CN102135460B - Photoelectric non-contact rotating shaft torque and power measurement device - Google Patents
Photoelectric non-contact rotating shaft torque and power measurement device Download PDFInfo
- Publication number
- CN102135460B CN102135460B CN2011100084003A CN201110008400A CN102135460B CN 102135460 B CN102135460 B CN 102135460B CN 2011100084003 A CN2011100084003 A CN 2011100084003A CN 201110008400 A CN201110008400 A CN 201110008400A CN 102135460 B CN102135460 B CN 102135460B
- Authority
- CN
- China
- Prior art keywords
- photoelectric
- rotating shaft
- torque
- controller
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 claims description 23
- 238000004364 calculation method Methods 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 2
- 238000009434 installation Methods 0.000 abstract description 3
- 230000004888 barrier function Effects 0.000 abstract 1
- 230000002045 lasting effect Effects 0.000 abstract 1
- 239000004973 liquid crystal related substance Substances 0.000 abstract 1
- 238000013461 design Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Optical Transform (AREA)
Abstract
Description
技术领域 technical field
本发明涉及测量装置,特别是涉及一种光电非接触式转动轴扭矩和功率测量装置。 The invention relates to a measuring device, in particular to a photoelectric non-contact rotating shaft torque and power measuring device.
背景技术 Background technique
曾用于测量各种类型机械的转动轴的功率的方法中,一大部分是依赖于在转动轴上贴附应变片的方式。而应变片信号的传递方式主要有滑环和遥测的方法等。滑环可以保证在轴转动时,应变片信号不间断的传递到采集电路中。而遥测的方法需要在转轴上安装一种通过转动电池提供电力的发射器,发射器将应变片的电流变化通过无线信号传递到采集电子线路中。 Of the methods that have been used to measure power on rotating shafts of various types of machinery, a large number rely on the way strain gauges are attached to the rotating shaft. The transmission methods of strain gauge signals mainly include slip rings and telemetry methods. The slip ring can ensure that the strain gauge signal is transmitted to the acquisition circuit uninterruptedly when the shaft rotates. The telemetry method needs to install a transmitter on the rotating shaft to provide power by rotating the battery, and the transmitter transmits the current change of the strain gauge to the collection electronic circuit through a wireless signal.
目前一些较新的系统采用了霍尔传感器。这一方案一般是在转动轴上相距一定距离处安装两个大齿轮来拾取信号。在两个大齿轮上的测量敏感处分别设置了两个霍尔效应传感器,在轴转动过程中两个霍尔器件能输出相同宽度的脉冲。当轴被施加负载后,两个脉冲之间的相位差会发生变化。可以通过检测两路脉冲之间的相位差来计算受载轴的扭转角。 Some newer systems now use Hall sensors. This solution generally installs two large gears at a certain distance on the rotating shaft to pick up the signal. Two Hall effect sensors are respectively arranged at the measurement sensitive places on the two large gears, and the two Hall devices can output pulses with the same width during the rotation of the shaft. When the shaft is loaded, the phase difference between the two pulses changes. The torsion angle of the loaded shaft can be calculated by detecting the phase difference between the two pulses.
中华人民共和国专利局公布的CN1162990A号专利公开了一个利用激光光纤和激光检测器检测转轴扭矩的系统。它是在转动轴上相距适当距离处分别安装两个转动码盘。一束激光通过光纤照射到第一个码盘上,然后被与第一个码盘对应的光调制器接收并调制成激光脉冲,再通过光纤传输照射到第二个码盘上,经过第二个码盘后被第二个激光传感器接收转变成电脉冲信号,这时的电脉冲宽度代表了两个码盘之间的相位差。当转动轴被加上负载后,最终输出的电脉冲宽度会增加,通过这一相位差就可以计算出转轴扭转的角度,从而可以计算出转动轴在加上负载后的扭矩。 Patent No. CN1162990A published by the Patent Office of the People's Republic of China discloses a system for detecting the torque of a rotating shaft using a laser optical fiber and a laser detector. It is that two rotating code discs are respectively installed at appropriate distances apart from each other on the rotating shaft. A beam of laser light is irradiated onto the first code wheel through an optical fiber, and then received and modulated into a laser pulse by the light modulator corresponding to the first code wheel, and then irradiated to the second code wheel through optical fiber transmission, and passes through the second code wheel. After a code disc is received by the second laser sensor and converted into an electrical pulse signal, the electrical pulse width at this time represents the phase difference between the two code discs. When the rotating shaft is loaded, the width of the final output electrical pulse will increase. Through this phase difference, the twist angle of the rotating shaft can be calculated, so that the torque of the rotating shaft after the load is applied can be calculated.
上述的第一个系统,为了获得有效精度,必须保证两个传感器的触发点不产生漂移,而随着使用时间和/或温度的变化,有可能使两个传感器的触发点彼此之间发生漂移,而且两者甚至可能是朝相反的方向。第二个系统虽说采用单检测器来测量单一光源发出的激光信号,某种程度上能减小两个检测器可能出现的触发点漂移,但是单检测器自身触发点随温度漂移的变化是无法进行补偿的,因而就无法完全消除这一系统误差。另外,第二个系统中采用了光调制结构,这种通过将光调制成脉冲信号再输出的方法,也会存在一定的延时,因为给系统引入一定大小的无法消除的系统误差。从这几点上来说,两种扭矩测量系统都无法克服检测器自身的特性变化而导致的触发点漂移。 For the first system above, in order to obtain effective accuracy, it is necessary to ensure that the trigger points of the two sensors do not drift, and with the use of time and/or temperature changes, it is possible for the trigger points of the two sensors to drift relative to each other , and the two may even be in opposite directions. Although the second system uses a single detector to measure the laser signal emitted by a single light source, it can reduce the possible trigger point drift of the two detectors to some extent, but the change of the trigger point of the single detector itself with temperature drift cannot be measured. Therefore, it is impossible to completely eliminate this systematic error. In addition, the second system adopts an optical modulation structure. This method of modulating light into a pulse signal and then outputting it will also have a certain delay, because a certain amount of systematic error that cannot be eliminated is introduced into the system. From these points, neither of the two torque measurement systems can overcome the trigger point drift caused by the characteristic change of the detector itself.
