CN202210533U - Back-contact heterojunction solar cell structure based on N-type silicon wafer - Google Patents
Back-contact heterojunction solar cell structure based on N-type silicon wafer Download PDFInfo
- Publication number
- CN202210533U CN202210533U CN2011201940001U CN201120194000U CN202210533U CN 202210533 U CN202210533 U CN 202210533U CN 2011201940001 U CN2011201940001 U CN 2011201940001U CN 201120194000 U CN201120194000 U CN 201120194000U CN 202210533 U CN202210533 U CN 202210533U
- Authority
- CN
- China
- Prior art keywords
- type
- silicon
- structure based
- amorphous silicon
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 24
- 239000010703 silicon Substances 0.000 title claims abstract description 24
- 229910021419 crystalline silicon Inorganic materials 0.000 claims abstract description 55
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 68
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- -1 ZnO Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims 6
- 239000006117 anti-reflective coating Substances 0.000 claims 4
- 239000012528 membrane Substances 0.000 claims 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims 2
- 239000013078 crystal Substances 0.000 claims 2
- 238000003475 lamination Methods 0.000 claims 2
- 229910004579 CdIn2O4 Inorganic materials 0.000 claims 1
- 229910005264 GaInO3 Inorganic materials 0.000 claims 1
- 229910017902 MgIn2O4 Inorganic materials 0.000 claims 1
- 229910003107 Zn2SnO4 Inorganic materials 0.000 claims 1
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 229910052906 cristobalite Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 229920005591 polysilicon Polymers 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 15
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 238000009766 low-temperature sintering Methods 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 abstract description 3
- 230000003595 spectral effect Effects 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 40
- 235000012431 wafers Nutrition 0.000 description 11
- 239000010409 thin film Substances 0.000 description 8
- 238000002161 passivation Methods 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910017911 MgIn Inorganic materials 0.000 description 1
- HIVGXUNKSAJJDN-UHFFFAOYSA-N [Si].[P] Chemical compound [Si].[P] HIVGXUNKSAJJDN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/16—Photovoltaic cells having only PN heterojunction potential barriers
- H10F10/164—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
- H10F10/165—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells
- H10F10/166—Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells the Group IV-IV heterojunctions being heterojunctions of crystalline and amorphous materials, e.g. silicon heterojunction [SHJ] photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/219—Arrangements for electrodes of back-contact photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本实用新型涉及一种太阳能电池,具体涉及一种基于N型硅片的背接触异质结太阳电池结构。从背面特征分为N型区域和P型区域,N型区域形成N+a-si/i-a-si/N-c-si/N+c-si异质结结构,P型区域形成N+a-si/i-a-si/N-c-si/N+c-si/i-a-si/P-a-si异质结结构,具有更好的光谱响应,太阳光在电池内传播光程更长,电池较常规晶硅太阳能电池厚度大大减薄;电极全部印刷在电池背面,即避免了常规太阳能电池正面电极遮光的问题,大大提高太阳能电池的转化效率;低温烧结工艺大大简化生产工艺、降低生产成本,适用于产业化生产。
The utility model relates to a solar cell, and specifically to a back-contact heterojunction solar cell structure based on an N-type silicon wafer. The back side is divided into an N-type region and a P-type region, wherein the N-type region forms an N+a-si/ia-si/Nc-si/N+c-si heterojunction structure, and the P-type region forms an N+a-si/ia-si/Nc-si/N+c-si/ia-si/Pa-si heterojunction structure, which has a better spectral response, a longer optical path for sunlight to propagate in the cell, and a cell that is much thinner than a conventional crystalline silicon solar cell; all electrodes are printed on the back side of the cell, which avoids the problem of light shading on the front side electrodes of conventional solar cells, and greatly improves the conversion efficiency of the solar cell; the low-temperature sintering process greatly simplifies the production process, reduces production costs, and is suitable for industrialized production.
