[go: up one dir, main page]

CN202210533U - Back-contact heterojunction solar cell structure based on N-type silicon wafer - Google Patents

Back-contact heterojunction solar cell structure based on N-type silicon wafer Download PDF

Info

Publication number
CN202210533U
CN202210533U CN2011201940001U CN201120194000U CN202210533U CN 202210533 U CN202210533 U CN 202210533U CN 2011201940001 U CN2011201940001 U CN 2011201940001U CN 201120194000 U CN201120194000 U CN 201120194000U CN 202210533 U CN202210533 U CN 202210533U
Authority
CN
China
Prior art keywords
type
silicon
structure based
amorphous silicon
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2011201940001U
Other languages
Chinese (zh)
Inventor
张黎明
李玉花
刘鹏
姜言森
杨青天
高岩
徐振华
张春艳
王兆光
程亮
任现坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linuo Solar Power Co Ltd
Original Assignee
Linuo Solar Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linuo Solar Power Co Ltd filed Critical Linuo Solar Power Co Ltd
Priority to CN2011201940001U priority Critical patent/CN202210533U/en
Application granted granted Critical
Publication of CN202210533U publication Critical patent/CN202210533U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/16Photovoltaic cells having only PN heterojunction potential barriers
    • H10F10/164Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
    • H10F10/165Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells
    • H10F10/166Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells the Group IV-IV heterojunctions being heterojunctions of crystalline and amorphous materials, e.g. silicon heterojunction [SHJ] photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • H10F77/219Arrangements for electrodes of back-contact photovoltaic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本实用新型涉及一种太阳能电池,具体涉及一种基于N型硅片的背接触异质结太阳电池结构。从背面特征分为N型区域和P型区域,N型区域形成N+a-si/i-a-si/N-c-si/N+c-si异质结结构,P型区域形成N+a-si/i-a-si/N-c-si/N+c-si/i-a-si/P-a-si异质结结构,具有更好的光谱响应,太阳光在电池内传播光程更长,电池较常规晶硅太阳能电池厚度大大减薄;电极全部印刷在电池背面,即避免了常规太阳能电池正面电极遮光的问题,大大提高太阳能电池的转化效率;低温烧结工艺大大简化生产工艺、降低生产成本,适用于产业化生产。

Figure 201120194000

The utility model relates to a solar cell, and specifically to a back-contact heterojunction solar cell structure based on an N-type silicon wafer. The back side is divided into an N-type region and a P-type region, wherein the N-type region forms an N+a-si/ia-si/Nc-si/N+c-si heterojunction structure, and the P-type region forms an N+a-si/ia-si/Nc-si/N+c-si/ia-si/Pa-si heterojunction structure, which has a better spectral response, a longer optical path for sunlight to propagate in the cell, and a cell that is much thinner than a conventional crystalline silicon solar cell; all electrodes are printed on the back side of the cell, which avoids the problem of light shading on the front side electrodes of conventional solar cells, and greatly improves the conversion efficiency of the solar cell; the low-temperature sintering process greatly simplifies the production process, reduces production costs, and is suitable for industrialized production.

Figure 201120194000

Description

基于N型硅片的背接触异质结太阳电池结构Back-contact heterojunction solar cell structure based on N-type silicon wafer

技术领域 technical field

本实用新型涉及一种太阳电池结构,具体涉及一种基于N型硅片的背接触异质结太阳电池结构。  The utility model relates to a solar battery structure, in particular to a back contact heterojunction solar battery structure based on an N-type silicon wafer. the

背景技术 Background technique

二十一世纪,能源危机和环境污染已经成为亟待解决的全球问题。开发绿色能源成为解决危机的主要方法。其中太阳电池因其洁净、安全、可再生成为世界各国竞相发展的目标。目前太阳电池主要发展方向是降低成本、增加效率。  In the 21st century, energy crisis and environmental pollution have become global problems that need to be solved urgently. The development of green energy has become the main method to solve the crisis. Among them, solar cells have become the goal of competing development of countries all over the world because of their cleanliness, safety and renewability. At present, the main development direction of solar cells is to reduce costs and increase efficiency. the

