CN102148280A - Novel silicon substrate heterojunction solar cell - Google Patents
Novel silicon substrate heterojunction solar cell Download PDFInfo
- Publication number
- CN102148280A CN102148280A CN201010108650XA CN201010108650A CN102148280A CN 102148280 A CN102148280 A CN 102148280A CN 201010108650X A CN201010108650X A CN 201010108650XA CN 201010108650 A CN201010108650 A CN 201010108650A CN 102148280 A CN102148280 A CN 102148280A
- Authority
- CN
- China
- Prior art keywords
- amorphous silicon
- silicon layer
- silicon
- type
- solar cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体太阳电池技术领域,特别是一种硅基底异质结太阳电池结构。The invention relates to the technical field of semiconductor solar cells, in particular to a silicon-based heterojunction solar cell structure.
背景技术Background technique
目前国际市场上,晶体硅和多晶硅太阳电池以其转换效率高,生产技术成熟的优点占据着市场主导地位。但这些传统硅太阳电池在生产中采用的高温(900℃以上)扩散制结工艺,能耗多,因此生产成本高,随着光伏产业技术的发展,需要采用新技术新方法制备太阳电池以减少生产成本和进一步提高转换效率,从而开拓更广泛的市场。At present, in the international market, crystalline silicon and polycrystalline silicon solar cells occupy a leading position in the market due to their high conversion efficiency and mature production technology. However, the high temperature (above 900°C) diffusion junction process used in the production of these traditional silicon solar cells consumes a lot of energy, so the production cost is high. With the development of photovoltaic industry technology, it is necessary to adopt new technologies and methods to prepare solar cells to reduce Production costs and further improvement of conversion efficiency, thereby opening up a wider market.
采用低温薄膜制备技术生产薄膜太阳电池是太阳能电池研究的一个新方向,它节省了昂贵的材料费用,降低了能耗,并且生产工艺简单,易于大面积连续化生产,有利于降低制造成本。但是,氢化非晶硅(a-Si:H)太阳电池的光致退化问题始终没有得到很好的解决,同时其光电转换效率较低。The production of thin-film solar cells by low-temperature thin-film preparation technology is a new direction of solar cell research. It saves expensive material costs, reduces energy consumption, and has a simple production process, which is easy for large-scale continuous production and is conducive to reducing manufacturing costs. However, the problem of photodegradation of hydrogenated amorphous silicon (a-Si:H) solar cells has not been well resolved, and its photoelectric conversion efficiency is low.
要解决这些问题,一条可行的途径是用宽带隙的a-Si作为窗口层或发射极,单晶硅或多晶硅片作衬底,形成异质结太阳电池,它利用氢化非晶硅的宽带隙和高光电导以及晶体硅稳定性好的优势,避免了由非晶硅不稳定性造成的太阳电池性能光致衰减。这种电池既利用了薄膜制造工艺优势同时又发挥了晶体硅和非晶硅的材料性能特点,具有实现高效低成本硅太阳电池的发展前景。To solve these problems, a feasible way is to use wide-bandgap a-Si as the window layer or emitter, and single-crystal silicon or polycrystalline silicon wafers as substrates to form heterojunction solar cells, which utilize the wide-bandgap hydrogenated amorphous silicon And the advantages of high photoconductivity and good stability of crystalline silicon avoid the light-induced attenuation of solar cell performance caused by the instability of amorphous silicon. This kind of battery not only utilizes the advantages of thin-film manufacturing technology, but also takes advantage of the material performance characteristics of crystalline silicon and amorphous silicon, and has the development prospect of realizing high-efficiency and low-cost silicon solar cells.