Description
技术领域 technical field
本实用新型涉及一种太阳电池结构,具体涉及一种基于N型硅片的背接触异质结太阳电池结构。 The utility model relates to a solar battery structure, in particular to a back contact heterojunction solar battery structure based on an N-type silicon wafer. the
背景技术 Background technique
二十一世纪,能源危机和环境污染已经成为亟待解决的全球问题。开发绿色能源成为解决危机的主要方法。其中太阳电池因其洁净、安全、可再生成为世界各国竞相发展的目标。目前太阳电池主要发展方向是降低成本、增加效率。 In the 21st century, energy crisis and environmental pollution have become global problems that need to be solved urgently. The development of green energy has become the main method to solve the crisis. Among them, solar cells have become the goal of competing development of countries all over the world because of their cleanliness, safety and renewability. At present, the main development direction of solar cells is to reduce costs and increase efficiency. the
新型非晶硅和晶硅构成的异质结太阳电池具有结构简单、工艺简易、它将晶体硅具有高载流子迁移率优点与低温化学气相沉积非晶硅工艺优势相结合,成为太阳能行业的热点发展方向。如日本三sanyo集团开发的以N型晶体硅为衬底的HIT电池实验室装换效率已经突破22%,产业化电池片转化效率达到19%。 The heterojunction solar cell composed of new amorphous silicon and crystalline silicon has a simple structure and simple process. It combines the advantages of high carrier mobility of crystalline silicon with the advantages of low-temperature chemical vapor deposition of amorphous silicon technology, and has become the leading solar cell in the solar industry. Hotspot development direction. For example, the replacement efficiency of the HIT battery laboratory developed by Japan's Sanyo Group with N-type crystalline silicon as the substrate has exceeded 22%, and the conversion efficiency of industrialized cells has reached 19%. the
上述HIT结构的太阳电池存在以下问题:第一非晶硅薄膜的缺陷较多,增加了薄膜体内的载流子复合缺陷密度,影响光生电流的收集及传输;第二正面的栅线设计是电池受光面积减少,从而降低短路电流,影响太阳电池最终的转化效率。 The solar cells with the above-mentioned HIT structure have the following problems: the first amorphous silicon film has many defects, which increases the carrier recombination defect density in the film body and affects the collection and transmission of photo-generated current; The light-receiving area is reduced, thereby reducing the short-circuit current and affecting the final conversion efficiency of the solar cell. the
发明内容 Contents of the invention
本实用新型的目的就是针对上述存在的缺陷而提供一种基于N型硅片的背接触异质结太阳电池结构,不会出现常规P型晶硅太阳能电池光致衰减现象;具有更好的光谱响应,太阳光在电池内传播光程更长,电池较常规晶硅太阳能电池厚度大大减薄;电极全部印刷在电池背面,即避免了常规太阳能电池正面电极遮光的问题,提高了太阳电池短路电流,大大提高太阳能电池的转化效率;低温烧结工艺大大简化生产工艺、降低生产成本,适用于产业化生产。 The purpose of this utility model is to provide a back-contact heterojunction solar cell structure based on N-type silicon wafers in view of the above-mentioned defects, which will not cause light-induced attenuation of conventional P-type crystalline silicon solar cells; it has better spectrum Response, sunlight travels in the battery with a longer optical path, and the thickness of the battery is greatly thinner than that of conventional crystalline silicon solar cells; all electrodes are printed on the back of the battery, which avoids the problem of shading the front electrodes of conventional solar cells and improves the short-circuit current of solar cells , greatly improving the conversion efficiency of solar cells; the low-temperature sintering process greatly simplifies the production process, reduces production costs, and is suitable for industrial production. the