新型非晶硅和晶硅构成的异质结太阳电池具有结构简单、工艺简易、它将晶体硅具有高载流子迁移率优点与低温化学气相沉积非晶硅工艺优势相结合,成为太阳能行业的热点发展方向。如日本三sanyo集团开发的以N型晶体硅为衬底的HIT电池实验室装换效率已经突破22%,产业化电池片转化效率达到19%。  The heterojunction solar cell composed of new amorphous silicon and crystalline silicon has a simple structure and simple process. It combines the advantages of high carrier mobility of crystalline silicon with the advantages of low-temperature chemical vapor deposition of amorphous silicon technology, and has become the leading solar cell in the solar industry. Hotspot development direction. For example, the replacement efficiency of the HIT battery laboratory developed by Japan's Sanyo Group with N-type crystalline silicon as the substrate has exceeded 22%, and the conversion efficiency of industrialized cells has reached 19%. the

上述HIT结构的太阳电池存在以下问题:第一非晶硅薄膜的缺陷较多,增加了薄膜体内的载流子复合缺陷密度,影响光生电流的收集及传输;第二正面的栅线设计是电池受光面积减少,从而降低短路电流,影响太阳电池最终的转化效率。  The solar cells with the above-mentioned HIT structure have the following problems: the first amorphous silicon film has many defects, which increases the carrier recombination defect density in the film body and affects the collection and transmission of photo-generated current; The light-receiving area is reduced, thereby reducing the short-circuit current and affecting the final conversion efficiency of the solar cell. the

发明内容 Contents of the invention

本实用新型的目的就是针对上述存在的缺陷而提供一种基于N型硅片的背接触异质结太阳电池结构,不会出现常规P型晶硅太阳能电池光致衰减现象;具有更好的光谱响应,太阳光在电池内传播光程更长,电池较常规晶硅太阳能电池厚度大大减薄;电极全部印刷在电池背面,即避免了常规太阳能电池正面电极遮光的问题,提高了太阳电池短路电流,大大提高太阳能电池的转化效率;低温烧结工艺大大简化生产工艺、降低生产成本,适用于产业化生产。  The purpose of this utility model is to provide a back-contact heterojunction solar cell structure based on N-type silicon wafers in view of the above-mentioned defects, which will not cause light-induced attenuation of conventional P-type crystalline silicon solar cells; it has better spectrum Response, sunlight travels in the battery with a longer optical path, and the thickness of the battery is greatly thinner than that of conventional crystalline silicon solar cells; all electrodes are printed on the back of the battery, which avoids the problem of shading the front electrodes of conventional solar cells and improves the short-circuit current of solar cells , greatly improving the conversion efficiency of solar cells; the low-temperature sintering process greatly simplifies the production process, reduces production costs, and is suitable for industrial production. the

本实用新型采用的技术方案为,一种基于N型硅片的背接触异质结太阳电池结构,从背面特征分为N型区域和P型区域,N型区域包括由上到下依次叠层结合的受光面减反射膜、N+ a-Si N+非晶硅薄膜、i-a-Si本征非晶硅薄膜、N-C-Si N型晶体硅、N+ c-Si N+晶硅层、透明导电薄膜TCO和背电极,形成N+ a-si/ i- a-si/N-c-si/N+c-si异质结结构;P型区域包括由上到下依次叠层结合的受光面减反射膜、N+ a-Si N+非晶硅薄膜、i-a-Si本征非晶硅薄膜、N-C-Si N型晶体硅、N+ c-Si N+晶硅层、i-a-Si本征非晶硅薄膜、P-a-Si非晶硅薄膜、透明导电薄膜TCO和背电极,形成N+ a-si/ i- a-si/N-c-si/N+c-si/i-a-si/P-a-si异质结结构。  The technical solution adopted by the utility model is, a back-contact heterojunction solar cell structure based on N-type silicon wafers, which is divided into N-type area and P-type area from the back features, and the N-type area includes sequential stacking from top to bottom Combined light-receiving surface anti-reflection film, N+ a-Si N+ amorphous silicon film, i-a-Si intrinsic amorphous silicon film, N-C-Si N-type crystalline silicon, N+ c-Si N+ crystalline silicon layer, transparent conductive film TCO and The back electrode forms an N+ a-si/ i- a-si/N-c-si/N+c-si heterojunction structure; the P-type region includes an anti-reflection film on the light-receiving surface and an N+ a -Si N+ amorphous silicon film, i-a-Si intrinsic amorphous silicon film, N-C-Si N-type crystalline silicon, N+ c-Si N+ crystalline silicon layer, i-a-Si intrinsic amorphous silicon film, P-a-Si amorphous Silicon film, transparent conductive film TCO and back electrode form N+ a-si/ i- a-si/N-c-si/N+c-si/i-a-si/P-a-si heterojunction structure. the

所述的受光面减反射膜为SiO2、Si3N4、Ta2O5或TiO2,减反射膜厚度为70~90nm,折射率为1.5~2.5。  The anti-reflection film on the light-receiving surface is SiO 2 , Si 3 N 4 , Ta 2 O 5 or TiO 2 , the thickness of the anti-reflection film is 70-90 nm, and the refractive index is 1.5-2.5.