发明内容Contents of the invention
为了解决晶体硅太阳电池和非晶硅太阳电池的不足,本发明所要解决的技术问题是结合单晶硅和非晶硅材料的性能特点,提出一种光吸收能力强、高效率低成本的新型硅基底异质结太阳电池。In order to solve the shortcomings of crystalline silicon solar cells and amorphous silicon solar cells, the technical problem to be solved by the present invention is to propose a new type of solar cell with strong light absorption ability, high efficiency and low cost in combination with the performance characteristics of single crystal silicon and amorphous silicon materials. Silicon based heterojunction solar cells.
本发明为解决上述技术问题而提供的新型硅基底异质结太阳电池,包含Ag栅线电极、透明导电薄膜(ITO)、本征非晶硅层(i-a-Si:H)、P型重掺杂的非晶硅层(p+-a-Si:H)、P型的纳米硅层(p-nc-Si:H)、本征非晶硅层(i-a-Si:H)、N型硅基底和Ag金属背电极,其中:The novel silicon-based heterojunction solar cell provided by the present invention to solve the above-mentioned technical problems comprises Ag grid line electrodes, transparent conductive films (ITO), intrinsic amorphous silicon layers (ia-Si:H), P-type heavily doped Doped amorphous silicon layer (p + -a-Si:H), P-type nano-silicon layer (p-nc-Si:H), intrinsic amorphous silicon layer (ia-Si:H), N-type silicon Substrate and Ag metal back electrode, wherein:
Ag栅线电极,位于透明导电薄膜ITO之上,其作用是作为正面引出电极;The Ag grid line electrode is located on the transparent conductive film ITO, and its function is to serve as the front-side lead-out electrode;
透明导电薄膜位于本征非晶硅层之上,作为正面电极;A transparent conductive film is located on the intrinsic amorphous silicon layer as the front electrode;
本征非晶硅层位于P型重掺杂非晶硅层之上,其作用是钝化P型重掺杂非晶硅层表面,使之与ITO更好的接触;The intrinsic amorphous silicon layer is located on the P-type heavily doped amorphous silicon layer, and its function is to passivate the surface of the P-type heavily doped amorphous silicon layer to make it better in contact with ITO;
P型重掺杂非晶硅层位于P型纳米硅层之上,其作用是形成p+/p隧穿结,并形成良好的欧姆接触;The P-type heavily doped amorphous silicon layer is located on the P-type nano-silicon layer, and its function is to form a p + /p tunnel junction and form a good ohmic contact;
P型纳米硅层位于本征非晶硅层和N型硅基底之上,其作用是与N型硅基底形成p-n异质结,产生光生伏特效应;The P-type nano-silicon layer is located on the intrinsic amorphous silicon layer and the N-type silicon substrate, and its function is to form a p-n heterojunction with the N-type silicon substrate to generate the photovoltaic effect;
本征非晶硅层位于N型硅基底之上,其作用是钝化硅表面,减小界面态密度;The intrinsic amorphous silicon layer is located on the N-type silicon substrate, and its function is to passivate the silicon surface and reduce the interface state density;
N型硅基底位于Ag金属背电极之上,其作用是作为太阳电池的基区;The N-type silicon substrate is located on the Ag metal back electrode, which acts as the base area of the solar cell;
Ag金属背电极,其作用是作为背面引出电极。The Ag metal back electrode is used as the back lead-out electrode.
本发明上述新型硅基底异质结太阳电池中,透明导电薄膜与P型纳米硅层间含有P型重掺杂的非晶硅层和一层超薄的本征非晶硅层。In the novel silicon-based heterojunction solar cell of the present invention, a P-type heavily doped amorphous silicon layer and an ultra-thin intrinsic amorphous silicon layer are contained between the transparent conductive film and the P-type nano-silicon layer.
本发明上述新型硅基底异质结太阳电池中,透明导电薄膜ITO的厚度为60~100nm;本征非晶硅层的厚度为1~5nm;P型重掺杂非晶硅层的厚度为3~10nm;P型纳米硅层的厚度为5~15nm;本征非晶硅层的厚度为3~10nm;N型硅片的厚度为200~300μm,电阻率为1~10Ω.cm;Ag背电极的厚度为1~5μm。In the above-mentioned novel silicon-based heterojunction solar cell of the present invention, the thickness of the transparent conductive film ITO is 60-100 nm; the thickness of the intrinsic amorphous silicon layer is 1-5 nm; the thickness of the P-type heavily doped amorphous silicon layer is 3 nm. ~10nm; the thickness of the P-type nano-silicon layer is 5-15nm; the thickness of the intrinsic amorphous silicon layer is 3-10nm; the thickness of the N-type silicon wafer is 200-300μm, and the resistivity is 1-10Ω.cm; The thickness of the electrode is 1-5 μm.
随后的实施例将证明,相对于传统的硅太阳电池,本发明新型硅基底异质结太阳电池是新一代太阳电池的代表,它可以得到比普通硅太阳电池低的成本和更高的光电转换效率;比普通非晶硅太阳电池好的长期使用稳定性和高的转换效率,在AM1.5,100mW/cm2的标准模拟光强下,制备出的这种新型硅基底异质结太阳电池的效率达到了17.2%。Subsequent examples will prove that, compared with traditional silicon solar cells, the novel silicon substrate heterojunction solar cell of the present invention is a representative of a new generation of solar cells, which can obtain lower cost and higher photoelectric conversion than ordinary silicon solar cells Efficiency: Better long-term use stability and higher conversion efficiency than ordinary amorphous silicon solar cells, this new silicon-based heterojunction solar cell was prepared under the standard simulated light intensity of AM1.5, 100mW/ cm2 The efficiency reached 17.2%.
附图说明Description of drawings
图1是本发明的硅基底异质结太阳结构示意图。Fig. 1 is a schematic diagram of a silicon substrate heterojunction solar structure according to the present invention.
其中:1为Ag栅线电极;2为透明导电薄膜(ITO);3为本征非晶硅层(i-a-Si:H);4为P型重掺杂的非晶硅层(p+-a-Si:H);5为P型的纳米硅层(p-nc-Si:H);6为本征非晶硅层(i-a-Si:H);7为N型硅基底;8为Ag金属背电极。Among them: 1 is the Ag grid line electrode; 2 is the transparent conductive film (ITO); 3 is the intrinsic amorphous silicon layer (ia-Si:H); 4 is the P-type heavily doped amorphous silicon layer (p + - a-Si:H); 5 is the P-type nano silicon layer (p-nc-Si:H); 6 is the intrinsic amorphous silicon layer (ia-Si:H); 7 is the N-type silicon substrate; 8 is Ag metal back electrode.
具体实施方式Detailed ways
下面结合附图和具体实施例,进一步阐述本发明。这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。The present invention will be further elaborated below in conjunction with the accompanying drawings and specific embodiments. These examples should be understood as only for illustrating the present invention but not for limiting the protection scope of the present invention. After reading the contents of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent changes and modifications also fall within the scope defined by the claims of the present invention.