本实用新型采用的技术方案为,一种基于N型硅片的背接触异质结太阳电池结构,从背面特征分为N型区域和P型区域,N型区域包括由上到下依次叠层结合的受光面减反射膜、N+ a-Si N+非晶硅薄膜、i-a-Si本征非晶硅薄膜、N-C-Si N型晶体硅、N+ c-Si N+晶硅层、透明导电薄膜TCO和背电极,形成N+ a-si/ i- a-si/N-c-si/N+c-si异质结结构;P型区域包括由上到下依次叠层结合的受光面减反射膜、N+ a-Si N+非晶硅薄膜、i-a-Si本征非晶硅薄膜、N-C-Si N型晶体硅、N+ c-Si N+晶硅层、i-a-Si本征非晶硅薄膜、P-a-Si非晶硅薄膜、透明导电薄膜TCO和背电极,形成N+ a-si/ i- a-si/N-c-si/N+c-si/i-a-si/P-a-si异质结结构。 The technical solution adopted by the utility model is, a back-contact heterojunction solar cell structure based on N-type silicon wafers, which is divided into N-type area and P-type area from the back features, and the N-type area includes sequential stacking from top to bottom Combined light-receiving surface anti-reflection film, N+ a-Si N+ amorphous silicon film, i-a-Si intrinsic amorphous silicon film, N-C-Si N-type crystalline silicon, N+ c-Si N+ crystalline silicon layer, transparent conductive film TCO and The back electrode forms an N+ a-si/ i- a-si/N-c-si/N+c-si heterojunction structure; the P-type region includes an anti-reflection film on the light-receiving surface and an N+ a -Si N+ amorphous silicon film, i-a-Si intrinsic amorphous silicon film, N-C-Si N-type crystalline silicon, N+ c-Si N+ crystalline silicon layer, i-a-Si intrinsic amorphous silicon film, P-a-Si amorphous Silicon film, transparent conductive film TCO and back electrode form N+ a-si/ i- a-si/N-c-si/N+c-si/i-a-si/P-a-si heterojunction structure. the
所述的受光面减反射膜为SiO2、Si3N4、Ta2O5或TiO2,减反射膜厚度为70~90nm,折射率为1.5~2.5。 The anti-reflection film on the light-receiving surface is SiO 2 , Si 3 N 4 , Ta 2 O 5 or TiO 2 , the thickness of the anti-reflection film is 70-90 nm, and the refractive index is 1.5-2.5.
采用化学气相沉积工艺在N型晶体硅上面和P型区域的N+晶硅层下面制作本征非晶硅薄膜,厚度为1~50nm。 A chemical vapor deposition process is used to form an intrinsic amorphous silicon film on the N-type crystalline silicon and under the N+ crystalline silicon layer in the P-type region, with a thickness of 1-50nm. the
所述的N型晶体硅为单晶硅、太阳能级或金属级多晶硅、带状硅,其厚度为120~220um,掺杂浓度为1×1015~5×1017/cm3。 The N-type crystalline silicon is monocrystalline silicon, solar-grade or metal-grade polycrystalline silicon, and strip-shaped silicon, with a thickness of 120-220um and a doping concentration of 1×10 15 to 5×10 17 /cm 3 .
所述的N型晶体硅下层的N+型晶体硅层,其厚度为0.1~0.5um,浓磷掺杂浓度为1×1018~5×1020/cm3。 The N + -type crystalline silicon layer under the N-type crystalline silicon has a thickness of 0.1-0.5um and a concentration of phosphorus doping of 1×10 18 -5×10 20 /cm 3 .
所述的P型区域中,P-a-Si非晶硅薄膜采用化学气相沉积工艺在本征非晶硅薄膜下面沉积一层,厚度为1~50nm。 In the P-type region, a P-a-Si amorphous silicon film is deposited under the intrinsic amorphous silicon film by a chemical vapor deposition process, with a thickness of 1-50 nm. the
透明导电薄膜TCO为氧化物透明导电材料体系,为In2O3、SnO2、ZnO、In2O3:Sn(ITO)、In2O3:Mo(IMO)、SnO2:Sb(ATO)、SnO2:F(FTO)、ZnO:Al(ZnO)、ZnO·SnO2、ZnO·In2O3、CdSb2O6、MgIn2O4、In4Sn3O12、Zn2In2O5、CdIn2O4、Cd2SnO4、Zn2SnO4、GaInO3,其厚度为50Nm~900nm。 Transparent conductive film TCO is an oxide transparent conductive material system, including In 2 O 3 , SnO 2 , ZnO, In 2 O 3 :Sn(ITO), In 2 O 3 :Mo(IMO), SnO 2 :Sb(ATO) , SnO 2 :F(FTO), ZnO:Al(ZnO), ZnO·SnO 2 , ZnO·In 2 O 3 , CdSb 2 O 6 , MgIn 2 O 4 , In 4 Sn 3 O 12 , Zn 2 In 2 O 5. CdIn 2 O 4 , Cd 2 SnO 4 , Zn 2 SnO 4 , GaInO 3 , the thickness of which is 50Nm~900nm.