发明内容 Contents of the invention
本发明所要解决的技术问题是:为了克服测量中两光电开关的触发点随时间和/或温度变化出现漂移的问题,提供一种光电非接触式转动轴扭矩和功率测量装置,该装置能够完全消除光电开关的触发点产生的漂移对检测结果的影响。 The technical problem to be solved by the present invention is: in order to overcome the problem that the trigger points of the two photoelectric switches drift with time and/or temperature changes in the measurement, provide a photoelectric non-contact rotating shaft torque and power measurement device, which can completely The influence of the drift generated by the trigger point of the photoelectric switch on the detection result is eliminated.
本发明解决其技术问题采用以下的技术方案: The present invention solves its technical problem and adopts the following technical solutions:
本发明提供的光电非接触式转动轴扭矩和功率测量装置,主要由控制器、计算机、光电码盘和光电开关组成,其中:光电码盘至少有两个,它们装在被测转动轴上,每个光电码盘对应一个光电开关和设有多个均匀分布的通光孔及挡光板;计算机通过串行数据线与控制器的输出接口相连,控制器的测量信号输入端通过导线分别与各个光电开关相连;所有光电开关输出的信号在控制器中经过逻辑计算和处理后被传输到计算机。 The photoelectric non-contact rotating shaft torque and power measuring device provided by the present invention is mainly composed of a controller, a computer, a photoelectric code disc and a photoelectric switch, wherein: there are at least two photoelectric code discs, which are installed on the measured rotating shaft, Each photoelectric code disc corresponds to a photoelectric switch and is equipped with multiple uniformly distributed light holes and light baffles; the computer is connected to the output interface of the controller through a serial data line, and the measurement signal input end of the controller is connected to each The photoelectric switches are connected; all the signals output by the photoelectric switches are transmitted to the computer after logical calculation and processing in the controller.
每个光电码盘上的通光孔和挡光板,其对应的圆心角完全相同。 The corresponding central angles of the light holes and light baffles on each photoelectric code disc are exactly the same.
光电码盘上的通光孔为扇形孔。 The light-through hole on the photoelectric code disc is a fan-shaped hole.
本发明提供的上述光电非接触式转动轴扭矩和功率测量装置,其用途是:采用光电技术来测量被测转动轴的扭转角度,测量依据全部为逻辑量,具体是:在被测转动轴转动过程中,用至少两个光电开关检测同样数量的光电码盘扫过对应的光电开关时输出的方波信号,通过检测两路方波之间的相位差来测量被测转动轴发生扭转变形的角度信号,该角度信号在控制器中经过逻辑计算和处理后,由计算机计算被测转动轴的扭矩和功率。 The above-mentioned photoelectric non-contact rotating shaft torque and power measuring device provided by the present invention has the purpose of measuring the torsion angle of the measured rotating shaft by using photoelectric technology, and the measurement basis is all logical quantities, specifically: During the process, at least two photoelectric switches are used to detect the square wave signal output when the same number of photoelectric code discs sweep the corresponding photoelectric switch, and the torsional deformation of the measured rotating shaft is measured by detecting the phase difference between the two square waves. Angle signal, after the angle signal is logically calculated and processed in the controller, the computer calculates the torque and power of the measured rotating shaft.
该装置测量过程不与被测转动轴发生接触,不影响该轴的正常工作。 The device does not come into contact with the measured rotating shaft during the measurement process, and does not affect the normal operation of the shaft.
该装置能同时测量同一被测转动轴系上多段的扭矩变化情况。 The device can simultaneously measure the torque variation of multiple sections on the same rotating shaft system to be tested.
该装置同时测量几个不同被测转动轴系上的扭矩和功率变化情况。 The device simultaneously measures the torque and power changes on several different rotating shafts under test.
本发明可以采用以下方法进行逻辑计算:通过将光电码盘上对应的通光孔产生的方波脉冲信号在现场可编程门阵列(FPGA)器件中亦或运算后得到相位差脉冲信号,然后通过一定频率的计数器对相位差脉冲的宽度进行计数,将相位差转换为数字量存储。 The present invention can use the following method for logic calculation: the phase difference pulse signal is obtained by calculating the square wave pulse signal generated by the corresponding light hole on the photoelectric code disc in the field programmable gate array (FPGA) device, and then by A counter with a certain frequency counts the width of the phase difference pulse, and converts the phase difference into a digital quantity for storage.
本发明在被测量转动轴上安装两个光电码盘,在被测量转动轴转动过程中,用两个光电开关检测两个光电码盘扫过对应的光电开关时输出的方波信号,通过检测这两路方波之间的相位差来测量转动轴发生扭转变形的角度,从而计算被测量轴的扭矩和功率。 In the present invention, two photoelectric code discs are installed on the measured rotating shaft. During the rotation process of the measured rotating shaft, two photoelectric switches are used to detect the square wave signal output by the two photoelectric code discs when they sweep over the corresponding photoelectric switch. The phase difference between the two square waves is used to measure the angle of torsional deformation of the rotating shaft, so as to calculate the torque and power of the measured shaft.
