CN114046917A - A real-time monitoring non-contact drive shaft torque photoelectric sensing system - Google Patents
A real-time monitoring non-contact drive shaft torque photoelectric sensing system Download PDFInfo
- Publication number
- CN114046917A CN114046917A CN202111464569.XA CN202111464569A CN114046917A CN 114046917 A CN114046917 A CN 114046917A CN 202111464569 A CN202111464569 A CN 202111464569A CN 114046917 A CN114046917 A CN 114046917A
- Authority
- CN
- China
- Prior art keywords
- drive shaft
- sensing system
- photoelectric sensing
- optical transceiver
- monitored
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 18
- 230000003287 optical effect Effects 0.000 claims abstract description 44
- 230000005540 biological transmission Effects 0.000 claims abstract description 18
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 7
- 230000001105 regulatory effect Effects 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000011358 absorbing material Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000000428 dust Substances 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
- G01L3/02—Rotary-transmission dynamometers
- G01L3/04—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
- G01L3/10—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
- G01L3/12—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving photoelectric means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
The invention discloses a non-contact type driving shaft torque photoelectric sensing system capable of monitoring in real time, which comprises a light receiving and transmitting integrated module and an upper computer; the monitored system comprises a driving shaft and a transmission shaft; the driving shaft is provided with one or more reflecting surfaces; the transmission shaft is provided with one or more reflecting surfaces; the optical transceiver integrated module is used for outputting detection light, receiving and processing signal light reflected by the corresponding reflecting surface; and the upper computer is used for regulating, analyzing and displaying the optical/electrical signals emitted by the optical transceiver integrated module. The invention can realize non-contact real-time monitoring of the output torque of the engine or the motor, feed back the running state of the engine or the motor in time and detect the running state with possible faults, thereby improving the safety performance.
Description
Technical Field
The invention relates to the technical field of automobile sensing, in particular to a non-contact type driving shaft torque photoelectric sensing system capable of monitoring in real time.
Background
In the field of automobile sensing, automobile torque sensing is an important application. When the automobile engine outputs different torques to be applied to the driving shaft of the automobile, the motion state of the automobile is changed, the driving shaft of the automobile can generate tiny deformation due to inertia, the running state of the automobile engine can be fed back in time through the detection of the torque of the driving shaft by the torque sensor, and possible faults are detected, so that the safety performance of the automobile in motion is improved.
In the current contact type strain transducer who is applied to automobile torque sensing, with special survey turn round foil gage with the sticky subsides of meeting an emergency on being surveyed the elastic axis to constitute strain bridge according to certain arrangement, produce small meeting an emergency when the drive shaft is receiving torsion effect, paste epaxial foil gage and can take place corresponding deformation, thereby make the resistance of foil gage change, receive the signal of telecommunication of turning round through testing this elastic axis, then can demodulate out corresponding torque signal. The voltage input of the strain gauge and the output of the electric signal are realized through the conductive slip ring, however, the conductive slip ring belongs to friction contact, and the problems of friction resistance of a contact part, abrasion and heating of a contact part and the like exist, so that the rotating speed of a rotating shaft and the service life of the conductive slip ring are limited; in addition, the signal fluctuation caused by the inexhaustible contact stability easily causes the problems of large measurement error and the like.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention aims to provide a non-contact type driving shaft torque photoelectric sensing system capable of monitoring in real time, which can realize reliable and durable real-time monitoring of the torque of an engine or a motor on the basis of not changing the original structure of a monitored system.
In order to achieve the purpose, the technical scheme of the invention is as follows:
a non-contact type driving shaft torque photoelectric sensing system capable of monitoring in real time comprises a light receiving and transmitting integrated module and an upper computer;
the monitored system comprises a driving shaft and a transmission shaft; the driving shaft is provided with one or more reflecting surfaces; the transmission shaft is provided with one or more reflecting surfaces; the optical transceiver integrated module is used for outputting detection light, receiving and processing signal light reflected by the corresponding reflecting surface; and the upper computer is used for regulating, analyzing and displaying the optical/electrical signals emitted by the optical transceiver integrated module.