所述的背电极为Al、Ag、Au、Ni 、Cu/Ni、Al/Ni或Ti/Pd/Ag电极,其厚度为50nm~600um。 Described back electrode is Al, Ag, Au, Ni, Cu/Ni, Al/Ni or Ti/Pd/Ag electrode, and its thickness is 50nm~600um. the
本实用新型的基于N型硅片的背接触异质结太阳能电池结构具有以下有益效果:一是不会出现常规P型晶硅太阳能电池光致衰减现象;二是具有更好的光谱响应特性,太阳光在电池内传播光程更长,电池较常规晶硅太阳电池厚度大大减薄;三是电极全部印刷在电池背面,即避免了常规太阳能电池正面电极遮光的问题,提高了太阳电池短路电流,大大提高了太阳电池的转化效率;四是低温烧结工艺,简化了太阳电池生产工艺,降低生产成本,适合产业化发展。 The N-type silicon wafer-based back-contact heterojunction solar cell structure of the utility model has the following beneficial effects: first, there will be no light-induced attenuation phenomenon of conventional P-type crystalline silicon solar cells; second, it has better spectral response characteristics, The sunlight travels in the battery with a longer optical path, and the thickness of the battery is much thinner than that of conventional crystalline silicon solar cells; the third is that all electrodes are printed on the back of the battery, which avoids the problem of shading the front electrodes of conventional solar cells and improves the short-circuit current of solar cells , which greatly improves the conversion efficiency of solar cells; the fourth is the low-temperature sintering process, which simplifies the production process of solar cells, reduces production costs, and is suitable for industrial development. the
本实用新型的基于N型硅片的背接触异质结太阳电池结构,从背面特征分为N型区域和P型区域,N型区域包括由上到下依次叠层结合的受光面减反射膜、N+ a-Si N+非晶硅薄膜、i-a-Si本征非晶硅薄膜、N-C-Si N型晶体硅、N+ c-Si N+晶硅层、透明导电薄膜TCO和背电极,形成N+ a-si/ i- a-si/N-c-si/N+c-si异质结结构;P型区域包括由上到下依次叠层结合的受光面减反射膜、N+ a-Si N+非晶硅薄膜、i-a-Si本征非晶硅薄膜、N-C-Si N型晶体硅、N+ c-Si N+晶硅层、i-a-Si本征非晶硅薄膜、P-a-Si非晶硅薄膜、透明导电薄膜TCO和背电极,形成N+ a-si/ i- a-si/N-c-si/N+c-si/i-a-si/P-a-si异质结结构。具体作用如下: The back-contact heterojunction solar cell structure based on N-type silicon wafers of the utility model is divided into N-type area and P-type area from the back features, and the N-type area includes light-receiving surface anti-reflection films stacked sequentially from top to bottom , N+ a-Si N+ amorphous silicon film, i-a-Si intrinsic amorphous silicon film, N-C-Si N-type crystalline silicon, N+ c-Si N+ crystalline silicon layer, transparent conductive film TCO and back electrode, forming N+ a- si/ i- a-si/N-c-si/N+c-si heterojunction structure; the P-type region includes an anti-reflection film on the light-receiving surface, N+ a-Si N+ amorphous silicon thin film stacked sequentially from top to bottom , i-a-Si intrinsic amorphous silicon thin film, N-C-Si N-type crystalline silicon, N+ c-Si N+ crystalline silicon layer, i-a-Si intrinsic amorphous silicon thin film, P-a-Si amorphous silicon thin film, transparent conductive thin film TCO And the back electrode, forming N+ a-si/ i- a-si/N-c-si/N+c-si/i-a-si/P-a-si heterojunction structure. The specific functions are as follows:
所述的透明导电薄膜TCO具有较高的透光性和电导率,主要起到收集电流的作用,另外还将透过电池体内的太阳光反射回去,增加太阳电池光吸收的作用。 The transparent conductive film TCO has high light transmittance and electrical conductivity, mainly plays the role of collecting current, and also reflects back the sunlight passing through the battery body to increase the light absorption of the solar battery.