本发明与现有技术相比具有以下主要的优点: Compared with the prior art, the present invention has the following main advantages:
1. 与被转动测轴不接触,并能长时间在线测量:轴扭矩获取的方式上采用了光电码盘结合光电开关的方式,在轴转动过程中能够获取轴上任意一段或整个轴的扭矩,甚至通过引入多个光电码盘还可以获取整个轴的扭矩分布情况。整个测量过程不与被测量轴系发生接触,不影响轴系正常转动工作,便于长时间在线测量应用。 1. No contact with the rotating measuring shaft, and can measure online for a long time: the shaft torque acquisition method adopts the method of photoelectric code disc combined with photoelectric switch, and the torque of any section or the entire shaft on the shaft can be obtained during the shaft rotation process , and even the torque distribution of the entire shaft can be obtained by introducing multiple photoelectric code discs. The entire measurement process does not come into contact with the measured shaft system, and does not affect the normal rotation of the shaft system, which is convenient for long-term online measurement applications.
2. 能抑制测量环境产生的偏差:在扭矩计算上,通过控制器中逻辑电路计算能够消除光电开关随时间和/或温度出现的触发点漂移的现象,保证系统长期工作的稳定性,这一优点是之前的一些专利中采用单一光源和单一光敏电子检测器无法达到的。 2. Can suppress the deviation caused by the measurement environment: In terms of torque calculation, the logic circuit calculation in the controller can eliminate the trigger point drift of the photoelectric switch with time and/or temperature, and ensure the long-term stability of the system. The advantage is that it cannot be achieved by using a single light source and a single photosensitive electron detector in some previous patents.
3.安装方便:光电码盘在轴上随轴一起转动,光电开关固定在安装架上不动,这两者的安装和检测不受到轴上的障碍物的影响,因此可以在最适宜的距离上测量整个轴的转动扭矩和功率。采用这种方法就能将更多的轴承和隔板设置在轴上,而不受测量的影响。 3. Easy installation: the photoelectric code disc rotates with the shaft on the shaft, and the photoelectric switch is fixed on the mounting frame. Measure rotational torque and power over the entire shaft. In this way more bearings and spacers can be placed on the shaft without being affected by the measurement.
4. 应用广:能够用于同时测量一个轴系上多段的扭矩和功率变化,或者同时测量几个不同轴系的扭矩和功率变化情况。 4. Wide application: It can be used to simultaneously measure the torque and power changes of multiple sections on one shaft system, or measure the torque and power changes of several different shaft systems at the same time.
5.具有精度高和持久稳定性的性能。被测量转动轴的扭转角度测量精度可达到0.001度,能用于长期船舶轴系轴功率的在线监测。 5. It has the performance of high precision and long-lasting stability. The measurement accuracy of the torsion angle of the measured rotating shaft can reach 0.001 degrees, and can be used for long-term on-line monitoring of the power of the shafting shaft of the ship.
附图说明 Description of drawings
图1是本发明光电非接触式转动轴扭矩和功率测量装置的结构示意图。 Fig. 1 is a structural schematic diagram of the photoelectric non-contact rotating shaft torque and power measuring device of the present invention.
图2是被测量轴上安装的光电码盘示意图。 Figure 2 is a schematic diagram of the photoelectric code disc installed on the measured shaft.
图3是两光电开关输出脉冲信号间的相位差示意图。 Fig. 3 is a schematic diagram of the phase difference between output pulse signals of two photoelectric switches.
图4是光电开关输出脉冲边沿漂移后的逻辑关系示意图。 Fig. 4 is a schematic diagram of the logic relationship after the output pulse edge of the photoelectric switch drifts.
图5是多个光电码盘应用于轴扭矩测量示意图。 Fig. 5 is a schematic diagram of the application of multiple photoelectric code discs to shaft torque measurement.
图中:1.被测转动轴;2.第一光电码盘; 3.第一通光孔; 4.第二光电码盘; 5.第二通光孔;6.第一光电开关; 7.第二光电开关; 8.轴承; 9.第一导线;10.第二导线;11.控制器;12.计算机;13.显示器; 14. LCD显示屏; 15.挡光板; 16.第三光电码盘; 17.第四光电码盘; 18.第五光电码盘; 19.第六光电码盘。 In the figure: 1. The measured rotating shaft; 2. The first photoelectric code disc; 3. The first light hole; 4. The second photoelectric code disc; 5. The second light hole; 6. The first photoelectric switch; 7 .The second photoelectric switch; 8. Bearing; 9. The first wire; 10. The second wire; 11. Controller; 12. Computer; 13. Display; 14. LCD display screen; 17. The fourth photoelectric code disk; 18. The fifth photoelectric code disk; 19. The sixth photoelectric code disk.
具体实施方式 Detailed ways
本发明提出的光电非接触式转动轴扭矩和功率测量装置,其采用的是在被测转动轴上适当距离处安装两个齿轮盘或光电编码盘,在被测转动轴转动过程中两光电码盘分别扫过与之对应的高速光电开关产生电脉冲输出。当被测转动轴加上负载以后,该转动轴扭转加剧,两齿轮盘之间会发生微小的相对扭转。通过检测两个光电编码器输出的两路脉冲之间的相位差就能计算出被测转动轴的扭转角度。当计算出这一角度以后,在转速也被测量得到或已知的时候,就能计算出所述转动轴的扭矩和功率。 The photoelectric non-contact rotating shaft torque and power measuring device proposed by the present invention adopts two gear discs or photoelectric encoder discs installed at an appropriate distance on the measured rotating shaft, and the two photoelectric codes are used during the rotation of the measured rotating shaft. The discs are swept across the corresponding high-speed photoelectric switches to generate electrical pulse output. When a load is added to the rotating shaft to be tested, the rotating shaft will intensify its torsion, and a small relative torsion will occur between the two gear discs. By detecting the phase difference between the two pulses output by two photoelectric encoders, the torsion angle of the measured rotating shaft can be calculated. When this angle is calculated, when the rotational speed is also measured or known, the torque and power of the rotating shaft can be calculated.