  采用化学气相沉积工艺在N型晶体硅上面和P型区域的N+晶硅层下面制作本征非晶硅薄膜,厚度为1~50nm。  A chemical vapor deposition process is used to form an intrinsic amorphous silicon film on the N-type crystalline silicon and under the N+ crystalline silicon layer in the P-type region, with a thickness of 1-50nm. the

所述的N型晶体硅为单晶硅、太阳能级或金属级多晶硅、带状硅,其厚度为120~220um,掺杂浓度为1×1015~5×1017/cm3。  The N-type crystalline silicon is monocrystalline silicon, solar-grade or metal-grade polycrystalline silicon, and strip-shaped silicon, with a thickness of 120-220um and a doping concentration of 1×10 15 to 5×10 17 /cm 3 .

所述的N型晶体硅下层的N+型晶体硅层,其厚度为0.1~0.5um,浓磷掺杂浓度为1×1018~5×1020/cm3。  The N + -type crystalline silicon layer under the N-type crystalline silicon has a thickness of 0.1-0.5um and a concentration of phosphorus doping of 1×10 18 -5×10 20 /cm 3 .

所述的P型区域中,P-a-Si非晶硅薄膜采用化学气相沉积工艺在本征非晶硅薄膜下面沉积一层,厚度为1~50nm。  In the P-type region, a P-a-Si amorphous silicon film is deposited under the intrinsic amorphous silicon film by a chemical vapor deposition process, with a thickness of 1-50 nm. the

透明导电薄膜TCO为氧化物透明导电材料体系,为In2O3、SnO2、ZnO、In2O3:Sn(ITO)、In2O3:Mo(IMO)、SnO2:Sb(ATO)、SnO2:F(FTO)、ZnO:Al(ZnO)、ZnO·SnO2、ZnO·In2O3、CdSb2O6、MgIn2O4、In4Sn3O12、Zn2In2O5、CdIn2O4、Cd2SnO4、Zn2SnO4、GaInO3,其厚度为50Nm~900nm。  Transparent conductive film TCO is an oxide transparent conductive material system, including In 2 O 3 , SnO 2 , ZnO, In 2 O 3 :Sn(ITO), In 2 O 3 :Mo(IMO), SnO 2 :Sb(ATO) , SnO 2 :F(FTO), ZnO:Al(ZnO), ZnO·SnO 2 , ZnO·In 2 O 3 , CdSb 2 O 6 , MgIn 2 O 4 , In 4 Sn 3 O 12 , Zn 2 In 2 O 5. CdIn 2 O 4 , Cd 2 SnO 4 , Zn 2 SnO 4 , GaInO 3 , the thickness of which is 50Nm~900nm.

所述的背电极为Al、Ag、Au、Ni 、Cu/Ni、Al/Ni或Ti/Pd/Ag电极,其厚度为50nm~600um。  Described back electrode is Al, Ag, Au, Ni, Cu/Ni, Al/Ni or Ti/Pd/Ag electrode, and its thickness is 50nm~600um. the

本实用新型的基于N型硅片的背接触异质结太阳能电池结构具有以下有益效果:一是不会出现常规P型晶硅太阳能电池光致衰减现象;二是具有更好的光谱响应特性,太阳光在电池内传播光程更长,电池较常规晶硅太阳电池厚度大大减薄;三是电极全部印刷在电池背面,即避免了常规太阳能电池正面电极遮光的问题,提高了太阳电池短路电流,大大提高了太阳电池的转化效率;四是低温烧结工艺,简化了太阳电池生产工艺,降低生产成本,适合产业化发展。  The N-type silicon wafer-based back-contact heterojunction solar cell structure of the utility model has the following beneficial effects: first, there will be no light-induced attenuation phenomenon of conventional P-type crystalline silicon solar cells; second, it has better spectral response characteristics, The sunlight travels in the battery with a longer optical path, and the thickness of the battery is much thinner than that of conventional crystalline silicon solar cells; the third is that all electrodes are printed on the back of the battery, which avoids the problem of shading the front electrodes of conventional solar cells and improves the short-circuit current of solar cells , which greatly improves the conversion efficiency of solar cells; the fourth is the low-temperature sintering process, which simplifies the production process of solar cells, reduces production costs, and is suitable for industrial development. the