采用化学气相沉积工艺在N型晶体硅上面和P型区域的N+晶硅层下面制作本征非晶硅薄膜,厚度为1~50nm。主要起到减少界面缺陷态,增加表面钝化效应。 A chemical vapor deposition process is used to fabricate an intrinsic amorphous silicon film on the N-type crystalline silicon and under the N+ crystalline silicon layer in the P-type region, with a thickness of 1-50nm. It mainly serves to reduce the interface defect state and increase the surface passivation effect. the
采用化学气相沉积工艺在本征非晶硅薄膜上沉积一层P-a-Si非晶硅薄膜,厚度为1~50nm。P-a-si非晶硅薄膜沉积在i-a-si本征非晶硅薄膜层上与N型晶硅电池形成核心结构HIT异质结。 A layer of P-a-Si amorphous silicon film is deposited on the intrinsic amorphous silicon film by chemical vapor deposition process, with a thickness of 1-50nm. The P-a-si amorphous silicon film is deposited on the i-a-si intrinsic amorphous silicon film layer to form a core structure HIT heterojunction with the N-type crystalline silicon cell. the
所述的N+型晶体硅层,其厚度为0.1~0.5um,浓磷掺杂浓度为1×1018~5×1020/cm3。作用是形成高低结,提升开路电压,同时起到背面钝化的作用。 The thickness of the N+ type crystalline silicon layer is 0.1-0.5um, and the doping concentration of concentrated phosphorus is 1×10 18 ˜5×10 20/ cm 3 . The function is to form high and low junctions, increase the open circuit voltage, and at the same time play the role of back passivation.
所述的减反射膜为SiO2、Si3N4、Ta2O5、TiO2中的一种,减反射膜厚度为70~90nm,折射率为1.5~2.5。其作用主要是增加光吸收,减低太阳光在电池表面的反射损失,另外,减反射膜还具有表面钝化的作用。 The anti-reflection film is one of SiO 2 , Si 3 N 4 , Ta 2 O 5 , and TiO 2 , the thickness of the anti-reflection film is 70-90 nm, and the refractive index is 1.5-2.5. Its function is mainly to increase light absorption and reduce the reflection loss of sunlight on the surface of the battery. In addition, the anti-reflection film also has the function of surface passivation.
采用以上技术方案制作的N型硅片的背接触式HIT太阳电池,制备方法简单,能够迅速产业化。另外其背接触的结构在太阳电池的受光面无栅线覆盖,不仅增加了太阳电池的受光面积,还在在组件生产中可简化了焊接工序外观要求,节约生产时间,降低组件生产成本。 The N-type silicon wafer back-contact HIT solar cell produced by the above technical scheme has a simple preparation method and can be rapidly industrialized. In addition, its back contact structure has no grid line coverage on the light-receiving surface of the solar cell, which not only increases the light-receiving area of the solar cell, but also simplifies the appearance requirements of the welding process in module production, saves production time and reduces module production costs. the
附图说明 Description of drawings
图1所示为本实用新型电池结构示意图; Fig. 1 shows the schematic diagram of the battery structure of the present utility model;
图2所示为本实用新型实施例1中背面电极的示意图; Figure 2 is a schematic diagram of the back electrode in Example 1 of the present utility model;
图3所示为本实用新型实施例1的工艺流程示意图。 Fig. 3 is a schematic diagram of the technological process of the utility model embodiment 1.
图中,1、减反射膜;2、N+ a-Si非晶硅薄膜;3、本征非晶硅薄膜;4、N型晶体硅;5、N+晶硅层;6、p-a-Si非晶硅薄膜;7、透明导电薄膜TCO;8、背电极;a. N型硅片检测、清洗及表面织构化;b. 在下表面扩散一层N+型重掺杂层;c. 在上下表面沉积一层本征非晶硅薄层;d. 在上表面沉积一层N+型非晶硅薄层;e. 在下表面沉积一层p型非晶硅薄膜;f. 在上表面PECVD制备氮化硅减反射膜;g. 使用腐蚀浆料腐蚀至露出N型硅基体;h. 在下表面溅射一层TCO导电层,用激光将P区和N区分开;i. 丝网印刷电极,低温烧结。 In the figure, 1. Antireflection film; 2. N+ a-Si amorphous silicon thin film; 3. Intrinsic amorphous silicon thin film; 4. N-type crystalline silicon; 5. N+ crystalline silicon layer; 6. p-a-Si amorphous Silicon film; 7. Transparent conductive film TCO; 8. Back electrode; a. N-type silicon wafer detection, cleaning and surface texturing; b. Diffusion of a N+-type heavily doped layer on the lower surface; c. Deposition on the upper and lower surfaces A thin layer of intrinsic amorphous silicon; d. Deposit a thin layer of N+ type amorphous silicon on the upper surface; e. Deposit a layer of p-type amorphous silicon film on the lower surface; f. Prepare silicon nitride on the upper surface by PECVD Anti-reflection coating; g. Use etching slurry to etch to expose the N-type silicon substrate; h. Sputter a layer of TCO conductive layer on the lower surface, and use laser to separate the P area and N area; i. Screen-print electrodes and sinter at low temperature. the
具体实施方式:Detailed ways:
下面结合附图和实例来说明本实用新型的技术方案,但是本实用新型并不局限于此。 The technical scheme of the utility model will be described below in conjunction with the accompanying drawings and examples, but the utility model is not limited thereto.
实施例1 Example 1
N型晶体硅4选用N型单晶硅片,采用半导体清洗工艺对N型晶体硅4表面预清洗和表面织构。所用N型晶体硅4厚度在200um,电阻率为0.5~3Ω.cm,用1~5%的氢氟酸去除N型晶体硅4表面的二氧化硅层,在浓度小于3%的NaOH和IPA(异丙醇)的混合液中80℃左右制备金字塔形状绒面。增加对太阳光的吸收,增加PN结面积,提高短路电流。再用酸清洗工艺将之后的N型晶体硅4清洗干净-甩干。将制绒后N型晶体硅4放入扩散炉中用(POCl3)在850℃左右进行单面重磷扩散,在N型晶体硅4下表面形成一层N+晶硅层5,经等离子刻蚀后,去磷硅玻璃(PSG),去离子水清洗后甩干; N-type crystalline silicon 4 is selected from N-type single crystal silicon wafers, and the surface of N-type crystalline silicon 4 is pre-cleaned and surface textured by using semiconductor cleaning technology. The thickness of the N-type crystalline silicon 4 used is 200um, the resistivity is 0.5~3Ω.cm, the silicon dioxide layer on the surface of the N-type crystalline silicon 4 is removed with 1~5% hydrofluoric acid, and the concentration is less than 3% NaOH and IPA (isopropanol) mixed liquid at about 80°C to prepare pyramid-shaped suede. Increase the absorption of sunlight, increase the area of the PN junction, and increase the short-circuit current. The subsequent N-type crystalline silicon 4 is cleaned by an acid cleaning process and dried. Put the N-type crystalline silicon 4 after texturing into a diffusion furnace and use (POCl 3 ) to carry out single-sided heavy phosphorus diffusion at about 850°C, and form a layer of N+ crystalline silicon layer 5 on the lower surface of the N-type crystalline silicon 4. After etching, remove phosphorus silicon glass (PSG), wash with deionized water and dry;
用等离子体增强化学气相沉积(PECVD)工艺,在250℃扩散后晶硅的上下表面分别沉积一层本征非晶硅薄膜3,厚度约5nm,有钝化作用;在晶硅的上表面沉积高浓度N+ a-Si非晶硅薄膜2,厚度为5~10nm;在背表面沉积一层P-a-Si非晶硅薄层6,厚度为5~10nm;在400℃下,用PECVD在硅片正表面生长氮化硅受光面减反射膜1,厚度为85nm,折射率为2.05;其作用减少电池表面的反射损失,镀膜后的太阳电池光反射损失可以减少到4%以内;同时对电池进行有效地表面钝化和体钝化,减少复合中心,提高少子寿命,增加光电流。在硅片背面印刷上腐蚀性浆料,腐蚀掉印刷区域的P-a-Si非晶硅薄层6和本征非晶硅薄膜3,露出N+晶硅层5表面,未腐蚀区域的HIT结构被保存下来。最后用去离子水超声清洗干净后,烘干。通过磁控溅射工艺在硅片的背面沉积一层厚度为30~100nm的透明导电层薄膜TCO 7。再用激光将P型区域与N型区域分割。在背表面的N型区域和P型区域分别丝网印刷导电浆料经低温烧结制成背电极8。电池背面附图2 所示。N型区域上采用的电极印刷材料为银浆;P型区域上采用的电极印刷材料为银浆、银铝浆,或者是类似常规太阳能电池背面银铝浆结构的一种。