The optical transceiver integrated module comprises an optical generating unit, an optical detector and a signal processing unit, and realizes photoelectric conversion and signal processing functions.
The reflecting surface is a surface reflecting small piece with a certain axial opening angle; or the reflecting surface is a reflecting material coating and is coated on the designated position on the surface of the transmission shaft or the driving shaft.
The surface reflection small piece is provided with a non-contact short sleeve for shielding the surface reflection small piece so as to prevent dust and soil from adhering to the surface reflection small piece to influence the reflection performance of the surface reflection small piece.
The drive shaft or the drive shaft surface is coated with a light absorbing material layer in the region outside the reflective surface to improve signal contrast.
The upper computer and the optical transceiving integrated module are in wired connection or wireless connection.
The system being monitored includes, but is not limited to, an automobile.
The non-contact type driving shaft torque photoelectric sensing system capable of monitoring in real time is provided with a support frame and a fixed shaft, wherein the support frame is fixed above an engine and supports the fixed shaft; the fixed shaft is used for fixing the optical transceiver integrated module.
The non-contact type driving shaft torque photoelectric sensing system capable of monitoring in real time is characterized in that a light receiving and transmitting integrated module and a reflecting surface form a group, and a plurality of groups are arranged.
When the automobile runs in a balanced state of uniform linear motion, the rotation angular velocities of the driving shaft and the transmission shaft are the same, and the electric signals output by the light receiving and transmitting integrated module corresponding to the driving shaft and the light receiving and transmitting integrated module corresponding to the transmission shaft are completely synchronous; when the automobile does variable speed motion in a certain mode, the rotational angular velocity output by the engine and acting on the driving shaft changes firstly, the driving shaft still keeps the same rotational angular velocity as the original rotational angular velocity due to inertia, and the same angular velocity as the driving shaft is achieved after a section of angular displacement, so that a hysteresis effect is achieved, a time difference exists between electric signals of the optical transceiving integrated module corresponding to the driving shaft and the optical transceiving integrated module corresponding to the driving shaft, and the real-time change condition of the output torque of the automobile engine can be monitored by detecting the real-time change condition of the time difference.
The invention has the beneficial effects that:
the invention can realize non-contact real-time monitoring of the output torque of the engine or the motor by arranging two or more groups of optical signal monitoring modules on the basis of not changing the original structure of a monitored system such as an automobile and the like, can feed back the running state of the engine or the motor in time, and detect the running state with possible faults, thereby improving the safety performance. The monitoring is accurate and not easy to be interfered, and the method is particularly suitable for the times of unmanned control and remote control.
Drawings
Fig. 1 is a schematic structural diagram of a non-contact type automobile driving shaft torque photoelectric sensing system capable of real-time monitoring according to an embodiment of the present invention.
Fig. 2 is a signal diagram of an optical transceiver module according to an embodiment of the present invention.
In the figure, an engine 1, a driving shaft 2, a first reflecting surface 3, a transmission shaft 4, a second reflecting surface 5, a support frame 6, a fixed shaft 7, a first light transceiving integrated module 8, a second light transceiving integrated module 9, an upper computer 10 and a load assembly 11 are shown.
Detailed Description
The technical solutions in the embodiments of the present invention will be described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments.
The terms "first," "second," and the like in the description and in the claims of the embodiments of the application and in the drawings described above are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.
Referring to fig. 1, fig. 1 is a schematic structural diagram of a non-contact type automobile driving shaft torque photoelectric sensing system capable of real-time monitoring according to an embodiment of the present invention.
As shown in fig. 1, the non-contact type automobile driving shaft torque photoelectric sensing system capable of real-time monitoring (for convenience of description, a part of the system to be monitored is included herein) includes an engine 1, a driving shaft 2, a first reflecting surface 3, a transmission shaft 4, a second reflecting surface 5, a supporting frame 6, a fixed shaft 7, a first optical transceiver module 8, a second optical transceiver module 9, an upper computer 10, and a load assembly 11.