本实用新型的基于N型硅片的背接触异质结太阳电池结构,从背面特征分为N型区域和P型区域,N型区域包括由上到下依次叠层结合的受光面减反射膜、N+ a-Si N+非晶硅薄膜、i-a-Si本征非晶硅薄膜、N-C-Si N型晶体硅、N+ c-Si N+晶硅层、透明导电薄膜TCO和背电极,形成N+ a-si/ i- a-si/N-c-si/N+c-si异质结结构;P型区域包括由上到下依次叠层结合的受光面减反射膜、N+ a-Si N+非晶硅薄膜、i-a-Si本征非晶硅薄膜、N-C-Si N型晶体硅、N+ c-Si N+晶硅层、i-a-Si本征非晶硅薄膜、P-a-Si非晶硅薄膜、透明导电薄膜TCO和背电极,形成N+ a-si/ i- a-si/N-c-si/N+c-si/i-a-si/P-a-si异质结结构。具体作用如下:  The back-contact heterojunction solar cell structure based on N-type silicon wafers of the utility model is divided into N-type area and P-type area from the back features, and the N-type area includes light-receiving surface anti-reflection films stacked sequentially from top to bottom , N+ a-Si N+ amorphous silicon film, i-a-Si intrinsic amorphous silicon film, N-C-Si N-type crystalline silicon, N+ c-Si N+ crystalline silicon layer, transparent conductive film TCO and back electrode, forming N+ a- si/ i- a-si/N-c-si/N+c-si heterojunction structure; the P-type region includes an anti-reflection film on the light-receiving surface, N+ a-Si N+ amorphous silicon thin film stacked sequentially from top to bottom , i-a-Si intrinsic amorphous silicon thin film, N-C-Si N-type crystalline silicon, N+ c-Si N+ crystalline silicon layer, i-a-Si intrinsic amorphous silicon thin film, P-a-Si amorphous silicon thin film, transparent conductive thin film TCO And the back electrode, forming N+ a-si/ i- a-si/N-c-si/N+c-si/i-a-si/P-a-si heterojunction structure. The specific functions are as follows:

所述的透明导电薄膜TCO具有较高的透光性和电导率,主要起到收集电流的作用,另外还将透过电池体内的太阳光反射回去,增加太阳电池光吸收的作用。 The transparent conductive film TCO has high light transmittance and electrical conductivity, mainly plays the role of collecting current, and also reflects back the sunlight passing through the battery body to increase the light absorption of the solar battery.

采用化学气相沉积工艺在N型晶体硅上面和P型区域的N+晶硅层下面制作本征非晶硅薄膜,厚度为1~50nm。主要起到减少界面缺陷态,增加表面钝化效应。  A chemical vapor deposition process is used to fabricate an intrinsic amorphous silicon film on the N-type crystalline silicon and under the N+ crystalline silicon layer in the P-type region, with a thickness of 1-50nm. It mainly serves to reduce the interface defect state and increase the surface passivation effect. the

采用化学气相沉积工艺在本征非晶硅薄膜上沉积一层P-a-Si非晶硅薄膜,厚度为1~50nm。P-a-si非晶硅薄膜沉积在i-a-si本征非晶硅薄膜层上与N型晶硅电池形成核心结构HIT异质结。  A layer of P-a-Si amorphous silicon film is deposited on the intrinsic amorphous silicon film by chemical vapor deposition process, with a thickness of 1-50nm. The P-a-si amorphous silicon film is deposited on the i-a-si intrinsic amorphous silicon film layer to form a core structure HIT heterojunction with the N-type crystalline silicon cell. the

所述的N+型晶体硅层,其厚度为0.1~0.5um,浓磷掺杂浓度为1×1018~5×1020/cm3。作用是形成高低结,提升开路电压,同时起到背面钝化的作用。  The thickness of the N+ type crystalline silicon layer is 0.1-0.5um, and the doping concentration of concentrated phosphorus is 1×10 18 ˜5×10 20/ cm 3 . The function is to form high and low junctions, increase the open circuit voltage, and at the same time play the role of back passivation.