Using the plasma enhanced chemical vapor deposition (PECVD) process, a layer of intrinsic amorphous silicon film 3 is deposited on the upper and lower surfaces of the crystalline silicon after diffusion at 250°C, with a thickness of about 5nm, which has a passivation effect; deposited on the upper surface of the crystalline silicon High-concentration N+ a-Si amorphous silicon film 2 with a thickness of 5-10nm; deposit a layer of P-a-Si amorphous silicon thin layer 6 on the back surface with a thickness of 5-10nm; Silicon nitride light-receiving surface anti-reflection film 1 is grown on the front surface, the thickness is 85nm, and the refractive index is 2.05; its function reduces the reflection loss on the surface of the battery, and the light reflection loss of the solar battery after coating can be reduced to less than 4%; Effective surface passivation and bulk passivation, reducing recombination centers, improving minority carrier lifetime, and increasing photocurrent. Print the corrosive paste on the back of the silicon wafer, etch away the P-a-Si amorphous silicon thin layer 6 and intrinsic amorphous silicon thin film 3 in the printed area, exposing the surface of the N+ crystalline silicon layer 5, and the HIT structure in the unetched area is preserved down. Finally, after ultrasonic cleaning with deionized water, dry. A transparent conductive
本实施例制备的基于N型单晶硅片的背接触异质结太阳电池的电性能输出参数:在标准测量条件下:测量温度25oC,光强1000W/m2,AM1.5 光谱测试,短路电流密度42mA/cm2;开路电压683mV,填充因子79.5%;光电转换效率21.6%。 The electrical performance output parameters of the back-contact heterojunction solar cells based on N-type single crystal silicon wafers prepared in this example: under standard measurement conditions: measurement temperature 25 o C, light intensity 1000W/m 2 , AM1.5 spectrum test , short circuit current density 42mA/cm 2 ; open circuit voltage 683mV, fill factor 79.5%; photoelectric conversion efficiency 21.6%.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011201940001U CN202210533U (en) | 2011-06-10 | 2011-06-10 | Back-contact heterojunction solar cell structure based on N-type silicon wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011201940001U CN202210533U (en) | 2011-06-10 | 2011-06-10 | Back-contact heterojunction solar cell structure based on N-type silicon wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202210533U true CN202210533U (en) | 2012-05-02 |
Family
ID=45990076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011201940001U Expired - Lifetime CN202210533U (en) | 2011-06-10 | 2011-06-10 | Back-contact heterojunction solar cell structure based on N-type silicon wafer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202210533U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102214719A (en) * | 2011-06-10 | 2011-10-12 | 山东力诺太阳能电力股份有限公司 | Back contact heterojunction solar battery based on N-type silicon slice |
CN102931268A (en) * | 2012-11-29 | 2013-02-13 | 山东力诺太阳能电力股份有限公司 | N-type silicon substrate based back contact type HIT (Heterojunction with Intrinsic Thin layer) solar cell structure and preparation method thereof |
CN103227241A (en) * | 2013-04-10 | 2013-07-31 | 苏州阿特斯阳光电力科技有限公司 | Preparation method of double-faced crystalline silicon solar cell |
-
2011
- 2011-06-10 CN CN2011201940001U patent/CN202210533U/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102214719A (en) * | 2011-06-10 | 2011-10-12 | 山东力诺太阳能电力股份有限公司 | Back contact heterojunction solar battery based on N-type silicon slice |