本发明还给出了一种对两路脉冲的逻辑计算方法,通过该方法能够完全消除光电开关的触发点随温度等环境因素而产生漂移对检测结果的影响。 The invention also provides a logical calculation method for two pulses, which can completely eliminate the influence of the trigger point of the photoelectric switch on the detection result due to the drift caused by environmental factors such as temperature.
下面结合实施例和附图对本发明作进一步说明,但不限定本发明的内容。 The present invention will be further described below in conjunction with the embodiments and accompanying drawings, but the content of the present invention is not limited.
本发明提供的光电非接触式转动轴扭矩和功率测量装置,其结构如图1所示,该装置主要由控制器11、计算机12、光电码盘和光电开关组成,其中:光电码盘有多个,它们装在被测转动轴1上。每个光电码盘设有一个光电开关和多个均匀分布的通光孔。计算机12通过数据线与控制器11的输出接口相连,实现数据的通信和控制信号的传输,控制器11的测量信号输入端通过导线分别与各个光电开关相连。几路光电开关输出的信号在控制器11中经过逻辑计算和处理后被传输到计算机12。
The photoelectric non-contact rotating shaft torque and power measuring device provided by the present invention has a structure as shown in Figure 1, and the device is mainly composed of a
所述光电码盘,本实施例给出了两个,其中:第一光电码盘2和第二光电码盘4分别与之对应的是第一光电开关6和第二光电开关7。当光电码盘随着被测转动轴1转动的时候,光电码盘上的叶片会周期性的遮挡和打开光电开关上光电检测器与发光二极管之间的光路,对应的光电开关的输出是同周期的低电平和高电平的脉冲。计算过程中采用的是光电开关高电平输出的部分,因此,在光电码盘的通光孔的设计上我们采取了不同于以往的特殊设计。
The present embodiment provides two photoelectric code discs, wherein: the first photoelectric code disc 2 and the second photoelectric code disc 4 correspond to the first
所述第一光电码盘2和第二光电码盘4,其结构如图2所示:两个光电码盘采用的是对称式设计,即光电码盘上的第一通光孔3和挡光板15对应的圆心角是完全相同的。这样在光电码盘扫过光电开关的时候输出的电脉冲信号是占空比为1:1的方波脉冲。正脉冲或负脉冲都能够作为扭矩检测的信号来采用,以具体应用情况而定。光电开关可以根据安装方便的原则安装在光电码盘圆周的任意位置,只要保证光电码盘的叶片扫过光电开关时能完全遮挡住光信号就行。另外需要保证在安装两组或多组光电码盘和光电二极管系统的时候,各个光电二极管在各个光电码盘的圆周上所处的位置尽可能相同,保持检测时的一致性。
The structure of the first photoelectric code disk 2 and the second photoelectric code disk 4 is as shown in Figure 2: the two photoelectric code disks adopt a symmetrical design, that is, the first
两个光电码盘上的每个通光孔必须设计成扇形结构。由于测量过程中被测转动轴1的转动的角速度是一定的,不论光电开关的光路在通光孔的哪一段导通,导通的时间只与该通光孔对应的圆心角相关。因此,通光孔设计过程中,一定保证每个扇形的圆心与被测转动轴1的圆心重合,这样光电开关输出的脉冲宽度就与轴转动的角速度成正比。而每个通光孔对应的圆心角可以根据测量精度的需要来确定,只要保证在被测转动轴的转速最大的情况下,通光孔对应的圆心角输出的光电脉冲宽度仍然能满足扭转角度测量的精度要求,这样的圆心角大小就是合适的。
Each light hole on the two photoelectric code discs must be designed as a fan-shaped structure. Since the rotational angular velocity of the measured
本发明采用两个光电码盘和光电开关的组合来检测扭转角度,而与扭转角度相关的信息均包含在光电开关输出的两路脉冲信号之间。在逻辑电路中,可以对两路脉冲信号采取一定的逻辑计算,从而消除两路脉冲中存在的因为环境温度和时间导致的光电开关触发点漂移的现象。最后的测量结果首先被数字化,然后可以在计算机中进行存储和处理,并且在计算机上实时显示当前的扭矩值以及扭矩随时间变化的趋势曲线。 The invention adopts the combination of two photoelectric code discs and a photoelectric switch to detect the torsion angle, and the information related to the torsion angle is included between the two pulse signals output by the photoelectric switch. In the logic circuit, a certain logic calculation can be adopted for the two pulse signals, so as to eliminate the photoelectric switch trigger point drift caused by the ambient temperature and time in the two pulses. The final measurement results are digitized first, and then can be stored and processed in the computer, and the current torque value and the trend curve of torque over time are displayed in real time on the computer.