如图1所示,本发明优选实施例提供的新型硅基底异质结太阳电池各层结构,利用丝网印刷一层低温银浆形成正面的栅线电极;磁控溅射生长ITO薄膜60~100nm;PECVD沉积本征非晶硅(i-a-Si:H),厚度为1~5nm;沉积P型重掺杂的非晶硅(p+-a-Si:H),厚度为3~10nm;沉积P型纳米硅(p-nc-Si:H),厚度为5~15nm;沉积本征非晶硅(i-a-Si:H),厚度为3~10nm;N型硅片,厚度为200~300μm,电阻率为1~10Ω.cm;蒸发Ag背电极,厚度为1~5μm。具体制备工艺过程是:As shown in Figure 1, each layer structure of the novel silicon-based heterojunction solar cell provided by the preferred embodiment of the present invention utilizes screen printing of a layer of low-temperature silver paste to form the front grid electrode; magnetron sputtering grows an ITO film 60- 100nm; PECVD deposits intrinsic amorphous silicon (ia-Si:H) with a thickness of 1-5nm; deposits P-type heavily doped amorphous silicon (p + -a-Si:H) with a thickness of 3-10nm; Deposit P-type nano-silicon (p-nc-Si:H) with a thickness of 5-15nm; deposit intrinsic amorphous silicon (ia-Si:H) with a thickness of 3-10nm; N-type silicon wafer with a thickness of 200-200nm 300μm, resistivity 1~10Ω.cm; evaporated Ag back electrode, thickness 1~5μm. The specific preparation process is:
(1)清洗工艺:硅片先用RCA清洗,然后用稀的氢氟酸溶液去掉表面氧化层,使得硅片表面无斑点、划痕、表面完全脱水,最后用大量去离子水冲洗干净,硅片表面洁净度要求很高。(1) Cleaning process: the silicon wafer is first cleaned with RCA, and then the surface oxide layer is removed with a dilute hydrofluoric acid solution, so that the surface of the silicon wafer is free from spots, scratches, and the surface is completely dehydrated, and finally rinsed with a large amount of deionized water. The cleanliness of the chip surface is very high.
(2)PECVD工艺:用PECVD技术分别沉积本征非晶硅(i-a-Si:H)、P型纳米硅(p-nc-Si:H)、P型重掺杂的非晶硅(p+-a-Si:H)、P+/ITO间的本征非晶硅(i-a-Si:H),沉积温度要在200℃左右。(2) PECVD process: Intrinsic amorphous silicon (ia-Si:H), P-type nano-silicon (p-nc-Si:H), and P-type heavily doped amorphous silicon (p + -a-Si:H), intrinsic amorphous silicon (ia-Si:H) between P + /ITO, the deposition temperature should be around 200°C.
(3)磁控溅射工艺:利用磁控溅射技术溅射一层ITO薄膜60~100nm,温度在100℃左右。(3) Magnetron sputtering process: use magnetron sputtering technology to sputter a layer of ITO film 60-100nm, the temperature is about 100 ℃.
(4)丝网印刷烧结工艺:在ITO薄膜上用丝网印刷机印刷低温银浆形成栅线,再低温烧结电极,温度控制在100℃左右。(4) Screen printing and sintering process: Print low-temperature silver paste on the ITO film with a screen printing machine to form grid lines, and then sinter electrodes at low temperature, and the temperature is controlled at about 100°C.
实例example
如图1所示,硅基底7选用晶向为<100>、电阻率为2Ω·cm的N型直拉单晶硅片,单面抛光,厚度为260μm。磁控溅射生长ITO薄膜2的厚度为80nm;PECVD沉积本征非晶硅薄膜3的厚度为2nm;沉积P型重掺杂的非晶硅薄膜4的厚度为5nm;沉积P型纳米硅薄膜5的厚度为12nm;沉积本征非晶硅薄膜6的厚度为3nm;蒸发Ag背电极8的厚度为3μm。As shown in FIG. 1 , the
经测定,在模拟光源AM1.5,100mW/cm2的标准光强照射下,该实例制备得到的新型硅基底异质结太阳电池的效率达到了17.2%,电池有效面积是0.28cm2,其中开路电压为602mV,短路电流密度为36.5mA/cm2,填充因子为0.783。It has been determined that under the irradiation of the simulated light source AM1.5 and the standard light intensity of 100mW/cm 2 , the efficiency of the novel silicon-based heterojunction solar cell prepared in this example reaches 17.2%, and the effective area of the cell is 0.28cm 2 , where The open circuit voltage is 602mV, the short circuit current density is 36.5mA/cm 2 , and the fill factor is 0.783.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010108650XA CN102148280A (en) | 2010-02-10 | 2010-02-10 | Novel silicon substrate heterojunction solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010108650XA CN102148280A (en) | 2010-02-10 | 2010-02-10 | Novel silicon substrate heterojunction solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102148280A true CN102148280A (en) | 2011-08-10 |