CN102931268A (en) * | 2012-11-29 | 2013-02-13 | 山东力诺太阳能电力股份有限公司 | N-type silicon substrate based back contact type HIT (Heterojunction with Intrinsic Thin layer) solar cell structure and preparation method thereof |
CN102931268B (en) * | 2012-11-29 | 2015-07-01 | 山东力诺太阳能电力股份有限公司 | N-type silicon substrate based back contact type HIT (Heterojunction with Intrinsic Thin layer) solar cell structure and preparation method thereof |
CN103227241A (en) * | 2013-04-10 | 2013-07-31 | 苏州阿特斯阳光电力科技有限公司 | Preparation method of double-faced crystalline silicon solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109216509B (en) | Preparation method of interdigital back contact heterojunction solar cell | |
CN204303826U (en) | A kind of high-efficiency N-type double-side solar cell | |
CN102623517B (en) | Back contact type crystalline silicon solar cell and production method thereof | |
US9214576B2 (en) | Transparent conducting oxide for photovoltaic devices | |
CN104167471B (en) | A kind of preparation method of all back-contact electrodes p-type silicon/crystalline silicon heterojunction solar cell | |
CN106601855A (en) | Preparation method of double-side power generation heterojunction solar cell | |
CN102184976A (en) | Back contact heterojunction solar battery | |
CN104157717B (en) | Preparation method of all-back electrode N-type crystalline silicon heterojunction solar cells | |
CN102214719B (en) | Back contact heterojunction solar battery based on N-type silicon slice | |
CN114497290A (en) | Manufacturing method of back contact heterojunction solar cell | |
CN102214720B (en) | Back contact heterojunction solar battery based on P-type silicon slice | |
CN113224182A (en) | Heterojunction solar cell and preparation method thereof | |
CN117594685A (en) | A new type of crystalline silicon heterojunction tandem solar cell structure, preparation method and application | |
CN202210522U (en) | Back contact heterojunction solar cell structure based on P-type silicon wafer | |
CN102054889A (en) | Binode solar battery and preparation method thereof | |
CN110600577A (en) | Heterojunction solar cell and preparation method thereof | |
CN102201480B (en) | Cadmium telluride semiconductor thin-film heterojunction solar cell based on N-shaped silicon slice | |
CN102157572A (en) | Crystalline silicon solar battery | |
CN202210533U (en) | Back-contact heterojunction solar cell structure based on N-type silicon wafer | |
CN204130563U (en) | A kind of all back-contact electrodes P type silicon/crystalline silicon heterojunction solar battery structure | |
CN202076297U (en) | Back contact HIT solar cell structure based on P-type silicon chip | |
CN107393996A (en) | Heterojunction solar battery and preparation method thereof | |
CN117410361A (en) | Solar cell module and TOPCON structure cell with double-sided texturing | |
CN110416342A (en) | A kind of HJT battery based on metal nanoparticle and preparation method thereof | |
CN214753796U (en) | Cell structure and solar cells and photovoltaic modules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20120502 Effective date of abandoning: 20130501 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20120502 Effective date of abandoning: 20130501 |
|
RGAV | Abandon patent right to avoid regrant |