本发明采用两个光电码盘和光电开关的结构进行扭矩测量还具有另一个优势。由于需要将两个光电码盘安装在被测转动轴1上适当的距离才能保证测量的精度,然而,一般在大型被测转动轴上会存在类似于图1中轴承8一类的障碍物,如果采用激光等方法只能通过光纤才能跨越这些障碍物。采用光电码盘和光电开关结合的方法对被测转动轴的扭矩和功率检测就不会受到被测转动轴上这些障碍物的影响,可以将光电码盘安装在被测转动轴上任何合适的地方。
The present invention adopts the structure of two photoelectric code discs and photoelectric switch to measure torque and has another advantage. Since it is necessary to install two photoelectric code discs on the measured
所述被测转动轴1,其为该轴扭矩和功率测量系统所要测量的对象。
The measured
上述光电码盘,其结构同现有技术,例如:用与测量电动机转速的光栅编码器。但是光栅编码器用输出的脉冲个数来测量电动机的转速,而这里所述的是通过两个这样的光电码盘是用来测量轴发生扭转的角度。 Above-mentioned photoelectric code disc, its structure is with prior art, for example: be used with the grating encoder of measuring motor rotating speed. However, the grating encoder uses the number of output pulses to measure the rotational speed of the motor, and what is described here is to use two such photoelectric code discs to measure the angle at which the shaft is twisted.
所述控制器11采用FPGA和微处理器组成逻辑计算和控制系统。其结构是:FPGA作为逻辑运算模块,获取被测量轴扭转的角度的数字量;微处理器将轴扭转的角度的数字量采集后通过串行接口传输到计算机12。
The
所述计算机12采用普通的台式计算机或者笔记本电脑,计算机12与控制器11通过串行接口通信。
The
所述第一光电开关6和第二光电开关7,由红外发光二极管和红外光电二极管组成。均为高速光电开关,具有较高的响应频率和较短的上升时间。
The first
本发明的装置的工作过程是:光电码盘扫过光电开关形成了亮/暗脉冲,分别对应的光电开关输出是高/低电平脉冲。从原理上讲,亮暗信号之间只是逻辑相反的关系,所以采用哪一种都可以用于扭转角度的计算。如前所述,设计中以亮脉冲为测量依据,也就是光电开关输出的高电平脉冲。在被测转动轴1上未加负载时,第一光电码盘2和第二光电码盘4上的对应的第一通光孔3和第二通光孔5分别扫过光电开关,产生了两路高电平的脉冲输出。两路亮脉冲之间存在一个固定的相位差,可以将该相位差提前记录下来作为初相位,设该初相位为t。当被测转动轴1上加上负载以后,由于该转动轴上发生扭转,此时第一通光孔3和第二通光孔5之间发生了相对的偏移,光电开关输出的两路亮脉冲之间的相位差也将发生变化,相位差值随负载的增加而增大,设此时增大的相位差为Δt。通过这一相位差的变化,可以计算出两光电码盘之间扭转角度的变化,结合被测转动轴材料的弹性模量等物理参数就可以计算出转动轴在加负载以后扭矩的变化。这一原理如图3所示。当加负载以后,第一光电开关6和第二光电开关7输出的两路脉冲之间的相位差的宽度将会增大到t+Δt。
The working process of the device of the present invention is as follows: the photoelectric code disc scans the photoelectric switch to form light/dark pulses, and the output of the corresponding photoelectric switches is high/low level pulses. In principle, there is only a logically opposite relationship between bright and dark signals, so whichever one is used can be used for the calculation of the torsional angle. As mentioned earlier, the design is based on bright pulses, that is, high-level pulses output by photoelectric switches. When there is no load on the measured
本发明为了提取两码盘之间的相位差,从两个光电开关输出的脉冲信号被输入到逻辑电路中,对两路信号进行异或运算,就能提取出他们之间的相位差。在被测转动轴旋转的时候,逻辑电路输出的是一系列的脉冲,脉冲宽度代表了两个光电码盘之间的相位差。脉冲波形如图4所示。图中对两个存在相位差的波形分别标注A和B,假设A、B分别表示图1中第一光电开关6和第二光电开关7的输出波形。
In order to extract the phase difference between the two code discs, the pulse signals output from the two photoelectric switches are input into the logic circuit, and the two signals are subjected to XOR operation to extract the phase difference between them. When the measured rotating shaft rotates, the logic circuit outputs a series of pulses, and the pulse width represents the phase difference between the two photoelectric code discs. The pulse waveform is shown in Figure 4. In the figure, A and B are respectively marked for two waveforms with phase difference, and it is assumed that A and B respectively represent the output waveforms of the first
前面提到光电传感器会随温度和使用时间等发生变化,从而导致触发点发生漂移。这一现象在只使用单个传感器的产品中是无法克服的,对于采用两个传感器的测量方式,如果不进行补偿,很可能由于两个传感器出现的触发点漂移的方向不同而产生非常大的误差。对于本发明中采用了两个光电传感器的设计而言,在设备工作进入稳定状态以后,可以启动设计好的逻辑计算程序,对两传感器随时间和温度产生的触发点漂移进行补偿,抵消两个传感器的漂移,使两个传感器输出的信号之间的相位差与稳定状态下吻合。光电传感器触发点漂移抵消的原理如图4所示:对于A、B两路信号之间的相位差,在未加负载之前,代表测量系统的初始相位,在加负载以后,相位差的增量将用于计算转动轴上的扭转角度大小。 As mentioned earlier, the photoelectric sensor will change with temperature and use time, which will cause the trigger point to drift. This phenomenon cannot be overcome in products that only use a single sensor. For the measurement method that uses two sensors, if no compensation is performed, it is likely to cause very large errors due to the different directions of the trigger point drift of the two sensors. . For the design using two photoelectric sensors in the present invention, after the equipment works into a stable state, the designed logic calculation program can be started to compensate the trigger point drift of the two sensors with time and temperature, offsetting the two The drift of the sensor makes the phase difference between the output signals of the two sensors coincide with the steady state. The principle of photoelectric sensor trigger point drift offset is shown in Figure 4: For the phase difference between the two signals of A and B, before no load is applied, it represents the initial phase of the measurement system. After the load is applied, the increment of the phase difference Will be used to calculate the magnitude of the twist angle on the axis of rotation.