所述的减反射膜为SiO2、Si3N4、Ta2O5、TiO2中的一种,减反射膜厚度为70~90nm,折射率为1.5~2.5。其作用主要是增加光吸收,减低太阳光在电池表面的反射损失,另外,减反射膜还具有表面钝化的作用。  The anti-reflection film is one of SiO 2 , Si 3 N 4 , Ta 2 O 5 , and TiO 2 , the thickness of the anti-reflection film is 70-90 nm, and the refractive index is 1.5-2.5. Its function is mainly to increase light absorption and reduce the reflection loss of sunlight on the surface of the battery. In addition, the anti-reflection film also has the function of surface passivation.

采用以上技术方案制作的N型硅片的背接触式HIT太阳电池,制备方法简单,能够迅速产业化。另外其背接触的结构在太阳电池的受光面无栅线覆盖,不仅增加了太阳电池的受光面积,还在在组件生产中可简化了焊接工序外观要求,节约生产时间,降低组件生产成本。  The N-type silicon wafer back-contact HIT solar cell produced by the above technical scheme has a simple preparation method and can be rapidly industrialized. In addition, its back contact structure has no grid line coverage on the light-receiving surface of the solar cell, which not only increases the light-receiving area of the solar cell, but also simplifies the appearance requirements of the welding process in module production, saves production time and reduces module production costs. the

附图说明 Description of drawings

图1所示为本实用新型电池结构示意图;  Fig. 1 shows the schematic diagram of the battery structure of the present utility model;

图2所示为本实用新型实施例1中背面电极的示意图; Figure 2 is a schematic diagram of the back electrode in Example 1 of the present utility model;

图3所示为本实用新型实施例1的工艺流程示意图。 Fig. 3 is a schematic diagram of the technological process of the utility model embodiment 1.

图中,1、减反射膜;2、N+ a-Si非晶硅薄膜;3、本征非晶硅薄膜;4、N型晶体硅;5、N+晶硅层;6、p-a-Si非晶硅薄膜;7、透明导电薄膜TCO;8、背电极;a.    N型硅片检测、清洗及表面织构化;b.   在下表面扩散一层N+型重掺杂层;c. 在上下表面沉积一层本征非晶硅薄层;d.      在上表面沉积一层N+型非晶硅薄层;e.     在下表面沉积一层p型非晶硅薄膜;f.    在上表面PECVD制备氮化硅减反射膜;g.   使用腐蚀浆料腐蚀至露出N型硅基体;h.   在下表面溅射一层TCO导电层,用激光将P区和N区分开;i.   丝网印刷电极,低温烧结。  In the figure, 1. Antireflection film; 2. N+ a-Si amorphous silicon thin film; 3. Intrinsic amorphous silicon thin film; 4. N-type crystalline silicon; 5. N+ crystalline silicon layer; 6. p-a-Si amorphous Silicon film; 7. Transparent conductive film TCO; 8. Back electrode; a. N-type silicon wafer detection, cleaning and surface texturing; b. Diffusion of a N+-type heavily doped layer on the lower surface; c. Deposition on the upper and lower surfaces A thin layer of intrinsic amorphous silicon; d. Deposit a thin layer of N+ type amorphous silicon on the upper surface; e. Deposit a layer of p-type amorphous silicon film on the lower surface; f. Prepare silicon nitride on the upper surface by PECVD Anti-reflection coating; g. Use etching slurry to etch to expose the N-type silicon substrate; h. Sputter a layer of TCO conductive layer on the lower surface, and use laser to separate the P area and N area; i. Screen-print electrodes and sinter at low temperature. the

具体实施方式:Detailed ways:

下面结合附图和实例来说明本实用新型的技术方案,但是本实用新型并不局限于此。 The technical scheme of the utility model will be described below in conjunction with the accompanying drawings and examples, but the utility model is not limited thereto.

实施例1  Example 1

N型晶体硅4选用N型单晶硅片,采用半导体清洗工艺对N型晶体硅4表面预清洗和表面织构。所用N型晶体硅4厚度在200um,电阻率为0.5~3Ω.cm,用1~5%的氢氟酸去除N型晶体硅4表面的二氧化硅层,在浓度小于3%的NaOH和IPA(异丙醇)的混合液中80℃左右制备金字塔形状绒面。增加对太阳光的吸收,增加PN结面积,提高短路电流。再用酸清洗工艺将之后的N型晶体硅4清洗干净-甩干。将制绒后N型晶体硅4放入扩散炉中用(POCl3)在850℃左右进行单面重磷扩散,在N型晶体硅4下表面形成一层N+晶硅层5,经等离子刻蚀后,去磷硅玻璃(PSG),去离子水清洗后甩干; N-type crystalline silicon 4 is selected from N-type single crystal silicon wafers, and the surface of N-type crystalline silicon 4 is pre-cleaned and surface textured by using semiconductor cleaning technology. The thickness of the N-type crystalline silicon 4 used is 200um, the resistivity is 0.5~3Ω.cm, the silicon dioxide layer on the surface of the N-type crystalline silicon 4 is removed with 1~5% hydrofluoric acid, and the concentration is less than 3% NaOH and IPA (isopropanol) mixed liquid at about 80°C to prepare pyramid-shaped suede. Increase the absorption of sunlight, increase the area of the PN junction, and increase the short-circuit current. The subsequent N-type crystalline silicon 4 is cleaned by an acid cleaning process and dried. Put the N-type crystalline silicon 4 after texturing into a diffusion furnace and use (POCl 3 ) to carry out single-sided heavy phosphorus diffusion at about 850°C, and form a layer of N+ crystalline silicon layer 5 on the lower surface of the N-type crystalline silicon 4. After etching, remove phosphorus silicon glass (PSG), wash with deionized water and dry;

用等离子体增强化学气相沉积(PECVD)工艺,在250℃扩散后晶硅的上下表面分别沉积一层本征非晶硅薄膜3,厚度约5nm,有钝化作用;在晶硅的上表面沉积高浓度N+ a-Si非晶硅薄膜2,厚度为5~10nm;在背表面沉积一层P-a-Si非晶硅薄层6,厚度为5~10nm;在400℃下,用PECVD在硅片正表面生长氮化硅受光面减反射膜1,厚度为85nm,折射率为2.05;其作用减少电池表面的反射损失,镀膜后的太阳电池光反射损失可以减少到4%以内;同时对电池进行有效地表面钝化和体钝化,减少复合中心,提高少子寿命,增加光电流。在硅片背面印刷上腐蚀性浆料,腐蚀掉印刷区域的P-a-Si非晶硅薄层6和本征非晶硅薄膜3,露出N+晶硅层5表面,未腐蚀区域的HIT结构被保存下来。最后用去离子水超声清洗干净后,烘干。通过磁控溅射工艺在硅片的背面沉积一层厚度为30~100nm的透明导电层薄膜TCO 7。再用激光将P型区域与N型区域分割。在背表面的N型区域和P型区域分别丝网印刷导电浆料经低温烧结制成背电极8。电池背面附图2 所示。N型区域上采用的电极印刷材料为银浆;P型区域上采用的电极印刷材料为银浆、银铝浆,或者是类似常规太阳能电池背面银铝浆结构的一种。 Using the plasma enhanced chemical vapor deposition (PECVD) process, a layer of intrinsic amorphous silicon film 3 is deposited on the upper and lower surfaces of the crystalline silicon after diffusion at 250°C, with a thickness of about 5nm, which has a passivation effect; deposited on the upper surface of the crystalline silicon High-concentration N+ a-Si amorphous silicon film 2 with a thickness of 5-10nm; deposit a layer of P-a-Si amorphous silicon thin layer 6 on the back surface with a thickness of 5-10nm; Silicon nitride light-receiving surface anti-reflection film 1 is grown on the front surface, the thickness is 85nm, and the refractive index is 2.05; its function reduces the reflection loss on the surface of the battery, and the light reflection loss of the solar battery after coating can be reduced to less than 4%; Effective surface passivation and bulk passivation, reducing recombination centers, improving minority carrier lifetime, and increasing photocurrent. Print the corrosive paste on the back of the silicon wafer, etch away the P-a-Si amorphous silicon thin layer 6 and intrinsic amorphous silicon thin film 3 in the printed area, exposing the surface of the N+ crystalline silicon layer 5, and the HIT structure in the unetched area is preserved down. Finally, after ultrasonic cleaning with deionized water, dry. A transparent conductive layer film TCO 7 with a thickness of 30-100 nm is deposited on the back of the silicon wafer by magnetron sputtering process. The P-type area and the N-type area are then divided by laser. The back electrode 8 is formed by screen-printing conductive paste on the N-type area and the P-type area of the back surface, respectively, and sintering at a low temperature. The back of the battery is shown in Figure 2. The electrode printing material used in the N-type area is silver paste; the electrode printing material used in the P-type area is silver paste, silver-aluminum paste, or a structure similar to the silver-aluminum paste on the back of a conventional solar cell.