The engine 1 is connected with the left end of the driving shaft 2, the right end of the driving shaft 2 is connected with the left end of the transmission shaft 4, and the right end of the transmission shaft 4 is connected with the load assembly 11; the first reflecting surface 3 is positioned on the surface of the driving shaft 2, and the second reflecting surface 5 is positioned on the surface of the transmission shaft 4; the supporting frame 6 is located above the engine 1 and connected with the fixed shaft 7, and the first light receiving and transmitting integrated module 8 and the second light receiving and transmitting integrated module 9 are both fixed below the fixed shaft 7.
Specifically, the engine 1 is a power plant of an automobile. In this embodiment, it may be a commercial automobile engine.
The drive shaft 2 is used to transmit the output power of the engine. In this embodiment, it may be a commercial automobile drive axle.
The propeller shaft 4 and the drive shaft 2 together transmit the output power of the engine 1 to the load unit 11. In the present embodiment, the propeller shaft 4 may be a commercial automobile propeller shaft. In one implementation of the present embodiment, the connection mode of the transmission shaft 4 and the driving shaft 2 may be a hub connection mode.
The first reflecting surface 3 and the second reflecting surface 5 are small surface reflection pieces with a certain axial angle, and are used for reflecting the detection light output by the first optical transceiver module 8 and the second optical transceiver module 9, and black light absorption materials can be coated on other axial areas except the first reflecting surface 3 and the second reflecting surface 5 to improve the signal contrast. In this embodiment, it may be a commercially available coating of highly reflective material. In one implementation of this embodiment, the surface reflective patch may be shielded by a short non-contact sleeve to prevent dirt, mud, etc. from sticking to the reflective patch and affecting its reflective properties. In an implementation manner of this embodiment, the highly reflective material coating and the black light absorbing material may be periodically and alternately coated on corresponding positions of the driving shaft and the transmission shaft to adjust an electrical signal period of the optical transceiver module.
The support frame 6 is used for fixing the fixed shaft 7.
The fixing shaft 7 is used for fixing the first optical transceiver module 8 and the second optical transceiver module 9.
The first optical transceiver module 8 and the second optical transceiver module 9 have a photoelectric conversion function, and are configured to output probe light required for torque sensing, receive signal light reflected by the first reflecting surface 3 and the second reflecting surface 5, and process the signal light. In this embodiment, the module may be a commercially available integrated optical transceiver module.
And the upper computer 10 is used for regulating, analyzing and displaying the optical/electrical signals of the first optical transceiver integrated module 8 and the second optical transceiver integrated module 9.
The load assembly 11 is used for receiving the output power of the engine 1 and converting the output power into the running power of the automobile. In this embodiment, it may be a vehicle running gear component, such as a vehicle wheel.
Let the angular velocity of rotation of the drive shaft 2 be ω1Radius of r1The rotational angular velocity of the propeller shaft 4 is ω2Radius of r2(ii) a The linear velocity of the first reflecting surface 3 isLength ofThe linear velocity of the second reflecting surface 5 is,t0Is a set value; when the automobile runs in a balanced state of uniform linear motion, the rotation angular velocity of the driving shaft 2 and the transmission shaft 4 is the same,ω0Is the angular velocity of rotation output from the engine 1 with a period of rotation of。
Referring to fig. 2, fig. 2 is a signal diagram of an optical transceiver module according to an embodiment of the present invention.
As shown by the black solid line in fig. 2, when the driving shaft 2 rotates and the detection light emitted by the first optical transceiver module 8 hits the first reflecting surface 3, the first reflecting surface 3 reflects the detection light, and the detection light is received by the built-in photodetector of the first optical transceiver module 8 and converted into a high level electrical signal, and the duration of the process is t0(ii) a As shown by the gray dashed line in fig. 2, when the driving shaft 4 rotates, and the detection light emitted by the second optical transceiver module 9 impinges on the second reflecting surface 5, the second reflecting surface 5 reflects the detection light, and the detection light is received by the photodetector built in the second optical transceiver module 9 and converted into a high-level electrical signal, where the duration of the process is also t0(ii) a When the automobile runs in a balanced state of uniform linear motion, the two electric signals are completely synchronous, and delta t is 0.