图4中A、B两路信号上的虚线信号代表每路信号上分别出现了一定的触发点漂移现象,阴影部分代表漂移的大小,设A路信号出现了超前的漂移ΔA,B路出现了滞后的漂移ΔB。在未出现触发点漂移时,直接将A、B信号异或就得到了两路信号之间的相位差,图中用A xor B(org)表示原始的相位差信号。而当出现触发点漂移后,直接异或以后得到的两路信号之间的相位差就出现了误差,图中用A xor B (cur)表示当前的相位差信号。然而,通过比较A、B之间未出现触发点漂移之前的与信号A and B (org)和A、B之间出现了触发点漂移之后的与信号A and B(cur)可以发现,这两个信号之间的差正好是A、B两路上出现的触发点漂移误差的代数差值。因此,在计算过程中,我们只需要在系统稳定工作的时候事先记录下此时A、B两路信号之间相与后的结果作为系统稳定工作的一个参考量,在后面无论多长的工作时间里,只要将当前A、B两路信号异或得到的相位差跟当前两路信号相与的结果之和减去之前保存下来的A、B原始信号之间相与的结果,就能消除两个传感器触发点漂移产生的误差,得到真实的相位差大小。 In Figure 4, the dotted line signals on the two signals of A and B indicate that there is a certain trigger point drift phenomenon on each signal, and the shaded part represents the magnitude of the drift. Suppose that the signal of A and B has an advanced drift ΔA, and the signal of B has a trigger point drift. Hysteresis drift ΔB. When there is no trigger point drift, directly XOR the A and B signals to obtain the phase difference between the two signals. In the figure, A xor B (org) represents the original phase difference signal. However, when the trigger point drifts, an error occurs in the phase difference between the two signals obtained after the direct XOR, and A xor B (cur) is used in the figure to represent the current phase difference signal. However, by comparing the AND signal A and B (org) before the trigger point drift between A and B and the AND signal A and B (cur) after the trigger point drift between A and B, it can be found that the two The difference between the two signals is just the algebraic difference of the trigger point drift error on the two paths of A and B. Therefore, in the calculation process, we only need to record in advance the result of the phase comparison between the two signals of A and B at this time when the system is working stably as a reference for the stable work of the system. No matter how long the work is later, In time, as long as the phase difference obtained by the XOR of the current A and B signals and the sum of the current two signals and the results are subtracted from the previously saved A and B original signal and results, the phase difference can be eliminated. The error caused by the drift of the trigger points of the two sensors can be used to obtain the real phase difference.
本发明通过采用上述的逻辑计算方法,能克服以往相关设计中没有消除的传感器触发点漂移产生的误差。该模块亦可应用于其他领域利用具有相关性的相同的两路传感器测量其偏差的场合。 By adopting the above-mentioned logic calculation method, the present invention can overcome the error caused by sensor trigger point drift that has not been eliminated in previous related designs. This module can also be used in other fields where the same two sensors with correlation are used to measure their deviation.
按照图4,A、B两路信号一次异或计算产生两个相位差,可以对这两个相位差信号平均后再做消除漂移的计算,以抑制随机误差。对每次获得的相位差信号可以通过一定频率的计数器来进行量化,计数器频率越高,那么计算时的精度也越高,然而计算过程中的数据长度也越长,所花的时间也就越长。可以根据系统误差情况,取定合适的计数器频率。轴每转动一圈,将产生多个脉冲信号,可以对所获得的相位差求和,然后再按照适当的轴转动圈数或是适当的时间间隔进行平均操作和更新处理,以消除测量过程中的随机噪声误差。 According to Figure 4, one XOR calculation of the two signals of A and B generates two phase differences, and the calculation of eliminating drift can be performed after averaging the two phase difference signals to suppress random errors. The phase difference signal obtained each time can be quantified by a counter with a certain frequency. The higher the counter frequency, the higher the accuracy of the calculation. However, the longer the data length in the calculation process, the longer it takes. long. The appropriate counter frequency can be determined according to the system error situation. Every time the shaft rotates a circle, multiple pulse signals will be generated, and the obtained phase differences can be summed, and then averaged and updated according to the appropriate number of shaft rotations or appropriate time intervals to eliminate the random noise error.
光电码盘的齿数是一定的,所以轴每转动一圈光电开关输出的脉冲个数是一定的,通过一个定时器可以记录下被测转动轴每转动一圈而产生这些脉冲数所需的时间,从而可以计算出当前被测转动轴旋转的转速,即RPM值。而通过选用较高精度的定时器就能获得更高精度和分辨率的RPM值。 The number of teeth of the photoelectric code disc is fixed, so the number of pulses output by the photoelectric switch is certain for each rotation of the shaft. A timer can record the time required to generate these pulses for each rotation of the measured rotating shaft. , so that the current rotation speed of the measured rotating shaft can be calculated, that is, the RPM value. The RPM value with higher precision and resolution can be obtained by choosing a timer with higher precision.