本实施例制备的基于N型单晶硅片的背接触异质结太阳电池的电性能输出参数:在标准测量条件下:测量温度25oC,光强1000W/m2,AM1.5 光谱测试,短路电流密度42mA/cm2;开路电压683mV,填充因子79.5%;光电转换效率21.6%。  The electrical performance output parameters of the back-contact heterojunction solar cells based on N-type single crystal silicon wafers prepared in this example: under standard measurement conditions: measurement temperature 25 o C, light intensity 1000W/m 2 , AM1.5 spectrum test , short circuit current density 42mA/cm 2 ; open circuit voltage 683mV, fill factor 79.5%; photoelectric conversion efficiency 21.6%.

Claims (8)

1. back of the body contact heterojunction solar battery structure based on N type silicon chip; Characteristic is divided into N type zone and p type island region territory from the back side; It is characterized in that: N type zone comprises from top to bottom sensitive surface antireflective coating, N+ a-Si N+ amorphous silicon membrane, i-a-Si intrinsic amorphous silicon film, N-C-Si N type crystalline silicon, N+ c-Si N+ crystal silicon layer, transparent conductive film TCO and the back electrode of lamination combination successively, forms N+ a-si/ i-a-si/N-c-si/N+c-si heterojunction structure; The p type island region territory comprises from top to bottom sensitive surface antireflective coating, N+ a-Si N+ amorphous silicon membrane, i-a-Si intrinsic amorphous silicon film, N-C-Si N type crystalline silicon, N+ c-Si N+ crystal silicon layer, i-a-Si intrinsic amorphous silicon film, P-a-Si amorphous silicon membrane, transparent conductive film TCO and the back electrode of lamination combination successively, forms N+ a-si/ i-a-si/N-c-si/N+c-si/i-a-si/P-a-si heterojunction structure.
2. the back of the body contact heterojunction solar battery structure based on N type silicon chip according to claim 1, it is characterized in that: described sensitive surface antireflective coating is SiO2, Si3N4, Ta2O5 or TiO2, and antireflective coating thickness is 70 ~ 90nm, and refractive index is 1.5 ~ 2.5.
3. the back of the body contact heterojunction solar battery structure based on N type silicon chip according to claim 1 is characterized in that: described i-a-Si intrinsic amorphous silicon film thickness is 1 ~ 50nm.
4. the back of the body contact heterojunction solar battery structure based on N type silicon chip according to claim 1; It is characterized in that: described N type crystalline silicon is monocrystalline silicon, solar level or levels of metal polysilicon, banded silicon; Its thickness is 120 ~ 220um, and doping content is 1 * 1015~5 * 1017/cm3.
5. the back of the body contact heterojunction solar battery structure based on N type silicon chip according to claim 1 is characterized in that: the N+ type crystalline silicon layer of described N type crystalline silicon lower floor, its thickness is 0.1 ~ 0.5um.
6. the back of the body contact heterojunction solar battery structure based on N type silicon chip according to claim 1 is characterized in that: in the described p type island region territory, P-a-Si amorphous silicon membrane thickness is 1 ~ 50nm.
7. the back of the body contact heterojunction solar battery structure based on N type silicon chip according to claim 1; It is characterized in that: transparent conductive film TCO is an oxidic transparent electric conducting material system; A kind of among In2O3, SnO2, ZnO, In2O3:Sn (ITO), In2O3:Mo (IMO), SnO2:Sb (ATO), SnO2:F (FTO), ZnO:Al (ZnO), ZnOSnO2, ZnOIn2O3, CdSb2O6, MgIn2O4, In4Sn3O12, Zn2In2O5, CdIn2O4, Cd2SnO4, Zn2SnO4, the GaInO3, its thickness is 50nm ~ 900nm.
8. the back of the body contact heterojunction solar battery structure based on N type silicon chip according to claim 1 is characterized in that: described back electrode is Al, Ag, Au, Ni, Cu/Ni, Al/Ni or Ti/Pd/Ag electrode, and its thickness is 50nm ~ 600um.
CN2011201940001U 2011-06-10 2011-06-10 Back-contact heterojunction solar cell structure based on N-type silicon wafer Expired - Lifetime CN202210533U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011201940001U CN202210533U (en) 2011-06-10 2011-06-10 Back-contact heterojunction solar cell structure based on N-type silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011201940001U CN202210533U (en) 2011-06-10 2011-06-10 Back-contact heterojunction solar cell structure based on N-type silicon wafer