Family
ID=44422410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010108650XA Pending CN102148280A (en) | 2010-02-10 | 2010-02-10 | Novel silicon substrate heterojunction solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102148280A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102446990A (en) * | 2011-12-14 | 2012-05-09 | 杭州赛昂电力有限公司 | Thin film solar cell based on crystalline silicon and forming method thereof |
CN102446991A (en) * | 2011-12-14 | 2012-05-09 | 杭州赛昂电力有限公司 | Film solar battery based on crystalline silicon and manufacturing method thereof |
CN102446992A (en) * | 2011-12-14 | 2012-05-09 | 杭州赛昂电力有限公司 | Thin film solar cell and manufacturing method thereof |
CN102593205A (en) * | 2012-02-28 | 2012-07-18 | 常州天合光能有限公司 | Silica-based film solar battery |
CN103606584A (en) * | 2011-11-02 | 2014-02-26 | 常州合特光电有限公司 | A heterojunction solar cell composed of amorphous silicon/crystalline silicon/β-FeSi2 |
CN104022170A (en) * | 2014-05-26 | 2014-09-03 | 无锡中能晶科新能源科技有限公司 | Polycrystalline silicon film solar cell |
CN106252430A (en) * | 2016-09-14 | 2016-12-21 | 南昌大学 | A kind of crystal silicon heterojunction solar battery |
CN108346707A (en) * | 2018-03-12 | 2018-07-31 | 南昌大学 | A kind of hetero-junctions crystal silicon double-side solar cell structure that entering light region is blocked without heavily doped layer |
CN110246907A (en) * | 2019-07-12 | 2019-09-17 | 通威太阳能(成都)有限公司 | A kind of battery structure with promotion heterojunction solar battery photoelectric conversion efficiency |
CN114497291A (en) * | 2022-04-19 | 2022-05-13 | 山东省科学院激光研究所 | Structure and method for improving efficiency of HIT battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000150934A (en) * | 1998-11-16 | 2000-05-30 | Sanyo Electric Co Ltd | Photovoltaic element and manufacture thereof |
CN1348607A (en) * | 1999-03-17 | 2002-05-08 | 埃伯乐太阳能公司 | An aluminium alloy back junction solar cell and a process for fabrication thereof |
CN101197399A (en) * | 2007-12-26 | 2008-06-11 | 中国科学院电工研究所 | A kind of thin film silicon/crystalline silicon back junction solar cell |
CN201323204Y (en) * | 2008-12-31 | 2009-10-07 | 江苏艾德太阳能科技有限公司 | Antapex contact heterojunction solar battery |
-
2010
- 2010-02-10 CN CN201010108650XA patent/CN102148280A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000150934A (en) * | 1998-11-16 | 2000-05-30 | Sanyo Electric Co Ltd | Photovoltaic element and manufacture thereof |
CN1348607A (en) * | 1999-03-17 | 2002-05-08 | 埃伯乐太阳能公司 | An aluminium alloy back junction solar cell and a process for fabrication thereof |
CN101197399A (en) * | 2007-12-26 | 2008-06-11 | 中国科学院电工研究所 | A kind of thin film silicon/crystalline silicon back junction solar cell |
CN201323204Y (en) * | 2008-12-31 | 2009-10-07 | 江苏艾德太阳能科技有限公司 | Antapex contact heterojunction solar battery |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103606584A (en) * | 2011-11-02 | 2014-02-26 | 常州合特光电有限公司 | A heterojunction solar cell composed of amorphous silicon/crystalline silicon/β-FeSi2 |
CN102446990A (en) * | 2011-12-14 | 2012-05-09 | 杭州赛昂电力有限公司 | Thin film solar cell based on crystalline silicon and forming method thereof |
CN102446991A (en) * | 2011-12-14 | 2012-05-09 | 杭州赛昂电力有限公司 | Film solar battery based on crystalline silicon and manufacturing method thereof |
CN102446992A (en) * | 2011-12-14 | 2012-05-09 | 杭州赛昂电力有限公司 | Thin film solar cell and manufacturing method thereof |
