | Method for exploiting coal bed gas by injecting carbon dioxide between same well seams of horizontal well |
CN113027407A (en) * | 2021-04-21 | 2021-06-25 | 太原理工大学 | Foam-gas composite staged fracturing method for stratum |
CN113027407B (en) * | 2021-04-21 | 2022-04-05 | 太原理工大学 | Foam-gas composite staged fracturing method for stratum |
CN113217009B (en) * | 2021-05-19 | 2022-04-05 | 中铁工程装备集团有限公司 | Microwave gain type CO2 phase change pressure release rock burst prevention and control method |
CN113217009A (en) * | 2021-05-19 | 2021-08-06 | 中铁工程装备集团有限公司 | Microwave gain type CO2 phase change pressure release rock burst prevention and control method |
CN115199251A (en) * | 2022-06-02 | 2022-10-18 | 中国石油大学(北京) | A kind of carbonate rock geothermal reservoir fracturing method |
CN115199251B (en) * | 2022-06-02 | 2023-11-07 | 中国石油大学(北京) | Carbonate geothermal reservoir fracturing method |
CN116291342A (en) * | 2023-02-08 | 2023-06-23 | 新疆敦华绿碳技术股份有限公司 | High miscible pressure reservoir CO 2 Mixed phase driving device and method |
CN116291342B (en) * | 2023-02-08 | 2024-05-24 | 新疆敦华绿碳技术股份有限公司 | High miscible pressure reservoir CO2Mixed phase driving device and method |
CN116658145B (en) * | 2023-06-26 | 2024-12-13 | 中国矿业大学 | A method for carbon dioxide storage and reservoir fracturing transformation |
CN118187799A (en) * | 2024-05-16 | 2024-06-14 | 太原理工大学 | A downhole fracturing device and method for deep high-gas crushed soft coal seam |
CN118187799B (en) * | 2024-05-16 | 2024-07-16 | 太原理工大学 | Underground fracturing device and method for deep high-gas crushed soft coal layer |
Also Published As
Publication number | Publication date |
---|---|
CN102168545B (en) | 2013-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102168545A (en) | Coiled tubing supercritical CO2 injection fracturing method | |
CN102777138B (en) | Coiled tubing supercritical CO 2the method of jet flow sand washing de-plugging | |
CN103790516B (en) | A Drilling Method Using Thermal Jet to Break Rock Efficiently | |
CN105507871B (en) | A kind of coal bed gas horizontal well liquid nitrogen ice crystal temporarily blocks up staged fracturing method | |
He et al. | Fracturing with carbon dioxide: Application status and development trend | |
CN103726819B (en) | Cryogenic gas assists the method for CBM Fracturing technique | |
CN105625946B (en) | Coal bed gas horizontal well supercritical CO2Jet stream makes chamber and multistage synchronizes explosion fracturing method | |
CA2129613C (en) | High proppant concentration/high co2 ratio fracturing system | |
US5558160A (en) | Nitrogen/carbon dioxide combination fracture treatment | |
CA2531444C (en) | Method and system for fracturing subterranean formations with a proppant and dry gas | |
WO2017028559A1 (en) | Permeable cement stone fracturing exploitationmethod forunconventional oil and gas layer | |
Li | A new technology for the drilling of long boreholes for gas drainage in a soft coal seam | |
CN102477845B (en) | A drilling method for ultra-short radius horizontal wells | |
CN113027407B (en) | Foam-gas composite staged fracturing method for stratum | |
CN111108175A (en) | Pulsed hydraulic fracturing with geopolymer precursor fluids | |
CN109538177A (en) | A kind of supercritical CO2The new process of pressure break | |
CN115478827B (en) | A staged fracturing method for horizontal well casing without cementing in hydrate reservoir | |
US3175613A (en) | Well perforating with abrasive fluids | |
WO2012122636A1 (en) | Method and apparatus of hydraulic fracturing | |
CN111729935B (en) | In-situ infiltration enhancement system and method for low-permeability contaminated sites | |
CN112343560A (en) | Fracturing and sand prevention combined process method for exploiting low-permeability reservoir natural gas hydrate | |
CN110735622A (en) | kinds of supercritical CO2Method and device for exploiting coal bed gas by water-combined fracturing | |
CN104806219B (en) | Oil and gas reservoir increased permeation and blocking removal device and increased permeation and blocking removal method thereof | |
CN104806221A (en) | Unconventional fracturing transformation method for liquefied petroleum gas of oil and gas reservoir | |
CN114508336A (en) | Drilling, unfreezing and fracturing integrated device and method for soft coal seam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131106 |