Publications (1)

Publication Number Publication Date
CN202210533U true CN202210533U (en) 2012-05-02

Family

ID=45990076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011201940001U Expired - Lifetime CN202210533U (en) 2011-06-10 2011-06-10 Back-contact heterojunction solar cell structure based on N-type silicon wafer

Country Status (1)

Country Link
CN (1) CN202210533U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214719A (en) * 2011-06-10 2011-10-12 山东力诺太阳能电力股份有限公司 Back contact heterojunction solar battery based on N-type silicon slice
CN102931268A (en) * 2012-11-29 2013-02-13 山东力诺太阳能电力股份有限公司 N-type silicon substrate based back contact type HIT (Heterojunction with Intrinsic Thin layer) solar cell structure and preparation method thereof
CN103227241A (en) * 2013-04-10 2013-07-31 苏州阿特斯阳光电力科技有限公司 Preparation method of double-faced crystalline silicon solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214719A (en) * 2011-06-10 2011-10-12 山东力诺太阳能电力股份有限公司 Back contact heterojunction solar battery based on N-type silicon slice
CN102931268A (en) * 2012-11-29 2013-02-13 山东力诺太阳能电力股份有限公司 N-type silicon substrate based back contact type HIT (Heterojunction with Intrinsic Thin layer) solar cell structure and preparation method thereof
CN102931268B (en) * 2012-11-29 2015-07-01 山东力诺太阳能电力股份有限公司 N-type silicon substrate based back contact type HIT (Heterojunction with Intrinsic Thin layer) solar cell structure and preparation method thereof
CN103227241A (en) * 2013-04-10 2013-07-31 苏州阿特斯阳光电力科技有限公司 Preparation method of double-faced crystalline silicon solar cell

Similar Documents

Publication Publication Date Title
CN109216509B (en) Preparation method of interdigital back contact heterojunction solar cell
CN204303826U (en) A kind of high-efficiency N-type double-side solar cell
CN102623517B (en) Back contact type crystalline silicon solar cell and production method thereof
US9214576B2 (en) Transparent conducting oxide for photovoltaic devices
CN104167471B (en) A kind of preparation method of all back-contact electrodes p-type silicon/crystalline silicon heterojunction solar cell
CN106601855A (en) Preparation method of double-side power generation heterojunction solar cell
CN102184976A (en) Back contact heterojunction solar battery
CN104157717B (en) Preparation method of all-back electrode N-type crystalline silicon heterojunction solar cells
CN102214719B (en) Back contact heterojunction solar battery based on N-type silicon slice
CN114497290A (en) Manufacturing method of back contact heterojunction solar cell
CN102214720B (en) Back contact heterojunction solar battery based on P-type silicon slice
CN113224182A (en) Heterojunction solar cell and preparation method thereof
CN117594685A (en) A new type of crystalline silicon heterojunction tandem solar cell structure, preparation method and application
CN202210522U (en) Back contact heterojunction solar cell structure based on P-type silicon wafer
CN102054889A (en) Binode solar battery and preparation method thereof
CN110600577A (en) Heterojunction solar cell and preparation method thereof
CN102201480B (en) Cadmium telluride semiconductor thin-film heterojunction solar cell based on N-shaped silicon slice
CN102157572A (en) Crystalline silicon solar battery
CN202210533U (en) Back-contact heterojunction solar cell structure based on N-type silicon wafer
CN204130563U (en) A kind of all back-contact electrodes P type silicon/crystalline silicon heterojunction solar battery structure
CN202076297U (en) Back contact HIT solar cell structure based on P-type silicon chip
CN107393996A (en) Heterojunction solar battery and preparation method thereof
CN117410361A (en) Solar cell module and TOPCON structure cell with double-sided texturing
CN110416342A (en) A kind of HJT battery based on metal nanoparticle and preparation method thereof
CN214753796U (en) Cell structure and solar cells and photovoltaic modules

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20120502

Effective date of abandoning: 20130501

AV01 Patent right actively abandoned

Granted publication date: 20120502

Effective date of abandoning: 20130501

RGAV Abandon patent right to avoid regrant