测量过程中,先记录下未加负载时两路光电开关输出的相位差t,然后记录加上负载后的相位差t+Δt,从而可以计算得到偏置量Δt。为了消除诸如振动等等周期性运动产生的不准确因素,可以在每隔一定的轴的转动圈数对代表扭转角度的信号进行叠加求平均。再根据之前测量出的RPM的平均值和有关轴的材料参数的知识,就可以计算出被测转动轴上的扭矩和轴的功率。 During the measurement, first record the phase difference t of the output of the two photoelectric switches when no load is applied, and then record the phase difference t+Δt after adding the load, so that the offset Δt can be calculated. In order to eliminate the inaccurate factors caused by periodic motions such as vibration, the signals representing the torsion angle can be superimposed and averaged every certain number of rotations of the shaft. Then, based on the average value of the previously measured RPM and the knowledge of the material parameters of the shaft, the torque on the measured rotating shaft and the power of the shaft can be calculated.
从光电开关输出的电脉冲信号通过第一导线9和第二导线10被引入到控制器11中进行预处理,然后通过控制器11中的逻辑电路获取和计算出有负载时两码盘间相位差的变化,并将计算结果通过串口传输到计算机12中。轴的转速、扭矩和功率等均可以以曲线形式和数字形式实时显示在计算机12的显示器13和/或LCD显示屏14上,曲线可以反映各个物理量随时间变化情况。
The electric pulse signal output from the photoelectric switch is introduced into the
本发明除了能够通过在被测转动轴上相隔一定距离安装两个光电码盘的方式来测量整个被测转动轴的扭矩等物理量之外,它的另一个应用就是可以在被测转动轴上等距离的设置多个光电码盘,如图5所示:在被测转动轴1上安装了四个光电码盘,分别是第三光电码盘16、第四光电码盘17、第五光电码盘18、第六光电码盘19。通过同样的方法逐段检测每一段被测转动轴上的扭矩变化,从而获取被测转动轴上的扭矩分布情况,就能够分析被测转动轴在承受负载情况下各段扭矩和功率等的变化情况,使测量和分析工作细化。这一应用是以往的扭矩测量系统无法实现的。
In addition to being able to measure physical quantities such as the torque of the entire measured rotating shaft by installing two photoelectric code discs at a certain distance on the measured rotating shaft, another application of the present invention is that it can wait on the measured rotating shaft. The distance is set with multiple photoelectric code discs, as shown in Figure 5: four photoelectric code discs are installed on the measured
本发明最大的优点是,如在图1中,被测转动轴1扭矩获取的方式上采用了第一光电码盘2和第二光电码盘4结合第一光电开关6和第二光电开关7的方式,能够获取被测量转动轴上任意一段或整个轴的扭矩,甚至通过引入多个光电码盘还可以获取整个被测转动轴上各段的扭矩分布情况;在扭矩计算上,通过控制器11中逻辑电路计算能够消除第一光电开关6和第二光电开关7随时间和/或温度出现的触发点漂移的现象,可以保证系统长期工作的稳定性;控制器设置有多个光电脉冲输入端口,实现多组相位差的同时采集和计算,除了可以同时测量轴上多段的扭矩和功率外,还能够同时采集多个轴系的扭转角度并计算多个轴的扭矩和功率,相比于应变片或钢弦一次只能测量一根轴系而言,具有节省测量时间和人力的优势。
The biggest advantage of the present invention is that, as shown in Fig. 1, the way to obtain the torque of the measured
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100084003A CN102135460B (en) | 2011-01-17 | 2011-01-17 | Photoelectric non-contact rotating shaft torque and power measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100084003A CN102135460B (en) | 2011-01-17 | 2011-01-17 | Photoelectric non-contact rotating shaft torque and power measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102135460A CN102135460A (en) | 2011-07-27 |
CN102135460B true CN102135460B (en) | 2012-05-30 |
Family
ID=44295309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100084003A Expired - Fee Related CN102135460B (en) | 2011-01-17 | 2011-01-17 | Photoelectric non-contact rotating shaft torque and power measurement device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102135460B (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102901596B (en) * | 2012-10-15 | 2014-08-13 | 中北大学 | Method for testing photoelectric reflection type dynamic torque of equal-diameter rotary shaft |
CN102930763B (en) * | 2012-10-26 | 2014-10-08 | 山东省远大网络多媒体股份有限公司 | Photoelectric timing and ranging tester |
CN103383293B (en) * | 2013-06-14 | 2015-08-26 | 西安工程大学 | Photo-electric torque measuring device and measuring method |
CN103983388B (en) * | 2014-04-25 | 2016-01-06 | 苏州市计量测试研究所 | A kind of real-time online formula shaft power measurements method |
CN103994891B (en) * | 2014-05-13 | 2016-08-17 | 安徽农业大学 | Moment of torsion and power detection device for air-powered motor |
CN104515867B (en) * | 2014-09-19 | 2017-11-28 | 中国人民解放军军事交通学院 | Power set axle moment of torsion based on dual camera, rotating speed, power parameter measuring method |
CN104819794A (en) * | 2015-05-21 | 2015-08-05 | 广州大学 | A non-contact motor power loss measuring device and method |
CN105046151B (en) * | 2015-07-06 | 2018-04-24 | 北京科技大学 | A kind of code-disc protective device and method for rotating kind equipment |
EP3367080A4 (en) * | 2015-10-20 | 2018-10-17 | Eagle Industry Co., Ltd. | Contactless method for measuring torque |
CN105841865B (en) * | 2016-05-11 | 2019-03-15 | 中国人民解放军装甲兵技术学院 | A kind of heavy-duty vehicle torque transmission shaft detection device and error calibration method |
CN106595929A (en) * | 2016-12-12 | 2017-04-26 | 陕西科技大学 | Dynamic torque measuring device and use method thereof |
CN106525302B (en) * | 2016-12-16 | 2022-03-11 | 善测(天津)科技有限公司 | Rotating shaft torque non-contact dynamic measurement system based on high-precision key phase |
CN108005939B (en) * | 2017-11-29 | 2020-02-14 | 沈阳透平机械股份有限公司 | Torque monitoring device for centrifugal compressor |
TWI634748B (en) | 2017-12-05 | 2018-09-01 | 財團法人工業技術研究院 | Measuring apparatus including phase locked loop and measuring method thereof |