When the vehicle is shifted in a certain manner, the engine 1 outputs a rotational angular velocity acting on the drive shaft 2 ofThe drive shaft 4 is now held by inertiaThe angular velocity of the drive shaft 4 is set to the same angular velocity as the drive shaft 2 after a certain angular displacement Δ Ω, and the angular acceleration of the drive shaft 4 is set to k: (c:)) The required time is t2Then the process can be represented as
The following can be obtained:
at the same time, the time t required for the drive shaft 2 to undergo the same angular displacement Δ Ω1Comprises the following steps:
the time difference of the high level signals of the first optical transceiver module 8 and the second optical transceiver module 9Can be expressed as:
assuming that the axial distance between the first reflecting surface 3 and the second reflecting surface 5 is Δ l, the torque can be expressed as:
wherein G is the shear modulus of the material of the drive shaft,the polar moment of inertia at the first reflecting surface 3 can be calculated by the following formula:
the rated torque of the engine output can be expressed as:
where P is the engine output power, unit: kW; n is the rotational speed of the drive shaft, in units: r/min.
In another implementation of the present embodiment, the actual torque may also be determined by a monotonic curve of the nominal torque to the angular displacement Δ Ω.
By detectingThe real-time change condition of the automobile engine can realize the sensing monitoring of the angular displacement delta omega, and further obtain the actual torque T output by the automobile engine1Real-time change of state; by comparing with the rated torque of the automobile engine, the running state of the automobile engine can be fed back in time, and the running state with possible faults can be detected, so that the safety performance of the automobile during motion is improved.
In another implementation manner of this embodiment, a plurality of sets of the optical transceiver integrated module and the reflection surface may be further disposed on the driving shaft to improve sensing accuracy.
The embodiments in the above description can be further combined or replaced, and the embodiments are only described as preferred examples of the present invention, and do not limit the concept and scope of the present invention, and various changes and modifications made to the technical solution of the present invention by those skilled in the art without departing from the design concept of the present invention belong to the protection scope of the present invention. The scope of the invention is given by the appended claims and any equivalents thereof.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111464569.XA CN114046917A (en) | 2021-12-03 | 2021-12-03 | A real-time monitoring non-contact drive shaft torque photoelectric sensing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111464569.XA CN114046917A (en) | 2021-12-03 | 2021-12-03 | A real-time monitoring non-contact drive shaft torque photoelectric sensing system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114046917A true CN114046917A (en) | 2022-02-15 |
Family
ID=80212309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111464569.XA Pending CN114046917A (en) | 2021-12-03 | 2021-12-03 | A real-time monitoring non-contact drive shaft torque photoelectric sensing system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114046917A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115144176A (en) * | 2022-06-21 | 2022-10-04 | 中国第一汽车股份有限公司 | Device for simulating the efficiency of electric drive system, reducer, and motor transmission |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2435709A1 (en) * | 1974-07-25 | 1976-02-12 | Bosch Gmbh Robert | Contactless torque measuring device - has elastic coupling component between driving and driven shafts |
JPH11257935A (en) * | 1998-03-11 | 1999-09-24 | Hokkei Kogyo:Kk | Apparatus and method for measuring torsion of shaft |
CN1266985A (en) * | 1999-03-16 | 2000-09-20 | 大港油田集团技术监督检测中心 | Dynamic laser torductor |