CN102446990B (en) * | 2011-12-14 | 2014-08-13 | 杭州赛昂电力有限公司 | Film solar battery based on crystalline silicon and formation method thereof |
CN102593205A (en) * | 2012-02-28 | 2012-07-18 | 常州天合光能有限公司 | Silica-based film solar battery |
CN104022170A (en) * | 2014-05-26 | 2014-09-03 | 无锡中能晶科新能源科技有限公司 | Polycrystalline silicon film solar cell |
CN106252430A (en) * | 2016-09-14 | 2016-12-21 | 南昌大学 | A kind of crystal silicon heterojunction solar battery |
CN108346707A (en) * | 2018-03-12 | 2018-07-31 | 南昌大学 | A kind of hetero-junctions crystal silicon double-side solar cell structure that entering light region is blocked without heavily doped layer |
CN110246907A (en) * | 2019-07-12 | 2019-09-17 | 通威太阳能(成都)有限公司 | A kind of battery structure with promotion heterojunction solar battery photoelectric conversion efficiency |
CN110246907B (en) * | 2019-07-12 | 2024-12-06 | 通威太阳能(成都)有限公司 | A cell structure capable of improving the photoelectric conversion efficiency of heterojunction solar cells |
CN114497291A (en) * | 2022-04-19 | 2022-05-13 | 山东省科学院激光研究所 | Structure and method for improving efficiency of HIT battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102148280A (en) | Novel silicon substrate heterojunction solar cell | |
CN106601855A (en) | Preparation method of double-side power generation heterojunction solar cell | |
CN201478322U (en) | HIT solar cell | |
CN203481251U (en) | Thin film solar cell | |
CN104916709B (en) | A kind of structure is metal oxide multilayer film/silica-based solar cell | |
CN103199143B (en) | The heterojunction solar battery device of N-type hydrogen-doped crystallized silicon passivated | |
CN103762276A (en) | Heterojunction solar cell and interfacing processing method and preparing technology thereof | |
CN108735828A (en) | Heterojunction back contact solar cell and preparation method thereof | |
CN110416328A (en) | A kind of HJT battery and preparation method thereof | |
CN102270668B (en) | Heterojunction solar cell and preparation method thereof | |
CN103227228B (en) | P-type silicon substrate heterojunction cell | |
CN103219413A (en) | Graphene radial heterojunction solar cell and preparation method thereof | |
CN102157572A (en) | Crystalline silicon solar battery | |
CN102201480B (en) | Cadmium telluride semiconductor thin-film heterojunction solar cell based on N-shaped silicon slice | |
CN217280794U (en) | a photovoltaic cell | |
CN109004047A (en) | N-type high efficiency crystalline silicon solar cell and preparation method thereof | |
CN108615775A (en) | Interdigital back contact heterojunction monocrystalline silicon battery | |
CN202210522U (en) | Back contact heterojunction solar cell structure based on P-type silicon wafer | |
CN114361281A (en) | Bifacial Heterojunction Solar Cells and Photovoltaic Modules | |
CN202210533U (en) | Back-contact heterojunction solar cell structure based on N-type silicon wafer | |
CN101325224A (en) | An Emitter Structure for Improving the Efficiency of Crystalline Silicon Solar Cells | |
CN203351631U (en) | N-type hydrogen-doped crystalline silicon passivated heterojunction solar cell | |
CN104465803A (en) | Back emitter heterojunction solar cell and manufacturing method thereof | |
CN112366232B (en) | Heterojunction solar cell and preparation method and application thereof | |
CN203260611U (en) | HIT solar cell structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110810 |