CN108254109B (en) * | 2017-12-19 | 2019-10-08 | 上海交通大学 | Torque detection device, method and system based on shaft phase difference |
CN108731707B (en) * | 2018-06-04 | 2021-01-01 | 大族激光科技产业集团股份有限公司 | Method and device for measuring absolute position by double-increment type encoder |
CN109172935B (en) * | 2018-09-25 | 2024-06-25 | 湖南比扬医疗科技有限公司 | Device and method for detecting driving direction and accuracy of infusion pump |
CN109540357A (en) * | 2018-10-31 | 2019-03-29 | 天津理工大学 | The processing method of high-throughput torque measurement data based on Labview |
CN110702284B (en) * | 2019-10-15 | 2021-06-29 | 浙江大学台州研究院 | a dynamometer |
CN112254665B (en) * | 2020-09-09 | 2022-04-01 | 杭州电子科技大学 | High-precision digital circular division sensor, system and detection method |
CN112595292A (en) * | 2020-12-28 | 2021-04-02 | 西咸新区鸿通管廊投资有限公司 | Navigation positioning module of rail-mounted inspection robot and coarse-fine composite positioning method |
CN113125062A (en) * | 2021-04-08 | 2021-07-16 | 大川电机科技(江苏)有限公司 | Non-contact phase difference type torque sensing device |
CN113532891A (en) * | 2021-06-16 | 2021-10-22 | 武汉理工大学 | Synchronous measurement method for rotating speed, torsional vibration and torque signals at two ends of wheel shaft |
CN115127440A (en) * | 2022-06-15 | 2022-09-30 | 烟台杰瑞石油装备技术有限公司 | Detection device and detection method for torsion angle of transmission shaft |
CN115078754B (en) * | 2022-06-23 | 2025-02-18 | 武汉理工大学 | A speed torque measurement device and measurement method based on fiber grating sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4520681A (en) * | 1984-03-19 | 1985-06-04 | Jeff D. Moore | Apparatus for measuring torque on a rotating shaft |
CN1162990A (en) * | 1994-09-26 | 1997-10-22 | 弗朗茨·卡斯坦·史密斯 | Device for measuring torque of rotating shaft |
-
2011
- 2011-01-17 CN CN2011100084003A patent/CN102135460B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4520681A (en) * | 1984-03-19 | 1985-06-04 | Jeff D. Moore | Apparatus for measuring torque on a rotating shaft |
CN1162990A (en) * | 1994-09-26 | 1997-10-22 | 弗朗茨·卡斯坦·史密斯 | Device for measuring torque of rotating shaft |
US5918286A (en) * | 1994-09-26 | 1999-06-29 | Smith; Frantz Karsten | Apparatus for torque measurement on rotating shafts |
Non-Patent Citations (1)
Title |
---|
候培国.基于光电多码道技术的嵌入式扭矩测量系统.《传感器与微系统》.2009,第28卷(第5期),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN102135460A (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102135460B (en) | Photoelectric non-contact rotating shaft torque and power measurement device | |
CN1865891B (en) | Method for monitoring torsional vibration damper | |
FI111992B (en) | Device for measuring the torque of rotating shafts | |
CN102507205B (en) | Method for checking vibration fault of fan blade of aerial engine | |
CN102128645A (en) | Dynamic angle measurement error detector for photoelectric shaft angle encoder | |
CN105510026A (en) | Wind turbine generator system shaft coupling skidding fault detection apparatus and method | |
CN105424073A (en) | Incremental photoelectric encoder precision detection system | |
CN102809422A (en) | Wind turbine driving system torsional vibration measurement method and device | |
CN105705951B (en) | Method for reducing errors in rotor speed measurement | |
KR20110108484A (en) | Torsion Measurement Method and System of Structures Using Strain Measurement Sensors | |
CN106568483A (en) | Turbine optical sensor and turbine optical flowmeter based on sensor | |
CN103383293B (en) | Photo-electric torque measuring device and measuring method | |
CN102901596B (en) | Method for testing photoelectric reflection type dynamic torque of equal-diameter rotary shaft | |
CN101975867A (en) | Fiber bragg grating-based rotating speed detection system and detection method thereof | |
CN108593955B (en) | Instant rotating speed testing method under condition of rotating speed periodic fluctuation | |
CN108981991A (en) | Optical fiber type photoelectric sensor ship shaft power measuring instrument and measurement method | |
CN106323501B (en) | Temperature measurement method and device for rotating machinery based on fiber grating | |
EP3317628B1 (en) | A method and a device for determining torsional deformation in a drivetrain | |
CN104792517A (en) | System for measuring in real time mechanical dynamic characteristics of spindle of water turbine | |
CN114046917A (en) | A real-time monitoring non-contact drive shaft torque photoelectric sensing system | |
CN211927266U (en) | Gear transmission tooth surface friction measuring system | |
CN209201081U (en) | Fiber optical transceiver twisting loss detection device | |
CN110657831A (en) | Pulse encoder quality detection system | |
CN220751445U (en) | Calibration and calibration device of helicopter torque detection system | |
CN203551101U (en) | Fiber sensing system measuring vibration of rotary machine rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120530 |
|
CF01 | Termination of patent right due to non-payment of annual fee |