CN1309286A (en) * | 2001-03-30 | 2001-08-22 | 清华大学 | Method for measuring torque of drive axle with photoelectric sensor |
US20020002877A1 (en) * | 2000-03-02 | 2002-01-10 | Siemens Automotive Corporation | Engine torque sensor |
JP2004061352A (en) * | 2002-07-30 | 2004-02-26 | Tokyo Electric Power Co Inc:The | Torque measuring instrument |
JP2008151700A (en) * | 2006-12-19 | 2008-07-03 | Toshiba Corp | Torque measuring method and device |
CN209764429U (en) * | 2019-01-30 | 2019-12-10 | 北京汽车股份有限公司 | Vehicle and detection device thereof |
CN216433330U (en) * | 2021-12-03 | 2022-05-03 | 浙江大学 | Non-contact type driving shaft torque photoelectric sensing system capable of monitoring in real time |
-
2021
- 2021-12-03 CN CN202111464569.XA patent/CN114046917A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2435709A1 (en) * | 1974-07-25 | 1976-02-12 | Bosch Gmbh Robert | Contactless torque measuring device - has elastic coupling component between driving and driven shafts |
JPH11257935A (en) * | 1998-03-11 | 1999-09-24 | Hokkei Kogyo:Kk | Apparatus and method for measuring torsion of shaft |
CN1266985A (en) * | 1999-03-16 | 2000-09-20 | 大港油田集团技术监督检测中心 | Dynamic laser torductor |
US20020002877A1 (en) * | 2000-03-02 | 2002-01-10 | Siemens Automotive Corporation | Engine torque sensor |
CN1309286A (en) * | 2001-03-30 | 2001-08-22 | 清华大学 | Method for measuring torque of drive axle with photoelectric sensor |
JP2004061352A (en) * | 2002-07-30 | 2004-02-26 | Tokyo Electric Power Co Inc:The | Torque measuring instrument |
JP2008151700A (en) * | 2006-12-19 | 2008-07-03 | Toshiba Corp | Torque measuring method and device |
CN209764429U (en) * | 2019-01-30 | 2019-12-10 | 北京汽车股份有限公司 | Vehicle and detection device thereof |
CN216433330U (en) * | 2021-12-03 | 2022-05-03 | 浙江大学 | Non-contact type driving shaft torque photoelectric sensing system capable of monitoring in real time |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115144176A (en) * | 2022-06-21 | 2022-10-04 | 中国第一汽车股份有限公司 | Device for simulating the efficiency of electric drive system, reducer, and motor transmission |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102135460B (en) | Photoelectric non-contact rotating shaft torque and power measurement device | |
CN1865891B (en) | Method for monitoring torsional vibration damper | |
JP3338214B2 (en) | Dynamometer | |
CN101608898B (en) | Steering System Planetary Gear Absolute Angle Output Rotary Angle Sensor | |
CN114046917A (en) | A real-time monitoring non-contact drive shaft torque photoelectric sensing system | |
CN100354078C (en) | Double ring detecting mechanism for robot joint speed reducer flexibility | |
CN216433330U (en) | Non-contact type driving shaft torque photoelectric sensing system capable of monitoring in real time | |
CN103383293B (en) | Photo-electric torque measuring device and measuring method | |
CN1285037A (en) | Encoder | |
CN2220065Y (en) | Intelligence coupling | |
GB2542144A (en) | Determining rotational speed or direction of a body | |
GB2417322A (en) | Measuring torque in the crankshaft of a powertrain | |
CN210037036U (en) | Non-contact dynamic torque sensor | |
CN112345135A (en) | Non-contact dynamic torque sensor | |
CN204359475U (en) | Static torque sensor is adopted to detect the mechanical connecting structure of dynamic torque | |
US7415363B2 (en) | High resolution torque measurement on a rotating shaft with movement compensation | |
CN103939591B (en) | Can carry out the planetary reducer of moment of torsion detection simultaneously | |
CN112564427B (en) | High-speed permanent magnet synchronous motor with contactless torque measurement function | |
CN1123763C (en) | Method for measuring torque of drive axle with photoelectric sensor | |
JP2001330525A (en) | Torque amount converter | |
CN115979481B (en) | High-speed rotation shaft torque measurement system | |
WO2019203250A1 (en) | Method and device for diagnosing abnormality in mechanical device | |
CN109667726B (en) | Wind turbine rotor speed measurement structure, device and wind turbine | |
RU2091735C1 (en) | Gear measuring torque | |
JP3399586B2 (en) | Integrated angle and angular acceleration detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |